In Memoriam
 Gérard COHEN, Faina SOLOV'EVA, Aimo TIETÄVÄINEN, Alexander VARDY.

COVERING RADIUS, January 10, 2023: 1058 references

Warning and Public Call

I intend to retire on March 1st, 2023. After this day, I will not go on updating this bibliography.
I do not know how long my site, and in particular this page, will remain visible.
Therefore, I am searching for a volunteer, to whom I will give my files, who will take over and keep this bibliography alive in the years to come. I think it can be useful for the community of researchers working, or wishing to start to work, in this exciting area.

List of updatings since April 1997:

$\underline{2022}$ - December: new [317], [657], [740], [869], [978]. October: new [597], [646]. September: new [330], [331], [394], [770]. May: new [192]. March: new [254], [325], [414], [894], [999].
$\underline{2021}$ - November: new [22], [23], [29], [77], [78], [92], [110], [112], [201], [284], [285], [319], [419], [537], [546], [573], [715], [850]. October: new [413]. July: new [781].
$\underline{2019}$ - December: new [1005], [1006].
$\underline{2018}$ - July: new [812]. January: new [41], [76], [111], [195], [418], [420], [603], [609], [610], [852], [1007], [1032].
$\underline{2017}$ - October: new [709]. May: new [28].
$\underline{2016}$ - September: new [75], [160].
$\underline{2015}$ - December: new [69], [79]. March: new [74].
$\underline{2014}$ - October: new [47], [80], [138], [760], [846]. May: new [653], [858].
$\underline{2013}$ - February: new [258], [643], [644], [720], [756], [1046].
$\underline{2012}$ - May: new [169], [376], [377], [382], [988].
$\underline{2011}$ - November: new [55].
$\underline{2010}$ - September: new [26], [56], [139], [486], [669], [757]. June: new [821]. May: new [577], [578].
$\underline{2009}$ - December: new [168], [375], [386], [987]. November: new [249], [257], [289], [291], [315], [429], [431], [457], [466], [467], [470], [735], [755], [771], [804], [857]. September: new [364]. August: new [338]. June: new [378], [379], [381], [671]. April: new [278], [279], [280]. March: new [61], [336], [380], [586], [719], [876], [1045]. January: new [596].
$\underline{2008}$ - November: new [333], [337], [369]. October: new [57]. September: new [668]. July: new [332], [432]. June: new [119], [1044]. May: new [137], [439], [773]. April: new [426], [458], [845], [848]. February: new [428], [833]. January: new [542].
$\underline{2007}$ - November: new [393], [575], [576], [585], [1058]. September: new [758], [759]. August: new
[453], [648]. July: new [425], [430], [888]. June: new [395]. April: new [202], [452], [889]. March: new [424]. January: new [182], [277], [642].
$\underline{2006}$ - November: new [241], [584], [649]. September: new [141], [193], [391], [427], [569], [579], [583], [595], [766]. June: new [844]. April: new [283]. March: new [27], [656], [807]. February: new [421], [639].
$\underline{2005}$ - October: new [344]. September: new [144], [167], [172]. February: new [140], [205], [262], [367], [383], [384], [658], [749], [1004].
$\underline{2004}$ - October: new [185]. August: new [739]. April: new [594], [623]. January: new [253], [765], [1008].
$\underline{2003}$ - November: new [49], [53], [81], [103], [115], [134], [143], [174], [196], [245], [259], [260], [294], [312], [322], [323], [450], [525], [526], [574], [605], [714], [764], [799], [805], [806], [849], [855], [861], [919], [949], [989], [994], [1041]. August: new [282], [355]. July: new [281], [385], [405], [534], [621]. June: new [132], [581]. May: new [123], [326]. April: new [58], [303], [423], [602], [798], [1003]. February: new [580], [582]. January: new [31].
$\underline{2002}$ - October: new [415], [454], [456], [535], [909]. March: new [25], [251], [808], [811], [818]. January: new [198], [721].
$\underline{2001}$ - December: new [370], [817], [980]. May: new [507], [552]; updated [126]. April: new [54], [272], [287], [288], [313], [608], [800], [842], [843]. March: new [638]. January: new [592], [816].
$\underline{2000}$ - October: new [508]. August: new [815]. April: new [247], [455]. February: updated [797]. January: new [261]; updated [544].
1999 - December: new [374], [591]; updated [831]. October: new [361], [422], [437], [637], [810], [832], [837]. June: new [611]; updated [125], [503]. March: new [73], [118], [485], [809]. January: new [24], [113], [238], [512], [918]; updated [151] (ex [104]), [321], [514].
1998 - June: new [32], [636], [641]; updated [640]. May: new [796]; updated [346]. April: updated [691] (ex [444]). January: new [131], [263], [286]; updated [60], [371], [436], [476], [506], [530], [666], [802], [803], [982].
1997 - November: new [212], [487], [532]; updated [795]. October: new [271]. September: new [783]; updated [226] (ex [161]), [270]. August: new [299], [555]; updated [239] (ex [168]), [509], [590], [703], [951], [993]. July: new [124], [1034]. May: new [484], [742], [979]; updated [513], [531], [794]. April: new [194], [366], [551], [941], [973], [1030]; updated [46], [229], [246], [435], [856].
[0] G. D. COHEN, I. S. HONKALA, S. LITSYN and A. C. LOBSTEIN: Covering Codes, Amsterdam: Elsevier, xxii+542 pp., 1997.

References

[1] M. J. AALTONEN: Linear programming bounds for tree codes, IEEE Trans. Inform. Th., vol. 25, pp. 85-90, 1979.
[2] M. J. AALTONEN: Bounds on the information rate of a tree code as a function of the code's feedback decoding minimum distance, Ann. Univ. Turku, Ser. A I, No. 181, 1981.
[3] M. J. AALTONEN: A new upper bound on nonbinary block codes, Discrete Mathematics, vol. 83, pp. 139-160, 1990.
[4] E. H. L. AARTS and J. KORST: Simulated Annealing and Boltzmann Machines: a Stochastic Approach to Combinatorial Optimization and Neural Computing, Chichester: Wiley, 1989.
[5] E. H. L. AARTS and P. J. M. van LAARHOVEN: Local search in coding theory, Discrete Mathematics, vol. 106/107, pp. 11-18, 1992.
[6] C. M. ADAMS and S. E. TAVARES: Generating and counting binary bent sequences, IEEE Trans. Inform. Th., vol. 36, pp. 1170-1173, 1990.
[7] M. J. ADAMS: Subcodes and covering radius, IEEE Trans. Inform. Th., vol. 32, pp. 700-701, 1986.
[8] R. AHLSWEDE: Coloring hypergraphs: a new approach to multi-user source coding-II, J. Combinatorics, Information \& System Sciences, vol. 5, No. 3, pp. 220-268, 1980.
[9] R. AHLSWEDE, L. A. BASSALYGO and M. S. PINSKER: Binary constant-weight codes correcting localized errors and defects, Problemy Peredachi Informatsii, vol. 30, No. 2, pp. 102-104, 1994. Translated in: Problems of Inform. Transm., vol. 30, No. 2, pp. 10-13.
[10] R. AHLSWEDE and G. SIMONYI: Reusable memories in the light of the old arbitrarily varying and a new outputwise varying channel theory, IEEE Trans. Inform. Th., vol. 37, pp. 1143-1150, 1991.
[11] R. AHLSWEDE and Z. ZHANG: Coding for write-efficient memory, Information and Control, vol. 83, pp. 80-97, 1989.
[12] J. M. van der AKKER, J. H. KOOLEN and R. J. M. VAESSENS: Perfect codes with distinct protective radii, Discrete Mathematics, vol. 81, pp. 103-109, 1990. Addendum, Discrete Mathematics, vol. 89, p. 325, 1991.
[13] N. ALON: Explicit construction of exponential sized families of k-independent sets, Discrete Mathematics, vol. 58, pp. 191-193, 1986.
[14] N. ALON: Transmitting in the n-dimensional cube, Discrete Applied Mathematics, vol. 37/38, pp. 9-11, 1992.
[15] N. ALON, L. BABAI and A. ITAI: A fast and simple randomized algorithm for the maximal independent set problem, J. Algorithms, vol. 7, pp. 567-583, 1986.
[16] N. ALON, E. E. BERGMANN, D. COPPERSMITH and A. M. ODLYZKO: Balancing sets of vectors, IEEE Trans. Inform. Th., vol. 34, pp. 128-130, 1988.
[17] N. ALON, J. BRUCK, J. NAOR, M. NAOR and R. ROTH: Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs, IEEE Trans. Inform. Th., vol. 38, pp. 509-516, 1992.
[18] N. ALON, M. B. NATHANSON and I. RUZSA: The polynomial method and restricted sums of congruence classes, Preprint, 1996.
[19] N. ALON and J. H. SPENCER: The Probabilistic Method, New York: Wiley, 1992.
[20] D. R. ANDERSON: A new class of cyclic codes, SIAM J. Applied Mathematics, vol. 16, pp. 181-197, 1968.
[21] I. ANDERSON: Combinatorics of Finite Sets, Oxford: Clarendon Press, 1987.
[22] N. ANNAMALAI and C. DURAIRAJAN: On codes over $Z_{p^{2}}$ and its covering radius, Asian-European Journal of Mathematics, vol. 12(2), 1950027, 10 pp., 2019.
[23] N. ANNAMALAI and C. DURAIRAJAN: On covering radius of codes over $Z_{2 p}$, Asian-European Journal of Mathematics, vol. 13(2), 2050033, 9 pp., 2020.
[24] T. AOKI, P. GABORIT, M. HARADA, M. OZEKI and P. SOLÉ: On the covering radius of Z_{4}-codes and their lattices, IEEE Trans. Inform. Th., vol. 45, pp. 2162-2168, 1999.
[25] D. APPLEGATE, E. M. RAINS and N. J. A. SLOANE: On asymmetric coverings and covering numbers, J. Combinatorial Designs, vol. 11, pp. 218-228, 2003.
[26] S. ARAVAMUTHAN: Separable hash functions, to appear.
[27] S. ARAVAMUTHAN and S. LODHA: Covering codes for hats-on-a-line, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_13/v13i1toc.html, R21, 2006.
[28] R. ARCE-NAZARIO, F. N. CASTRO and J. ORTIZ-UBARRI: On the covering radius of some binary cyclic codes, Advances in Mathematics of Communications, vol. 11, pp. 329-338, 2017.
[29] S. ARUMUGAM and R. KALA: Domination parameters of hypercubes, J. Indian Math. Soc., vol. 65, pp. 31-38, 1998.
[30] A. ASHIKHMIN, M. BANDSTRA and A. BARG: Bounds on the covering radius of linear codes, Proc. IEEE Symp. on Information Theory, p. 38, Washington, 2001.
[31] A. ASHIKHMIN and A. BARG: Bounds on the covering radius of linear codes, Designs, Codes and Cryptography, vol. 27, pp. 261-269, 2002.
[32] A. ASHIKHMIN, I. S. HONKALA, T. LAIHONEN and S. LITSYN: On relations between covering radius and dual distance, IEEE Trans. Inform. Th., vol. 45, pp. 1808-1816, 1999.
[33] E. F. ASSMUS, Jr., and H. F. MATTSON, Jr.: Error-correcting codes: an axiomatic approach, Information and Control, vol. 6, pp. 315-330, 1963.
[34] E. F. ASSMUS, Jr., and H. F. MATTSON, Jr.: Coding and combinatorics, SIAM Review, vol. 16, pp. 349-388, 1974.
[35] E. F. ASSMUS, Jr., and H. F. MATTSON, Jr.: Some 3-error correcting BCH codes have covering radius 5, IEEE Trans. Inform. Th., vol. 22, pp. 348-349, 1976.
[36] E. F. ASSMUS, Jr., H. F. MATTSON, Jr., and R. TURYN: Cyclic codes, Final Report, Document No. AFCRL-66-348, Sylvania App. Res. Lab., Waltham, United States, 1966.
[37] E. F. ASSMUS, Jr., and V. S. PLESS: On the covering radius of extremal self-dual codes, IEEE Trans. Inform. Th., vol. 29, pp. 359-363, 1983.
[38] J. ASTOLA: On the nonexistence of certain perfect Lee-error-correcting codes, Ann. Univ. Turku, Ser. A I, No. 167, 1975.
[39] J. ASTOLA: On perfect codes in the Lee-metric, Ann. Univ. Turku, Ser. A I, No. 176, p. 56, 1978.
[40] J. ASTOLA: A note on perfect arithmetic codes, IEEE Trans. Inform. Th., vol. 32, pp. 443-445, 1986.
[41] D. AUGER, G. COHEN and S. MESNAGER: Sphere coverings and identifying codes, Designs, Codes and Cryptography, vol. 70, pp. 3-7, 2014.
[42] S. V. AVGUSTINOVICH: On one property of perfect binary codes, Diskr. Analys i Issledovanie Operatsii, vol. 2, No. 1, pp. 4-6, 1995 (in Russian).
[43] S. V. AVGUSTINOVICH and F. I. SOLOV'EVA: On projections of perfect binary codes, Proc. Seventh Joint Swedish-Russian Internat. Workshop on Information Theory, pp. 25-26, St-Petersburg, 1995.
[44] S. V. AVGUSTINOVICH and F. I. SOLOV'EVA: Construction of perfect binary codes by the sequential translations of the i-components, Proc. 5th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 9-14, Sozopol, 1996.
[45] S. V. AVGUSTINOVICH and F. I. SOLOV'EVA: Existence of nonsystematic perfect binary codes, Proc. 5th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 15-19, Sozopol, 1996.
[46] S. V. AVGUSTINOVICH and F. I. SOLOV'EVA: On the nonsystematic perfect binary codes, Problemy Peredachi Informatsii, vol. 32, No. 3, pp. 47-50, 1996. Translated in: Problems of Inform. Transm., vol. 32, No. 3, pp. 258-261.
[47] A. J. AW: The multicovering radius problem for some types of discrete structures, Designs, Codes and Cryptography, vol. 72, pp. 195-209, 2014.
[48] J. AX: Zeroes of polynomials over finite fields, American J. Math., vol. 86, pp. 255-261, 1964.
[49] M. AXENOVICH and Z. FÜREDI: Exact bounds on the sizes of covering codes, Designs, Codes and Cryptography, vol. 30, pp. 21-38, 2003.
[50] T. S. BAICHEVA: Covering radius of ternary cyclic codes with length up to 20, Proc. 4 th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 12-17, Novgorod, 1994.
[51] T. S. BAICHEVA: Least covering radius of two-dimensional codes over $G F(3)$ and $G F(4)$, Proc. Internat. Workshop on Optimal Codes, pp. 7-10, Sozopol, 1995.
[52] T. S. BAICHEVA: Least covering radii of ternary linear codes, Proc. 5th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 20-24, Sozopol, 1996.
[53] T. S. BAICHEVA: The covering radius of ternary cyclic codes with length up to 25 , Designs, Codes and Cryptography, vol. 13, pp. 223-227, 1998.
[54] T. S. BAICHEVA: On the covering radius of ternary negacyclic codes with length up to 26, IEEE Trans. Inform. Th., vol. 47, pp. 413-416, 2001.
[55] T. BAICHEVA: All binary linear codes of lengths up to 18 or redundancy up to 10 are normal, Advances in Mathematics of Communications, vol. 5, pp. 681-686, 2011.
[56] T. BAICHEVA and I. BOUYUKLIEV: On the least covering radius of binary linear codes of dimension 6, Advances in Mathematics of Communications, vol. 4, pp. 399-404, 2010.
[57] T. BAICHEVA, I. BOUYUKLIEV, S. DODUNEKOV and V. FACK: Binary and ternary linear quasiperfect codes with small dimensions, IEEE Trans. Inform. Th., vol. 54, pp. 4335-4339, 2008.
[58] T. S. BAICHEVA and V. VAVREK: On the least covering radius of binary linear codes with small lengths, IEEE Trans. Inform. Th., vol. 49, pp. 738-740, 2003.
[59] T. S. BAICHEVA and E. D. VELIKOVA: Least covering radius of three-dimensional codes over GF(3), Proc. 25th Conf. of the Union of Bulgarian Mathematicians, pp. 68-71, 1996.
[60] T. S. BAICHEVA and E. D. VELIKOVA: Covering radii of ternary linear codes of small dimensions and codimensions, IEEE Trans. Inform. Th., vol. 43, pp. 2057-2061, 1997, and vol. 44, p. 2032, 1998.
[61] E. BALAS and S. NG: On the set covering polytope I: All the facets with coefficients in $\{0,1,2\}$, Mathematical Programming, vol. 43, pp. 57-69, 1989.
[62] P. BALDI: On a generalized family of colorings, Graphs and Combinatorics, vol. 6, pp. 95-110, 1990.
[63] K. BALL: On packing unequal squares, J. Combinatorial Th., Ser. A, vol. 75, pp. 353-357, 1996.
[64] E. BANNAI: On perfect codes in the Hamming schemes $H(n, q)$ with q arbitrary, J. Combinatorial Th., Ser. A, vol. 23, pp. 52-67, 1977.
[65] E. BANNAI: Codes in bi-partite distance-regular graphs, J. London Math. Soc. (2), vol. 16, pp. 197-202, 1977.
[66] E. BANNAI: Orthogonal polynomials in coding theory and algebraic combinatorics, in: Orthogonal Polynomials, Nevai, Ed., pp. 25-53, Kluwer, 1990.
[67] E. BANNAI and T. ITO: Algebraic Combinatorics I - Association Schemes, Benjamin-Cummins, California, 1984.
[68] I. BÁRÁNY: A short proof of Kneser's conjecture, J. Combinatorial Th., Ser. A, vol. 25, pp. 325-326, 1978.
[69] E. BARDELLOTTO and F. FABRIS: Binary list decoding beyond covering radius, Journal of Information and Optimization Sciences, vol. 35, pp. 561-570, 2014.
[70] A. M. BARG: At the dawn of the theory of codes, Mathematical Intelligencer, vol. 15, pp. 20-26, 1993.
[71] A. M. BARG: Some new NP-complete coding problems, Problemy Peredachi Informatsii, vol. 30, No. 3, pp. 23-28, 1994. Translated in: Problems of Inform. Transm., vol. 30, No. 3, pp. 209-214.
[72] J. P. BARTHÉLEMY, G. D. COHEN and A. C. LOBSTEIN: Complexité algorithmique et problèmes de communications, Paris: Masson, 1992.
[73] J. P. BARTHÉLEMY, G. D. COHEN and A. C. LOBSTEIN: Algorithmic Complexity and Communication Problems, London: University College of London, 1996.
[74] D. BARTOLI, A. A. DAVYDOV, M. GIULIETTI, S. MARCUGINI and F. PAMBIANCO: Multiple coverings of the farthest-off points with small density from projective geometry, Advances in Mathematics of Communications, vol. 9, pp. 63-85, 2015.
[75] D. BARTOLI, A. A. DAVYDOV, M. GIULIETTI, S. MARCUGINI and F. PAMBIANCO: Further results on multiple coverings of the farthest-off points, Advances in Mathematics of Communications, vol. 10, pp. 613-632, 2016.
[76] D. Bartoli, A. A. DAVYDOV, M. GiUlietti, S. MARCUGINI and F. PAMBIANCO: New bounds for linear codes of covering radius 2, Lecture Notes in Computer Science, No. 10495, pp. 1-10, Springer-Verlag, 2017.
[77] D. BARTOLI, A. A. DAVYDOV, M. GIULIETTI, S. MARCUGINI and F. PAMBIANCO: New bounds for linear codes of covering radii 2 and 3, Cryptography and Communications. Discrete Structures, Boolean Functions and Sequences, vol. 11(5), pp. 903-920, 2019.
[78] D. BARTOLI, A. A. DAVYDOV, S. MARCUGINI and F. PAMBIANCO: On planes through points off the twisted cubic in $\operatorname{PG}(3, q)$ and multiple covering codes, Finite Fields and their Applications, vol. 67, 101710, 25 pp., 2020.
[79] D. BARTOLI, M. GIULIETTI and I. PLATONI: On the covering radius of MDS codes, IEEE Trans. Inform. Th., vol. 61, pp. 801-811, 2015.
[80] D. BARTOLI, S. MARCUGINI and F. PAMBIANCO: A probabilistic construction of low density quasi-perfect linear codes, Proc. 14th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 51-56, Svetlogorsk, 2014.
[81] J. M. BASART and J. RIFÁ: Covering radius for codes obtained from $T(m)$ triangular graphs, Lecture Notes in Computer Science, No. 356, pp. 16-24, Springer-Verlag, 1989.
[82] L. A. BASSALYGO: New upper bounds for error-correcting codes, Problemy Peredachi Informatsii, vol. 1, No. 4, pp. 41-45, 1965 (in Russian). Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., pp. 244-245, IEEE Press, 1974.
[83] L. A. BASSALYGO: A generalization of Lloyd's theorem to the case of any alphabet, Problemy Upravleniya i Teorii Informatsii, vol. 2, No. 2, pp. 133-137, 1973. Translated in: Problems of Control and Information Th., vol. 2, No. 2, pp. 25-28.
[84] L. A. BASSALYGO: A necessary condition for the existence of perfect codes in the Lee metric, Math. Notes, vol. 15, pp. 178-181, 1974.
[85] L. A. BASSALYGO, S. I. GELFAND and M. S. PINSKER: Coding for channels with localized errors, Proc. Fourth Joint Swedish-Soviet Internat. Workshop on Information Theory, pp. 95-99, Gotland, 1989.
[86] L. A. BASSALYGO, H. D. L. HOLLMANN, J. KÖRNER and S. LITSYN: Tiling Hamming space with few spheres, Preprint, 1996.
[87] L. A. BASSALYGO, G. V. ZAITSEV and V. A. ZINOVIEV: On uniformly packed codes, Problemy Peredachi Informatsii, vol. 10, No. 1, pp. 9-14, 1974. Translated in: Problems of Inform. Transm., vol. 10, No. 1, pp. 6-9.
[88] L. A. BASSALYGO and V. A. ZINOVIEV: Remark on uniformly packed codes, Problemy Peredachi Informatsii, vol. 13, No. 3, pp. 22-25, 1977. Translated in: Problems of Inform. Transm., vol. 13, No. 3, pp. 178-180.
[89] L. A. BASSALYGO, V. A. ZINOVIEV and V. K. LEONTIEV: Perfect codes over arbitrary alphabet, Proc. Third Internat. Symp. on Information Theory, part II, pp. 23-28, Tallinn, 1973 (in Russian).
[90] L. A. BASSALYGO, V. A. ZINOVIEV, V. K. LEONTIEV and N. I. FELDMAN: Nonexistence of perfect codes over some composite alphabets, Problemy Peredachi Informatsii, vol. 11, No. 3, pp. 3-13, 1975. Translated in: Problems of Inform. Transm., vol. 11, No. 3, pp. 181-189.
[91] H. BAUER, B. GANTER and F. HERGERT: Algebraic techniques for nonlinear codes, Combinator$i c a$, vol. 3, pp. 21-33, 1983.
[92] L. BAZZI: On the covering radius of small codes versus dual distance, IEEE Trans. Inform. Th., vol. $65(1)$, pp. 174-183, 2019.
[93] J. BECK and T. FIALA: "Integer-making" theorems, Discrete Applied Mathematics, vol. 3, pp. 1-8, 1981.
[94] J. BECK and J. H. SPENCER: Balancing matrices with line shifts, Combinatorica, vol. 3, pp. 299304, 1983.
[95] B. BECKER and H. U. SIMON: How robust is the n-cube?, Inform. Comput., vol. 77, pp. 162-178, 1988.
[96] C. BERGE: Graphes, Paris: Gauthier-Villars, 1983.
[97] C. BERGE: Hypergraphes, Paris: Gauthier-Villars, 1987.
[98] T. BERGER: Rate Distortion Theory, Englewood Cliffs: Prentice-Hall, 1971.
[99] E. R. BERLEKAMP: Algebraic Coding Theory, New York: McGraw-Hill, 1968.
[100] E. R. BERLEKAMP, R. J. MCELIECE and H. C. A. van TILBORG: On the inherent intractability of certain coding problems, IEEE Trans. Inform. Th., vol. 24, pp. 384-386, 1978.
[101] E. R. BERLEKAMP and L. R. WELCH: Weight distribution of the cosets of the $(32,6)$ Reed-Muller code, IEEE Trans. Inform. Th., vol. 18, pp. 203-207, 1972.
[102] J. BERNASCONI: Optimization problems and statistical mechanics, Proc. Workshop on Chaos and Complexity, pp. 245-259, Singapore, 1988.
[103] R. BERTOLO, P. R. J. ÖSTERGÅRD and W. D. WEAKLEY: An updated table of binary/ternary mixed covering codes, J. Combinatorial Designs, vol. 12, pp. 157-176, 2004.
[104] M. R. BEST: On the existence of perfect codes, Report ZN 82/78, Mathematical Centre, Amsterdam, the Netherlands, 1978.
