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PREFACE

This document tries to be the survey of some fifteen years of research: the defence of my
Thesis took place in 1985 at Ecole Nationale Supérieure des Télécommunications (ENST),
under Gérard Cohen’s supervision, and I obtained a permanent position at Centre National

de la Recherche Scientifique (CNRS), at ENST, in 1987. [ belong to the team “Mathematics of

Computer Science and Networks”, inside the Department “Computer Science and Networks”.

All my research is Discrete Mathematics and Combinatorics; the main theme, co-
ding, is seen from a multiple yet always combinatorial viewpoint: my vision of codes is of
combinatorial objects floating in different discrete spaces, and their links with, for instance,
the theory of complexity and its structured classes of problems, are quite natural to me.

I chose a thematic rather than chronological presentation, wishing to show the links
between the different fields covered by my research, and to sometimes stress one result
which I find more interesting, significant, or easier to explain, than others.

From a chronological standpoint, I will only say that my set of themes has progressively
moved, according to encounters, circumstances, frequent and varied collaborations, likings
and serendipity, from covering radius and arithmetic codes to perfect block codes and iden-
tifying codes, often with complexity issues in the background, active incursions into crypto-
graphy being rare. This trajectory is admittedly not rectilinear, however it is consistent and
within the fields of research at ENST, information processing and communication — indeed,

I often publish with some of my ENST colleagues.

The first section is devoted to codes (see Figure 1):
— block codes and their fundamental parameters, minimum distance d and covering radius R,
joining in the relation d = 2R + 1 for perfect codes;
— arithmetic codes, using different representations of integers, raising metric problems, and

still open to new perfect codes;
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— identifying codes, spotting vertices in graphs, in particular the square, triangular, king,
and hexagonal grids.

The links between codes and complexity, codes and cryptology, are described after the
second section, devoted to a short account on the theory of complexity, and the third section,
describing three public-key cryptosystems.

The fourth section shows some links between codes and complexity (see Figure 2):

— NP- or II;-completeness of problems dealing with block codes, study of problems for which
a preprocessing is possible, algorithms for the construction of “good” codes;

— complexity and arithmetic codes: hardness of computing the Clark-Liang modular weight;
— NP-completeness of the existence of identifying codes of bounded size, algorithms for the
construction of “small” identifying codes.

The fifth section underscores some links between codes and cryptology (see Figure 3), in
particular the relations between nonadjacent modified representations, modular weight, and
fast modular exponentiation for the RSA cryptosystem.

A short conclusion mentions some possibilities in the future.

I also added a slightly shortened version, written in a common pidgin, for some of my

foreign colleagues.

Two appendices contain the complete list of my publications as well as some articles which
seem significant to me (the latter only in the “hard copy” of this document — available on

request).

My research was often done in collaboration, leading to articles or books. These exchanges
are enriching experiences and it is my pleasure here to warmly thank all my co-authors (in
order of appearance):

Gérard Cohen (ENST, France),

Neil Sloane (Bell Labs, USA),

Gerhard van Wee (Eindhoven University, the Netherlands),
Jean-Pierre Barthélemy (ENST Bretagne, France),

Patrick Solé (CNRS, France),
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Vera Pless (University of Illinois, USA),

Grigori Kabatianski (Institute for Problems of Information Transmission [IPPI], Russia),
Irene Charon (ENST, France),

Olivier Hudry (ENST, France),

Simon Litsyn (Tel Aviv University, Israel),

Skip Mattson (Syracuse University, USA),

liro Honkala (Turku University, Finland),

Victor Zinoviev (IPPI, Russia),

Gilles Zémor (ENST, France),

David Naccache (Gemplus, France),

Sylvain Gravier (CNRS, France),

Michel Mollard (CNRS, France),

Charles Payan (CNRS, France),

Sergey Avgustinovich (Sobolev Institute of Mathematics [SIM], Russia),
and Faina Solov’eva (SIM, Russia).

The credit for a great deal of what follows is theirs.

Hence, the “we” 1 will use throughout this document, now will be a we of modesty, now

will designate a set of authors.
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1 Basic Facts in Coding

Our problematics can be stated in a very general way: we consider a discrete space (a vector
space over a finite field, a ring of integers, a graph), and a metric (Hamming, Rao-Garcia,
Clark-Liang, shortest path), and we study certain properties of certain subsets (called codes)
in this space, properties relative to the metric.

We divided this section into three subsections. The first one is devoted to block codes in
Hamming spaces, seen from two different viewpoints, the minimum distance (error-correcting
codes) and the covering radius (covering codes). The second one deals with arithmetic codes,
which, mostly used as error-correcting codes, present features deserving a separate study.
The third section discusses identifying codes, which have been my main topic in the last two
years. These codes can be seen as a particular case of covering codes, but we consider them
in some graphs other than the Hamming n-cubes, and this is why they have a subsection of

their own.

1.1 Block Codes

Most of the time we will use ' = F; = {0,1}, and, for the sake of simplicity, the definitions,
notations, and basic notions are presented in the binary case. Their generalization to the
finite field F,, where ¢ is a prime power, is straightforward. In particular, all operations below

are modulo 2.

The Hamming space, F}' (= F"), is the set of binary vectors of length n, and the Hamming
distance, d, between two vectors x = z123...2, € F" and y = y1y2...y, € F" is d(x,y) =
H{ee {1,2,...,n} :a; # y;}|- The (Hamming) weight, w(x), of x is its (Hamming) distance
to the all-zero vector. The distance between x and a nonempty subset Y C F” is d(x,Y) =

min{d(x,y) :y € Y}. The sphere of centre x and radius ¢ is
Bi(x) ={y € I : d(x,y) < t}.

