- page 13 , line 6: $s_{2}$ should read $s_{3}$ (twice).
- page 31, equality (2.3.28) in Theorem 2.3.27: in the sum, $j$ should range from 0 to $\min \{k, i\}$, not from $\max \{0, k+i-n\}$ to $\min \{k, i\}$. The reason is that in the expression for $a(k, i, j)$ the second binomial coefficient must be interpreted in the extended sense (cf. page 28, line 3 ), because in the proof it is shown that the left-hand side and right-hand side are the same as polynomials in the two indeterminates $n$ and $x$. In the proof on the last line but two " $j<k+i-n$ " should be omitted: it is correct since we have assumed that $n>k+i$, but not used, and is misleading.
- page 58, notes of Section 2.6: Theorem 2.6.5 comes from Sloane, Reddy and Chen [596] and
G. V. Zaitsev, V. A. Zinoviev and N. V. Semakov: Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes, Proc. 2nd Internat. Symp. on Information Theory, Tsahkadsor, September 2-8, 1971. Edited by B. N. Petrov and F. Cski. A complementary volume to Problems of Control and Information Th. / Problemy Upravleniya i Teorii Informatsii. Akadmiai Kiad, Budapest, pp. 257-263, 1973.
- page 65, line -5: "smallest" should read "largest".
- page 74 , line 3: "smallest" is redundant.
- page 139, line 10: "in nonzero." should read "is nonzero.".
- page 147, line 4: "Lemma 2.4.6" should read "Theorem 2.4.8".
- page 193, Table 7.1, and page 213, lines $-9 /-8: t[12,6]>2$ is due to Graham and Sloane [265].
- end of page 229, the linear programming problem: we must add the constraint $\beta_{i} \geq 0$ for all $i$.
- page 242 , line -7 : $m+2$ should read $m-2$.
- page 248, Lemma 9.3.6 needs to be restated:

Assume that $m \geq 6$ and $n \geq 2^{m-2}$. Then $R_{R M}(2, m)<t$ if there does not exist a selfcomplementary $\left[t, m+1, d \geq t-R_{R M}(1, m-1)\right]$ code with a generator matrix where all columns are distinct.

- page 250 , lines $14 / 15$ : if $m$ is odd and the number of columns in $\mathbf{A}$ is $m+1$, there may not be any proper subset $\mathbf{Q}$, but then the sum of all columns is zero and by adding a fixed column to all columns we obtain a zero column which can be deleted.
- page 256, last line: the double inequality should be reversed and read $(h-1)(m-1) / h \leq$ $r \leq m-2$.
- page 258 , line $-15:>240$ should read $=240$.
- page 259, line 13: Theorem 9.2.2 should be Theorem 9.2.16.
- page 329, lines 12 and 14:

$$
\lim _{n \rightarrow \infty} \sup \text { should read } \underset{n \rightarrow \infty}{\limsup }
$$

- page 353 , the value of $R_{10,10}$ is 35 , not 34 , see J. Carlson and D. Stolarski: The correct solution to Berlekamp's switching game, Discrete Mathematics, vol. 287, pp. 145-150, 2004.
- page 408, Lemma 16.3.9: condition (iii) should read
$w(\mathbf{x})=2, w(\mathbf{y})=w(\mathbf{z})=3$ and $w(\mathbf{x}+\mathbf{y})=w(\mathbf{x}+\mathbf{z})=1$.
- page 483, about the problem UB-LIN, and pages 486/487, about the construction of an instance of UB-LIN: it should be remarked that the matrix $\mathbf{H}$ in the instance of UB-LIN is of full rank. In the construction, we can assume, without loss of generality, that every element of $X_{1} \cup X_{2} \cup X_{3}$ is contained in at least one triple in $M_{1} \cup M_{2}$ (otherwise, the answer is trivially NO). This assumption will guarantee that the constructed matrix $\mathbf{H}$ is of full rank.
- page 504: reference [161] should come before reference [156].