[105] M. R. BEST: A contribution to the nonexistence of perfect codes, Ph. D. Thesis, University of Amsterdam, the Netherlands, 1982.
[106] M. R. BEST: Perfect codes hardly exist, IEEE Trans. Inform. Th., vol. 29, pp. 349-351, 1983.
[107] M. R. BEST, A. E. BROUWER, F. J. MACWILLIAMS, A. M. ODLYZKO and N. J. A. SLOANE: Bounds for binary codes of length less than 25, IEEE Trans. Inform. Th., vol. 24, pp. 81-93, 1978.
[108] M. BEVERAGGI: Problèmes combinatoires en codage algébrique, Thèse de Doctorat, Université Paris 6, France, 120 pp., 1987.
[109] M. BEVERAGGI and G. D. COHEN: On the density of best coverings in Hamming spaces, Lecture Notes in Computer Science, No. 311, pp. 39-44, Springer-Verlag, 1988.
[110] S. BEZRUKOV: On the number of leaves in a spanning tree of the unit cube, Unpublished, 2014.
[111] S. BEZZATEEV and N. SHEKHUNOVA: Lower bound of covering radius of binary irreducible Goppa codes, Designs, Codes and Cryptography, vol. 82, pp. 69-76, 2017.
[112] S. V. BEZZATEEV and N. A. SHEKHUNOVA: Lower bounds on the covering radius of the nonbinary and binary irreducible Goppa codes, IEEE Trans. Inform. Th., vol. 64(11), pp. 7171-7177, 2018.
[113] M. C. BHANDARI, K. K. CHANDUKA and A. K. LAL: On lower bounds for covering codes, Designs, Codes and Cryptography, vol. 15, pp. 237-243, 1998.
[114] M. C. BHANDARI and C. DURAIRAJAN: A note on bounds for q-ary covering codes, IEEE Trans. Inform. Th., vol. 42, pp. 1640-1642, 1996.
[115] M. C. BHANDARI and C. DURAIRAJAN: On the covering radius of Simplex codes, J. Discrete Mathematical Sciences \& Cryptography, vol. 6, pp. 59-69, 2003.
[116] M. C. BHANDARI and M. S. GARG: Comments on "On the covering radius of codes", IEEE Trans. Inform. Th., vol. 36, pp. 953-954, 1990.
[117] M. C. BHANDARI and M. S. GARG: A note on the covering radius of optimum codes, Discrete Applied Mathematics, vol. 33, pp. 3-9, 1991.
[118] M. C. BHANDARI, M. K. GUPTA and A. K. LAL: Some results on NQR codes, Designs, Codes and Cryptography, vol. 16, pp. 5-9, 1999.
[119] J. BIERBRAUER and J. FRIDRICH: Constructing good covering codes for applications in steganography, Lecture Notes in Computer Science, No. 4920, pp. 1-22, Springer-Verlag, 2008.
[120] N. L. BIGGS: Perfect codes in graphs, J. Combinatorial Th., Ser. B, vol. 15, pp. 289-296, 1973.
[121] N. L. BIGGS: Perfect codes and distance-transitive graphs, in: Combinatorics, McDonough and Mavron, Eds., London Math. Soc., Lecture Notes, No. 13, pp. 1-8, Cambridge University Press, 1974.
[122] I. F. BLAKE and R. C. MULLIN: The Mathematical Theory of Coding, New York: Academic Press, 1975.
[123] U. BLASS, I. HONKALA, M. G. KARPOVSKY and S. LITSYN: Short dominating paths and cycles in the binary hypercube, Annals of Combinatorics, vol. 5, pp. 51-59, 2001.
[124] U. BLASS and S. LITSYN: Several new lower bounds on the size of codes with covering radius one, IEEE Trans. Inform. Th., vol. 44, pp. 1998-2002, 1998.
[125] U. BLASS and S. LITSYN: Several new lower bounds for football pool systems, Ars Combinatoria, vol. 50, pp. 297-302, 1998.
[126] U. BLASS and S. LITSYN: The smallest covering code of length 8 and radius 2 has 12 words, Ars Combinatoria, vol. 52, pp. 309-318, 1999.
[127] V. M. BLINOVSKII: Bounds for codes in the case of list decoding of finite volume, Problemy Peredachi Informatsii, vol. 22, No. 1, pp. 11-25, 1986. Translated in: Problems of Inform. Transm., vol. 22, No. 1, pp. 7-19.
[128] V. M. BLINOVSKII: Lower asymptotic bound on the number of linear code words in a sphere of given radius in F_{q}^{n}, Problemy Peredachi Informatsii, vol. 23, No. 2, pp. 50-53, 1987. Translated in: Problems of Inform. Transm., vol. 23, No. 2, pp. 130-132.
[129] V. M. BLINOVSKII: Asymptotically exact uniform bounds for spectra of cosets of linear codes, Problemy Peredachi Informatsii, vol. 26, No. 1, pp. 99-103, 1990. Translated in: Problems of Inform. Transm., vol. 26, No. 1, pp. 83-86.
[130] V. M. BLINOVSKII: Covering the Hamming space with sets translated by linear code vectors, Problemy Peredachi Informatsii, vol. 26, No. 3, pp. 21-26, 1990. Translated in: Problems of Inform. Transm., vol. 26, No. 3, pp. 196-201.
[131] V. M. BLINOVSKII: Asymptotic Combinatorial Coding Theory, Boston: Kluwer, 1997.
[132] A. BLOKHUIS, S. EGNER, H. D. L. HOLLMANN and J. H. van LINT: On codes with covering radius 1 and minimum distance 2, Indagationes Mathematicae, N.S., vol. 12(4), pp. 449-452, 2001.
[133] A. BLOKHUIS and C. W. H. LAM: More coverings by rook domains, J. Combinatorial Th., Ser. A, vol. 36, pp. 240-244, 1984.
[134] I. E. BOCHAROVA and B. D. KUDRYASHOV: On the covering radius of convolutional codes, Lecture Notes in Computer Science, No. 781, pp. 56-62, Springer-Verlag, 1994.
[135] E. BOMBIERI: On exponential sums in finite fields, American J. Math., vol. 88, pp. 71-105, 1966.
[136] J. M. BORDEN: Coding for write-unidirectional memories, Unpublished, 1986.
[137] J. BORGES, J. RIFÁ and V. A. ZINOVIEV: On non-antipodal binary completely regular codes, Discrete Mathematics, vol. 308, pp. 3508-3525, 2008.
[138] J. BORGES, J. RIFÁ and V. A. ZINOVIEV: New families of completely regular codes and their corresponding distance regular coset graphs, Designs, Codes and Cryptography, vol. 70, pp. 139-148, 2014.
[139] J. BORGES, J. RIFÁ and V. A. ZINOVIEV: On linear q-ary completely regular codes with $\rho=2$ and dual antipodal, to appear.
[140] Y. BORISSOV, A. BRAEKEN, S. NIKOVA and B. PRENEEL: On the covering radius of second order binary Reed-Muller code in the set of resilient Boolean functions, Lecture Notes in Computer Science, No. 2898, pp. 82-92, Springer-Verlag, 2003.
[141] Y. BORISSOV, A. BRAEKEN, S. NIKOVA and B. PRENEEL: On the covering radii of binary Reed-Muller codes in the set of resilient Boolean functions, IEEE Trans. Inform. Th., vol. 51, pp. 1182-1189, 2005.
[142] A. BRACE and D. E. DAYKIN: Sperner type theorems for finite sets, Proc. British Combinatorial Conf., pp. 18-37, 1972.
[143] M. BREIT, D. DESHOMMES and A. FALDEN: Hats required, Preprint, 2002.
[144] T. BRITZ and C. G. RUTHERFORD: Covering radii are not matroid invariants, Discrete Mathematics, vol. 296, pp. 117-120, 2005.
[145] A. E. BROUWER: Some lotto numbers from an extension of Turán's theorem, Report 152, Mathematical Centre, Amsterdam, the Netherlands, i+6 pp., 1981.
[146] A. E. BROUWER, J. B. SHEARER, N. J. A. SLOANE and W. D. SMITH: A new table of constant weight codes, IEEE Trans. Inform. Th., vol. 36, pp. 1334-1380, 1990.
[147] A. E. BROUWER and T. VERHOEFF: An updated table of minimum-distance bounds for binary linear codes, IEEE Trans. Inform. Th., vol. 39, pp. 662-677, 1993.
[148] A. E. BROUWER and M. VOORHOEVE: Turan theory and the lotto problem, Math. Centre Tracts, vol. 106, pp. 99-105, 1979.
[149] T. A. BROWN and J. H. SPENCER: Minimization of ± 1 matrices under line shifts, Colloq. Math., vol. 23, pp. 165-171, 1971.
[150] R. A. BRUALDI, N. CAI and V. S. PLESS: Orphan structure of the first-order Reed-Muller codes, Discrete Mathematics, vol. 102, pp. 239-247, 1992.
[151] R. A. BRUALDI, S. LITSYN and V. S. PLESS: Covering radius, in: Handbook of Coding Theory, Pless and Huffman, Eds., Chapter 8, Elsevier, 1998.
[152] R. A. BRUALDI and V. S. PLESS: Orphans of the first order Reed-Muller codes, IEEE Trans. Inform. Th., vol. 36, pp. 399-401, 1990.
[153] R. A. BRUALDI and V. S. PLESS: On the covering radius of a code and its subcodes, Discrete Mathematics, vol. 83, pp. 189-199, 1990.
[154] R. A. BRUALDI and V. S. PLESS: On the length of codes with a given covering radius, in: Coding Theory and Design Theory. Part I: Coding Theory, Ray-Chaudhuri, Ed., pp. 9-15, New York: Springer-Verlag, 1990.
[155] R. A. BRUALDI and V. S. PLESS: Subcodes of Hamming codes, Congressus Numerantium, vol. 70, pp. 153-158, 1990.
[156] R. A. BRUALDI, V. S. PLESS and R. M. WILSON: Short codes with a given covering radius, IEEE Trans. Inform. Th., vol. 35, pp. 99-109, 1989.
[157] J. BRUCK and M. NAOR: The hardness of decoding linear codes with preprocessing, IEEE Trans. Inform. Th., vol. 36, pp. 381-385, 1990.
[158] P. B. BUSSCHBACH: Constructive methods to solve problems of s-surjectivity, conflict resolution, coding in defective memories, Rapport Interne ENST 84-D005, Ecole Nationale Supérieure des Télécommunications, Paris, France, 1984.
[159] P. B. BUSSCHBACH, M. G. L. GERRETZEN and H. C. A. van TILBORG: On the covering radius of binary linear codes meeting the Griesmer bound, IEEE Trans. Inform. Th., vol. 31, pp. 465-468, 1985.
[160] E. BYRNE and A. RAVAGNANI: Covering radius of matrix codes endowed with the rank metric, SIAM J. Discrete Mathematics, vol. 31, pp. 927-944, 2017.
[161] A. CÁCERES and O. MORENO: On the estimation of minimum distance of duals of BCH codes, Congressus Numerantium, vol. 81, pp. 205-208, 1991.
[162] A. R. CALDERBANK: Covering radius and the chromatic number of Kneser graphs, J. Combinatorial Th., Ser. A, vol. 54, pp. 129-131, 1990.
[163] A. R. CALDERBANK: Covering bounds for codes, J. Combinatorial Th., Ser. A, vol. 60, pp. 117-122, 1992.
[164] A. R. CALDERBANK: Covering machines, Discrete Mathematics, vol. 106/107, pp. 105-110, 1992.
[165] A. R. CALDERBANK, P. C. FISHBURN and A. RABINOVICH: Covering properties of convolutional codes and associated lattices, IEEE Trans. Inform. Th., vol. 41, pp. 732-746, 1995.
[166] A. R. CALDERBANK and N. J. A. SLOANE: Inequalities for covering codes, IEEE Trans. Inform. Th., vol. 34, pp. 1276-1280, 1988.
[167] P. J. CAMERON, Ed.: Research problems, Discrete Mathematics, vol. 231, pp. 469-478, 2001.
[168] P. J. CAMERON: Permutation codes, European J. Combinatorics, vol. 31, pp. 482-490, 2010.
[169] P. J. CAMERON and M. GADOULEAU: Remoteness of permutation codes, European Journal of Combinatorics, vol. 33, pp. 1273-1285, 2012.
[170] P. J. CAMERON and J. H. van LINT: Graph Theory, Coding Theory and Block Designs, London Math. Soc., Lecture Notes, No. 19, Cambridge University Press, 1975.
[171] P. J. CAMERON, J. A. THAS and S. E. PAYNE: Polarities of generalized hexagons and perfect codes, Geometriae Dedicata, vol. 5, pp. 525-528, 1976.
[172] P. J. CAMERON and I. M. WANLESS: Covering radius for sets of permutations, Discrete Mathematics, vol. 293, pp. 91-109, 2005.
[173] P. CAMION, B. COURTEAU and P. DELSARTE: On r-partition designs in Hamming spaces, Applicable Algebra in Engineering, Communication and Computing, vol. 2, pp. 147-162, 1992.
[174] A. CANTEAUT: On the weight distributions of optimal cosets of the first-order Reed-Muller codes, IEEE Trans. Inform. Theory, vol. 47, pp. 407-413, 2001.
[175] H. T. CAO, R. L. DOUGHERTY and H. JANWA: A [55, 16, 19] binary Goppa code and related codes having large minimum distance, IEEE Trans. Inform. Theory, vol. 37, pp. 1432-1433, 1991.
[176] C. CARLET: A transformation on Boolean functions, its consequences on some problems related to Reed-Muller codes, Lecture Notes in Computer Science, No. 514, pp. 42-50, Springer-Verlag, 1991.
[177] C. CARLET: Partially-bent functions, Designs, Codes and Cryptography, vol. 3, pp. 135-145, 1993.
[178] C. CARLET: Two new classes of bent functions, Lecture Notes in Computer Science, No. 765, pp. 77-101, Springer-Verlag, 1994.
[179] C. CARLET: Partial Spreads généralisés, Comptes-Rendus de l'Académie des Sciences, Ser. I, vol. 318, pp. 967-970, 1994.
[180] C. CARLET: Generalized partial spreads, IEEE Trans. Inform. Th., vol. 41, pp. 1482-1487, 1995.
[181] C. CARLET and P. GUILLOT: A characterization of binary bent functions, J. Combinatorial Th., Ser. A, vol. 76, pp. 328-335, 1996.
[182] C. CARLET and S. MESNAGER: Improving the upper bounds on the covering radii of binary ReedMuller codes, IEEE Trans. Inform. Th., vol. 53, pp. 162-173, 2007.
[183] C. CARLET, J. SEBERRY and X. M. ZHANG: Comments on "Generating and counting binary bent sequences", IEEE Trans. Inform. Th., vol. 40, p. 600, 1994.
[184] L. CARLITZ and S. UCHIYAMA: Bounds for exponential sums, Duke Math. J., vol. 24, pp. 37-41, 1957. Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., pp. 275-276, IEEE Press, 1974.
[185] J. CARLSON and D. STOLARSKI: The correct solution to Berlekamp's switching game, Discrete Mathematics, vol. 287, pp. 145-150, 2004.
[186] W. A. CARNIELLI: Some investigations on covering problems, in: Collected Papers, Alas, Da Costa and Hönig, Eds., pp. 127-134, São Paulo, Brazil, 1982.
[187] W. A. CARNIELLI: On covering and coloring problems for rook domains, Discrete Mathematics, vol. 57, pp. 9-16, 1985.
[188] W. A. CARNIELLI: Limites superiores e inferiores para problemas de cobertura em espacios de Hamming, Proc. 16th Brazilian Mathematical Colloquium, Rio de Janeiro, 1987.
[189] W. A. CARNIELLI: Hyper-rook domain inequalities, Stud. Appl. Math., vol. 82, pp. 59-69, 1990.
[190] V. ČERNY: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm, J. Opt. Th. Appl., vol. 45, pp. 41-51, 1985.
[191] I. CHARON, O. HUDRY and A. C. LOBSTEIN: A new method for constructing codes, Proc. 4 th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 62-65, Novgorod, 1994.
[192] I. CHARON, O. HUDRY and A. C. LOBSTEIN: Codes in the q-ary Lee hypercube, WSEAS Transactions on Mathematics, vol. 21, pp. 173-186, 2022.
[193] P. CHARPIN, T. HELLESETH and V. A. ZINOVIEV: The coset distribution of triple-errorcorrecting binary primitive BCH codes, IEEE Trans. Inform. Th., vol. 52, pp. 1727-1732, 2006.
[194] P. CHARPIN and V. A. ZINOVIEV: On coset weight distributions of the 3-error-correcting BCHcodes, SIAM J. Discrete Mathematics, vol. 10, pp. 128-145, 1997.
[195] K. CHATOUH, K. GUENDA, T. A. GULLIVER and L. NOUI: On some classes of linear codes over $Z_{2} Z_{4}$ and their covering radii, Journal of Applied Mathematics and Computing, vol. 53, pp. 201-222, 2017.
[196] S. I. CHECHIOTA: A lower bound on the covering radius for a class of binary codes, Izvestiya Vysshikh Uchebnykh Zavedenii Matematika, vol. 5, pp. 84-86, 1994. Translated in: Russian Mathematics.
[197] S. I. CHECHIOTA: On the limit distribution of the distance between a random vector and some binary codes, Problemy Peredachi Informatsii, vol. 31, No. 1, pp. 90-98, 1995. Translated in: Problems of Inform. Transm., vol. 31, No. 1, pp. 78-85.
[198] P. N. CHEN and Y. S. HAN: Asymptotic minimum covering radius of block codes, SIAM J. Discrete Mathematics, vol. 14, pp. 549-564, 2001.
[199] W. CHEN and I. S. HONKALA: Lower bounds for q-ary covering codes, IEEE Trans. Inform. Th., vol. 36, pp. 664-671, 1990.
[200] W. CHEN and D. LI: Lower bounds for multiple covering codes, Preprint.
[201] Y. C. CHEN and Y. L. SYU: Connected dominating set of hypercubes and star graphs, Internat. Proc. Computer Science and Information Technology, vol. 41, pp. 15-19, 2012.
[202] N. CHIGIRA, M. HARADA and M. KITAZUME: Extremal self-dual codes of length 64 through neighbors and covering radii, Designs, Codes and Cryptography, vol. 42, pp. 93-101, 2007.
[203] L. CHIHARA and D. STANTON: Zeros of generalized Krawtchouk polynomials, J. Approx. Th., vol. 60, No. 1, pp. 43-57, 1990.
[204] T. S. CHIHARA: An Introduction to Orthogonal Polynomials, New York: Gordon and Breach, 1978.
[205] F. CHUNG and J. N. COOPER: De Bruijn cycles for covering codes, Random Structures ${ }^{8}$ Algorithms, vol. 25, pp. 421-431, 2004.
[206] V. CHVATAL: A greedy heuristic for the set-covering problem, Mathematics of Operations Research, vol. 4, pp. 233-235, 1979.
[207] W. E. CLARK and L. A. DUNNING: Tight upper bounds for the domination numbers of graphs with given order and minimum degree, Electronic J. Combinatorics, http://www.combinatorics.org/ Volume_4/v4i1toc.html, R26, 1997.
[208] W. E. CLARK, L. A. DUNNING and D. G. ROGERS: Binary set functions and parity check matrices, Discrete Mathematics, vol. 80, pp. 249-265, 1990.
[209] W. E. CLARK and J. PEDERSEN: Sum-free sets in vector spaces over GF(2), J. Combinatorial Th., Ser. A, vol. 61, pp. 222-229, 1992.
[210] R. F. CLAYTON: Multiple packings and coverings in algebraic coding theory, Ph. D. Thesis, University of California in Los Angeles, United States, 62 pp., 1987.
[211] R. F. CLAYTON: Perfect multiple coverings in metric schemes, in: Coding Theory and Design Theory. Part I: Coding Theory, Ray-Chaudhuri, Ed., pp. 51-64, New York: Springer-Verlag, 1990.
[212] J. C. COCK and P. R. J. ÖSTERGÅRD: Ternary covering codes derived from BCH codes, J. Combinatorial Th., Ser. A, vol. 80, pp. 283-289, 1997.
[213] G. D. COHEN: A nonconstructive upper bound on covering radius, IEEE Trans. Inform. Th., vol. 29, pp. 352-353, 1983.
[214] G. D. COHEN: Non-linear covering codes: a few results and conjectures, Lecture Notes in Computer Science, No. 356, pp. 225-229, Springer-Verlag, 1989.
[215] G. D. COHEN: Covering radius and writing on memories, Lecture Notes in Computer Science, No. 508, pp. 1-10, Springer-Verlag, 1990.
[216] G. D. COHEN: Applications of coding theory to communication combinatorial problems, Discrete Mathematics, vol. 83, pp. 237-248, 1990.
[217] G. D. COHEN, J. L. DORNSTETTER and P. GODLEWSKI: Codes correcteurs d'erreurs, Paris: Masson, 1992.
[218] G. D. COHEN and P. FRANKL: On tilings of the binary vector space, Discrete Mathematics, vol. 31, pp. 271-277, 1980.
[219] G. D. COHEN and P. FRANKL: On cliques and partitions in Hamming spaces, Annals of Discrete Mathematics, vol. 17, pp. 211-217, 1983.
[220] G. D. COHEN and P. FRANKL: On generalized perfect codes and Steiner systems, Annals of Discrete Mathematics, vol. 18, pp. 197-200, 1983.
[221] G. D. COHEN and P. FRANKL: Good coverings of Hamming spaces with spheres, Discrete Mathematics, vol. 56, pp. 125-131, 1985.
[222] G. D. COHEN and P. GODLEWSKI: Some cryptographic aspects of wom-codes, Lecture Notes in Computer Science, No. 218, pp. 458-467, Springer-Verlag, 1986.
[223] G. D. COHEN, P. GODLEWSKI and F. MERKX: Linear binary codes for write-once memories, IEEE Trans. Inform. Th., vol. 32, pp. 697-700, 1986.
[224] G. D. COHEN, I. S. HONKALA and S. LITSYN: On weighted coverings and packings with diameter one, CISM Courses and Lectures, No. 339, pp. 43-49, Springer-Verlag, 1993.
[225] G. D. COHEN, I. S. HONKALA, S. LITSYN and H. F. MATTSON, Jr.: Weighted coverings and packings, IEEE Trans. Inform. Th., vol. 41, pp. 1856-1867, 1995.
[226] G. D. COHEN, I. S. HONKALA, S. LITSYN and P. SOLÉ: Long packing and covering codes, IEEE Trans. Inform. Th., vol. 43, pp. 1617-1619, 1997.
[227] G. D. COHEN, M. G. KARPOVSKY, H. F. MATTSON, Jr., and J. R. SCHATZ: Covering radius - survey and recent results, IEEE Trans. Inform. Th., vol. 31, pp. 328-343, 1985.
[228] G. D. COHEN and S. LITSYN: On the covering radius of Reed-Muller codes, Discrete Mathematics, vol. 106/107, pp. 147-155, 1992.
[229] G. D. COHEN, S. LITSYN, A. C. LOBSTEIN and H. F. MATTSON, Jr.: Covering radius 1985-1994, Applicable Algebra in Engineering, Communication and Computing, vol. 8, 67 pp., 1997.
[230] G. D. COHEN, S. LITSYN and H. F. MATTSON, Jr.: On perfect weighted coverings with small radius, Lecture Notes in Computer Science, No. 573, pp. 32-41, Springer-Verlag, 1992.
[231] G. D. COHEN, S. LITSYN and H. F. MATTSON, Jr.: Binary perfect weighted coverings, I, The linear case, in: Sequences II, Capocelli, DeSantis and Vaccaro, Eds., pp. 36-51, Springer-Verlag, 1993.
[232] G. D. COHEN, S. LITSYN, A. VARDY and G. ZÉMOR: Tilings of binary spaces, SIAM J. Discrete Mathematics, vol. 9, pp. 393-412, 1996.
[233] G. D. COHEN, S. LITSYN and G. ZÉMOR: Upper bounds on generalized distances, IEEE Trans. Inform. Th., vol. 40, pp. 2090-2092, 1994.
[234] G. D. COHEN, S. LITSYN and G. ZÉMOR: On greedy algorithms in coding theory, IEEE Trans. Inform. Th., vol. 42, pp. 2053-2057, 1996.
[235] G. D. COHEN, A. C. LOBSTEIN and N. J. A. SLOANE: Further results on the covering radius of codes, IEEE Trans. Inform. Th., vol. 32, pp. 680-694, 1986.
[236] G. D. COHEN, A. C. LOBSTEIN and N. J. A. SLOANE: On a conjecture concerning coverings of Hamming space, Lecture Notes in Computer Science, No. 228, pp. 79-89, Springer-Verlag, 1986.
[237] G. D. COHEN and B. MONTARON: Empilements parfaits de boules dans les espaces vectoriels binaires, Comptes-Rendus de l'Académie des Sciences, Ser. A, vol. 288, pp. 578-582, 1979.