Its volume V/(¢) does not depend on its centre. Vector x is said to be t-covered (or covered if

there is no ambiguity) by y € F” if d(x,y) < t, and by a nonempty subset Y C F” if it is
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covered by at least one element of Y.

A binary code C of length n and size K (K > 2) is a set of K binary vectors of length n.
Its elements are called codewords.

If C is a vector subspace of dimension k£ in F”, it is called linear. It can be defined by a
generator matriz, G, with dimensions k£ x n, the rows of which form a basis of C'. The dual
code of C', C'*, is the set of vectors which are orthogonal with all vectors in C:

Ct={x=x123...2, € F":Ve=cicy...c, € C,<X,C>= Z zic; = 0}.
1<i<n

Code C* is also a vector subspace in F”. of dimension n — k, and any generator matrix H
p 9 9 y 7

of dimensions (n — k) x n, characterizes C":
ce(C < cH! =0,

where 0 is the all-zero vector of length n — k and 7' the symbol of transposition. Matrix H
is the parity-check matriz of C. The syndrome of y € F* is yH' € F"*. So a vector is a

codeword if and only if its syndrome is zero.

The main parameters of a code C are its minimum distance, d(C') or d, and its covering
radius, R(C') or R. We denote C by (n, K,d)R, and [n,k,d|R if it is linear. Also used are
(n,K), [n, k], (n,K,d), [n,k,d], (n, K)R, or [n,k]R.

Definition. The minimum distance of C is:

d=d(C)=min{d(c1,¢c2) : c; € C,c3 € C,c1 # ca}.

Ife= Ld_TlJ, the spheres of radius e centred at the codewords have pairwise empty intersec-

tions, and e is the largest integer with this property. When C' is linear,
d=d(C)=min{w(c):c € C,c#0}.

Still in the linear case, the minimum distance of ' can be characterized by the parity-check
matrix: it is the smallest positive integer d such that 07 (of length n — k) is the sum of d

columns of a parity-check matrix (of dimensions (n — k) x n) of C.
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Definition. The covering radius of C' is:
R = R(C)=max{d(x,():x € F"}.

In other words, the codewords R-cover ", and R is the smallest integer with this property.

In the linear case, the covering radius of C' can be characterized by the parity-check
matrix: it is the smallest integer R such that any transpose vector of length n — k is the sum
of at most R columns of a parity-check matrix (of dimensions (n — k) x n) of C.

A code (n, K, d)R satisfies the following inequalities:

7 d - 1 on - on
K V([TJ) <2 and K-V(R)>?2" (1.1)
called the “sphere-packing bound” or “Hamming bound”, and the “sphere-covering bound”,

respectively.

1.1.1 Error-Correcting Codes

Error-correcting codes are designed in order to correct errors occurring during transmission
over a noisy channel. Consider the binary symmetric memoryless channel: zeros and ones
are transmitted, and with a probability p < 1/2 a ‘1’ is wrongly transformed into a ‘0’, or

‘1. A block of k information symbols u = wjus...u; is coded by a codeword

a ‘0’ into a
c=ccy...c, € C,withn > k.

Consider a linear code C' with parameters [n, k, d], generator matrix G and parity-check
matrix H. The error-detection and error-correction capacity of C is directly linked to its
minimum distance: after the coding of u by the vector of length n, ¢ = uG € C, and the
transmission of ¢, the receiver receives z = ¢ + e, where e € F'" is the error vector. Since
€= Ld_TlJ, if w(e) < e, then ¢ is the unique codeword which is closest to z. The parameter e
is the error-correcting capacity of C', and C is an e-error-correcting code; we’ll say equally
that C' can correct e errors or an error of weight e.

Decoding (retrieving ¢) can be done using H: compute the syndrome of z, y = zH7,

next ¢* = z 4 x, where x is a minimum-weight solution of xH” = y. Indeed, c*H? =

zH” + xH” = y +y = 0: ¢* is the codeword closest to z.



1+ UUULING

We face two crucial problems in coding:
1) Find “large” and “short” codes, linear or not, with a “large” minimum distance.

Either we fix n and d and search for a code (n, K, d) (or [n,k, d]) with the largest possible
size K (or dimension k), or we fix n and k£ and search for a code [n, &, d] with the largest
possible minimum distance d, or we fix d and k£ and search for the smallest possible length n
for a code [n, k,d].

2) Find fast decoding algorithms.

As we shall see in Section 4.1, these are hard problems (and this hardness can be used in
cryptography, cf. Section 3.3). However, vast classes of codes with fast decoding algorithms

exist (e.g., BCH or Goppa codes — see page 37), but this aspect is not part of our research.