[238] G. D. COHEN, J. RIFÁ, J. TENA and G. ZÉMOR: On the characterization of linear uniquely decodable codes, Designs, Codes and Cryptography, vol. 17, pp. 87-96, 1999.
[239] G. D. COHEN, J. RIFÁ and G. ZÉMOR: Uniquely decodable codes, Proc. IEEE Workshop on Information Theory, p. 77, Longyearbyen, 1997.
[240] G. D. COHEN and G. SIMONYI: Coding for write-unidirectional memories and conflict resolution, Discrete Applied Mathematics, vol. 24, pp. 103-114, 1989.
[241] G. COHEN and A. VARDY: Duality between packings and coverings of the Hamming space, Advances in Mathematics of Communications, vol. 1, pp. 93-97, 2007.
[242] G. D. COHEN and G. ZÉMOR: An application of combinatorial group theory to coding, Ars Combinatoria, vol. 23-A, pp. 81-89, 1987.
[243] G. D. COHEN and G. ZÉMOR: Write-isolated memories, Discrete Mathematics, vol. 114, pp. 105113, 1993.
[244] G. D. COHEN and G. ZÉMOR: Intersecting codes and independent families, IEEE Trans. Inform. Th., vol. 40, pp. 1872-1881, 1994.
[245] G. D. COHEN and G. ZÉMOR: Subset sums and coding theory, Astérisque, vol. 258, pp. 327-339, 1999.
[246] S. D. COHEN: The length of primitive BCH codes with minimal covering radius, Designs, Codes and Cryptography, vol. 10, pp. 5-16, 1997.
[247] S. D. COHEN and N. N. KUZJURIN: On the packing radius and the covering radius of equal-weight codes, Discrete Mathematics, vol. 213, pp. 35-42, 2000.
[248] M. COHN: On the channel capacity of read/write isolated memory, Discrete Applied Mathematics, vol. 56, pp. 1-8, 1995.
[249] C. J. COLBOURN, G. KÉRI, P. P. RIVAS SORIANO and J. C. SCHLAGE-PUCHTA: Covering and radius-covering arrays: constructions and classification, Discrete Applied Mathematics, vol. 158, pp. 1158-1180, 2010.
[250] J. H. CONWAY and N. J. A. SLOANE: Sphere Packings, Lattices, and Groups, New York: SpringerVerlag, 1988.
[251] J. N. COOPER, R. B. ELLIS and A. B. KAHNG: Asymmetric binary covering codes, J. Combinatorial Th., Ser. A, vol. 100, pp. 232-249, 2002.
[252] T. M. COVER and J. A. THOMAS: Elements of Information Theory, New York: Wiley, 1991.
[253] P. CRESCENZI and F. GRECO: The minimum likely column cover problem, Information Processing Letters, vol. 89, pp. 175-179, 2004.
[254] M. CRUZ, C. DURAIRAJAN and P. SOLÉ: On the covering radius of codes over $Z_{p^{k}}$, Mathematics, vol. 8(3), Article 328, 2020.
[255] I. CSISZÁR and J. KÖRNER: Information Theory: Coding Theorems for Discrete Memoryless Systems, New York: Academic Press, 1981.
[256] D. M. CVETKOVIĆ and J. H. van LINT: An elementary proof of Lloyd's theorem, Proc. Kon. Ned. Akad. v. Wetensch. (a), vol. 80, pp. 6-10, 1977.
[257] D. DANEV and S. DODUNEKOV: A family of ternary quasi-perfect BCH codes, Designs, Codes and Cryptography, vol. 49, pp. 265-271, 2008.
[258] D. DANEV, S. DODUNEKOV and D. RADKOVA: A family of constacyclic ternary quasi-perfect codes with covering radius 3, Designs, Codes and Cryptography, vol. 59, pp. 111-118, 2011.
[259] E. DANTSIN, A. GOERDT, E. A. HIRSCH, R. KANNAN, J. KLEINBERG, C. PAPADIMITRIOU, P. RAGHAVAN and U. SCHÖNING: A deterministic $(2-2 /(k+1))^{n}$ algorithm for k-SAT based on local search, Theoretical Computer Science, vol. 289, No. 1, pp. 69-83, 2002.
[260] E. DANTSIN, A. GOERDT, E. A. HIRSCH and U. SCHÖNING: Deterministic algorithms for k-SAT based on covering codes and local search, Lecture Notes in Computer Science, No. 1853, pp. 236-247, Springer-Verlag, 2000.
[261] E. DANTSIN and E. A. HIRSCH: Algorithms for k-SAT based on covering codes, Preprint, 2000.
[262] E. DANTSIN, E. A. HIRSCH and A. WOLPERT: Algorithms for SAT based on search in Hamming balls, Lecture Notes in Computer Science, No. 2996, pp. 141-151, Springer-Verlag, 2004.
[263] R. DAVIES and G. F. ROYLE: Graph domination, tabu search and the football pool problem, Discrete Applied Mathematics, vol. 74, pp. 217-228, 1997.
[264] A. A. DAVYDOV: Construction of linear covering codes, Problemy Peredachi Informatsii, vol. 26, No. 4, pp. 38-55, 1990. Translated in: Problems of Inform. Transm., vol. 26, No. 4, pp. 317-331.
[265] A. A. DAVYDOV: Constructions and families of q-ary linear covering codes and saturated sets of points in projective geometry, Proc. Fifth Joint Soviet-Swedish Internat. Workshop on Information Theory, pp. 46-49, Moscow, 1991.
[266] A. A. DAVYDOV: Constructions of codes with covering radius 2, Lecture Notes in Computer Science, No. 573, pp. 23-31, Springer-Verlag, 1992.
[267] A. A. DAVYDOV: On constructions of nonlinear covering codes, Proc. Seventh Joint Swedish-Russian Internat. Workshop on Information Theory, pp. 67-71, St-Petersburg, 1995.
[268] A. A. DAVYDOV: Constructions and families of covering codes and saturated sets of points in projective geometry, IEEE Trans. Inform. Th., vol. 41, pp. 2071-2080, 1995.
[269] A. A. DAVYDOV: On nonbinary linear codes with covering radius two, Proc. 5th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 105-110, Sozopol, 1996.
[270] A. A. DAVYDOV: Constructions of nonlinear covering codes, IEEE Trans. Inform. Th., vol. 43, pp. 1639-1647, 1997.
[271] A. A. DAVYDOV: Constructions and families of nonbinary linear codes with covering radius 2, IEEE Trans. Inform. Th., vol. 45, pp. 1679-1686, 1999.
[272] A. A. DAVYDOV: New constructions of covering codes, Designs, Codes and Cryptography, vol. 22, pp. 305-316, 2001.
[273] A. A. DAVYDOV and A. Y. DROZHZHINA-LABINSKAYA: Binary linear codes with covering radii 3 and 4, Proc. 2nd Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 56-57, Leningrad, 1990.
[274] A. A. DAVYDOV and A. Y. DROZHZHINA-LABINSKAYA: Table and families of short $[n, n-r]$ codes with a given covering radius R, Preprint, 1990.
[275] A. A. DAVYDOV and A. Y. DROZHZHINA-LABINSKAYA: Constructions of binary linear covering codes, Proc. 3rd Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 51-54, Voneshta Voda, 1992.
[276] A. A. DAVYDOV and A. Y. DROZHZHINA-LABINSKAYA: Constructions, families, and tables of binary linear covering codes, IEEE Trans. Inform. Th., vol. 40, pp. 1270-1279, 1994.
[277] A. A. DAVYDOV, G. FAINA, S. MARCUGINI and F. PAMBIANCO: Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces, IEEE Trans. Inform. Th., vol. 51, pp. 4378-4387, 2005.
[278] A. A. DAVYDOV, M. GIULIETTI, S. MARCUGINI and F. PAMBIANCO: Linear covering codes over nonbinary finite fields, Proc. XI Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 70-75, Pamporovo, 2008.
[279] A. A. DAVYDOV, M. GIULIETTI, S. MARCUGINI and F. PAMBIANCO: Linear covering codes of radius 2 and 3, Proc. Workshop Coding Theory Days in St. Petersburg, pp. 12-17, St. Petersburg, 2008.
[280] A. A. DAVYDOV, M. GIULIETTI, S. MARCUGINI and F. PAMBIANCO: Linear nonbinary covering codes and saturating sets in projective spaces, Advances in Mathematics of Communications, vol. 5, pp. 119-147, 2011.
[281] A. A. DAVYDOV, S. MARCUGINI and F. PAMBIANCO: On saturating sets in projective spaces, J. Combinatorial Th., Ser. A, vol. 103, pp. 1-15, 2003.
[282] A. A. DAVYDOV, S. MARCUGINI and F. PAMBIANCO: Linear codes with covering radius 2,3 and saturating sets in projective geometry, IEEE Trans. Inform. Th., vol. 50, pp. 537-541, 2004.
[283] A. A. DAVYDOV, S. MARCUGINI and F. PAMBIANCO: Minimal 1-saturating sets and complete caps in binary projective spaces, J. Combinatorial Th., Ser. A, vol. 113, pp. 647-663, 2006.
[284] A. A. DAVYDOV, S. MARCUGINI and F. PAMBIANCO: New covering codes of radius R, codimension $t R$ and $t R+\frac{R}{2}$, and saturating sets in projective spaces, Designs, Codes and Cryptography, vol. 87(12), pp. 2771-2792, 2019.
[285] A. A. DAVYDOV, S. MARCUGINI and F. PAMBIANCO: Bounds for complete arcs in PG $(3, q)$ and covering codes of radius 3, codimension 4, under a certain probabilistic conjecture, Lecture Notes in Computer Science, No. 12249, pp. 107-122, Springer, 2020.
[286] A. A. DAVYDOV and P. R. J. ÖSTERGÅRD: New linear codes with covering radius 2 and odd basis, Designs, Codes and Cryptography, vol. 16, pp. 29-39, 1999.
[287] A. A. DAVYDOV and P. R. J. ÖSTERGÅRD: New quaternary linear codes with covering radius 2, Finite Fields Appl., vol. 6, pp. 164-174, 2000.
[288] A. A. DAVYDOV and P. R. J. ÖSTERGÅRD: Linear codes with covering radius $R=2,3$ and codimension $t R$, IEEE Trans. Inform. Th., vol. 47, pp. 416-421, 2001.
[289] A. A. DAVYDOV and P. R. J. ÖSTERGÅRD: Linear codes with covering radius 3, Designs, Codes and Cryptography, vol. 54, pp. 253-271, 2010.
[290] A. A. DAVYDOV and L. M. TOMBAK: Quasiperfect linear binary codes with distance 4 and complete caps in projective geometry, Problemy Peredachi Informatsii, vol. 25, No. 4, pp. 11-23, 1989. Translated in: Problems of Inform. Transm., vol. 25, No. 4, pp. 265-275.
[291] I. J. DEJTER and K. T. PHELPS: Ternary Hamming and binary perfect covering codes, Proc. DIMACS Workshop on Codes and Association Schemes, vol. 56, pp. 111-113, 2001.
[292] P. DELIGNE: La conjecture de Weil I, Instit. Hautes Etudes Sci., Publ. Math., vol. 43, pp. 273-307, 1974.
[293] C. DELORME and P. SOLÉ: Diameter, covering index, covering radius and eigenvalues, European J. Combinatorics, vol. 12, pp. 95-108, 1991.
[294] C. DELORME and J. P. TILLICH: Eigenvalues, eigenspaces and distances to subsets, Discrete Mathematics, vol. 165/166, pp. 171-194, 1997.
[295] P. DELSARTE: An algebraic approach to the association schemes of coding theory, Philips Research Reports Supplements, No. 10, 1973.
[296] P. DELSARTE: Four fundamental parameters of a code and their combinatorial significance, Information and Control, vol. 23, pp. 407-438, 1973.
[297] P. DELSARTE and J.-M. GOETHALS: Unrestricted codes with the Golay parameters are unique, Discrete Mathematics, vol. 12, pp. 211-224, 1975.
[298] P. DELSARTE and P. PIRET: Do most binary linear codes achieve the Goblick bound on the covering radius?, IEEE Trans. Inform. Th., vol. 32, pp. 826-828, 1986.
[299] Y. DESAKI, T. FUJIWARA and T. KASAMI: The weight distributions of extended binary primitive BCH codes of length 128, IEEE Trans. Inform. Th., vol. 43, pp. 1364-1371, 1997.
[300] M. DEZA: The effectiveness of noise correction or detection, Problemy Peredachi Informatsii, vol. 1, No. 3, pp. 29-39, 1965 (in Russian).
[301] M. DEZA and F. HOFFMAN: Some results related to generalized Varshamov-Gilbert bound, IEEE Trans. Inform. Th., vol. 23, pp. 517-518, 1977.
[302] M. DEZA, M. G. KARPOVSKY and V. MILMAN: Codes correcting an arbitrary set of errors, Revue CETHEDEC, vol. 66, pp. 65-76, 1981.
[303] F. DI PASQUALE and P. R. J. ÖSTERGÅRD: An improved upper bound for the football pool problem for nine matches, J. Combinatorial Th., Ser. A, vol. 102, pp. 204-206, 2003.
[304] P. DIACONIS and R. L. GRAHAM: The Radon transform on \mathbf{Z}_{2}^{k}, Pacific J. Math., vol. 118, pp. 323-345, 1985.
[305] J. F. DILLON: A survey of bent functions, NCA Tech. J., pp. 191-215, 1972.
[306] S. M. DODUNEKOV: The optimal double-error-correcting codes of Zetterberg and Dumer-Zinoviev are quasiperfect, Comptes-Rendus de l'Académie Bulgare des Sciences, vol. 38, pp. 1121-1123, 1985.
[307] S. M. DODUNEKOV: Some quasi-perfect double error correcting codes, Problemy Upravleniya i Teorii Informatsii, vol. 15, No. 5, pp. 367-375, 1986. Translated in: Problems of Control and Information Th., vol. 15, No. 5.
[308] S. M. DODUNEKOV: Griesmer codes with maximum covering radius, Problemy Peredachi Informatsii, vol. 23, No. 4, pp. 110-113, 1987. Translated in: Problems of Inform. Transm., vol. 23, No. 4, pp. 344-346.
[309] S. M. DODUNEKOV and S. B. ENCHEVA: Uniqueness of some linear subcodes of the extended binary Golay code, Problemy Peredachi Informatsii, vol. 29, No. 1, pp. 45-51, 1993. Translated in: Problems of Inform. Transm., vol. 29, No. 1, pp. 38-43.
[310] S. M. DODUNEKOV, K. N. MANEV and V. D. TONCHEV: On the covering radius of binary $[14,6]$ codes containing the all-one vector, IEEE Trans. Inform. Th., vol. 34, pp. 591-593, 1988.
[311] S. M. DODUNEKOV and N. L. MANEV: An improvement of the Griesmer bound for some small minimum distances, Discrete Applied Mathematics, vol. 12, pp. 103-114, 1985.
[312] S. M. DODUNEKOV and N. L. MANEV: On the minimum distance of binary linear codes with the smallest possible covering radius, Annuaire de l'Université de Sofia, Faculté de Mathématiques et Informatique, vol. 81, pp. 237-241, 1987.
[313] S. M. DODUNEKOV and N. L. MANEV: Covering radius of optimal binary [15, 6, 6] codes, Proc. Third Soviet-Swedish Internat. Workshop on Information Theory, pp. 64-66, Sochi, 1987 (in Russian).
[314] D. DOLEV, D. MAIER, H. MAIRSON and J. ULLMAN: Correcting faults in write-once memory, Assoc. for Computing Machinery, pp. 225-229, 1984.
[315] P. DORBEC, S. GRAVIER, I. HONKALA and M. MOLLARD: Weighted perfect codes in Lee metric, Electronic Notes in Discrete Mathematics, vol. 34, pp. 477-481, 2009.
[316] R. L. DOUGHERTY and H. JANWA: Covering radius computations for binary cyclic codes, Mathematics of Computation, vol. 57, pp. 415-434, 1991.
[317] R. L. DOUGHERTY, R. D. MAULDIN and M. TIEFENBRUCK: The covering radius of the ReedMuller code $\mathrm{RM}(m-4, m)$ in $\mathrm{RM}(m-3, m)$, IEEE Trans. Inform. Th., vol. 68, pp. 560-571, 2022.
[318] D. E. DOWNIE and N. J. A. SLOANE: The covering radius of cyclic codes of length up to 31, IEEE Trans. Inform. Th., vol. 31, pp. 446-447, 1985.
[319] W. DUCKWORTH, P. E. DUNNE, A. M. GIBBONS and M. ZITO: Leafy spanning trees in hypercubes, Applied Mathematics Letters, vol. 14, pp. 801-804, 2001.
[320] I. I. DUMER: Asymptotically optimal codes correcting memory defects of fixed multiplicity, Problemy Peredachi Informatsii, vol. 25, No. 4, pp. 3-10, 1989. Translated in: Problems of Inform. Transm., vol. 25, No. 4, pp. 259-265.
[321] I. I. DUMER: Concatenated codes and their multilevel generalizations, in: Handbook of Coding Theory, Pless and Huffman, Eds., Chapter 23, Elsevier, 1998.
[322] A. DÜR: The decoding of extended Reed-Solomon codes, Discrete Mathematics, vol. 90, pp. 21-40, 1991.
[323] A. DÜR: Complete decoding of doubly-extended Reed-Solomon codes of minimum distance 5 and 6, Discrete Applied Mathematics, vol. 33, pp. 95-107, 1991.
[324] A. DÜR: On the covering radius of Reed-Solomon codes, Discrete Mathematics, vol. 126, pp. 99-105, 1994.
[325] C. DURAIRAJAN: On covering codes and covering radius of some optimal codes, Ph. D. Thesis, Department of Mathematics, IIT Kanpur, India, 1996.
[326] T. DVOŘÁK, I. HAVEL and M. MOLLARD: On paths and cycles dominating hypercubes, Discrete Mathematics, vol. 262, pp. 121-129, 2003.
[327] I. DVORÁKOVÁ-RULÍKOVÁ: Perfect codes in regular graphs, Commentationes Mathematicae Universitatis Carolinae, No. 29, pp. 79-83, 1988.
[328] C. van EIJL, G. D. COHEN and G. ZÉMOR: Error-correction for WIMs and WUMs, Lecture Notes in Computer Science, No. 539, pp. 159-170, Springer-Verlag, 1991.
[329] A. A. EL GAMAL, L. A. HEMACHANDRA, I. SHPERLING and V. K. WEI: Using simulated annealing to design good codes, IEEE Trans. Inform. Th., vol. 33, pp. 116-123, 1987.
[330] D. ELIMELECH, M. FIRER and M. SCHWARTZ: The generalized covering radii of linear codes, IEEE Trans. Inform. Th. vol. 67, pp. 8070-8085, 2021.
[331] D. ELIMELECH, H. WEI and M. SCHWARTZ: On the generalized covering radii of Reed-Muller codes, IEEE Trans. Inform. Th. vol. 68, pp. 4378-4391, 2022.
[332] R. B. ELLIS: Density of constant radius normal binary covering codes, Discrete Mathematics, vol. 308, pp. 4446-4459, 2008.
[333] R. B. ELLIS and C. H. YAN: Ulam's pathological liar game with one half-lie, Internat. J. Mathematics and Mathematical Sciences, vol. 29-32, pp. 1523-1532, 2004.
[334] M. H. EL-ZAHAR and M. K. KHAIRAT: On the weight distribution of the coset leaders of the first-order Reed-Muller code, IEEE Trans. Inform. Th., vol. 33, pp. 744-747, 1987.
[335] S. B. ENCHEVA: On binary linear codes which satisfy the two-way chain condition, IEEE Trans. Inform. Th., vol. 42, pp. 1038-1047, 1996.
[336] M. ESMAEILI and A. ZAGHIAN: Covering radius of binary codes having parity-check matrices with constant-weight columns, Utilitas Mathematica, vol. 77, pp. 225-233, 2008.
[337] M. ESMAEILI and A. ZAGHIAN: On the combinatorial structure of a class of $\left[\binom{m}{2},\binom{m-1}{2}\right.$, 3] shortened Hamming codes and their dual-codes, Discrete Applied Mathematics, vol. 157, pp. 356-363, 2009.
[338] M. ESMAEILI and A. ZAGHIAN: On covering radius of a family of codes $\mathcal{C}_{m} \cup\left(\mathbf{1}+\mathcal{C}_{m}\right)$ with maximum distance between \mathcal{C}_{m} and $\mathbf{1}+\mathcal{C}_{m}$, Utilitas Mathematica, vol. 78, pp. 151-158, 2009.
[339] G. ETIENNE: Perfect codes and regular partitions in graphs and groups, European J. Combinatorics, vol. 8, pp. 139-144, 1987.
[340] T. ETZION: On the nonexistence of perfect codes in the Johnson scheme, SIAM J. Discrete Mathematics, vol. 9, pp. 201-209, 1996.
[341] T. ETZION: Nonequivalent q-ary perfect codes, SIAM J. Discrete Mathematics, vol. 9, pp. 413-423, 1996.
[342] T. ETZION and G. GREENBERG: Constructions of perfect mixed codes and other covering codes, IEEE Trans. Inform. Th., vol. 39, pp. 209-214, 1993.
[343] T. ETZION, G. GREENBERG and I. S. HONKALA: Normal and abnormal codes, IEEE Trans. Inform. Th., vol. 39, pp. 1453-1456, 1993.
[344] T. ETZION and B. MOUNITS: Quasi-perfect codes with small distance, IEEE Trans. Inform. Th., vol. 51, pp. 3938-3946, 2005.
[345] T. ETZION and A. VARDY: Perfect binary codes: constructions, properties, and enumeration, IEEE Trans. Inform. Th., vol. 40, pp. 754-763, 1994.
[346] T. ETZION and A. VARDY: On perfect codes and tilings: problems and solutions, SIAM J. Discrete Mathematics, vol. 11, pp. 205-223, 1998.
[347] T. ETZION, V. K. WEI and Z. ZHANG: Bounds on the sizes of constant weight covering codes, Designs, Codes and Cryptography, vol. 5, pp. 217-239, 1995.
[348] E. FACHINI and J. KÖRNER: Tight packings of Hamming spheres, J. Combinatorial Th., Ser. A, vol. 76, pp. 292-294, 1996.
[349] G. FANG: Binary block codes for correcting asymmetric or unidirectional errors, Ph. D. Thesis, Eindhoven University of Technology, the Netherlands, 97 pp., 1993.
[350] G. FANG, H. C. A. van TILBORG and F. W. SUN: Weakly perfect binary block codes for correcting asymmetric errors, Proc. Internat. Symp. on Communications, pp. 57-60, Tainan, Taiwan, 1991.
[351] G. FANG, H. C. A. van TILBORG and F. W. SUN: On uniformly weakly perfect codes for correcting asymmetric errors; some bounds and constructions, Collection of Papers Dedicated to the Memory of David Gevorkian, to appear.
[352] G. FANG, H. C. A. van TILBORG, F. W. SUN and I. S. HONKALA: Some features of binary block codes for correcting asymmetric errors, Lecture Notes in Computer Science, No. 673, pp. 105-120, Springer-Verlag, 1993.
[353] G. FAZEKAS and V. I. LEVENSHTEIN: On upper bounds for code distance and covering radius of designs in polynomial metric spaces, Proc. Fifth Joint Soviet-Swedish Internat. Workshop on Information Theory, pp. 65-68, Moscow, 1991.
[354] G. FAZEKAS and V. I. LEVENSHTEIN: On upper bounds for code distance and covering radius of designs in polynomial metric spaces, J. Combinatorial Th., Ser. A, vol. 70, pp. 267-288, 1995.
[355] U. FEIGE, M. M. HALLDÓRSSON, G. KORTSARZ and A. SRINIVASAN: Approximating the domatic number, SIAM J. Comput., vol. 32, pp. 172-195, 2002.
[356] L. FEJES TÓTH: Lagerungen in der Ebene, auf der Kugel und in Raum, 2nd ed., Springer-Verlag, 1972.
[357] M. R. FELLOWS: Encoding graphs in graphs, Ph. D. Thesis, University of California, San Diego, United States, 112 pp., 1985.
[358] M. R. FELLOWS: Data structures for reluctant media, Internal Report CS-86-144, Washington State University, United States, 1986.
[359] H. FERNANDES and E. RECHTSCHAFFEN: The football pool problem for 7 and 8 matches, J. Combinatorial Th., Ser. A, vol. 35, pp. 109-114, 1983.
[360] P. C. FISHBURN and N. J. A. SLOANE: The solution to Berlekamp's switching game, Discrete Mathematics, vol. 74, pp. 263-290, 1989.
[361] C. FONTAINE: On some cosets of the first-order Reed-Muller code with high minimum weight, IEEE Trans. Inform. Th., vol. 45, pp. 1237-1243, 1999.
[362] G. D. FORNEY, Jr.: Concatenated Codes, Cambridge, MA: MIT Press, 1966.
[363] M. K. FORT, Jr., and G. A. HEDLUND: Minimal coverings of pairs by triples, Pacific J. Math., vol. 8, pp. 709-719, 1958.
[364] R. FOURQUET and C. TAVERNIER: An improved list decoding algorithm for the second order Reed-Muller codes and its applications, Designs, Codes and Cryptography, vol. 49, pp. 323-340, 2008.
[365] M. FRANCES and A. LITMAN: On covering problems of codes, Technical Report No. 827, Technion, Haifa, Israel, 8 pp., 1994.
[366] M. FRANCES and A. LITMAN: On covering problems of codes, Theory of Computing Systems, vol. 30, No. 2, pp. 113-119, 1997.
[367] R. FRANKEN and S. D. COHEN: The covering radius of some primitive ternary BCH codes, Lecture Notes in Computer Science, No. 2948, pp. 166-180, Springer-Verlag, 2004.
[368] G. FREIMAN, E. LIPKIN and L. LEVITIN: A polynomial algorithm for constructing families of k-independent sets, Discrete Mathematics, vol. 70, pp. 137-147, 1988.
[369] J. FRIDRICH, P. LISONĚK and D. SOUKAL: On steganographic embedding efficiency, Lecture Notes in Computer Science, No. 4437, pp. 282-296, Springer-Verlag, 2007.
[370] F. W. FU and R. W. YEUNG: On the capacity and error-correcting codes of write-efficient memories, IEEE Trans. Inform. Th., vol. 46, pp. 2299-2314, 2000.
[371] Z. FÜREDI, G. J. SZÉKELY and Z. ZUBOR: On the lottery problem, J. Combinatorial Designs, vol. 4, pp. 5-10, 1996.
[372] E. M. GABIDULIN, A. A. DAVYDOV and L. M. TOMBAK: Codes of covering radius 2 and other new covering codes, Proc. 10th All-Union Symp. on Redundancy Problems in Information Systems, part I, pp. 14-17, Leningrad, 1989 (in Russian).
[373] E. M. GABIDULIN, A. A. DAVYDOV and L. M. TOMBAK: Linear codes with covering radius 2 and other new covering codes, IEEE Trans. Inform. Th., vol. 37, pp. 219-224, 1991.
[374] E. M. GABIDULIN and T. KLØVE: On the Newton and covering radii of linear codes, IEEE Trans. Inform. Th., vol. 45, pp. 2534-2536, 1999.
[375] M. GADOULEAU: Algebraic codes for random linear network coding, Ph. D. Thesis, Lehigh University, United States, 197 pp., 2009.
[376] M. GADOULEAU and Z. YAN: Properties of codes with the rank metric, Proc. IEEE Global Communications Conf., pp. 1-5, San Francisco, 2006.
[377] M. GADOULEAU and Z. YAN: Covering properties of rank metric codes, Proc. IEEE Global Communications Conf., pp. 1446-1450, Washington, 2007.
[378] M. GADOULEAU and Z. YAN: Packing and covering properties of rank metric codes, IEEE Trans. Inform. Th., vol. 54, pp. 3873-3883, 2008.
[379] M. GADOULEAU and Z. YAN: Bounds on covering codes with the rank metric, IEEE Communications Letters, vol. 13, pp. 691-693, 2009.
[380] M. GADOULEAU and Z. YAN: Construction and covering properties of constant-dimension codes, Proc. IEEE Symp. on Information Theory, pp. 2221-2225, Seoul, 2009.
[381] M. GADOULEAU and Z. YAN: Packing and covering properties of subspace codes, Proc. IEEE Symp. on Information Theory, pp. 2867-2871, Seoul, 2009.
[382] M. GADOULEAU and Z. YAN: Packing and covering properties of subspace codes for error control in random linear network coding, IEEE Trans. Inform. Th., vol. 56, pp. 2097-2108, 2010.
[383] F. GALAND: Constructions de codes $Z_{p^{k}}$-linéaires de bonne distance minimale et schémas de dissimulation fondés sur les codes de recouvrement, Thèse, INRIA et Université de Caen, France, 2004.
[384] F. GALAND and G. A. KABATYANSKII: Information hiding by coverings, Proc. IEEE Symp. on Information Theory, pp. 151-154, Paris, 2003.
[385] F. GALAND and G. A. KABATYANSKII: Steganography via covering codes, Proc. IEEE Symp. on Information Theory, p. 192, Yokohama, 2003.
[386] F. GALAND and G. A. KABATYANSKII: Coverings, centered codes, and combinatorial steganography, Problemy Peredachi Informatsii, vol. 45, No. 3, pp. 106-111, 2009. Translated in: Problems of Inform. Transm., vol. 45, No. 3, pp. 289-294.
[387] R. G. GALLAGER: Information Theory and Reliable Communication, New York: Wiley, 1968.
[388] M. R. GAREY and D. S. JOHNSON: Computers and Intractability, a Guide to the Theory of NPCompleteness, New York: Freeman, 1979.
[389] L. GARGANO, J. KÖRNER and U. VACCARO: Sperner capacities, Graphs and Combinatorics, vol. 9, pp. 31-46, 1993.
[390] L. GARGANO, J. KÖRNER and U. VACCARO: Capacities: from information theory to extremal set theory, J. Combinatorial Th., Ser. A, vol. 68, pp. 296-316, 1994.
[391] D. GIJSWIJT: Matrix algebras and semidefinite programming techniques for codes, Ph. D. Thesis, University of Amsterdam, the Netherlands, 93 pp., 2005.
[392] E. N. GILBERT: A comparison of signalling alphabets, Bell Syst. Tech. J., vol. 31, pp. 504-522, 1952.
[393] M. GIULIETTI: On small dense sets in Galois planes, Electronic J. Combinatorics, http://www. combinatorics.org/Volume_14/v14i1toc.html, R75, 2007.
[394] M. GIULIETTI: The geometry of covering codes: Small complete caps and saturating sets in Galois spaces, in: Surveys in Combinatorics, Blackburn, Holloway and Wildon, Eds., pp. 51-90, Cambridge University Press, 2013.
[395] M. GIULIETTI and F. PASTICCI: Quasi-perfect linear codes with minimum distance 4, IEEE Trans. Inform. Th., vol. 53, pp. 1928-1935, 2007.
[396] T. J. GOBLICK, Jr.: Coding for a discrete information source with a distortion measure, Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, United States, 1962.
[397] P. GODLEWSKI: Wom-codes construits à partir des codes de Hamming, Discrete Mathematics, vol. 65, pp. 237-243, 1987.
[398] P. GODLEWSKI and G. D. COHEN: Authorized writing for "write-once" memories, Lecture Notes in CComputer Science, No. 219, pp. 111-115, Springer-Verlag, 1986.
[399] J.-M. GOETHALS and S. L. SNOVER: Nearly perfect binary codes, Discrete Mathematics, vol. 3, pp. 65-88, 1972.
[400] J.-M. GOETHALS and H. C. A. van TILBORG: Uniformly packed codes, Philips Research Reports, vol. 30, pp. 9-36, 1975.
[401] M. J. E. GOLAY: Notes on digital coding, Proc. IEEE, vol. 37, p. 657, 1949. Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., p. 13, IEEE Press, 1974.
[402] S. W. GOLOMB and E. C. POSNER: Rook domains, Latin squares, affine planes, and errordistributing codes, IEEE Trans. Inform. Th., vol. 10, pp. 196-208, 1964.
[403] S. W. GOLOMB and L. R. WELCH: Algebraic coding and the Lee metric, in: Error Correcting Codes, Mann, Ed., pp. 175-194, New York: Wiley, 1968.
[404] S. W. GOLOMB and L. R. WELCH: Perfect codes in the Lee metric and the packing of polyominoes, SIAM J. Applied Mathematics, vol. 18, pp. 302-317, 1970.
[405] G. GOMMARD and A. PLAGNE: $K_{5}(7,3) \leq 100$, J. Combinatorial Th., Ser. A, vol. 104, pp. 365370, 2003.
[406] D. M. GORDON: Perfect multiple error-correcting arithmetic codes, Mathematics of Computation, vol. 49, pp. 621-633, 1987.
[407] D. M. GORDON, O. PATASHNIK and G. KUPERBERG: New constructions for covering designs, J. Combinatorial Designs, vol. 3, pp. 269-284, 1995.
[408] D. M. GORDON, O. PATASHNIK, G. KUPERBERG and J. H. SPENCER: Asymptotically optimal covering designs, J. Combinatorial Th., Ser. A, vol. 75, pp. 270-280, 1996.
[409] Y. GORDON and H. S. WITSENHAUSEN: On extensions of the Gale-Berlekamp switching problem and constants of ℓ_{p}-spaces, Israel J. Math., vol. 11, pp. 216-229, 1972.
[410] D. GORENSTEIN, W. W. PETERSON and N. ZIERLER: Two-error correcting Bose-Chaudhury codes are quasi-perfect, Information and Control, vol. 3, pp. 291-294, 1960.
[411] R. L. GRAHAM and N. J. A. SLOANE: On the covering radius of codes, IEEE Trans. Inform. Th., vol. 31, pp. 385-401, 1985.
[412] J. H. GRIESMER: A bound for error-correcting codes, IBM J. Res. Develop., vol. 4, pp. 532-542, 1960.
[413] J. R. GRIGGS: Spanning trees and domination in hypercubes, Integers, vol. 21A (Ron Graham Memorial Volume), Paper No. A13, 11 pp., 2021.
[414] J. GU and X. CAO: On the covering radius of Melas codes, International Journal of Pure and Applied Mathematics, vol. 107(2), pp. 479-485, 2016.
[415] GUAVA: Extensions to GUAVA, http://www.gap-system.org/pkg/guava/htm/CHAP007.htm
[416] M. GUNDLACH: On codes with distinct protective radii, Atti Sem. Mat. Fis. Univ. Modena, vol. 32, pp. 372-396, 1983.
[417] M. GUNDLACH: On strongly tactical codes, Lecture Notes in Computer Science, No. 229, pp. 17-26, Springer-Verlag, 1986.
[418] Q. GUO, T. JOHANSSON and C. LÖNDAHL: Solving LPN using covering codes, Lecture Notes in Computer Science, No. 8873, pp. 1-20, Springer-Verlag, 2014.
[419] Q. GUO, T. JOHANSSON and C. LÖNDAHL: Solving LPN using covering codes, Journal of Cryptology, vol. 33(1), pp. 1-33, 2020.
[420] M. K. GUPTA and C. DURAIRAJAN: On the covering radius of some modular codes, Advances in Mathematics of Communications, vol. 8, pp. 129-137, 2014.
[421] V. GURUSWAMI, D. MICCIANCIO and O. REGEV: The complexity of the covering radius problem, Computational Complexity, vol. 14, pp. 90-121, 2005.
[422] W. HAAS: Lower bounds for q-ary codes of covering radius one, Discrete Mathematics, vol. 219, No. 1-3, pp. 97-106, 2000.
[423] W. HAAS: Binary and ternary codes of covering radius one: some new lower bounds, Discrete Mathematics, vol. 256, No. 1-2, pp. 161-178, 2002.
[424] W. HAAS: Lower bounds for the football pool problem for 7 and 8 matches, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_14/v14i1toc.html, R27, 2007.
[425] W. HAAS: Lower bounds for binary codes of covering radius one, IEEE Trans. Inform. Th., vol. 53, pp. 2880-2881, 2007.
[426] W. HAAS: On the failing cases of the Johnson bound for error-correcting codes, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_15/v15i1toc.html, R55, 2008.
[427] W. HAAS: Lower bounds for quaternary covering codes, Ars Combinatoria, vol. 99, pp. 19-23, 2011.
[428] W. HAAS: On the general excess bound for binary codes with covering radius one, Discrete Mathematics, vol. 313, pp. 2751-2762, 2013.
[429] W. HAAS, I. HALUPCZOK and J. C. SCHLAGE-PUCHTA: Lower bounds for q-ary codes with large covering radius, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_16/v16i1toc. html, R133, 2009.
[430] W. HAAS and J. QUISTORFF: On mixed codes with covering radius 1 and minimum distance 2, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_14/v14i1toc.html, R51, 2007.
[431] W. HAAS, J. QUISTORFF and J. C. SCHLAGE-PUCHTA: New lower bounds for covering codes, Preprint, 2009.
[432] W. HAAS, J. C. SCHLAGE-PUCHTA and J. QUISTORFF: Lower bounds on covering codes via partition matrices, J. Combinatorial Th., Ser. A, vol. 116, pp. 478-484, 2009.
[433] L. HABSIEGER: Lower bounds for q-ary coverings by spheres of radius 1, J. Combinatorial Th., Ser. A, vol. 67, pp. 199-222, 1994.
[434] L. HABSIEGER: Some new lower bounds for ternary covering codes, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_3/foatatoc.html, R23, 1996.
[435] L. HABSIEGER: A new lower bound for the football pool problem for 7 matches, J. Th. des Nombres de Bordeaux, vol. 8, pp. 481-484, 1996.
[436] L. HABSIEGER: Binary codes with covering radius one: some new lower bounds, Discrete Mathematics, vol. 176, pp. 115-130, 1997.
[437] L. HABSIEGER and A. PLAGNE: New lower bounds for covering codes, Discrete Mathematics, vol. 222, No. 1-3, pp. 125-149, 2000.
[438] L. HABSIEGER and D. STANTON: More zeros of Krawtchouk polynomials, Graphs and Combinatorics, vol. 9, pp. 163-172, 1993.
[439] J. L. HALL: Graphs associated with codes of covering radius 1 and minimum distance 2. With a corrigendum, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_15/v15i1toc.html, R68, 2008.
[440] M. W. van der HAM: Simulated annealing applied in coding theory, Master's Thesis, Eindhoven University of Technology, the Netherlands, 50 pp., 1988.
[441] H. O. HÄMÄLÄINEN, I. S. HONKALA, M. K. KAIKKONEN and S. LITSYN: Bounds for binary multiple covering codes, Designs, Codes and Cryptography, vol. 3, pp. 251-275, 1993.
[442] H. O. HÄMÄLÄINEN, I. S. HONKALA, S. LITSYN and P. R. J. ÖSTERGÅRD: Bounds for binary codes that are multiple coverings of the farthest-off points, SIAM J. Discrete Mathematics, vol. 8, pp. 196-207, 1995.
[443] H. O. HÄMÄLÄINEN, I. S. HONKALA, S. LITSYN and P. R. J. ÖSTERGÅRD: Football pools - a game for mathematicians, American Mathematical Monthly, vol. 102, pp. 579-588, 1995.
[444] H. O. HÄMÄLÄINEN and S. RANKINEN: Upper bounds for football pool problems and mixed covering codes, J. Combinatorial Th., Ser. A, vol. 56, pp. 84-95, 1991.
[445] R. W. HAMMING: Error detecting and error correcting codes, Bell Syst. Tech. J., vol. 29, pp. 147160, 1950. Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., pp. 9-12, IEEE Press, 1974.
[446] P. HAMMOND: Nearly perfect codes in distance-regular graphs, Discrete Mathematics, vol. 14, pp. 41-56, 1976.
[447] P. HAMMOND: q-coverings, codes, and line graphs, J. Combinatorial Th., Ser. B, vol. 30, pp. 32-35, 1981.
[448] P. HAMMOND: On the non-existence of perfect and nearly perfect codes, Discrete Mathematics, vol. 39, pp. 105-109, 1982.
[449] P. HAMMOND and D. H. SMITH: Perfect codes in the graphs O_{k}, J. Combinatorial Th., Ser. B, vol. 19, pp. 239-255, 1975.
[450] W. B. HAN: Goppa codes from Artin-Schreier function fields, Chinese Annals of Mathematics, Ser. B, vol. 15, pp. 311-320, 1994.
[451] H. HANANI, D. ORNSTEIN and V. T. SÓS: On the lottery problem, Magyar Tud. Akad. Mat. Kutató Int. Közl., vol. 9, pp. 155-158, 1964.
[452] M. HARADA and A. MUNEMASA: Shadows, neighbors and covering radii of extremal self-dual codes, Preprint, 2006.
[453] M. HARADA and A. MUNEMASA: On the covering radii of extremal doubly even self-dual codes, Advances in Mathematics of Communications, vol. 1, pp. 251-256, 2007.
[454] M. HARADA, A. MUNEMASA and K. TANABE: Extremal self-dual [40, 20, 8] codes with covering radius 7, Finite Fields Appl., vol. 10, pp. 183-197, 2004.
[455] M. HARADA and M. OZEKI: Extremal self-dual codes with the smallest covering radius, Discrete Mathematics, vol. 215, pp. 271-281, 2000.
[456] M. HARADA, M. OZEKI and K. TANABE: On the covering radius of ternary extremal self-dual codes, Designs, Codes and Cryptography, vol. 33, pp. 149-158, 2004.
[457] M. HARADA and K. WAKI: New extremal formally self-dual even codes of length 30, Advances in Mathematics of Communications, vol. 3, pp. 311-316, 2009.
[458] F. HARARY and M. LIVINGSTON: Independent domination in hypercubes, Applied Mathematics Letters, vol. 6(3), pp. 27-28, 1993.
[459] A. HARTMAN, W. H. MILLS and R. C. MULLIN: Covering triples by quadruples: an asymptotic solution, J. Combinatorial Th., Ser. A, vol. 41, pp. 117-138, 1986.
[460] A. HARTMAN, R. C. MULLIN and D. R. STINSON: Exact covering configurations and Steiner systems, J. London Math. Soc. (2), vol. 25, pp. 193-200, 1982.
[461] T. W. HAYNES, S. T. HEDETNIEMI and P. J. SLATER: Fundamentals of Domination in Graphs, New York: Marcel Dekker, 1998.
[462] O. HEDEN: Perfect codes in antipodal distance-transitive graphs, Math. Scand., vol. 35, pp. 29-37, 1974.
[463] O. HEDEN: A generalized Lloyd theorem and mixed perfect codes, Math. Scand., vol. 37, pp. 13-26, 1975.
[464] O. HEDEN: A new construction of group and nongroup perfect codes, Information and Control, vol. 34, pp. 314-323, 1977.
[465] O. HEDEN: A binary perfect code of length 15 and codimension 0, Designs, Codes and Cryptography, vol. 4, pp. 213-220, 1994.
[466] O. HEDEN and F. I. SOLOV'EVA: On partitions into nonparallel Hamming codes, Proc. Internat. Workshop on Optimal Codes and Related Topics, pp. 87-92, Varna, 2009.
[467] O. HEDEN and F. I. SOLOV'EVA: Partitions of F^{n} into non-parallel Hamming codes, Advances in Mathematics of Communications, vol. 3, pp. 385-397, 2009.
[468] C. HEEGARD: Partitioned linear block codes for computer memory with "stuck-at" defects, IEEE Trans. Inform. Th., vol. 29, pp. 831-842, 1983.
[469] C. HEEGARD and A. A. EL GAMAL: On the capacity of computer memory with defects, IEEE Trans. Inform. Th., vol. 29, pp. 731-739, 1983.
[470] H. J. HELGERT: Noncyclic generalizations of BCH and Srivastava codes, Information and Control, vol. 21, pp. 280-290, 1972.
[471] H. J. HELGERT and R. D. STINAFF: Minimum-distance bounds for binary linear codes, IEEE Trans. Inform. Th., vol. 19, pp. 344-356, 1973.
[472] H. J. HELGERT and R. D. STINAFF: Shortened BCH codes, IEEE Trans. Inform. Th., vol. 19, pp. 818-820, 1973.
[473] T. HELLESETH: All binary 3 -error-correcting BCH codes of length $2^{m}-1$ have covering radius 5, IEEE Trans. Inform. Th., vol. 24, pp. 257-258, 1978.
[474] T. HELLESETH: No primitive binary t-error correcting BCH code with $t>2$ is quasi-perfect, IEEE Trans. Inform. Th., vol. 25, pp. 361-362, 1979.
[475] T. HELLESETH: On the covering radius of cyclic linear codes and arithmetic codes, Discrete Applied Mathematics, vol. 11, pp. 157-173, 1985.
[476] T. HELLESETH and T. KLØVE: The Newton radius of codes, IEEE Trans. Inform. Th., vol. 43, pp. 1820-1831, 1997.
[477] T. HELLESETH, T. KLØVE and V. I. LEVENSHTEIN: The Newton radius of equidistant codes, Proc. Internat. Symp. on Information Theory and its Applications, vol. 2, pp. 721-722, Victoria, 1996.
[478] T. HELLESETH, T. KLØVE and J. MYKKELTVEIT: On the covering radius of binary codes, IEEE Trans. Inform. Th., vol. 24, pp. 627-628, 1978.
[479] T. HELLESETH and H. F. MATTSON, Jr.: On the cosets of the simplex code, Discrete Mathematics, vol. 56, pp. 169-189, 1985.
[480] M. HERZOG and J. SCHÖNHEIM: Linear and nonlinear single-error correcting perfect mixed codes, Information and Control, vol. 18, pp. 364-368, 1971.
[481] M. HERZOG and J. SCHÖNHEIM: Group partition, factorization and the vector covering problem, Canad. Math. Bull., vol. 15, pp. 207-214, 1972.
[482] R. HILL: Caps and codes, Discrete Mathematics, vol. 22, pp. 111-137, 1978.
[483] J. W. P. HIRSCHFELD: Projective Geometries over Finite Fields, Oxford: Clarendon Press, 1979.
[484] C. T. HO, J. BRUCK and R. AGRAWAL: Partial-sum queries in OLAP data cubes using covering codes, Proc. 16th ACM Symp. on Principles of Database Systems, pp. 228-237, Tucson, Arizona, 1997.
[485] C. T. HO, J. BRUCK and R. AGRAWAL: Partial-sum queries in OLAP data cubes using covering codes, IEEE Trans. Computers, vol. 47, pp. 1326-1340, 1998.
[486] R. HOD and M. KRZYWKOWSKI, The hat problem on a directed graph, to appear.
[487] H. D. L. HOLLMANN, J. KÖRNER and S. LITSYN: Tiling Hamming space with few spheres, J. Combinatorial Th., Ser. A, vol. 80, pp. 388-393, 1997.
[488] Y. HONG: On the nonexistence of unknown perfect 6- and 8-codes in Hamming schemes $H(n, q)$ with q arbitrary, Osaka J. Math., vol. 21, pp. 687-700, 1984.
[489] Y. HONG: On the nonexistence of nontrivial perfect e-codes and tight $2 e$-designs in Hamming schemes $H(N, q)$ with $e \geq 3$ and $q \geq 3$, Graphs and Combinatorics, vol. 2, pp. 145-164, 1986.
[490] I. S. HONKALA: On the intersections and unions of Hamming spheres, in: The Very Knowledge of Coding, Laakso and Salomaa, Eds., pp. 70-81, Turku, Finland, 1987.
[491] I. S. HONKALA: Lower bounds for binary covering codes, IEEE Trans. Inform. Th., vol. 34, pp. 326-329, 1988.
[492] I. S. HONKALA: Combinatorial bounds for binary constant weight and covering codes, Ph. D. Thesis, University of Turku, Finland, 108 pp., 1989.
[493] I. S. HONKALA: On the normality of codes with covering radius one, Proc. Fourth Joint SwedishSoviet Internat. Workshop on Information Theory, pp. 223-226, Gotland, 1989.
[494] I. S. HONKALA: Modified bounds for covering codes, IEEE Trans. Inform. Th., vol. 37, pp. 351-365, 1991.
[495] I. S. HONKALA: On (k, t)-subnormal covering codes, IEEE Trans. Inform. Th., vol. 37, pp. 12031206, 1991.
[496] I. S. HONKALA: All binary codes with covering radius one are subnormal, Discrete Mathematics, vol. 94, pp. 229-232, 1991.
[497] I. S. HONKALA: On lengthening of covering codes, Discrete Mathematics, vol. 106/107, pp. 291-295, 1992.
[498] I. S. HONKALA: A Graham-Sloane type construction for s-surjective matrices, J. Algebraic Combinatorics, vol. 1, pp. 347-351, 1992.
[499] I. S. HONKALA: A lower bound on binary codes with covering radius one, Lecture Notes in Computer Science, No. 781, pp. 34-37, Springer-Verlag, 1994.
[500] I. S. HONKALA: On the normality of multiple covering codes, Discrete Mathematics, vol. 125, pp. 229-239, 1994.
[501] I. S. HONKALA: On ($q, 1$)-subnormal q-ary covering codes, Discrete Applied Mathematics, vol. 52, pp. 213-221, 1994.
[502] I. S. HONKALA: A new lower bound on codes with covering radius one, Proc. Internat. Symp. on Information Theory and its Applications, vol. 1, pp. 39-41, Sydney, 1994.
[503] I. S. HONKALA: Combinatorial lower bounds on binary codes with covering radius one, Ars Combinatoria, vol. 50, pp. 149-159, 1998.