1.1.2 Covering Codes

We are interested in the following problem: find “small” and “long” codes, with a “small”
covering radius; usually, we consider K (n, R), the smallest possible size K for a code (n, K)R,
or t[n, k], the smallest possible covering radius R for a code [n, k| R. With given codimension
m = n — k, the entries in a table of ¢[n, k| are on a diagonal parallel to the main diagonal.
As n increases, we move down the diagonal and, typically, ¢[n,n — m] remains constant for
several consecutive values of n, then drops. These points of change signal a value of the
length function (: if tg = t[n,n —m] < t[n — 1,n — 1 —m], then {(m,tq) = n: {(m, R) is the

smallest length n for which there is a binary linear code [n,n — m]R.

o> Among the works published on this topic since our Thesis, [30], [31], [62], [28], [23] (see

also Section 4.1 for results from [15] and [46]), we would like to mention the following results:

In the case of codes with small length or size, we can use linear inequalities on the weight
distribution, induction using the notion of “balanced” codes (having as many ones as zeros
on each column), 2-surjectivity (existence of the pairs ‘00’, ‘01’, ‘10’, and ‘11’ on any two

columns), and partitionings of codes allowing the construction of longer codes; for instance,
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one can show that K(2p + 3,p) = 7 for any p > 1. In particular,

00000 0O0O0O 00
00001 0000 00
01110 0000 0 0
¢ = 10000 1111 11
11101 1111 11
11011 1111 11
10111 1111 ...11

has length 2p 4+ 3, 7 codewords, and covering radius p.
Using embedded R-error-correcting codes, with minimum distance 2R 4 1, gave lower
bounds on K(n, R). If A(n,d) denotes the largest possible size of a code with length n and

minimum distance d (with the convention A(n,d) =1 if d > n), we obtain

, 2" — A(n, 2R + 1) (%F)
K(n,R) > —— T (1.2)
= (1) - (%)
Ko ) > 2" — 2A(n,2R + 1) (%) )

YR () - 2(%)
provided the denominators are positive. Neither (1.2) nor (1.3) is always better than the
other.

Using “piecewise constant” codes and a Steiner system (Ss), we built a code with length 11,

covering radius 1 and size 192, showing that K(11,1) < 192. A code C' is piecewise constant

if: when partitioning its length n into n = ny + ny + ... + n; and its elements ¢ into
¢ = cqlcy|. .. |e;, where | stands for concatenation and c¢; has length n;, if C' contains a
vector ¢ such that w(c;) = wy,w(cz) = wsq, ..., w(ct) = wy, then it contains all

(o) (o) )

>< >< e ><

w1 Wy Wy

such vectors. A Ss S(¢,k,v) is a particular design: it is a set of blocks (k-subsets) of a v-

set S such that any t-subset of S is contained in exactly one block. There is a Ss S(4,5, 11),

containing 66 blocks. These 66 blocks and their complements (i.e., 66 vectors of weight 5
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and 66 vectors of weight 6) cover all vectors of weights 4 to 7. Let 11 = 6+5 and (wq,ws) =
(0,1),(0,2), or (2,0). This is a piecewise constant code of size 30, covering all vectors of
weight 3 or less, and its complement covers all vectors of weight 8 or more. This yields
a code (11,192)1, still the best today — on the other hand, K(11,1) > 180 (Blass and
Litsyn [9]).

The notion of normality was created by Graham and Sloane [45] for linear codes. We
generalized it to nonlinear as well as to nonbinary codes. We describe it here in the binary
case. Let C be a code (n, K)R. For i between 1 and n, denote by Céi) (respectively, Cl(i)) the

set of codewords whose i-th component is ‘0’ (respectively, ‘17). The integer
NO = max{d(x,C{") + d(x,C") : x € F"}

is the norm of C with respect to i, and Npin = min{ N :i =1,2,....,n} is the minimum
norm of C' (we use the convention d(x,{) = o). C is called normal if its minimum norm is
at most 2R + 1.

Normal codes can be used for efficient constructions; in particular, the existence of a
normal code (n, K')R allows the construction of codes (n+2p, K)R + p for any integer p and
joins up the normality of codes and the conjecture K(n +2,R+ 1) < K(n, R) (for R < n)
as well as its linear variation t[n 4+ 2,k] < t[n,k]+ 1 (forn > k > 1).

We proved the first inequality, for fixed R, when n is large enough, and studied more in
detail the cases R = 1 and R = 2: we showed that K(n + 2,2) < K(n,1) for all n > 2,
except maybe n = 9 and n = 16 (now, it is known that it is true for all n > 2), and that
K(n +2,3) < K(n,2) for all n belonging to {1} U {3,...,7} U {20,...,28} U {43,44} U
{91,...,127} U{187,...,361} and n > 379.

We proved that a linear code is normal if one of the following conditions holds: its length
is < 12; its dimension is < 2; its minimum distance is < 3; its covering radius is < 2 (the
current records are 15, 5, 4, and 3, respectively).

No binary linear abnormal code is known.

In the nonbinary case, the straightforward generalization of normality (for each ¢, we

define ¢ subcodes C'(!) according to the value a of the i-th component, and C' is normal if its
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minimum norm is at most ¢R 4+ ¢ — 1) is less efficient; the same is true for a generalization
(subnormality) where we consider any partition of the code into ¢ subcodes. For instance, in
the binary case, all perfect codes are normal and no subnormal code is known, whereas in

the g-ary case, no perfect code is subnormal.

We disproved the conjecture t[n, k| < tln+1,k+1]+1, for n > k > 1. As a consequence,
in a table for ¢(m, R), there exist arbitrarily long sequences of values which can be expressed

with only two values of t[n, k].