[504] I. S. HONKALA and H. O. HÄMÄLÄINEN: A new construction for covering codes, IEEE Trans. Inform. Th., vol. 34, pp. 1343-1344, 1988.
[505] I. S. HONKALA and H. O. HÄMÄLÄINEN: Bounds for abnormal binary codes with covering radius one, IEEE Trans. Inform. Th., vol. 37, pp. 372-375, 1991.
[506] I. S. HONKALA, Y. KAIPAINEN and A. TIETÄVÄINEN: Long binary narrow-sense BCH codes are normal, Applicable Algebra in Engineering, Communication and Computing, vol. 8, pp. 49-55, 1997.
[507] I. S. HONKALA and A. KLAPPER: Bounds for the multicovering radii of Reed-Muller codes with applications to stream ciphers, Designs, Codes and Cryptography, vol. 23, pp. 131-146, 2001.
[508] I. S. HONKALA and A. KLAPPER: Multicovering bounds from relative covering radii, SIAM J. Discrete Mathematics, vol. 15, pp. 228-234, 2002.
[509] I. S. HONKALA, T. LAIHONEN and S. LITSYN: On covering radius and discrete Chebyshev polynomials, Applicable Algebra in Engineering, Communication and Computing, vol. 8, pp. 395-401, 1997.
[510] I. S. HONKALA and S. LITSYN: Generalizations of the covering radius problem in coding theory, Bull. Institute of Combinatorics and its Applications, vol. 17, pp. 39-46, 1996.
[511] I. S. HONKALA, S. LITSYN and A. TIETÄVÄINEN: On algebraic methods in covering radius problems, Lecture Notes in Computer Science, No. 948, pp. 21-32, Springer-Verlag, 1995.
[512] I. S. HONKALA and A. C. LOBSTEIN: On the complexity of calculating the minimum norm of a binary code, Proc. Workshop on Coding and Cryptography '99, pp. 21-27, Paris, 1999.
[513] I. S. HONKALA and P. R. J. ÖSTERGÅRD: Code design, in: Local Search in Combinatorial Optimization, Aarts and Lenstra, Eds., Chapter 13, Wiley, 1997.
[514] I. S. HONKALA and A. TIETÄVÄINEN: Codes and number theory, in: Handbook of Coding Theory, Pless and Huffman, Eds., Chapter 13, Elsevier, 1998.
[515] J. A. van der HORST and T. BERGER: Complete decoding of triple-error-correcting binary BCH codes, IEEE Trans. Inform. Th., vol. 22, pp. 138-147, 1976.
[516] X. D. HOU: Covering radius and error correcting codes, Ph. D. Thesis, University of Illinois, Chicago, United States, 77 pp., 1990.
[517] X. D. HOU: Some results on the norm of codes, IEEE Trans. Inform. Th., vol. 36, pp. 683-685, 1990.
[518] X. D. HOU: New lower bounds for covering codes, IEEE Trans. Inform. Th., vol. 36, pp. 895-899, 1990.
[519] X. D. HOU: An improved sphere covering bound for the codes with $n=3 R+2$, IEEE Trans. Inform. Th., vol. 36, pp. 1476-1478, 1990.
[520] X. D. HOU: Binary linear quasi-perfect codes are normal, IEEE Trans. Inform. Th., vol. 37, pp. 378-379, 1991.
[521] X. D. HOU: On the covering radius of subcodes of a code, IEEE Trans. Inform. Th., vol. 37, pp. 1706-1707, 1991.
[522] X. D. HOU: Some inequalities about the covering radius of Reed-Muller codes, Designs, Codes and Cryptography, vol. 2, pp. 215-224, 1992.
[523] X. D. HOU: Some results on the covering radii of Reed-Muller codes, IEEE Trans. Inform. Th., vol. 39, pp. 366-378, 1993.
[524] X. D. HOU: Further results on the covering radii of the Reed-Muller codes, Designs, Codes and Cryptography, vol. 3, pp. 167-177, 1993.
[525] X. D. HOU: Classification of cosets of the Reed-Muller code $R(m-3, m)$, Discrete Mathematics, vol. 128, pp. 203-224, 1994.
[526] X. D. HOU: GL $(m, 2)$ acting on $R(r, m) / R(r-1, m)$, Discrete Mathematics, vol. 149, pp. 99-122, 1996.
[527] X. D. HOU: Covering radius of the Reed-Muller code $R(1,7)$ - a simpler proof, J. Combinatorial Th., Ser. A, vol. 74, pp. 337-341, 1996.
[528] X. D. HOU: On the covering radius of $R(1, m)$ in $R(3, m)$, IEEE Trans. Inform. Th., vol. 42, pp. 1035-1037, 1996.
[529] X. D. HOU: The covering radius of $R(1,9)$ in $R(4,9)$, Designs, Codes and Cryptography, vol. 8, pp. 285-292, 1996.
[530] X. D. HOU: The Reed-Muller code $R(1,7)$ is normal, Designs, Codes and Cryptography, vol. 12, pp. 75-82, 1997.
[531] X. D. HOU: On the norm and covering radius of the first-order Reed-Muller codes, IEEE Trans. Inform. Th., vol. 43, pp. 1025-1027, 1997.
[532] X. D. HOU and P. LANGEVIN: Results on bent functions, J. Combinatorial Th., Ser. A, vol. 80, pp. 232-246, 1997.
[533] W. C. HUFFMAN and V. S. PLESS: Fundamentals of Error-Correcting Codes, Cambridge: Cambridge University Press, 2003.
[534] J. J. E. IMBER and D. L. WEHLAU: A family of small complete caps in $P G(n, 2)$, European J. Combinatorics, vol. 24, pp. 613-615, 2003.
[535] A. ISKE: Progressive scattered data filtering, Report, TUM M0205, Techn. University of Muenchen, Germany, 21 pp., 2002.
[536] T. IWATA, T. YOSHIWARA and K. KUROSAWA: New covering radius of Reed-Muller codes for t-resilient functions, Lecture Notes in Computer Science, No. 2259, pp. 75-86, Springer-Verlag, 2001.
[537] T. N. JANAKIRAMAN, M. BHANUMATHI and S. MUTHAMMAI: Domination parameters of hypercubes, Internat. J. Engineering Science, Advanced Computing and Bio-Technology, vol. 1(1), pp. 19-28, 2010.
[538] H. JANWA: Relations among parameters of codes, Ph. D. Thesis, Syracuse University, United States, 116 pp., 1986.
[539] H. JANWA: Some new upper bounds on the covering radius of binary linear codes, IEEE Trans. Inform. Th., vol. 35, pp. 110-122, 1989.
[540] H. JANWA: Some optimal codes from algebraic geometry and their covering radii, European J. Combinatorics, vol. 11, pp. 249-266, 1990.
[541] H. JANWA: On the parameters of algebraic geometric codes, Lecture Notes in Computer Science, No. 539, pp. 19-28, Springer-Verlag, 1991.
[542] H. JANWA and A. K. LAL: On generalized Hamming weights and the covering radius of linear codes, Lecture Notes in Computer Science, No. 4851, pp. 347-356, Springer-Verlag, 2007.
[543] H. JANWA and H. F. MATTSON, Jr.: Covering radii of even subcodes of t-dense codes, Lecture Notes in Computer Science, No. 229, pp. 120-130, Springer-Verlag, 1986.
[544] H. JANWA and H. F. MATTSON, Jr.: Some upper bounds on the covering radii of linear codes over \mathbf{F}_{q} and their applications, Designs, Codes and Cryptography, vol. 18, pp. 163-181, 1999.
[545] H. JANWA and H. F. MATTSON, Jr.: On the normality of binary linear codes, IEEE Trans. Inform. Th., submitted.
[546] P. K. JHA: Hypercubes, median graphs and product of graphs: some algorithmic and combinatorial results, Ph. D. Thesis, Iowa State University, United States, 1990.
[547] D. S. JOHNSON: Approximation algorithms for combinatorial problems, J. Comput. System Sciences, vol. 9, pp. 256-298, 1974.
[548] S. M. JOHNSON: A new upper bound for error-correcting codes, IEEE Trans. Inform. Th., vol. 8, pp. 203-207, 1962.
[549] S. M. JOHNSON: A new lower bound for coverings by rook domains, Utilitas Mathematica, vol. 1, pp. 121-140, 1972.
[550] G. A. KABATYANSKII and V. I. PANCHENKO: Unit sphere packings and coverings of the Hamming space, Problemy Peredachi Informatsii, vol. 24, No. 4, pp. 3-16, 1988. Translated in: Problems of Inform. Transm., vol. 24, No. 4, pp. 261-272.
[551] M. K. KAIKKONEN: Codes from affine permutation groups, Designs, Codes and Cryptography, vol. 15, pp. 183-186, 1998.
[552] M. K. KAIKKONEN and P. ROSENDAHL: New covering codes from an ADS-like construction, IEEE Trans. Inform. Th., vol. 49, pp. 1809-1812, 2003.
[553] Y. KAIPAINEN: Chow variety, Licentiate Thesis, University of Turku, Finland, 1993 (in Finnish).
[554] Y. KAIPAINEN: On the covering radius of long non-binary BCH codes, Ph. D. Thesis, University of Turku, Finland, 100 pp., 1995.
[555] Y. KAIPAINEN and K. SUOMINEN: On the covering radius of long 5-ary BCH codes with minimum distance 7, Applicable Algebra in Engineering, Communication and Computing, vol. 8, pp. 403-410, 1997.
[556] J. G. KALBFLEISCH and R. G. STANTON: A combinatorial problem in matching, J. London Math. Soc., vol. 44, pp. 60-64, 1969 and (2), vol. 1, p. 398, 1969.
[557] J. G. KALBFLEISCH, R. G. STANTON and J. D. HORTON: On covering sets and error-correcting codes, J. Combinatorial Th., Ser. A, vol. 11, pp. 233-250, 1971.
[558] J. G. KALBFLEISCH and P. H. WEILAND: Some new results for the covering problem, in: Recent Progress in Combinatorics, Tutte, Ed., pp. 37-45, New York: Academic Press, 1969.
[559] H. J. L. KAMPS and J. H. van LINT: The football pool problem for 5 matches, J. Combinatorial Th., Ser. A, vol. 3, pp. 315-325, 1967.
[560] H. J. L. KAMPS and J. H. van LINT: A covering problem, Combinatorial Theory and its Applications, vol. II, pp. 679-685, in: Colloquia Mathematica Societatis Jànos Bolyai, Ser. 4, 1970.
[561] M. G. KARPOVSKY: Weight distribution of translates, covering radius and perfect codes correcting errors of the given multiplicities, IEEE Trans. Inform. Th., vol. 27, pp. 462-472, 1981.
[562] M. G. KARPOVSKY and V. MILMAN: On subspaces contained in subsets of finite homogeneous spaces, Discrete Mathematics, vol. 22, pp. 273-280, 1978.
[563] M. G. KARPOVSKY and V. MILMAN: Coordinate density of sets of vectors, Discrete Mathematics, vol. 24, pp. 177-184, 1978.
[564] T. KASAMI: Weight distributions of Bose-Chaudhuri-Hocquenghem codes, in: Combinatorial Mathematics and its Applications, Bose and Dowling, Eds., Chapter 20, University of North Carolina Press, 1969. Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., pp. 268-274, IEEE Press, 1974.
[565] T. KASAMI, T. FUJIWARA and S. LIN: An approximation to the weight distribution of binary linear codes, IEEE Trans. Inform. Th., vol. 31, pp. 769-780, 1985.
[566] T. KASAMI and N. TOKURA: On the weight structure of Reed-Muller codes, IEEE Trans. Inform. Th., vol. 16, pp. 752-759, 1970.
[567] T. KASAMI, N. TOKURA and S. AZUMI: On the weight enumeration of weights less than $2.5 d$ of Reed-Muller codes, Preprint, Faculty of Engineering, Osaka University, Japan, 1974.
[568] T. KASAMI, S. YAMAMURA and A. V. KUZNETSOV: Volume of additive matched error- and defect-correcting codes, Problemy Peredachi Informatsii, vol. 14, No. 2, pp. 3-10, 1978. Translated in: Problems of Inform. Transm., vol. 14, No. 2, pp. 79-84.
[569] P. KASKI and P. R. J. ÖSTERGÅRD: Classification Algorithms for Codes and Designs, Berlin: Springer, 2006.
[570] G. O. H. KATONA and J. SRIVASTAVA: Minimal 2-coverings of a finite affine space based on $G F(2)$, J. Statist. Planning Inference, vol. 8, pp. 375-388, 1983.
[571] G. L. KATSMAN: Covering radius of codes being dual to iterative ones, Proc. Fifth Joint SovietSwedish Internat. Workshop on Information Theory, pp. 91-92, Moscow, 1991.
[572] G. L. KATSMAN: Bounds on covering radius of dual product codes, Lecture Notes in Computer Science, No. 573, pp. 52-57, Springer-Verlag, 1992.
[573] S. KAVUT and S. TUTDERE: The covering radii of a class of binary cyclic codes and some BCH codes, Designs, Codes and Cryptography, vol. 87(2-3), pp. 317-325, 2019.
[574] G. T. KENNEDY: Weight distributions of linear codes and the Gleason-Pierce theorem, J. Combinatorial Th., Ser. A, vol. 67, pp. 72-88, 1994.
[575] G. KÉRI: On small covering codes in arbitrary mixed Hamming spaces, Studia Scientiarum Mathematicarum Hungarica, vol. 44, pp. 517-534, 2007.
[576] G. KÉRI: The covering radius of extreme binary 2-surjective codes, Designs, Codes and Cryptography, vol. 46, pp. 191-198, 2008.
[577] G. KÉRI: On the normality of (non-mixed and mixed) optimal covering codes, Proc. 19th Internat. Symp. on Mathematical Theory of Networks and Systems, pp. 1819-1821, Budapest, 2010.
[578] G. KÉRI: Classification results for non-mixed and mixed optimal covering codes: a survey, Proc. 19th Internat. Symp. on Mathematical Theory of Networks and Systems, Budapest 2010, to appear.
[579] G. KÉRI: Tables for covering codes, http://www.sztaki.hu/~keri/codes/index.htm
[580] G. KÉRI and P. R. J. ÖSTERGÅRD: On the covering radius of small codes, Studia Scientiarum Mathematicarum Hungarica, vol. 40, pp. 243-256, 2003.
[581] G. KÉRI and P. R. J. ÖSTERGÅRD: Further results on the covering radius of small codes, Report WP 2003-7, Computer and Automation Institute, Budapest, Hungary, 14 pp., 2003.
[582] G. KÉRI and P. R. J. ÖSTERGÅRD: Bounds for covering codes over large alphabets, Designs, Codes and Cryptography, vol. 37, pp. 45-60, 2005.
[583] G. KÉRI and P. R. J. ÖSTERGÅRD: The number of inequivalent $(2 R+3,7) R$ optimal covering codes, Journal of Integer Sequences, http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Keri/keri6.html, 2006.
[584] G. KÉRI and P. R. J. ÖSTERGÅRD: Further results on the covering radius of small codes, Discrete Mathematics, vol. 307, pp. 69-77, 2007.
[585] G. KÉRI and P. R. J. ÖSTERGÅRD: On the minimum size of binary codes with length $2 R+4$ and covering radius R, Designs, Codes and Cryptography, vol. 48, pp. 165-169, 2008.
[586] M. KHATIRINEJAD and P. LISONĚK: Linear codes for high payload steganography, Discrete Applied Mathematics, vol. 157, pp. 971-981, 2009.
[587] K. E. KILBY and N. J. A. SLOANE: On the covering radius problem for codes: I Bounds on normalized covering radius, II Codes of low dimension; normal and abnormal codes, SIAM J. Algebraic and Discrete Methods, vol. 8, pp. 604-627, 1987.
[588] S. KIRKPATRICK, C. D. GELATT, Jr., and M. P. VECCHI: Optimization by simulated annealing, Science, vol. 220, pp. 671-680, 1983.
[589] A. KLAPPER: On the existence of secure feedback registers, Lecture Notes in Computer Science, No. 1070, pp. 256-267, Springer-Verlag, 1996.
[590] A. KLAPPER: The multicovering radii of codes, IEEE Trans. Inform. Th., vol. 43, pp. 1372-1377, 1997.
[591] A. KLAPPER: Improved lower bounds for multicovering codes, IEEE Trans. Inform. Th., vol. 45, pp. 2532-2534, 1999.
[592] A. KLAPPER: Multicovering bounds from linear inequalities, Proc. Workshop on Coding and Cryptography 2001, pp. 309-318, Paris, 2001.
[593] A. KLAPPER: Multicovering bounds from supercodes, Proc. IEEE Symp. on Information Theory, p. 203, Washington, 2001.
[594] A. KLAPPER: Improved multicovering bounds from linear inequalities and supercodes, IEEE Trans. Inform. Th., vol. 50, pp. 532-536, 2004.
[595] A. KLAPPER and A. MERTZ: The two covering radius of the two error correcting BCH code, Proc. IEEE Symp. on Information Theory, Seattle, 2006.
[596] A. KLAPPER and A. MERTZ: The two covering radius of the two error correcting BCH code, Advances in Mathematics of Communications, vol. 3, pp. 83-95, 2009.
[597] A. KLEIN and L. STORME: Applications of finite geometry in coding theory and cryptography, in: Information Security, Coding Theory and Related Combinatorics, Crnković and Tonchev, Eds., vol. 29, pp. 38-58, 2011.
[598] Y. KLEIN, S. LITSYN and A. VARDY: Two new bounds on the size of binary codes with a minimum distance of three, Designs, Codes and Cryptography, vol. 6, pp. 219-227, 1995.
[599] D. J. KLEITMAN: On a combinatorial conjecture of Erdös, J. Combinatorial Th., vol. 1, pp. 209-214, 1966.
[600] D. J. KLEITMAN and J. H. SPENCER: Families of k-independent sets, Discrete Mathematics, vol. 6, pp. 255-262, 1973.
[601] T. KLØVE: On Robinson's coding problem, IEEE Trans. Inform. Th., vol. 29, pp. 450-454, 1983.
[602] T. KLØVE: Relations between the covering and Newton radii of binary codes, Discrete Mathematics, vol. 238, pp. 81-88, 2001.
[603] T. KLØVE and M. SCHWARTZ: Linear covering codes and error-correcting codes for limitedmagnitude errors, Designs, Codes and Cryptography, vol. 73, pp. 329-354, 2014, and vol. 73, p. 1029, 2014.
[604] D. E. KNUTH: Efficient balanced codes, IEEE Trans. Inform. Th., vol. 32, pp. 51-53, 1986.
[605] E. KOLEV: Lower bounds for mixed covering codes of length 5, Comptes-Rendus de l'Académie Bulgare des Sciences, vol. 46, pp. 9-11, 1993.
[606] E. KOLEV: Codes over $G F(3)$ of length 5, 27 codewords and covering radius 1, J. Combinatorial Designs, vol. 1, pp. 265-275, 1993.
[607] E. KOLEV: Mixed covering codes with two binary and four ternary coordinates, Lecture Notes in Computer Science, No. 948, pp. 312-322, Springer-Verlag, 1995.
[608] E. KOLEV: A $(9,56) 1$ binary code does not exist, Comptes-Rendus de l'Académie Bulgare des Sciences, vol. 51, pp. 25-28, 1998.
[609] E. KOLEV: Mixed binary/ternary covering codes, Bulletin of the Hellenic Mathematical Society, vol. 59, pp. 83-90, 2016.
[610] E. KOLEV and T. BAICHEVA: Minimal coverings of $\{0,1,2\}^{n}$ with spheres of radius n, Utilitas Mathematica, vol. 103, pp. 209-216, 2017.
[611] E. KOLEV and R. HILL: An improved lower bound on the covering number $K_{2}(9,1)$, Discrete Mathematics, vol. 197/198, pp. 483-489, 1999.
[612] E. KOLEV and I. LANDGEV: On some mixed covering codes of small length, Lecture Notes in Computer Science, No. 781, pp. 38-50, Springer-Verlag, 1994.
[613] K. U. KOSCHNICK: A new upper bound for the football pool problem for nine matches, J. Combinatorial Th., Ser. A, vol. 62, pp. 162-167, 1993.
[614] I. KRASIKOV and S. LITSYN: On spectra of BCH codes, IEEE Trans. Inform. Th., vol. 41, pp. 786-788, 1995.
[615] I. KRASIKOV and S. LITSYN: On integral zeros of Krawtchouk polynomials, J. Combinatorial Th., Ser. A, vol. 74, pp. 71-99, 1996.
[616] J. KRATOCHVÍL: 1-perfect codes over self-complementary graphs, Commentationes Mathematicae Universitatis Carolinae, No. 26, pp. 589-595, 1985.
[617] J. KRATOCHVÍL: Perfect codes over graphs, J. Combinatorial Th., Ser. B, vol. 40, pp. 224-228, 1986.
[618] J. KRATOCHVÍL: Perfect codes in general graphs, Colloquia Mathematica Societatis Jànos Bolyai, vol. 52, pp. 357-364, 1988.
[619] J. KRATOCHVÍL: Perfect Codes in General Graphs, Prague: Academia, 1991.
[620] J. KRATOCHVÍL: Regular codes in regular graphs are difficult, Discrete Mathematics, vol. 133, pp. 191-205, 1994.
[621] M. KRIVELEVICH, B. SUDAKOV and V. H. VU: Covering codes with improved density, IEEE Trans. Inform. Th., vol. 49, pp. 1812-1815, 2003.
[622] P. V. KUMAR and R. A. SCHOLTZ: Bounds on the linear span of bent sequences, IEEE Trans. Inform. Th., vol. 29, pp. 854-862, 1983.
[623] K. KUROSAWA, T. IWATA and T. YOSHIWARA: New covering radius of Reed-Muller codes for t-resilient functions, IEEE Trans. Inform. Th., vol. 50, pp. 468-475, 2004.
[624] R. P. KURSHAN and N. J. A. SLOANE: Coset analysis of Reed-Muller codes via translates of finite vector spaces, Information and Control, vol. 20, pp. 410-414, 1972.
[625] N. N. KUZJURIN: On the difference between asymptotically good packings and coverings, European J. Combinatorics, vol. 16, pp. 35-40, 1995.
[626] A. V. KUZNETSOV: Coding in a channel with generalized defects and random errors, Problemy Peredachi Informatsii, vol. 21, No. 1, pp. 28-34, 1985. Translated in: Problems of Inform. Transm., vol. 21, No. 1, pp. 20-25.
[627] A. V. KUZNETSOV and B. S. TSYBAKOV: Coding in memories with defective cells, Problemy Peredachi Informatsii, vol. 10, No. 2, pp. 52-60, 1974. Translated in: Problems of Inform. Transm., vol. 10, No. 2, pp. 132-138.
[628] A. V. KUZNETSOV and A. J. H. VINCK: On the general defective channel with informed encoder and capacities of some constrained memories, IEEE Trans. Inform. Th., vol. 40, pp. 1866-1871, 1994.
[629] H. LAAKSO: Nonexistence of nontrivial perfect codes in the case $q=p_{1}^{a} p_{2}^{b} p_{3}^{c}, e \geq 3$, Ann. Univ. Turku, Ser. A I, No. 177, pp. 1-43, 1979.
[630] P. J. M. van LAARHOVEN and E. H. L. AARTS: Simulated Annealing: Theory and Applications, Dordrecht: Reidel, 1987.
[631] P. J. M. van LAARHOVEN, E. H. L. AARTS, J. H. van LINT and L. T. WILLE: New upper bounds for the football pool problem for 6,7 and 8 matches, J. Combinatorial Th., Ser. A, vol. 52, pp. 304-312, 1989.
[632] J. M. LABORDE: Une nouvelle famille de codes binaires, parfaits, non linéaires, Comptes-Rendus de l’Académie des Sciences, Ser. I, vol. 297, pp. 67-70, 1983.
[633] J. M. LABORDE: Sur le nombre domatique du n-cube et une conjecture de Zelinka, European J. Combinatorics, vol. 8, pp. 175-177, 1987.
[634] G. LACHAUD and J. WOLFMANN: The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inform. Th., vol. 36, pp. 686-692, 1990.
[635] J. LAHTONEN: An optimal polynomial for a covering radius problem, Discrete Mathematics, vol. 105, pp. 313-317, 1992.
[636] T. LAIHONEN: Estimates on the covering radius when the dual distance is known, Ph. D. Thesis, University of Turku, Finland, 89 pp., 1998.
[637] T. LAIHONEN: On the covering radius of a binary code, Proc. Seventh Nordic Combinatorial Conf., pp. 57-63, Turku, 1999.
[638] T. LAIHONEN: On an algebraic method for bounding the covering radius, Proc. DIMACS Workshop on Codes and Association Schemes, vol. 56, pp. 213-221, 2001.
[639] T. LAIHONEN: On optimal edge-robust and vertex-robust $(1, \leq \ell)$-identifying codes, SIAM Journal on Discrete Mathematics, vol. 18, pp. 825-834, 2005.
[640] T. LAIHONEN and S. LITSYN: On upper bounds for minimum distance and covering radius of nonbinary codes, Designs, Codes and Cryptography, vol. 14, pp. 71-80, 1998.
[641] T. LAIHONEN and S. LITSYN: New bounds on covering radius as a function of dual distance, SIAM J. Discrete Mathematics, vol. 12, pp. 243-251, 1999.
[642] C. W. H. LAM, G. BUTLER, K. L. MA and K. LOESCHNER: Constructing covering codes via automorphisms, Bayreuther Mathematische Schriften, vol. 74, pp. 221-232, 2005.
[643] M. LAMBERGER, F. MENDEL, V. RIJMEN and K. SIMOENS: Memoryless near-collisions via coding theory, Designs, Codes and Cryptography, vol. 62, pp. 1-18, 2012.
[644] M. LAMBERGER and V. RIJMEN: Optimal covering codes for finding near-collisions, Lecture Notes in Computer Science, No. 6544, pp. 187-197, Springer-Verlag, 2011.
[645] E. R. LAMKEN, W. H. MILLS, R. C. MULLIN and S. A. VANSTONE: Coverings of pairs by quintuples, J. Combinatorial Th., Ser. A, vol. 44, pp. 49-68, 1987.
[646] I. LANDJEV and L. STORME: Galois geometry and coding theory, in: Current Research Topics in Galois Geometry, De Beule and Storme, Eds., Chapter 8, NOVA Academic Publisher, 2012.
[647] S. LANG and A. WEIL: Number of points of varieties in finite fields, American J. Math., vol. 76, pp. 819-827, 1954.
[648] W. LANG, J. QUISTORFF and E. SCHNEIDER: New results on integer programming for codes, Congressus Numerantium, vol. 188, pp. 97-107, 2007.
[649] W. LANG, J. QUISTORFF and E. SCHNEIDER: Integer programming for covering codes, J. Combin. Math. and Combin. Comput., vol. 66, pp. 279-288, 2008.
[650] P. LANGEVIN: The covering radius of $R M(1,9)$ into $R M(3,9)$, Lecture Notes in Computer Science, No. 514, pp. 51-59, Springer-Verlag, 1991.
[651] P. LANGEVIN: On the orphans and covering radius of the Reed-Muller codes, Lecture Notes in Computer Science, No. 539, pp. 234-240, Springer-Verlag, 1991.
[652] P. LANGEVIN: On generalized bent functions, CISM Courses and Lectures, No. 339, pp. 147-157, Springer-Verlag, 1993.
[653] E. LEDUCQ: On the covering radius of first-order generalized Reed-Muller codes, IEEE Trans. Inform. Th., vol. 59, pp. 1590-1596, 2013.
[654] A. LEMPEL: Matrix factorization over $G F(2)$ and trace orthogonal bases of $G F\left(2^{n}\right)$, SIAM J. Comput., vol. 4, pp. 175-186, 1975.
[655] H. W. LENSTRA, Jr.: Two theorems on perfect codes, Discrete Mathematics, vol. 3, pp. 125-132, 1972.
[656] H. W. LENSTRA, Jr. and G. SEROUSSI: On hats and other covers, Proc. IEEE Symp. on Information Theory, p. 342, Lausanne, 2002.
[657] A. LENZ, C. RASHTCHIAN, P. H. SIEGEL and E. YAAKOBI: Covering codes using insertions or deletions, IEEE Trans. Inform. Th., vol. 67, pp. 3376-3388, 2021.
[658] V. F. LEV: Generating binary spaces, J. Combinatorial Th., Ser. A, vol. 102, pp. 94-109, 2003.
[659] M. LEVAN and K. T. PHELPS: Personal communication, 1996.
[660] V. I. LEVENSHTEIN: Bounds on the maximal cardinality of a code with bounded modulus of the inner product, Soviet Math. - Dokl., vol. 25, No. 2, pp. 526-531, 1982.
[661] V. I. LEVENSHTEIN: Bounds for packings of metric spaces and some of their applications, Problemy Kibernetiki, vol. 40, pp. 43-110, 1983 (in Russian).
[662] V. I. LEVENSHTEIN: A simple proof of the main inequalities for fundamental parameters of codes in polynomial association schemes, Proc. 4th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 143-146, Novgorod, 1994.
[663] V. I. LEVENSHTEIN: Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces, IEEE Trans. Inform. Th., vol. 41, pp. 1303-1321, 1995.
[664] F. LEVY-DIT-VEHEL and S. LITSYN: On the covering radius of long Goppa codes, Lecture Notes in Computer Science, No. 948, pp. 341-346, Springer-Verlag, 1995.
[665] F. LEVY-DIT-VEHEL and S. LITSYN: More on the covering radius of BCH codes, IEEE Trans. Inform. Th., vol. 42, pp. 1023-1028, 1996.
[666] F. LEVY-DIT-VEHEL and S. LITSYN: Parameters of Goppa codes revisited, IEEE Trans. Inform. Th., vol. 43, pp. 1811-1819, 1997.
[667] D. LI and W. CHEN: New lower bounds for binary covering codes, IEEE Trans. Inform. Th., vol. 40, pp. 1122-1129, 1994.
[668] P. LI, S. X. ZHU and H. F. YU: Covering radius of codes over the ring $F_{2}+u F_{2}$, Journal of University of Science and Technology of China, vol. 38, pp. 145-148, 2008 (in Chinese, English summary).
[669] X. LI, Y. HU and J. GAO: The lower bounds on the second order nonlinearity of cubic boolean functions, to appear.
[670] R. LIDL and H. NIEDERREITER: Finite Fields, Reading, MA: Addison Wesley, 1983.
[671] J. LINDEROTH, F. MARGOT and G. THAIN: Improving bounds on the football pool problem by integer programming and high-throughput computing, INFORMS Journal on Computing, vol. 21, pp. 445-457, 2009.
[672] B. LINDSTRÖM: On group and nongroup perfect codes in q symbols, Math. Scand., vol. 25, pp. 149-158, 1969.
[673] B. LINDSTRÖM: Group partitions and mixed perfect codes, Canad. Math. Bull., vol. 18, pp. 57-60, 1975.
[674] K. LINDSTRÖM: The nonexistence of unknown nearly perfect binary codes, Ann. Univ. Turku, Ser. A I, No. 169, pp. 7-28, 1975.
[675] K. LINDSTRÖM: All nearly perfect codes are known, Information and Control, vol. 35, pp. 40-47, 1977.
[676] K. LINDSTRÖM and M. J. AALTONEN: The nonexistence of nearly perfect nonbinary codes for $1 \leq e \leq 10$, Ann. Univ. Turku, Ser. A I, No. 172, 1976.
[677] J. H. van LINT: 1967-1969 Report of the Discrete Mathematics Group, Report 69-WSK-04, Eindhoven University of Technology, the Netherlands, 1969.
[678] J. H. van LINT: On the nonexistence of perfect 2- and 3-Hamming-error-correcting codes over $G F(q)$, Information and Control, vol. 16, pp. 396-401, 1970.
[679] J. H. van LINT: On the nonexistence of perfect 5-, 6-, and 7-Hamming-error-correcting codes over $G F(q)$, Report 70-WSK-06, Eindhoven University of Technology, the Netherlands, 1970.
[680] J. H. van LINT: Coding Theory, New York: Springer-Verlag, 1971.
[681] J. H. van LINT: Nonexistence theorems for perfect error-correcting codes, in: Computers in Algebra and Number Theory, vol. IV, SIAM-AMS Proceedings, 1971.
[682] J. H. van LINT: On the nonexistence of certain perfect codes, in: Computers in Number Theory, Atkin and Birch, Eds., pp. 227-282, New York: Academic Press, 1971.
[683] J. H. van LINT: Recent results on perfect codes and related topics, in: Combinatorics, Hall and van Lint, Eds., vol. 1, pp. 158-178, Mathematical Centre, Amsterdam, 1974.
[684] J. H. van LINT: A survey of perfect codes, Rocky Mountain J. Math., vol. 5, pp. 199-224, 1975.
[685] J. H. van LINT: Introduction to Coding Theory, New York: Springer-Verlag, 1982.
[686] J. H. van LINT: Recent results on covering problems, Lecture Notes in Computer Science, No. 357, pp. 7-21, Springer-Verlag, 1989.
[687] J. H. van LINT, Jr.: Covering radius problems, Master's Thesis, Eindhoven University of Technology, the Netherlands, 41 pp., 1988.
[688] J. H. van LINT, Jr., and G. J. M. van WEE: Generalized bounds on binary/ternary mixed packing and covering codes, J. Combinatorial Th., Ser. A, vol. 57, pp. 130-143, 1991.
[689] S. LITSYN: An updated table of best known binary codes, Preprint, 1996.
[690] S. LITSYN, C. J. MORENO and O. MORENO: Divisibility properties and new bounds for cyclic codes and exponential sums in one and several variables, Applicable Algebra in Engineering, Communication and Computing, vol. 5, pp. 105-116, 1994.
[691] S. LITSYN, P. SOLÉ and R. STRUIK: On the covering radius of an unrestricted code as a function of the rate and dual distance, Discrete Applied Mathematics, vol. 82, pp. 177-192, 1998.
[692] S. LITSYN and A. TIETÄVÄINEN: Upper bounds on the covering radius of a code with a given dual distance, European J. Combinatorics, vol. 17, pp. 265-270, 1996.
[693] S. LITSYN and A. VARDY: The uniqueness of the Best code, IEEE Trans. Inform. Th., vol. 40, pp. 1693-1698, 1994.
[694] S. P. LLOYD: Binary block coding, Bell Syst. Tech. J., vol. 36, pp. 517-535, 1957. Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., pp. 246-251, IEEE Press, 1974.
[695] A. C. LOBSTEIN: Rayon de recouvrement de codes binaires non-linéaires, Traitement du Signal, vol. 1, No. 2-1, pp. 105-114, 1984.
[696] A. C. LOBSTEIN: Contributions au codage combinatoire: ordres additifs, rayon de recouvrement, Thèse, Télécom Paris, France, 163 pp., 1985.
[697] A. C. LOBSTEIN: The hardness of solving Subset Sum with preprocessing, IEEE Trans. Inform. Th., vol. 36, pp. 943-946, 1990.
[698] A. C. LOBSTEIN and G. D. COHEN: Sur la complexité d'un problème de codage, RAIRO Informatique Théorique et Applications, vol. 21, No. 1, pp. 25-32, 1987.
[699] A. C. LOBSTEIN, G. D. COHEN and N. J. A. SLOANE: Recouvrements d'espaces de Hamming binaires, Comptes-Rendus de l'Académie des Sciences, Ser. I, vol. 301, pp. 135-138, 1985.
[700] A. C. LOBSTEIN and V. S. PLESS: The length function: a revised table, Lecture Notes in Computer Science, No. 781, pp. 51-55, Springer-Verlag, 1994.
[701] A. C. LOBSTEIN and P. SOLÉ: Arithmetic codes - Survey, recent and new results, Lecture Notes in Computer Science, No. 539, pp. 246-258, Springer-Verlag, 1991.
[702] A. C. LOBSTEIN and G. J. M. van WEE: On normal and subnormal q-ary codes, IEEE Trans. Inform. Th., vol. 35, pp. 1291-1295, 1989, and vol. 36, p. 1498, 1990.
[703] A. C. LOBSTEIN and V. A. ZINOVIEV: On new perfect binary nonlinear codes, Applicable Algebra in Engineering, Communication and Computing, vol. 8, pp. 415-420, 1997.
[704] L. LOVÁSZ: On the ratio of optimal integral and fractional covers, Discrete Mathematics, vol. 13, pp. 383-390, 1975.
[705] L. LOVÁSZ: Covers, packings, and some heuristic algorithms, Proc. 5th British Combinatorial Conf., pp. 417-429, 1975.
[706] L. LOVÁSZ: Kneser's conjecture, chromatic number and homotopy, J. Combinatorial Th., Ser. A, vol. 25, pp. 319-324, 1978.
[707] L. LOVÁSZ, J. H. SPENCER and K. VESZTERGOMBI: Discrepancy of set-systems and matrices, European J. Combinatorics, vol. 7, pp. 151-160, 1986.
[708] J. E. MACDONALD: Design methods for maximum minimum-distance error-correcting codes, IBM J. Res. Develop., vol. 4, pp. 43-57, 1960.
[709] R. A. MACHADO, J. A. PINHEIRO and M. FIRER: Characterization of metrics induced by hierarchical posets, IEEE Trans. Inform. Th., vol. 63, pp. 3630-3640, 2017.
[710] F. J. MACWILLIAMS: Combinatorial problems of elementary group theory, Ph. D. Thesis, Harvard University, United States, 1962.
[711] F. J. MACWILLIAMS: Orthogonal matrices over finite fields, American Mathematical Monthly, vol. 76, pp. 152-164, 1969.
[712] F. J. MACWILLIAMS and N. J. A. SLOANE: The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977.
[713] J. A. MAIORANA: A classification of the cosets of the Reed-Muller code $R(1,6)$, Mathematics of Computation, vol. 57, pp. 403-414, 1991.
[714] S. A. MALYUGIN: On a lower bound on the number of perfect binary codes, Diskr. Analys i Issledovanie Operatsii, vol. 6, No. 4, pp. 44-48, 1999. Translated in: Discrete Applied Mathematics, vol. 135, pp. 157-160, 2004.
[715] S. A. MANE and B. N. WAPHARE: On independent and (d, n)-domination numbers of hypercubes, AKCE Internat. J. Graphs and Combinatorics, vol. 9, pp. 161-168, 2012.
[716] K. N. MANEV and E. D. VELIKOVA: The covering radius and weight distribution of cyclic codes over $G F(4)$ of lengths up to 13, Proc. 2nd Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 150-153, Leningrad, 1990.
[717] H. B. MANN: Addition Theorems, New York: Wiley, 1965.
[718] W. MANTEL: Problem 28 (solution by H. Gouwentak, W. Mantel, J. Texeira de Mattes, F. Schuh and W. A. Wythoff), Wiskundige Opgaven, vol. 10, pp. 60-61, 1907.
[719] J. L. MARENCO and P. A. REY: The football pool polytope, Electronic Notes in Discrete Mathematics, vol. 30, pp. 75-80, 2008.
[720] A. N. MARTINHÃO and E. L. MONTE CARMELO: Short covering codes arising from matchings in weighted graphs, Mathematics of Computation, vol. 82, pp. 605-616, 2013.
[721] H. MARTINI and W. WENZEL: Covering and packing problems in lattices associated with the n-cube, European J. Combinatorics, vol. 23, pp. 63-75, 2002.
[722] H. F. MATTSON, Jr.: An upper bound on covering radius, Annals of Discrete Mathematics, vol. 17, pp. 453-458, 1983.
[723] H. F. MATTSON, Jr.: Another upper bound on covering radius, IEEE Trans. Inform. Th., vol. 29, pp. 356-359, 1983.
[724] H. F. MATTSON, Jr.: An improved upper bound on covering radius, Lecture Notes in Computer Science, No. 228, pp. 90-106, Springer-Verlag, 1986.
[725] H. F. MATTSON, Jr.: Simplifications to "A new approach to the covering radius...", J. Combinatorial Th., Ser. A, vol. 57, pp. 311-315, 1991.
[726] H. F. MATTSON, Jr., and J. R. SCHATZ: A brief survey of covering radius, Annals of Discrete Mathematics, vol. 18, pp. 617-624, 1983.
[727] H. F. MATTSON, Jr., and G. SOLOMON: A new treatment of Bose-Chaudhuri codes, J. Soc. Indust. Appl. Math., vol. 9, pp. 654-669, 1961. Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., pp. 82-86, IEEE Press, 1974.
[728] J. G. MAULDON: Covering theorems for groups, Quart. J. Math. Oxford, vol. 1, pp. 284-287, 1950.
[729] R. J. MCELIECE: Weight congruences for p-ary cyclic codes, Discrete Mathematics, vol. 3, pp. 172192, 1972.
[730] R. J. MCELIECE: The Theory of Information and Coding, Encyclopedia of Mathematics and its Applications, vol. 3, Reading, MA: Addison Wesley, 1977.
[731] R. J. MCELIECE: Finite Fields for Computer Scientists and Engineers, Kluwer, 1987.
[732] R. J. MCELIECE, E. R. RODEMICH, H. C. RUMSEY and L. R. WELCH: New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities, IEEE Trans. Inform. Th., vol. 23, pp. 157-166, 1977.
[733] A. MCLOUGHLIN: The covering radius of the $(m-3)$ rd order Reed-Muller codes and a lower bound on the covering radius of the $(m-4)$ th order Reed-Muller codes, SIAM J. Applied Mathematics, vol. 37, pp. 419-422, 1979.
[734] A. MCLOUGHLIN: The complexity of computing the covering radius of a code, IEEE Trans. Inform. Th., vol. 30, pp. 800-804, 1984.
[735] C. MENDES, E. L. MONTE CARMELO and M. POGGI: Bounds for short covering codes and reactive tabu search, Discrete Applied Mathematics, vol. 158, pp. 522-533, 2010.
[736] A. MENEZES, I. F. BLAKE, X. GAO, R. C. MULLIN, S. A. VANSTONE and T. YAGHOOBIAN: Applications of Finite Fields, Kluwer, 1993.
[737] F. MERKX: Wom-codes constructed with projective geometries, Traitement du Signal, vol. 1, No. 2-2, pp. 227-231, 1984.
[738] A. MERTZ: The multicovering radii of the even weight codes, Proc. IEEE Symp. on Information Theory, p. 14, Washington, 2001.
[739] A. MERTZ: On the complexity of multicovering radii, IEEE Trans. Inform. Th., vol. 50, pp. 18041808, 2004.
[740] S. MESNAGER and A. OBLAUKHOV: Classification of the codewords of weights 16 and 18 of the Reed-Muller code $\mathrm{RM}(n-3, n)$, IEEE Trans. Inform. Th., vol. 68, pp. 940-952, 2022.
[741] A. R. MEYER and L. J. STOCKMEYER: The equivalence problem for regular expressions with squaring requires exponential time, Proc. 13th Ann. IEEE Symp. on Switching and Automata Theory, pp. 125-129, 1972.
[742] M. MIGNOTTE and A. PETHÖ: On the system of diophantine equations $x^{2}-6 y^{2}=-5$ and $x=2 z^{2}-1$, Math. Scand., vol. 76, pp. 50-60, 1995.
[743] W. H. MILLS: On the covering of pairs by quadruples I, J. Combinatorial Th., Ser. A, vol. 13, pp. 55-78, 1972.
[744] W. H. MILLS: On the covering of pairs by quadruples II, J. Combinatorial Th., Ser. A, vol. 15, pp. 138-166, 1973.
[745] W. H. MILLS: Covering designs I: Coverings by a small number of subsets, Ars Combinatoria, vol. 8, pp. 199-315, 1979.
[746] W. H. MILLS: A covering of pairs by quintuples, Ars Combinatoria, vol. 18, pp. 21-31, 1983.
[747] W. H. MILLS and R. C. MULLIN: Coverings and packings, in: Contemporary Design Theory: A Collection of Surveys, Dinitz and Stinson, Eds., pp. 371-399, Wiley, 1992.
[748] E. MINKES: A non-deterministic algorithm for the covering radius, covering radius bounds and code constructions, Master's Thesis, Delft University of Technology, the Netherlands, 21 pp., 1996.
[749] M. MITTON: Theoretical upper bounds on the covering radii of Boolean functions, J. Discrete Mathematical Sciences \& Cryptography, vol. 7, pp. 237-248, 2004.
[750] M. MOLLARD: Les invariants du n-cube, Thèse de 3ème cycle, Université de Grenoble, France, 113 pp., 1981.
[751] M. MOLLARD: Une généralisation de la fonction parité, application à la construction de codes parfaits, Rapport de Recherche No. 395, Laboratoire de Mathématiques Appliquées, Grenoble, France, 1983.
[752] M. MOLLARD: Une nouvelle famille de 3-codes parfaits sur $G F(q)$, Discrete Mathematics, vol. 49, pp. 209-212, 1984.
[753] M. MOLLARD: A generalized parity function and its use in the construction of perfect codes, SIAM J. Algebraic and Discrete Methods, vol. 7, pp. 113-115, 1986.
[754] B. MONTARON and G. D. COHEN: Codes parfaits binaires à plusieurs rayons, Revue CETHEDEC, vol. 2, pp. 35-58, 1979.
[755] E. L. MONTE CARMELO: Invariant sets under permutation, extremal graphs, and covering codes, Vth Latin-American Algorithms, Graphs and Optimization Symp., Gramado, 2009.
[756] E. L. MONTE CARMELO: Covering codes and extremal problems from invariant sets under permutations, Discrete Mathematics, vol. 313, pp. 249-257, 2013.
[757] E. L. MONTE CARMELO and C. F. X. DE MENDONÇA NETO: Extremal problems on sum-free sets and coverings in tridimensional spaces, Aequationes Mathematicae, vol. 78, pp. 101-112, 2009.
[758] E. L. MONTE CARMELO and I. N. NAKAOKA: Short coverings in tridimensional spaces arising from sum-free sets, European J. Combinatorics, vol. 29, pp. 227-233, 2008.
[759] E. L. MONTE CARMELO, I. N. NAKAOKA and J. R. GERÔNIMO: A covering problem on finite spaces and rook domains, Internat. J. Applied Mathematics, vol. 20, pp. 875-886, 2007.
[760] C. G. T. de A. MOREIRA and Y. KOHAYAKAWA: Bounds for optimal coverings, Discrete Applied Mathematics, vol.141, pp. 263-276, 2004.
[761] C. J. MORENO and O. MORENO: Exponential sums and Goppa codes I, Proc. American Math. Soc., vol. 111, pp. 523-531, 1991.
[762] C. J. MORENO and O. MORENO: Exponential sums and Goppa codes II, IEEE Trans. Inform. Th., vol. 38, pp. 1222-1229, 1992.
[763] O. MORENO: Further results on quasiperfect codes related to the Goppa codes, Congressus Numerantium, vol. 40, pp. 249-256, 1983.
[764] O. MORENO and F. N. CASTRO: On the covering radius of certain cyclic codes, Lecture Notes in Computer Science, No. 2643, pp. 129-138, Springer-Verlag, 2003.
[765] O. MORENO and F. N. CASTRO: Divisibility properties for covering radius of certain cyclic codes, IEEE Trans. Inform. Th., vol. 49, pp. 3299-3303, 2003.
[766] O. MORENO, F. N. CASTRO and H. F. MATTSON, Jr.: Correction to "Divisibility properties for covering radius of certain cyclic codes", IEEE Trans. Inform. Th., vol. 52, pp. 1798-1799, 2006.
[767] O. MORENO and C. J. MORENO: Constructive elementary approach to the covering radius of long BCH codes, Proc. 2nd Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 162-165, Leningrad, 1990.
[768] O. MORENO and C. J. MORENO: The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes, IEEE Trans. Inform. Th., vol. 40, pp. 1894-1907, 1994.
[769] J. MYKKELTVEIT: The covering radius of the $(128,8)$ Reed-Muller code is 56 , IEEE Trans. Inform. Th., vol. 26, pp. 359-362, 1980.
[770] Z. L. NAGY and L. SZEMERÉDI: Steiner triple systems and spreading sets in projective spaces, J. Combinatorial Designs, vol. 30, pp. 549-560, 2022.
[771] I. N. NAKAOKA and O. J. N. T. N. DOS SANTOS: A covering problem over finite rings, Applied Mathematics Letters, vol. 23, pp. 322-326, 2010.
[772] J. NAOR and M. NAOR: Small bias probability spaces: efficient constructions and applications, Proc. 22nd STOC, pp. 213-223, 1990.
[773] M. NAVON and A. SAMORODNITSKY: Linear programming bounds for codes via a covering argument, Discrete and Computational Geometry, vol. 41, pp. 199-207, 2009.
[774] A. F. NIKIFOROV, S. K. SUSLOV and V. B. UVAROV: Classical Orthogonal Polynomials of Discrete Variable, Moscow: Nauka, 1985 (in Russian).
[775] S. C. NTAFOS and S. L. HAKIMI: On the complexity of some coding problems, IEEE Trans. Inform. Th., vol. 27, pp. 794-796, 1981.
[776] M. NUMATA: On the minimal covering of 3-dimensional Hamming scheme, Ann. Rep. Fac. Educ. Iwate University, vol. 52, No. 1, pp. 73-84, 1992.
[777] K. J. NURMELA: Constructing combinatorial designs by local search, J. Sc. Thesis, Research Report, Ser. A, No. 27, Helsinki University of Technology, Finland, 76 pp., 1993.
[778] K. J. NURMELA and P. R. J. ÖSTERGÅRD: Constructing covering designs by simulated annealing, Technical Report, Ser. B, No. 10, Helsinki University of Technology, Finland, 25 pp., 1993.