On this vast topic, Gérard Cohen, liro Honkala, Simon Litsyn, and myself have writ-
ten a monography, “Covering Codes” [23], published in 1997. It has xxii+542 pages, 20
chapters (1. Introduction 2. Basic Facts 3. Constructions 4. Normality 5. Linear Construc-
tions 6. Lower Bounds 7. Lower Bounds for Linear Codes 8. Upper Bounds 9. Reed-Muller
Codes 10. Algebraic Codes 11. Perfect Codes 12. Asymptotic Bounds 13. Weighted Coverings
14. Multiple Coverings 15. Football Pools 16. Tilings 17. Writing on Constrained Memories
18. Subset Sums and Constrained Memories 19. Heterodox Coverings 20. Complexity), 714
references and 24 tables, among which a table for K(n, R), n <33 and R < 10, and a table
for t[n,k], k < n < 64. Here is an excerpt of its 5-page review in Mathematical Reviews

(1999), by Professor H.F. Mattson, Jr., Syracuse University, USA:

Covering radius of codes lay dormant for years after first appearing, unnamed, in
Gorenstein, Peterson, and Zierler’s 1960 paper [D. Gorenstein, W. W. Peterson
and N. Zierler, Information and Control 3 (1960), 291-294; MR 22 9350]. (...) A
second survey paper, by Cohen et al. [Appl. Algebra Engrg. Comm. Comput. 8
(1997), no. 3, 173-239; MR 98d:94047], had 280 items. The book under review,

with far more complete coverage of the topic, has 714 entries in its bibliography.

()

The book has a full account of all aspects of covering radius. After introductory
sections on finite fields and codes, one almost never finds a theorem stated without
proof. The proofs are leisurely and complete. The book could thus be useful for

beginners and experts alike.
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()

This excellent book is smoothly written, with leisurely proofs and good motiva-
tion. There are a few new results in it, but the authors were too modest to mark
them as new for the reader. I do have one complaint: the authors’ grating neo-
logisms “upperbound” and “upperestimate” (used as verbs) should be “bound

above”. As nouns they should be two words.

The authors have obviously paid careful attention to their writing; there is a
uniform style, fluid and clear, with no jarring changes from one chapter to the
next. (...) It would be hard to imagine a better, more thorough, up-to-date, and

authoritative treatment of covering codes than the one we find in this book.

For complexity results on covering problems, we refer the reader to Section 4.1, where several

NP- and Il;-completeness results are stated.

1.1.3 Perfect Codes

In this subsection, we consider codes over the finite field F, = {0,1,...,g — 1} (where ¢ is
a prime power). A code is perfect if d = 2R + 1: the spheres of radius e = R fill the whole
space and have pairwise empty intersections. Inequalities (1.1) meet with equality.

Two g-ary codes C; and C,, with parameters (n, K), are equivalent if there exist n
permutations 7y, 7,,...,7, over F}, and one permutation o of the n coordinates such that,
if cie3...¢, € Cy, then 0(71(01)7'2(02)... Tn(Cn)) € (5. In the binary case, this means
the existence of a vector a € F™ and a permutation o of the n coordinates such that
Cy=Ho(c)+a :ceC}.

Up to equivalence, the only nontrivial perfect g-ary codes are:

1) the binary repetition codes with odd length (length n = 2p+1, dimension £ = 1, minimum
distance d = 2p + 1, covering radius R = p, for any integer p > 1);

2) codes having the same parameters as the g-ary Hamming codes (length n = (¢™—1)/(¢—1),
size K = ¢"~™, minimum distance d = 3, covering radius R = 1, for any integer m > 2);

3) the binary Golay code (length n = 23, dimension k£ = 12, minimum distance d = 7,
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covering radius R = 3);
4) the ternary Golay code (length n = 11, dimension k& = 6, minimum distance d = 5,
covering radius R = 2)
(see for instance [23, Sec. 11.1 and 11.2]).

Only Case 2) can yield perfect codes which are not equivalent to linear codes. The first
construction of perfect binary nonlinear codes dates back to 1962 (Vasiliev [74]). See for

instance [23, Sec. 11.3 and 11.4] for a survey of other constructions, and references.

o> We added new constructions [63], [76] in the binary case: using generalized concatenated
codes (Zinoviev [75]), we obtained a first family of constructions, for which we gave a lower
bound on the number of nonequivalent codes [63]. Using the same ideas, we construct in [76]
new perfect codes and give a lower bound on the number of different codes. These bounds

are not the best, but our constructions can be applied to construct codes other than perfect.

o> Still about perfect codes, we studied the following problem [2]: consider binary extended

271t ‘minimum

perfect codes, i.e., with the following parameters: length n = 2! (¢ > 2), size
distance d = 4, over F'. It is known that n extended perfect codes C1, Cs, ..., C,, can partition
E™ C F", the set of even vectors, and that n extended perfect codes C, 11, Crya, ..., Cop,
can partition O™ = F\ E", the set of odd vectors. Given a second partition, Dy, D, ..., D,,
of E™, and D, 11, Dyya, ..., Da,, of 0", we define the intersection matriz of the partitions C'

and D, IM(C, D), by:
IM(C, D) =[|C; N Djlli=1,...2n,j=1,..2n,

and we try to construct different or nonequivalent intersection matrices, and to estimate
their number.

Using Latin squares, we show that the number of different matrices is between 2e7° and
2¢7" where n is large enough and ¢ and ¢ are positive constants (the number of nonequivalent

matrices is of the same order of magnitude).
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1.2 Arithmetic Codes

We detail the basic notions of arithmetic codes, which are less familiar even to coding theo-

rists.

1.2.1 Weights and Distances

Arithmetic codes are designed for error detection and correction in arithmetic processors
performing arithmetic operations such as addition, subtraction, complementation, shifting.

Let r (r > 2) be the radix with which we represent a positive integer I: the radiz r
representation of I is [ = 3, a;r*, where 0 < a; < r for all i. This representation is unique.
When a; = 0 for all : > n,and a,—1 # 0, [ can be written as a n-tuple: I = (a,_16p—2 . ..a1a0)
or l =a, 1a,_5...a10a0.

The addition of two positive integers is performed by a set of elementary units computing
the sum ¢; (modulo ) from the inputs (a;, b;, and a carry) and a carry (see Figure 4). One
error in unit 7 leads to a false sum (modulo r) ¢;, or to a false carry, i.e., an error 4e;r
(les] < 7), or £e;p17 ! (Jesy1| < 7). If globally we have an error E (difference between actual
and exact results), it is natural to define the weight of E as the minimum number of terms
+e;7" which sum up to E. Formally: a radiz r modified representation of I (positive, negative,

or zero) is any representation
[ =3 a;r', where |a;| < r for all i. (1.4)

This representation is not unique. Any representation (1.4) with a minimum number of
nonzero coefficients a; is called minimum. A minimum representation is not unique either.

Definitions. The arithmetic weight of I, W(I), is the number of nonzero terms in a minimum
modified representation of . The arithmetic distance between I, and I, D(Iy, 1), is the

arithmetic weight of their difference.

Each radix r defines arithmetic weight and distance. How to compute an arithmetic weight?
This is not as elementary as in the case of Hamming weight.

There are direct algorithms (Chiang and Reed [19]). But, since we’ll need it in Section 5,



1+ UUULING 14

L 4 carry

Fig. 4 — Unit .

we now describe a new modified representation, which is minimum and easy to establish. The
radiz r nonadjacent modified representation (NAMR) of I is a representation [ = Y g<;<, a;rt,
n — 1:

where |a;| <r fori=0,1,...,n and, for: =0,1,...,

(CLZ'CLZ'+1 = ()) or (CliClH.l > 0 and |a; + a;41] < r) or (aiaH_l < 0and |ag;| < |ai+1|).

The word “nonadjacent” comes from the binary case, where the above condition is a;a;4; = 0.
The NAMR exists for all integers [, is unique, minimum, and easy to compute from the

radix r representation (Clark and Liang [20]).

Let us now consider the modular addition of two elements [y and [, in the ring Z,, =

{0,1,...,m—1} (m > 0):

L + I, it L+ 1, <m,
Ll =
]1—|—[2—m, if [1—|—[sz

If the exact result Iy & I, is J and the actual result is K, we define the ring error F' € Z,, by
K = J@ F. Compared to E defined by K = J+ E, we have . = F' or E = F'—m depending
on whether £ > 0 or £ < 0; hence the following definitions (Rao and Garcia [71]):

Definitions. The Rao-Garcia modular weight of I € Z,,, Wra(I), is the smaller of W ([)
and W(m — I). The Rao-Garcia modular distance between [y and Iy € Z,,, Dra(11, I3), is

the Rao-Garcia modular weight of their modular difference.

Each couple (r,m) defines a modular weight (which can be computed by comparing two

arithmetic weights) and a modular distance. However, the triangle inequality is not satisfied
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in all cases. It is satisfied in the most commonly used moduli: m = r* or m = r" £ 1. From
now on, we use “weight” and “distance” even when the triangle inequality is not satisfied
and “metric” when we want to insist that it is. Ernvall [38], [39], [40] gives necessary and
sufficient conditions on r and m for Drg to be a metric.

When Dpgg is a metric, perfect codes can exist (see below, page 19): the triangle inequality
is necessary to have two spheres of radius ¢, with centres at distance 2t + 1, disjoint.

A second definition of modular weight exists, which is more recent (Clark and Liang [21]),
satisfies the triangle inequality, but seems more difficult to compute.
Definitions. The Clark-Liang modular weight of I is Wep (1) = min{W(J) : J € Z,J =
I mod m}. The Clark-Liang modular distance between Iy and I, Der (I3, I3), is the Clark-

Liang modular weight of their difference.
Each couple (r,m) defines modular weight and metric.

To our knowledge, the complexity of computing this modular weight is not mentioned

anywhere (see Section 4.2).

o> The first problem we tackled is to determine when the Rao-Garcia and Clark-Liang
modular distances coincide. We can use Ernvall’s results on when Dpgg is a metric, since
Dpe cannot equal Dey, if it is not a metric. Hence, we have only to investigate the following
cases: W(m) =1, W(m) = 2, W(m) = 3 and the NAMR of m has one among 22 possible
forms, or W(m) = 4 and the NAMR of m has one among 10 possible forms; in the binary case,
this reduces to W(m) =1, W(m) = 2, or W(m) = 3 and the NAMR of m is 2" 4 272 £ 2¢
(1 <n-—4) or 2% — 27 £ 9¢ (n=5<73<n—-21<j-2).

Depending on r and m, we obtained a quasi-complete characterization [53], [54]. Only
one subcase of one of the possible 22 forms (for W(m) = 3) was not totally solved. For

r < 13, the characterization is complete; in particular:
o> When r = 2, the two modular distances Dgre and D¢y, coincide if and only if W(m) < 2.

We note Doy, < Drg when they do not coincide.
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1.2.2 Arithmetic Codes

Arithmetic codes, designed for error correction in operations on integers, represent these inte-
gers with redundancy; if we perform modular additions, we code the integers 0,1,2,..., B—1
by multiplying them by an integer A: code C contains the integers 0, A,2A4,...,(B — 1)A.
Letting m = AB, we can check and correct the addition modulo m of two codewords Al;
and Al: their modular sum Al & Alyis A(LL+ 1) if L + I < B and A(l; + I — B) if
I + I, > B; it is a multiple of A between 0 and A(B — 1), i.e., a codeword. Error correction
is to search for the codeword closest to the actual result I = Al; & Al, & F'; error detection
can be done by dividing I by A: the remainder, depending only on F', is the syndrome of I.
If it is zero (no error, or an error multiple of A), we conclude that the result is correct; if

not, an error is detected.