[779] K. J. NURMELA and P. R. J. ÖSTERGÅRD: Upper bounds for covering designs by simulated annealing, Congressus Numerantium, vol. 96, pp. 93-111, 1993.
[780] K. NYBERG: Constructions of bent functions and difference sets, Lecture Notes in Computer Science, No. 473, pp. 151-160, Springer-Verlag, 1991.
[781] A. OBLAUKHOV: On metric regularity of Reed-Muller codes, Designs Codes and Cryptography, vol. 89, pp. 167-197, 2021.
[782] J. E. OLSON and J. H. SPENCER: Balancing families of sets, J. Combinatorial Th., Ser. A, vol. 25, pp. 29-37, 1978.
[783] E. van OS: Packing density of codes, Ph. D. Thesis, Delft University of Technology, the Netherlands, 1993.
[784] P. R. J. ÖSTERGÅRD: A new binary code of length 10 and covering radius 1, IEEE Trans. Inform. Th., vol. 37, pp. 179-180, 1991.
[785] P. R. J. ÖSTERGÅRD: Upper bounds for q-ary covering codes, IEEE Trans. Inform. Th., vol. 37, pp. 660-664, 1991, and vol. 37, p. 1738, 1991.
[786] P. R. J. ÖSTERGÅRD: Constructions of mixed covering codes, Research Report, Ser. A, No. 18, Helsinki University of Technology, Finland, 44 pp., 1991.
[787] P. R. J. ÖSTERGÅRD: Further results on (k, t)-subnormal covering codes, IEEE Trans. Inform. Th., vol. 38, pp. 206-210, 1992.
[788] P. R. J. ÖSTERGÅRD: Construction methods for covering codes, Ph. D. Thesis, Research Report, Ser. A, No. 25, Helsinki University of Technology, Finland, 107 pp., 1993.
[789] P. R. J. ÖSTERGÅRD: Construction methods for mixed covering codes, in: Analysis, Algebra, and Computers in Mathematical Research, Gyllenberg and Persson, Eds., pp. 387-408, New York: Dekker, 1994.
[790] P. R. J. ÖSTERGÅRD: New upper bounds for the football pool problem for 11 and 12 matches, J. Combinatorial Th., Ser. A, vol. 67, pp. 161-168, 1994.
[791] P. R. J. ÖSTERGÅRD: New multiple covering codes by tabu search, Australasian Journal of Combinatorics, vol. 12, pp. 145-155, 1995.
[792] P. R. J. ÖSTERGÅRD: A combinatorial proof for the football pool problem for six matches, J. Combinatorial Th., Ser. A, vol. 76, pp. 160-163, 1996.
[793] P. R. J. ÖSTERGÅRD: The football pool problem, Congressus Numerantium, vol. 114, pp. 33-43, 1996.
[794] P. R. J. ÖSTERGÅRD: A coloring problem in Hamming spaces, European J. Combinatorics, vol. 18, pp. 303-309, 1997.
[795] P. R. J. ÖSTERGÅRD: Constructing covering codes by tabu search, J. Combinatorial Designs, vol. 5, pp. 71-80, 1997.
[796] P. R. J. ÖSTERGÅRD: On the 2-domatic number of binary Hamming spaces, Preprint, 1998.
[797] P. R. J. ÖSTERGÅRD: New constructions for q-ary covering codes, Ars Combinatoria, vol. 52, pp. 51-63, 1999.
[798] P. R. J. ÖSTERGÅRD: Disproof of a conjecture on the existence of balanced optimal covering codes, IEEE Trans. Inform. Th., vol. 49, pp. 487-488, 2003.
[799] P. R. J. ÖSTERGÅRD: Binary two-error-correcting codes are better than quaternary, Applicable Algebra in Engineering, Communication and Computing, vol. 14, pp. 89-96, 2003.
[800] P. R. J. ÖSTERGÅRD and U. BLASS: On the size of optimal binary codes of length 9 and covering radius 1, IEEE Trans. Inform. Th., vol. 47, pp. 2556-2557, 2001.
[801] P. R. J. ÖSTERGÅRD and H. O. HÄMÄLÄINEN: New upper bounds for binary-ternary mixed covering codes, Research Report, Ser. A, No. 22, Helsinki University of Technology, Finland, 33 pp., 1993.
[802] P. R. J. ÖSTERGÅRD and H. O. HÄMÄLÄINEN: A new table of binary/ternary mixed covering codes, Designs, Codes and Cryptography, vol. 11, pp. 151-178, 1997.
[803] P. R. J. ÖSTERGÅRD and M. K. KAIKKONEN: New upper bounds for binary covering codes, Discrete Mathematics, vol. 178, pp. 165-179, 1998.
[804] P. R. J. ÖSTERGÅR and O. POTTONEN: The perfect binary one-error-correcting codes of length 15: Part I. Classification, IEEE Trans. Inform. Th., vol. 55, pp. 4657-4660, 2009.
[805] P. R. J. ÖSTERGÅRD, J. QUISTORFF and A. WASSERMANN: New results on codes with covering radius 1 and minimum distance 2, Designs, Codes and Cryptography, vol. 35, pp. 241-250, 2005.
[806] P. R. J. ÖSTERGÅRD and E. A. SEURANEN: Constructing asymmetric covering codes by tabu search, J. Combin. Math. and Combin. Comput., vol. 51, pp. 165-173, 2004.
[807] P. R. J. ÖSTERGÅRD and E. A. SEURANEN: Unidirectional covering codes, IEEE Trans. Inform. Th., vol. 52, pp. 336-340, 2006.
[808] P. R. J. ÖSTERGÅRD and A. WASSERMANN: A new lower bound for the football pool problem for 6 matches, J. Combinatorial Th., Ser. A, vol. 99, pp. 175-179, 2002.
[809] P. R. J. ÖSTERGÅRD and W. D. WEAKLEY: Constructing covering codes with given automorphisms, Designs, Codes and Cryptography, vol. 16, pp. 65-73, 1999.
[810] P. R. J. ÖSTERGÅRD and W. D. WEAKLEY: Classification of binary covering codes, J. Combinatorial Designs, vol. 8, pp. 391-401, 2000.
[811] P. R. J. ÖSTERGÅRD and W. D. WEAKLEY: Classifying optimal ternary codes of length 5 and covering radius 1, Contributions to Algebra and Geometry, vol. 43, pp. 445-449, 2002.
[812] P. R. J. ÖSTERGÅRD and W. D. WEAKLEY: Switching of covering codes, Discrete Mathematics, vol. 341, pp. 1778-1788, 2018.
[813] W. M. C. J. van OVERVELD: The four cases of write unidirectional memory codes over arbitrary alphabets, IEEE Trans. Inform. Th., vol. 37, pp. 872-878, 1991.
[814] W. M. C. J. van OVERVELD: On the capacity region for deterministic two-way channels and write unidirectional memories, Ph. D. Thesis, Eindhoven University of Technology, the Netherlands, 210 pp., 1991.
[815] M. OZEKI: On covering radii and coset weight distributions of extremal binary self-dual codes of length 40, Theoretical Computer Science, vol. 235, No. 2, pp. 283-308, 2000.
[816] M. OZEKI: On covering radii and coset weight distributions of extremal binary self-dual codes of length 56, IEEE Trans. Inform. Th., vol. 46, pp. 2359-2372, 2000.
[817] M. OZEKI: On the covering radius problem for ternary self-dual codes, Theoretical Computer Science, vol. 263, No. 1-2, pp. 311-332, 2001.
[818] M. OZEKI: Jacobi polynomials for singly even self-dual codes and the covering radius problems, IEEE Trans. Inform. Th., vol. 48, pp. 547-557, 2002.
[819] J. PACH and J. H. SPENCER: Explicit codes with low covering radius, IEEE Trans. Inform. Th., vol. 34, pp. 1281-1285, 1988.
[820] V. I. PANCHENKO: Packings and coverings over an arbitrary alphabet, Problemy Peredachi Informatsii, vol. 24, No. 4, pp. 93-96, 1988. Translated in: Problems of Inform. Transm., vol. 24, No. 4, pp. 331-333.
[821] M. B. PATERSON and D. R. STINSON: Yet another hat game, Electronic J. Combinatorics, http:// www.combinatorics.org/Volume_17/v17i1toc.html, R86, 2010.
[822] N. J. PATTERSON and D. H. WIEDEMANN: The covering radius of the $\left(2^{15}, 16\right)$ Reed-Muller code is at least 16276, IEEE Trans. Inform. Th., vol. 29, pp. 354-356, 1983.
[823] N. J. PATTERSON and D. H. WIEDEMANN: Correction to "The covering radius of the $\left(2^{15}, 16\right)$ Reed-Muller code is at least 16276", IEEE Trans. Inform. Th., vol. 36, p. 443, 1990.
[824] R. PENROSE: Pentaplexity: a class of nonperiodic tilings of the plane, Mathematical Intelligencer, vol. 2, pp. 32-37, 1979.
[825] W. W. PETERSON and E. J. WELDON, Jr.: Error-Correcting Codes, 2nd ed., Cambridge, MA: MIT Press, 1972.
[826] K. T. PHELPS: A combinatorial construction of perfect codes, SIAM J. Algebraic and Discrete Methods, vol. 4, pp. 398-403, 1983.
[827] K. T. PHELPS: A general product construction for error correcting codes, SIAM J. Algebraic and Discrete Methods, vol. 5, pp. 224-228, 1984.
[828] K. T. PHELPS: A product construction for perfect codes over arbitrary alphabets, IEEE Trans. Inform. Th., vol. 30, pp. 769-771, 1984.
[829] K. T. PHELPS: Dual product constructions of Reed-Muller type codes, IEEE Trans. Inform. Th., vol. 32, pp. 103-106, 1986.
[830] K. T. PHELPS and M. LEVAN: Kernels of nonlinear Hamming codes, Designs, Codes and Cryptography, vol. 6, pp. 247-257, 1995.
[831] K. T. PHELPS and M. LEVAN: Nonsystematic perfect codes, SIAM J. Discrete Mathematics, vol. 12, pp. 27-34, 1999.
[832] A. PLAGNE: Points entiers sur les courbes strictement convexes, sommes de sous-ensembles et codes de recouvrement, Thèse, Université Bordeaux 1, France, 1998.
[833] A. PLAGNE: A remark on Haas' method, Discrete Mathematics, vol. 309, pp. 3318-3322, 2009.
[834] V. S. PLESS: On the uniqueness of the Golay codes, J. Combinatorial Th., vol. 5, pp. 215-228, 1968.
[835] V. S. PLESS: Introduction to the Theory of Error-Correcting Codes, 2nd ed., New York: Wiley, 1989.
[836] M. PLOTKIN: Binary codes with specified minimum distances, IEEE Trans. Inform. Th., vol. 6, pp. 445-450, 1960.
[837] M. POGGI DE ARAGÃO and C. C. DE SOUZA: Upper bounds for minimum covering codes via tabu search, Proc. Third Metaheuristics Internat. Conf., pp. 359-364, Angra dos Reis, 1999.
[838] K. A. POST: Nonexistence theorems on perfect Lee codes over large alphabets, Information and Control, vol. 29, pp. 369-380, 1975.
[839] C. L. M. van PUL: On bounds on codes, Master's Thesis, Eindhoven University of Technology, the Netherlands, 99 pp., 1982.
[840] C. L. M. van PUL: Some distance problems in coding theory, Ph. D. Thesis, Eindhoven University of Technology, the Netherlands, 1987.
[841] C. L. M. van PUL and T. ETZION: New lower bounds for constant weight codes, IEEE Trans. Inform. Th., vol. 35, pp. 1324-1329, 1989.
[842] J. QUISTORFF: On full partial quasigroups of finite order and local cardinal maximum codes, Contributions to Algebra and Geometry, vol. 40, pp. 495-502, 1999.
[843] J. QUISTORFF: On codes with given minimum distance and covering radius, Contributions to Algebra and Geometry, vol. 42, pp. 601-611, 2001.
[844] J. QUISTORFF: Improved sphere bounds in finite metric spaces, Bull. Inst. Combin. Appl., vol. 46, pp. 69-80, 2006.
[845] J. QUISTORFF: A survey on packing and covering problems in the Hamming permutation space, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_13/v13i1toc.html, A1, 2006.
[846] J. QUISTORFF and J. C. SCHLAGE-PUCHTA: On generalized surjective codes, Studia Scientiarum Mathematicarum Hungarica, vol. 48, pp. 75-92, 2011.
[847] A. O. H. RACSMÁNY: Perfect single-Lee-error-correcting codes, Studia Sci. Math. Hungar., vol. 9, pp. 73-75, 1974.
[848] A. O. H. RACSMÁNY: Correction to my paper: "Perfect single-Lee-error-correcting codes", Studia Sci. Math. Hungar., vol. 23, pp. 295-296, 1988.
[849] H. RADDUM: On the computation of coset leaders with high Hamming weight, Discrete Mathematics, vol. 274, pp. 213-231, 2004.
[850] M. RAMRAS: Bipartite dominating sets in hypercubes, Ars Combinatoria, vol. 77, pp. 169-180, 2005.
[851] T. R. N. RAO: Error Coding for Arithmetic Processors, New York: Academic Press, 1974.
[852] M. K. RAUT and M. K. GUPTA: On octonary codes and their covering radii, Australasian Journal of Combinatorics, vol. 63, pp. 246-261, 2015.
[853] A. RÉNYI: Foundations of Probability, New York: Wiley, 1971.
[854] H. F. H. REUVERS: Some non-existence theorems for perfect codes over arbitrary alphabets, Thesis, Eindhoven University of Technology, the Netherlands, 1977.
[855] J. RIFÁ and L. HUGUET: Characterization of completely regular graphs through P-polynomial association schemes, Lecture Notes in Computer Science, No. 307, pp. 157-167, Springer-Verlag, 1988.
[856] J. RIFÁ and J. PUJOL: Translation-invariant propelinear codes, IEEE Trans. Inform. Th., vol. 43, pp. 590-598, 1997.
[857] J. RIFÁ and V. A. ZINOVIEV: On a class of binary linear completely transitive codes with arbitrary covering radius, Discrete Mathematics, vol. 309, pp. 5011-5016, 2009.
[858] J. RIFÁ and V. A. ZINOVIEV: On a family of binary linear completely transitive codes with growing covering radius, Discrete Mathematics, vol. 318, pp. 48-52, 2014.
[859] R. L. RIVEST and A. SHAMIR: How to reuse a "write-once" memory, Information and Control, vol. 55, pp. 1-19, 1982.
[860] J. P. ROBINSON: An asymmetric error-correcting ternary code, IEEE Trans. Inform. Th., vol. 24, pp. 258-261, 1978.
[861] S. ROBINSON: Why mathematicians now care about their hat color, The New York Times, April 10, 2001.
[862] E. R. RODEMICH: Coverings by rook domains, J. Combinatorial Th., Ser. A, vol. 9, pp. 117-128, 1970.
[863] F. RODIER: On the weights of the elements of the duals of binary BCH codes, Lecture Notes in Computer Science, No. 539, pp. 384-390, Springer-Verlag, 1991.
[864] F. RODIER: On the spectra of the duals of binary BCH codes of designed distance $\delta=9$, IEEE Trans. Inform. Th., vol. 38, pp. 478-479, 1992.
[865] F. RODIER: On a conjecture of MacWilliams and Sloane, CISM Courses and Lectures, No. 339, pp. 89-95, Springer-Verlag, 1993.
[866] V. RÖDL: On a packing and covering problem, European J. Combinatorics, vol. 6, pp. 69-78, 1985.
[867] C. ROGERS: Packing and covering, New York: Cambridge University Press, 1964.
[868] A. M. ROMANOV: New binary codes with minimal distance three, Problemy Peredachi Informatsii, vol. 19, No. 3, pp. 101-102, 1983 (in Russian).
[869] A. M. ROMANOV: On the number of q-ary quasi-perfect codes with covering radius 2, Designs, Codes and Cryptography, vol. 90, pp. 1713-1719, 2022.
[870] C. ROOS: A note on the existence of perfect constant weight codes, Discrete Mathematics, vol. 47, pp. 121-123, 1983.
[871] J. E. ROOS: An algebraic study of group and nongroup error-correcting codes, Information and Control, vol. 8, pp. 195-214, 1965.
[872] O. ROTHAUS: On "bent" functions, J. Combinatorial Th., Ser. A, vol. 20, pp. 300-305, 1976.
[873] G. ROUX: k-propriétés dans des tableaux de n colonnes: cas particulier de la k-surjectivité et de la k-permutivité, Thèse, Université Paris 6, France, 133 pp., 1987.
[874] J. A. RUSH: Thin lattice coverings, J. London Math. Soc. (2), vol. 45, pp. 193-200, 1992.
[875] S. SAIDI: Codes for perfectly correcting errors of limited size, Discrete Mathematics, vol. 118, pp. 207-223, 1993.
[876] M. SÁNCHEZ-GARCÍA, M. SOBRÓN and B. VITORIANO: On the set covering polytope: Facets with coefficients in $\{0,1,2,3\}$, Annals of Operations Research, vol. 81, pp. 343-356, 1998.
[877] P. SAVICKÝ: On the bent Boolean functions that are symmetric, European J. Combinatorics, vol. 15, pp. 407-410, 1994.
[878] J. R. SCHATZ: On the coset leaders of Reed-Muller codes, Ph. D. Thesis, Syracuse University, United States, 1979.
[879] J. R. SCHATZ: The second order Reed-Muller code of length 64 has covering radius 18, IEEE Trans. Inform. Th., vol. 27, pp. 529-530, 1981.
[880] W. M. SCHMIDT: Equations Over Finite Fields: an Elementary Approach, Berlin: Springer-Verlag, 1976.
[881] J. SCHÖNHEIM: On maximal systems of k-tuples, Studia Sci. Math. Hungar., vol. 1, pp. 363-368, 1966.
[882] J. SCHÖNHEIM: On linear and nonlinear single-error-correcting q-nary perfect codes, Information and Control, vol. 12, pp. 23-26, 1968.
[883] J. SCHÖNHEIM: Semilinear codes and some combinatorial applications of them, Information and Control, vol. 15, pp. 61-66, 1969.
[884] J. SCHÖNHEIM: Mixed codes, Proc. Calgary Internat. Conf. on Combinatorial Structures and Their Applications, p. 385, New York: Gordon and Breach, 1970.
[885] N. V. SEMAKOV, V. A. ZINOVIEV and G. V. ZAITSEV: Uniformly packed codes, Problemy Peredachi Informatsii, vol. 7, No. 1, pp. 38-50, 1971. Translated in: Problems of Inform. Transm., vol. 7, No. 1, pp. 30-39.
[886] G. SEROUSSI and N. H. BSHOUTY: Vector sets for exhaustive testing of logic circuits, IEEE Trans. Inform. Th., vol. 34, pp. 513-522, 1988.
[887] G. SEROUSSI and A. LEMPEL: Maximum likelihood decoding of certain Reed-Muller codes, IEEE Trans. Inform. Th., vol. 29, pp. 448-450, 1983.
[888] E. A. SEURANEN: New lower bounds for multiple coverings, Designs, Codes and Cryptography, vol. 45, pp. 91-94, 2007.
[889] E. A. SEURANEN and P. R. J. ÖSTERGÅRD: New lower bounds for asymmetric covering codes, Congressus Numerantium, vol. 178, pp. 57-63, 2006.
[890] C. E. SHANNON: Coding theorems for a discrete source with a fidelity criterion, Institute of Radio Engineers, Internat. Convention Record, vol. 7, part 4, pp. 142-163, 1959. Also in: Key Papers in the Development of Information Theory, Slepian, Ed., pp. 245-266, IEEE Press, 1973. Also in: Collected Papers, Sloane and Wyner, Eds., pp. 325-350, IEEE Press, 1993.
[891] C. E. SHANNON: Collected Papers, Sloane and Wyner, Eds., IEEE Press, 1993.
[892] H. S. SHAPIRO and D. L. SLOTNICK: On the mathematical theory of error correcting codes, IBM J. Res. Develop., vol. 3, pp. 25-37, 1959.
[893] I. I. SHARAPUDINOV: Asymptotic properties of Krawtchouk polynomials, Math. Notes, vol. 44, pp. 855-862, 1988.
[894] M. SHI, T. HELLESETH, F. ÖZBUDAK and P. SOLÉ: Covering radius of Melas codes, IEEE Trans. Inform. Th., vol. 68, pp. 4354-4364, 2022.
[895] I. E. SHPARLINSKI: Computational and Algorithmic Problems in Finite Fields, Dordrecht: Kluwer, 1992.
[896] V. M. SIDEL'NIKOV: Weight spectrum of binary Bose-Chaudhuri-Hocquenghem codes, Problemy Peredachi Informatsii, vol. 7, No. 1, pp. 14-22, 1971. Translated in: Problems of Inform. Transm., vol. 7, No. 1.
[897] J. SIMONIS: The minimal covering radius $t[15,6]$ of a 6 -dimensional binary linear code of length 15 is equal to 4, IEEE Trans. Inform. Th., vol. 34, pp. 1344-1345, 1988.
[898] J. SIMONIS: Covering radius: improving on the sphere-covering bound, Lecture Notes in Computer Science, No. 357, pp. 377-385, Springer-Verlag, 1989.
[899] G. SIMONYI: On write-unidirectional memory codes, IEEE Trans. Inform. Th., vol. 35, pp. 663-669, 1989.
[900] T. SKOLEM, P. CHOWLA and D. J. LEWIS: The diophantine equation $2^{n-2}-7=x^{2}$ and related problems, Proc. American Math. Soc., vol. 10, pp. 663-669, 1959.
[901] A. N. SKOROBOGATOV: On the covering radius of BCH codes, Proc. Third Soviet-Swedish Internat. Workshop on Information Theory, pp. 308-309, Sochi, 1987.
[902] A. N. SKOROBOGATOV: The parameters of subcodes of algebraic-geometric codes over prime subfields, Discrete Applied Mathematics, vol. 33, pp. 205-214, 1991.
[903] N. J. A. SLOANE: A new approach to the covering radius of codes, J. Combinatorial Th., Ser. A, vol. 42, pp. 61-86, 1986.
[904] N. J. A. SLOANE: Unsolved problems related to the covering radius of codes, in: Open Problems in Communication and Computation, pp. 51-56, Springer-Verlag, 1987.
[905] N. J. A. SLOANE: Covering arrays and intersecting codes, J. Combinatorial Designs, vol. 1, pp. 51-63, 1993.
[906] N. J. A. SLOANE and E. R. BERLEKAMP: Weight enumerator for second-order Reed-Muller codes, IEEE Trans. Inform. Th., vol. 16, pp. 745-751, 1970.
[907] N. J. A. SLOANE and R. J. DICK: On the enumeration of cosets of first order Reed-Muller codes, Proc. IEEE Internat. Conf. on Communications, vol. 7, pp. 362-366, 1971.
[908] N. J. A. SLOANE, S. M. REDDY and C. L. CHEN: New binary codes, IEEE Trans. Inform. Th., vol. 18, pp. 503-510, 1972.
[909] N. J. A. SLOANE and V. A. VAISHAMPAYAN: A Zador-like formula for quantizers based on periodic tilings, IEEE Trans. Inform. Th., vol. 48, pp. 3138-3140, 2002.
[910] D. H. SMITH: Perfect codes in the graphs O_{k} and $L\left(O_{k}\right)$, Glasgow Math. J., vol. 21, pp. 169-172, 1980.
[911] S. L. SNOVER: The uniqueness of the Nordstrom-Robinson and the Golay binary codes, Ph. D. Thesis, Michigan State University, United States, 1973.
[912] P. SOLÉ: Rayon de recouvrement et schémas d'association, Thèse, Télécom Paris, France, 66 pp., 1987.
[913] P. SOLÉ: A Lloyd theorem in weakly metric association schemes, European J. Combinatorics, vol. 10, pp. 189-196, 1989.
[914] P. SOLÉ: A limit law on the distance distribution of binary codes, IEEE Trans. Inform. Th., vol. 36, pp. 229-232, 1990.
[915] P. SOLÉ: Asymptotic bounds on the covering radius of binary codes, IEEE Trans. Inform. Th., vol. 36, pp. 1470-1472, 1990.
[916] P. SOLÉ: Covering codes and combinatorial optimization, Lecture Notes in Computer Science, No. 539, pp. 426-433, Springer-Verlag, 1991.
[917] P. SOLÉ: Packing radius, covering radius, and dual distance, IEEE Trans. Inform. Th., vol. 41, pp. 268-272, 1995.
[918] P. SOLÉ: Higher order covering radii, Proc. Workshop on Coding and Cryptography '99, pp. 251-260, Paris, 1999.
[919] P. SOLÉ, A. GHAFOOR and S. A. SHEIKH: The covering radius of Hadamard codes in odd graphs, Discrete Applied Mathematics, vol. 37/38, pp. 501-510, 1992.
[920] P. SOLÉ and K. G. MEHROTRA: Generalization of the Norse bounds to codes of higher strength, IEEE Trans. Inform. Th., vol. 37, pp. 190-192, 1991.