The ring Z,, represents the set of all possible, maybe wrong, results, C' C Z,, the set of
correct results; the integers 0,1,..., B — 1 represent the information, and A is called the
generator of the code.

The codes {0, A,2A,...,(B—1)A} are called AN-codes. But more generally, just as linear
block codes are vector subspaces and nonlinear codes are simple subsets, we can define an
arithmetic code C as a subset of Z,,. All classical problems in coding arise for arithmetic

codes, but seem more difficult to solve.

o> The second problem we tackled is the existence of perfect arithmetic codes (cf. Sec-
tion 1.1.3). Given r and m, recall that an e-error-correcting code (with minimum distance

d=2e+1)C C Z, is perfect if and only if
O] V(e = m, (15)

where V(e) is the volume of the sphere of radius e (which does not depend on the centre
and is equal to |{y € Zn : Wer(y) < e} or [{y € Zy : Wra(y) < €}]). Observe that for an
AN-code C' C Z, d = Drg(C) = min{Drg(z,y) 1z € C,y € C,x # y} = min{Wrg(z)
v €0,z %0} =min{W(z) : z € C,z # 0}, and that a perfect e-error-correcting AN-code
has generator V(e): C' = {0, V(e),2V(e),. .., (|C| — 1)V(e)} (this holds also for Der).
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The answer to this problem is far from being as complete as for block codes.

We first consider the Rao-Garcia modular distance in the binary case. We saw (page 18)
that it is a metric if and only if the NAMR of m is: f1. 2%; f2. 2" £ 27 (j < n — 2);
320 42072 420 (1 <n—4); f4.20 =2 £2 (n—-5<j<n-21<j—2). Astola [1]
established the following facts for single-error-correcting AN-codes:

In Case f1, no perfect code exists. In Case f2, a necessary condition for the existence of
perfect codes is that 7 = 0 (m = 2" £ 1), and this is a well-known class of perfect codes, the
Brown-Peterson codes (see, e.g., Rao [70]). Cases f3 and f/ also yield many perfect codes.

In the ternary case, there is an infinite family of perfect codes, given by m = 3" — 1,
n =2e+1,C ={0,m/2} (Gordon [44]). These sorts of repetition codes are e-error-correcting

and are the only known nontrivial perfect codes correcting more than one error.
o> We found two new perfect ternary single-error-correcting codes [58]:

The AN-codes with generator 37 and moduli m; = 39 —-2.3"+3% and my = 3% + 1 are

perfect single-error-correcting.

I give the proof, which provides an insight into the arithmetic techniques used in this
field. Let Cy = {0,37,74,...,15281} (Cy has 414 words) and Cy = {0,37,74,...,19647} (C,
has 532 words). Moduli m; and my are such that Dpg is a metric, and in both cases, the
volume of the sphere of radius one is 37: for m; for instance, the integers of modular weight
zero or one are: 0,1,15317,2,15316, 3, 15315, 6, 15312, etc. We have to show that €y and C;
are l-error-correcting. Let = be the smallest positive integer such that 37z has arithmetic
weight < 3 (i.e., = 2). Let 37Tz = a-3'+¢b-3 (0<j<i,a=lor2,b=1o0r2¢==1). By
Gauss’ theorem, 3/ divides z, whence 37 - 3% =a-3"7 +¢cb, and W(37- 3%) = 2. Then 57 = 0:
a-3" = —ebmod 37. Listing the first powers of 3 modulo 37 (3,9,27,7,21,26,4,12 and 36) and
their doubles (6,18,17,...) shows that z is given by 37z = 3? + 1 > max{m; — 37, my — 37}.

So all codewords have arithmetic weight at least three, which ends the proof.

In conclusion of this very partial study in the case of the Rao-Garcia modular metric, observe
that no perfect code is known for » > 3, and that the Brown-Peterson codes (for m = 2" +1),

or the ternary repetition codes (for m = 3" — 1), are also perfect codes for the Clark-Liang
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modular metric, since in these cases the two modular metrics coincide.

o> One can ask, when Do < Dgrg and a perfect code C' C Z,, exists for the Rao-Garcia
metric, if the same code Ccan be perfect with respect to the Clark-Liang metric. We proved
that the answer is no for 1-error-correcting codes [55] and conjecture that it is no in all cases.

No perfect code is known for Doy when Doy < Dgg.

To see the hardness of the problem, consider the volume of the sphere, which, by (1.5),
gives a necessary condition for the existence of perfect codes: a code €' C Z,, can be perfect
e-error-correcting only if V(e) divides m.

Now, even in the case of the Rao-Garcia metric, we do not know the volume of the sphere
in all cases. From partial results (see Ernvall [41], [42]), inexistence results or parameters for

candidates can be established, for instance (Gordon [44]):

For m = r" £ 1, for e = 2 and V(e) < 2%, or e = 3 and V(e) < 2°9 the only perfect
e-error-correcting AN-codes are the ternary codes {0, (3% — 1)/2} and {0, (3" — 1)/2}, which

are 2- and 3-error-correcting, respectively (these are the aforementioned repetition codes).
o> We obtained the following results [58]:

1) When r = 2, for m < 2% 4 23 — 1 and e > 2, no perfect AN-code exists.
2) When r = 3, for m < 2-3%" —3% —2 and e > 2, the only perfect AN-codes are the ternary
repetition codes {0, (3%t —1)/2}.

Many cases of divisibility of m by V(e) can be ruled out for AN-codes (by showing that
the generator V/(e) or one of its multiples is of weight 2e or less) but codes other than AN
remain candidates.
o> Then we managed only to rule out the small cases, and we found no such perfect codes

(see [58], [59], and previous works mentioned there).
In conclusion, little is known, and we would need stronger algebraic or arithmetic tools,

such as the Lloyd theorem for the g-ary Hamming space.

o> Finally, third problem concerning arithmetic codes, we studied the asymptotic behaviour

of arithmetic binary codes [49], when m = 2" and m = 2" + 1. The usual techniques for
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error-correcting and covering codes lead to bounds of Hamming and Varshamov-Gilbert
type: let M,(n,d) be the maximum size of an arithmetic code with minimum distance d,
R, = Ry(n,d) = %log2 M,(n,d) the rate of such a code, § = d/n its normalized distance,
and H, the binary entropy.

When using f(n) < g(n) when n goes to infinity, we mean that f(n) < g(n) (1 + a(n)),
where |¢(n)| tends to 0 when n tends to infinity.

Then the following asymptotic inequalities hold (Kabatianski [48]):

6/2

1—46/2

R, X (1-6/2) (1 - HQ( )) — arithmetic Hamming bound,

R.? (1 —5)(1—[{2(1 d

5)) — arithmetic Varshamov-Gilbert bound,

when n goes to infinity.

Observe that the Varshamov-Gilbert bound guarantees the existence of codes with non-
zero asymptotic rate for § < 1/3 (see Figure 5). On the other hand, the Hamming bound
shows that the rate tends to zero when ¢ > 2/3. This can be immediately improved (1/2
instead of 2/3), since an arithmetic weight is at most (n + 1)/2.

Another simple remark is that the arithmetic weight of an integer z is at most the
Hamming weight of its binary representation. Hence, one can apply any upper bound on
block codes in Hamming space, in particular the McEliece-Rodemich-Rumsey-Welch bound.
We managed however to find an upper bound which is better than the application of the
McEliece-Rodemich-Rumsey-Welch bound to arithmetic codes.

o> Our asymptotic bound reads:

Ro & (1=p) (1= 1a(12)),

2 4 2
where p = 3 \/g — §5, 0 =d/n, and n goes to infinity,

see Figure 5. The technique is the following: we use the Bassalygo-Elias lemma, bounding

above the best density of a code by means of the best density in a subspace, here the set of
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FiG. 5 — Asymptotic behaviour of the rate, R,: lower bound, upper bounds.

integers with given arithmetic weight w. Since we do not have an analogue of the Johnson
bound, we actually consider a larger subspace, the set of ternary vectors with Hamming
weight w. Next we use the Johnson bound for ternary codes, together with the fact that
the arithmetic distance between two integers is at most the Hamming distance between the

ternary vectors of their nonadjacent modified representations in radix 2.

When r > 2, we could not improve on the simple application to arithmetic codes of upper

bounds from block codes.

1.3 Identifying Codes

Identifying codes are new (Karpovsky, Chakrabarty, and Levitin [51], 1998) and can be
seen as an extension of the theme of covering codes; given an integer ¢ and an undirected,
connected, finite or infinite, graph GG = (V, F), with the shortest path distance d, we define

Bi(u), the sphere of centre u € V' and radius ¢, as in the Hamming space, which, in terms of
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graphs, is the n-cube:
Bi(u) ={v eV :d(u,v) <t}

Similarly, a vertex u t-covers (or covers if there is no ambiguity) all vertices in B;(u). We
usually deal with graphs for which the volume of the spheres does not depend on the centre,
and note V/(¢) this volume.

Codes are subsets of V and their elements are codewords; a t-covering or covering code
C C V is such that the sets Bi(v) N C, v € V, are all nonempty. Then C is t-identifying
or identifying if moreover these sets B;(v) N C are distinct. The set of codewords covering
v € V is the identifying set of v.

We search for the smallest density, D(G, 1), of a t-identifying code in GG. The graph can
be the n-cube, or the square, triangular, or hexagonal grids, with possible applications to

processor networks where we want to spot a malfunctioning element.

General lower bounds can be established — assuming that the volume of the spheres of
radius ¢ is V/(¢): if C is identifying, it is also covering, hence the second inequality in (1.1)
holds:

o 1

VI~V

Using the identifying condition, we can improve on this bound: let L; be the set of vertices
of V identified by a singleton in C; then |V| — |L;]| vertices have identifying sets of size at
least two. Since |C| > |Ly|, we have |C|-V(t) > 2(|V —|L1|)+|L1] = 2|V |—|L1] = 2|V |=|C|:

|C] 2
Ll

VISV +1 (1.6)

D(G,t) > (1.7)

V(t)+1°
If (1.6) holds with equality, C is perfect. For instance, in a graph G consisting of a cycle with

six vertices, three pairwise nonadjacent vertices form a perfect code.

o> We proved [26] that there is no perfect nontrivial code for ¢ > 1.

One can improve on (1.6) or (1.7) in two ways: general methods, valid for all ¢ — we

detail an example in Section 1.3.2 —, or ad hoc methods, for small ¢ (actually, ¢ = 1).
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FiG. 6 — Fragments of our four infinite two-dimensional graphs.

Upper bounds on D(G,t) are by construction, either general — see an example in Sec-
tion 1.3.3 —, or specific, for small values of ¢ (see Figure 7). In this case, they are obtained
either “by hand”, like in Figure 7, or by combinatorial optimization heuristics (see page 44).

Before studying four particular graphs, let us mention that the decision problem corres-
ponding to the search for a ¢-identifying code, of bounded size, in a graph, is NP-complete

for all ¢ (see Section 4.3 for more development about this result).