[921] P. SOLÉ and P. STOKES: Covering radius, codimension, and dual-distance width, IEEE Trans. Inform. Th., vol. 39, pp. 1195-1203, 1993.
[922] P. SOLÉ and T. ZASLAVSKY: The covering radius of the cycle code of a graph, Discrete Applied Mathematics, vol. 45, pp. 63-70, 1993.
[923] F. I. SOLOV'EVA: On binary nongroup codes, Methodi Diskr. Analiza, vol. 37, pp. 65-76, 1981 (in Russian).
[924] F. I. SOLOV'EVA: Factorization of code-generating disjunctive normal forms, Methodi Diskr. Analiza, vol. 47, pp. 66-88, 1988 (in Russian).
[925] F. I. SOLOV'EVA: A class of binary perfect codes generated by q-ary codes, Methodi Diskr. Analiza, vol. 48, pp. 70-72, 1989 (in Russian).
[926] F. I. SOLOV'EVA: Perfect codes and their projections, Proc. 3rd Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 147-150, Voneshta Voda, 1992.
[927] F. I. SOLOV'EVA: A combinatorial construction of perfect binary codes, Proc. 4 th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 171-174, Novgorod, 1994.
[928] J. H. SPENCER: Probabilistic methods, Graphs and Combinatorics, vol. 1, pp. 357-382, 1985.
[929] J. H. SPENCER: Six standard deviations suffice, Trans. American Math. Soc., vol. 289, pp. 679-706, 1985.
[930] R. G. STANTON: Covering theorems in groups (or: how to win at football pools), in: Recent Progress in Combinatorics, Tutte, Ed., pp. 21-36, New York: Academic Press, 1969.
[931] R. G. STANTON, J. D. HORTON and J. G. KALBFLEISCH: Covering theorems for vectors with special reference to the case of four and five components, J. London Math. Soc. (2), vol. 1, pp. 493-499, 1969.
[932] R. G. STANTON and J. G. KALBFLEISCH: Covering problems for dichotomized matchings, Aequationes Mathematicae, vol. 1, pp. 94-103, 1968.
[933] R. G. STANTON and J. G. KALBFLEISCH: Intersection inequalities for the covering problem, SIAM J. Applied Mathematics, vol. 17, pp. 1311-1316, 1969.
[934] S. K. STEIN: Factoring by subsets, Pacific J. Math., vol. 22, pp. 523-541, 1967.
[935] S. K. STEIN: Algebraic tiling, American Mathematical Monthly, vol. 81, pp. 445-462, 1974.
[936] S. K. STEIN: Two combinatorial covering problems, J. Combinatorial Th., Ser. A, vol. 16, pp. 391397, 1974.
[937] F. STERBOUL: Le problème du loto, Proc. Colloque Internat. Mathématiques Discrètes: Codes et Hypergraphes, Brussels, 1978.
[938] J. STERN: Approximating the number of error locations within a constant ratio is NP-complete, Lecture Notes in Computer Science, No. 673, pp. 325-331, Springer-Verlag, 1993.
[939] P. STOKES: Some properties of the covering radius of error-correcting codes, Ph. D. Thesis, University of London, England, 1992.
[940] P. STOKES: The domain of covering codes, Lecture Notes in Math., No. 1518, pp. 170-177, SpringerVerlag, 1993.
[941] R. J. STROEKER and B. M. M. de WEGER: On a quartic diophantine equation, Proc. Edinburgh Math. Soc., vol. 39, pp. 97-114, 1996.
[942] R. STRUIK: Constructive non-existence proofs for covering codes, Presented at Oberwolfach Seminar on Information Theory, 1992.
[943] R. STRUIK: Constructive non-existence proofs for linear covering codes, Proc. IEEE Symp. on Information Theory, p. 369, San Antonio, 1993.
[944] R. STRUIK: An improvement of the van Wee bound for binary linear covering codes, IEEE Trans. Inform. Th., vol. 40, pp. 1280-1284, 1994.
[945] R. STRUIK: On the structure of linear codes with covering radius two and three, IEEE Trans. Inform. Th., vol. 40, pp. 1406-1416, 1994.
[946] R. STRUIK: Covering codes, Ph. D. Thesis, Eindhoven University of Technology, the Netherlands, 106 pp., 1994.
[947] G. SZEGÖ: Orthogonal Polynomials, Colloquium Publications, vol. 23, New York: American Math. Soc., 1959.
[948] T. SZÖNYI: Small complete arcs in Galois planes, Geometriae Dedicata, vol. 18, pp. 161-172, 1985.
[949] K. TANABE: Ozeki's and calculation of the covering radius of codes, Surikaisekikenkyusho Kokyuroku, No. 1228, pp. 51-60, 2001 (in Japanese).
[950] H. TARNANEN: On character sums and codes, Discrete Mathematics, vol. 57, pp. 285-295, 1985.
[951] H. TARNANEN: An elementary proof to the weight distribution formula of the first order shortened Reed-Muller coset code, Applicable Algebra in Engineering, Communication and Computing, vol. 8, pp. 421-424, 1997.
[952] O. TAUSSKY and J. TODD: Covering theorems for groups, Ann. Soc. Polonaise de Math., vol. 21, pp. 303-305, 1948.
[953] O. TAUSSKY and J. TODD: Some discrete variable computations, American Math. Soc. Proc. Symp. in Applied Math., pp. 201-209, Providence, 1960.
[954] J. A. THAS: Two infinite classes of perfect codes in metrically regular graphs, J. Combinatorial Th., Ser. B, vol. 23, pp. 236-238, 1977.
[955] T. M. THOMPSON: From Error-Correcting Codes Through Sphere Packings to Simple Groups, AMS: Carus Mathematical Monographs 21, 1983.
[956] Z. P. TIAN: The football pool problem for $\left(3^{r}-1\right) / 2$ matches: $A\left(\left(3^{r}-1\right) / 2\right)=3^{\left(3^{r}-1\right) / 2-r}$, Mathematics in Practice and Theory, vol. 1, pp. 54-56, 1988 (in Chinese).
[957] A. TIETÄVÄINEN: On the nonexistence of perfect 4-Hamming-error-correcting codes, Ann. Acad. Sci. Fennicae, Ser. A I, No. 485, pp. 1-6, 1970.
[958] A. TIETÄVÄINEN: On the nonexistence of perfect codes over finite fields, SIAM J. Applied Mathematics, vol. 24, pp. 88-96, 1973. Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., pp. 252-260, IEEE Press, 1974.
[959] A. TIETÄVÄINEN: A short proof for the nonexistence of unknown perfect codes over $G F(q), q>2$, Ann. Acad. Sci. Fennicae, Ser. A I, No. 580, pp. 1-6, 1974.
[960] A. TIETÄVÄINEN: Nonexistence of nontrivial perfect codes in case $q=p_{1}^{r} p_{2}^{s}, e \geq 3$, Discrete Mathematics, vol. 17, pp. 199-205, 1977.
[961] A. TIETÄVÄINEN: On the covering radius of long binary BCH codes, Discrete Applied Mathematics, vol. 16, pp. 75-77, 1987.
[962] A. TIETÄVÄINEN: Codes and character sums, Lecture Notes in Computer Science, No. 388, pp. 3-12, Springer-Verlag, 1989.
[963] A. TIETÄVÄINEN: An asymptotic bound on the covering radii of binary BCH codes, IEEE Trans. Inform. Th., vol. 36, pp. 211-213, 1990.
[964] A. TIETÄVÄINEN: An upper bound on the covering radius as a function of the dual distance, IEEE Trans. Inform. Th., vol. 36, pp. 1472-1474, 1990.
[965] A. TIETÄVÄINEN: On the covering radii of Reed-Muller codes, Proc. 2nd Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 211-214, Leningrad, 1990.
[966] A. TIETÄVÄINEN: Covering radius and dual distance, Designs, Codes and Cryptography, vol. 1, pp. 31-46, 1991.
[967] A. TIETÄVÄINEN and A. PERKO: There are no unknown perfect binary codes, Ann. Univ. Turku, Ser. A I, No. 148, pp. 3-10, 1971.
[968] H. C. A. van TILBORG: All binary, (n, e, r)-uniformly packed codes are known, Memorandum 197508, Eindhoven University of Technology, the Netherlands, 1975.
[969] H. C. A. van TILBORG: Uniformly packed codes, Ph. D. Thesis, Eindhoven University of Technology, the Netherlands, 76 pp., 1976.
[970] H. C. A. van TILBORG: On the uniqueness (resp. non existence) of certain codes meeting the Griesmer bound, Information and Control, vol. 44, pp. 16-35, 1980.
[971] H. C. A. van TILBORG: Error-Correcting Codes - A First Course, Studentlitteratur, Lund, 1993.
[972] D. T. TODOROV: A table for the coverings of pairs, Proc. 15th Conf. of the Union of Bulgarian Mathematicians, pp. 472-481, 1986.
[973] H. P. TSAI: The covering radius of extremal self-dual code D11 and its application, IEEE Trans. Inform. Th., vol. 43, pp. 316-319, 1997.
[974] M. TSFASMAN and S. G. VLÄDUTS: Algebraic-Geometric Codes, Dordrecht: Kluwer, 1991.
[975] P. TURÁN: An extremal problem in graph theory, Math. Fiz. Lapok, vol. 48, pp. 436-452, 1941 (in Hungarian).
[976] P. TURÁN: On the theory of graphs, Colloq. Math., vol. 3, pp. 146-163, 1954.
[977] P. TURÁN: Research problems, Magyar Tud. Akad. Mat. Kutató Int. Közl., vol. 6, pp. 417-423, 1961.
[978] S. TUTDERE: On the covering radii of a class of binary primitive cyclic codes, Hacettepe Journal of Mathematics and Statistics, vol. 51, pp. 20-26, 2022.
[979] N. TZANAKIS: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations, Acta Arith., vol. 75, pp. 165-190, 1996.
[980] N. F. TZENG and G. L. FENG: Resource allocation in cube network systems based on the covering radius, IEEE Trans. Parallel and Distributed Systems, vol. 7, pp. 328-342, 1996.
[981] R. J. M. VAESSENS, E. H. L. AARTS and J. H. van LINT: Genetic algorithms in coding theory- A table for $A_{3}(n, d)$, Discrete Applied Mathematics, vol. 45, pp. 71-87, 1993.
[982] A. VARDY: The intractability of computing the minimum distance of a code, IEEE Trans. Inform. Th., vol. 43, pp. 1757-1766, 1997.
[983] A. VARDY and Y. BE'ERY: Maximum-likelihood soft decision decoding of BCH codes, IEEE Trans. Inform. Th., vol. 40, pp. 546-554, 1994.
[984] A. VARDY and T. ETZION: Some constructions of perfect codes, Lecture Notes in Computer Science, No. 673, pp. 344-354, Springer-Verlag, 1993.
[985] R. R. VARSHAMOV: Estimate of the number of signals in error-correcting codes, Dokl. Akad. Nauk SSSR, vol. 117, pp. 739-741, 1957 (in Russian).
[986] W. B. VASANTHA and R. S. SELVARAJ: Multi-covering radii of codes with rank metric, Proc. IEEE Workshop on Information Theory, p. 215, Bangalore, 2002.
[987] W. B. VASANTHA and R. S. SELVARAJ: Multi-covering radius for rank metric codes, Electronic J. Combinatorics, http://www.combinatorics.org/Volume_16/v16i1toc. html, R147, 2009.
[988] W. B. VASANTHA KANDASAMY, F. SMARANDACHE, N. SURESH BABU and R. S. SELVARAJ: Rank distance bicodes and their generalization, http://arxiv.org/pdf/1004.2881.pdf
[989] W. B. VASANTHA and N. SURESH BABU: Relation between the covering radius and minimum distance of indecomposable binary cyclic codes over 2-groups, Mathematics Today, vol. 12, pp. 53-56, 1994.
[990] W. B. VASANTHA and N. SURESH BABU: On the covering radius of rank-distance codes, Ganita Sandesh, vol. 13, pp. 43-48, 1999.
[991] J. L. VASILIEV: On nongroup close-packed codes, Problemy Kibernetiki, vol. 8, pp. 337-339, 1962 (in Russian). Also in: Key Papers in the Development of Coding Theory, Berlekamp, Ed., p. 100, IEEE Press, 1974.
[992] J. L. VASILIEV and F. I. SOLOV'EVA: Interdependence between perfect binary codes and their projections, Proc. Seventh Joint Swedish-Russian Internat. Workshop on Information Theory, pp. 239-242, St-Petersburg, 1995.
[993] J. L. VASILIEV and F. I. SOLOV'EVA: Code-generating factorizations of the n-dimensional unit cube and of perfect binary codes, Problemy Peredachi Informatsii, vol. 33, No. 1, pp. 64-74, 1997. Translated in: Problems of Inform. Transm., vol. 33, No. 1, pp. 53-61.
[994] E. D. VELIKOVA: On the covering radius of some binary cyclic codes, Annuaire de l'Université de Sofia, Faculté de Mathématiques et Informatique, vol. 82, pp. 119-125, 1988.
[995] E. D. VELIKOVA: Bounds on covering radius of linear codes, Comptes-Rendus de l'Académie Bulgare des Sciences, vol. 41, pp. 13-16, 1988.
[996] E. D. VELIKOVA: Covering radius of some cyclic codes, Proc. Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 165-169, Varna, 1988.
[997] E. D. VELIKOVA: A generalization of some upper bounds on covering radius under an arbitrary additive metric, Problems of Control and Information Th., vol. 19, No. 5-6, pp. 445-450, 1990.
[998] E. D. VELIKOVA: The covering radius of two-dimensional codes over GF(4), Proc. 4th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 190-193, Novgorod, 1994.
[999] E. D. VELIKOVA and A. BOJILOV: An upper bound on the covering radius of a class of cyclic codes, Proc. 11th Internat. Workshop on Algebraic and Combinatorial Coding Theory, pp. 300-304, Pamporovo, 2008.
[1000] E. D. VELIKOVA and K. N. MANEV: The covering radius of cyclic codes of lengths 33, 35 and 39, Annuaire de l'Université de Sofia, Faculté de Mathématiques et Informatique, vol. 81, pp. 215-223, 1987.
[1001] T. VERHOEFF: An updated table of minimum-distance bounds for binary linear codes, IEEE Trans. Inform. Th., vol. 33, pp. 665-680, 1987.
[1002] S. G. VLÄDUTS and A. N. SKOROBOGATOV: Covering radius for long BCH codes, Problemy Peredachi Informatsii, vol. 25, No. 1, pp. 38-45, 1989. Translated in: Problems of Inform. Transm., vol. 25, No. 1, pp. 28-34.
[1003] L. F. VSEVOLOD: Generating binary spaces, J. Combinatorial Th., Ser. A, vol. 102, pp. 94-109, 2003.
[1004] V. H. VU: De Bruijn covering codes with arbitrary alphabets, Advances in Applied Mathematics, vol. 34, pp. 65-70, 2005.
[1005] Q. WANG: The covering radius of the Reed-Muller code $R M(2,7)$ is 40, Discrete Mathematics, vol. 342, Article 111625, 2019.
[1006] Q. WANG and P. STǍNICǍ: New bounds on the covering radius of the second order Reed-Muller code of length 128, Cryptography and Communications, vol. 11, pp. 269-277, 2019.
[1007] Q. WANG, C. H. TAN and T. F. PRABOWO: On the covering radius of the third order Reed-Muller code RM(3,7), Designs, Codes and Cryptography, vol. 86, pp. 151-159, 2018.
[1008] W. D. WEAKLEY: Optimal binary covering codes of length 2^{j}, J. Combinatorial Designs, vol. 14, pp. 1-13, 2006.
[1009] E. W. WEBER: On the football pool problem for 6 matches: a new upper bound, J. Combinatorial Th., Ser. A, vol. 35, pp. 106-108, 1983.
[1010] G. J. M. van WEE: Improved sphere bounds on the covering radius of codes, IEEE Trans. Inform. Th., vol. 34, pp. 237-245, 1988.
[1011] G. J. M. van WEE: More binary covering codes are normal, IEEE Trans. Inform. Th., vol. 36, pp. 1466-1470, 1990.
[1012] G. J. M. van WEE: Covering codes, perfect codes, and codes from algebraic curves, Ph. D. Thesis, Eindhoven University of Technology, the Netherlands, 209 pp., 1991.
[1013] G. J. M. van WEE: On the non-existence of certain perfect mixed codes, Discrete Mathematics, vol. 87, pp. 323-326, 1991.
[1014] G. J. M. van WEE: Bounds on packings and coverings by spheres in q-ary and mixed Hamming spaces, J. Combinatorial Th., Ser. A, vol. 57, pp. 117-129, 1991.
[1015] G. J. M. van WEE: Some new lower bounds for binary and ternary covering codes, IEEE Trans. Inform. Th., vol. 39, pp. 1422-1424, 1993.
[1016] G. J. M. van WEE, G. D. COHEN and S. LITSYN: A note on perfect multiple coverings of the Hamming space, IEEE Trans. Inform. Th., vol. 37, pp. 678-682, 1991.
[1017] V. K. WEI: Generalized Hamming weights for linear codes, IEEE Trans. Inform. Th., vol. 37, pp. 1412-1418, 1991.
[1018] P. M. WEICHSEL: Dominating sets in n-cubes, J. Graph Th., vol. 18, No. 5, pp. 479-488, 1994.
[1019] A. WEIL: On some exponential sums, Proc. Nat. Acad. Sci., vol. 34, pp. 204-207, 1948.
[1020] L. T. WILLE: The football pool problem for 6 matches: a new upper bound obtained by simulated annealing, J. Combinatorial Th., Ser. A, vol. 45, pp. 171-177, 1987.
[1021] L. T. WILLE: Personal communication, 1987.
[1022] L. T. WILLE: Improved binary code coverings by simulated annealing, Congressus Numerantium, vol. 73 , pp. 53-58, 1990.
[1023] L. T. WILLE: New binary covering codes obtained by simulated annealing, IEEE Trans. Inform. Th., vol. 42, pp. 300-302, 1996.
[1024] F. M. J. WILLEMS: Converses for write-unidirectional memories, Report 89-E-220, Eindhoven University of Technology, the Netherlands, 12 pp., 1989.
[1025] H. S. WITSENHAUSEN and A. D. WYNER: On storage media with aftereffects, Information and Control, vol. 56, pp. 199-211, 1983.
[1026] J. K. WOLF, A. D. WYNER, J. ZIV and J. KÖRNER: Coding for a "write-once" memory, AT \& T Bell Lab. Tech. J., vol. 63, No. 6, 1984.
[1027] J. WOLFMANN: Codes projectifs à deux poids, "caps" complets et ensembles de différences, J. Combinatorial Th., Ser. A, vol. 23, pp. 208-222, 1977.
[1028] J. WOLFMANN: Résultats sur les paramètres des codes linéaires, Revue CETHEDEC, vol. 2, pp. 25-33, 1979.
[1029] J. WOLFMANN: The weight of orthogonals of certain cyclic codes or extended Goppa codes, Lecture Notes in Computer Science, No. 357, pp. 476-480, Springer-Verlag, 1989.
[1030] X. WU: Optimal binary vector quantization via enumeration of covering codes, IEEE Trans. Inform. Th., vol. 43, pp. 638-645, 1997.
[1031] A. D. WYNER and J. ZIV: On communication of analog data from a bounded source space, Bell Syst. Tech. J., vol. 48, pp. 3139-3172, 1969.
[1032] B. XIA: The covering radius of $\mathrm{PGL}_{2}(q)$, Discrete Mathematics, vol. 340, pp. 2469-2471, 2017.
[1033] Ø. YTREHUS: Binary $[18,11] 2$ codes do not exist-nor do $[64,53] 2$ codes, IEEE Trans. Inform. Th., vol. 37, pp. 349-351, 1991.
[1034] G. V. ZAITSEV, V. A. ZINOVIEV and N. V. SEMAKOV: Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes, Proc. Second Internat. Symp. on Information Theory, pp. 257-263, Tsahkadsor, 1971.
[1035] S. K. ZAREMBA: A covering theorem for abelian groups, J. London Math. Soc., vol. 26, pp. 71-72, 1950.
[1036] S. K. ZAREMBA: Covering problems concerning abelian groups, J. London Math. Soc., vol. 27, pp. 242-246, 1952.
[1037] B. ZELINKA: Domatic numbers of cube graphs, Math. Slovaca, vol. 32, pp. 117-119, 1982.
[1038] G. ZÉMOR: Problèmes combinatoires liés à l'écriture sur des mémoires, Thèse, Télécom Paris, France, 109 pp., 1989.
[1039] G. ZÉMOR: An extremal problem related to the covering radius of binary codes, Lecture Notes in Computer Science, No. 573, pp. 42-51, Springer-Verlag, 1992.
[1040] G. ZÉMOR: Subset sums in binary spaces, European J. Combinatorics, vol. 13, pp. 221-230, 1992.
[1041] G. ZÉMOR: An extremal problem related to the covering radius of binary codes, Lecture Notes in Computer Science, No. 573, pp. 42-51, Springer-Verlag, 1992.
[1042] G. ZÉMOR and G. D. COHEN: Error-correcting WOM-codes, IEEE Trans. Inform. Th., vol. 37, pp. 730-734, 1991.
[1043] G. ZÉMOR and G. D. COHEN: Application of coding theory to interconnection networks, Discrete Applied Mathematics, vol. 37/38, pp. 553-562, 1992.
[1044] W. ZHANG, S. WANG and X. ZHANG: Improving embedding efficiency of covering codes for applications in steganography, IEEE Communications Letters, vol. 11, pp. 680-682, 2007.
[1045] W. ZHANG, X. ZHANG and S. WANG: Maximizing steganographic embedding efficiency by combining Hamming codes and wet paper codes, Lecture Notes in Computer Science, No. 5284, pp. 60-71, Springer-Verlag, 2008.
[1046] X. ZHANG, H. ZHANG and G. GE: Optimal constant weight covering codes and nonuniform group divisible 3-designs with block size four, Designs, Codes and Cryptography, vol. 62, pp. 143-160, 2012.
[1047] Z. ZHANG: Linear inequalities for covering codes: Part I-pair covering inequalities, IEEE Trans. Inform. Th., vol. 37, pp. 573-582, 1991.
[1048] Z. ZHANG and C. LO: Linear inequalities for covering codes: Part II-triple covering inequalities, IEEE Trans. Inform. Th., vol. 38, pp. 1648-1662, 1992.
[1049] Z. ZHANG and C. LO: Lower bounds on $t[n, k]$ from linear inequalities, IEEE Trans. Inform. Th., vol. 38, pp. 194-197, 1992.
[1050] V. A. ZINOVIEV: Codes for correlation multi-address selection, Ph. D. Thesis, Moscow Institute of Physics and Technology, USSR, 200 pp., 1970 (in Russian).
[1051] V. A. ZINOVIEV: On generalized concatenated codes, Colloquia Mathematica Societatis Jànos Bolyai, vol. 16, pp. 587-592, 1975.
[1052] V. A. ZINOVIEV: Generalized cascade codes, Problemy Peredachi Informatsii, vol. 12, No. 1, pp. 5-15, 1976. Translated in: Problems of Inform. Transm., vol. 12, No. 1, pp. 2-9.
[1053] V. A. ZINOVIEV: Combinatorial methods of construction and analysis of nonlinear error-correcting codes, Doctor of Sciences Diss., Computer Centre of Russian Academy of Sciences, Moscow, 300 pp., 1988 (in Russian).
[1054] V. A. ZINOVIEV and G. L. KATSMAN: Universal codes families, Problemy Peredachi Informatsii, vol. 29, No. 2, pp. 3-8, 1993. Translated in: Problems of Inform. Transm., vol. 29, No. 2, pp. 95-100.
[1055] V. A. ZINOVIEV and V. K. LEONTIEV: On perfect codes, Problemy Peredachi Informatsii, vol. 8, No. 1, pp. 26-35, 1972. Translated in: Problems of Inform. Transm., vol. 8, No. 1, pp. 17-24.
[1056] V. A. ZINOVIEV and V. K. LEONTIEV: The nonexistence of perfect codes over Galois fields, Problemy Upravleniya i Teorii Informatsii, vol. 2, No. 2, pp. 123-132, 1973. Translated in: Problems of ControInformation Th., vol. 2, No. 2, pp. 16-24.
[1057] V. A. ZINOVIEV and S. LITSYN: Dual distance of BCH codes, Problemy Peredachi Informatsii, vol. 22, No. 4, pp. 29-34, 1986. Translated in: Problems of Inform. Transm., vol. 22, No. 4, pp. 272-277.
[1058] V. A. ZINOVIEV and J. RIFÁ: On new completely regular q-ary codes, Problemy Peredachi Informatsii, vol. 43, No. 2, pp. 34-51, 2007. Translated in: Problems of Inform. Transm., vol. 43, No. 2, pp. 97-112.