Observe that the following four graphs are infinite. The constructions of identifying codes

will be periodic and described in a simple way.

1.3.1 The Square Grid

The infinite two-dimensional square grid, G'g, has vertex set V = Z x Z and edge set

Es={{u,v}:u—ve€{(0,1),(1,0)}}

(see Figure 6).
o> We proved the following bounds [24], [22], [26], [47], [16], [12]:

15/43 < D(Gs,1) < 0.35;
D(Gs,2) < 5/29;

3 .
8t+4"’

D(Gg,t) > (1.8)
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FiGg. 7 — A 1-identifying periodic code, with density 0.35, in the infinite square grid. Code-

words are in black.

2
D(Gg,t) < e for t even;

2t
D t) < —— for ¢ odd.
(s 1) S gy forto

The periodic construction of Figure 7 shows that D(Gg,1) < 0.35. We conjecture that
D(Gs,1) =0.35.

For t between 3 and 6, t-identifying codes were constructed using heuristics.

Observe that the lower bound (1.8) is in 1/¢, whereas (1.7) is in 1/¢?, since the sphere of

radius ¢ is in 2. In the other three graphs, we also have bounds in 1/¢, instead of 1/¢%.

1.3.2 The Triangular Grid

The infinite two-dimensional triangular grid, G, has vertex set V = Z x Z and edge set

Er ={{u,v}:u—v e {(0,1),(1,0),(1,1)}}

(see Figure 6). When ¢ = 1, (1.7) holds with equality: there is a perfect code, with density
0.25 (Karpovsky, Chakrabarty, and Levitin [51]).
o> We proved the following bounds [26], [16], [12]:
2
6t + 3

D(Grp,t) >

1
D(Gr,t) < YW for t = 0 mod 4;

2t +
1
2t + 27

D(Grp,t) < for t = 1,2 or 3 mod 4.
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F1G. 8 — In grey, the vertices belonging to Hi(x,y, z).

For t between 2 and 6, t-identifying codes were constructed using heuristics.

To give an insight into the ideas used for general lower bounds, I give the sketch of the

proof of D(Gr,t) > ﬁ
We call triangle any triple (z,y, z) such that there exist ¢ € Z and j € Z, with = = (1, ),
y=(i,7+1)and z = (e 4+ 1,7+ 1). Let Hi(x,y,z) = A(z,y) U Ay(z,2) U Ay(2,y), where
Ay(x,y) is the symmetric difference of the spheres of radius ¢ centred at x and y (see Figure 8).
It is easy to see that |Hy(x,y, z)| = 6t+3, and that, if C' is t-identifying, then |Hy(z,y, z)N

C| > 2. Arguments using translations and tilings of the infinite plane, similar to the

Bassalygo-Elias lemma (cf. page 22), imply that the density is at least 2/(6¢ + 3).
1.3.3 The King Grid
The infinite two-dimensional king grid, G, has vertex set V' = Z x Z and edge set

Ex = {{uvv} uU—vE {(0’ 1)’ (1’0)’ (1’ 1)’ (1’ _1)}}

(see Figure 6). Its name comes from the fact that, on an infinite chessboard, the sphere of
radius t is the set of squares that a King can reach in at most ¢ moves, starting from the

centre.

o> We obtained the exact value of D(G g ,t) for all values of ¢ [27], [26], [16], [13]:

D(Gg,1)=2/9;
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1
D(Gg,t) = pre for t > 1.
The construction yielding the upper bound 1/4¢ for all ¢ is easy to describe:
C=|J{(2kt + a,a): @ € Z,a even}.
keZ

It is less easy to prove that C' is indeed t-identifying. But it is still less easy to prove that
1/4t is also, for ¢ > 1, the lower bound on D(Gk,1).

1.3.4 The Hexagonal Grid

The infinite two-dimensional hexagonal grid, G'i, has vertex set V = Z x Z and edge set

Ey = {{u=(i,j),v}:u—ve{(0,(=1)"),(1,0)}}

(see Figure 6).

o> We proved the following bounds [33], [25], [26], [16], [12]:
16/39 < D(Gy, 1) < 3/7;
D(G.t) > —— for t even:
Hit) 2w, for beven;
2

> .
D(Gg,t) > Tt for ¢ odd;
8t —8

D(GH,t) S m, for t = 0 m0d4,

8
D(Gg,t) < for t = 1 mod 4;

~ 9t —25
D(Gg,t) < L, for t = 2 mod 4;

9t — 34

8t — 16

DD < g —3)

For t between 2 and 8, t-identifying codes were constructed using heuristics.

, for t = 3 mod 4.
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2 Basic Facts in Complexity

Our goal is to give an intuitive approach of completeness in the polynomial hierarchy.

We deal only with decision problems, consisting of an instance and a question whose
answer is YES or NO. An algorithm A solves a problem 7 if, applied to any instance [ of 7,
it gives the correct answer. An estimation of the size of an instance [ of 7 is given by any
“reasonable” encoding of I (for instance, a reasonable encoding of an integer m requires
log m bits; we'll see however (page 41), about linear codes, the paradoxical results induced
by this notion of size). The time complexity function of an algorithm A solving = is, for each
possible instance size, the mazimum time required by A to solve an instance of that size.
A polynomial(-time) algorithm is one whose time complexity function can be bounded by a
polynomial p(n), where n is the size of the instance we consider. The class of polynomial-time
solvable problems is denoted by P.

A polynomial reduction from a problem m; to a problem 73 is a polynomial construction
mapping any instance of m; into an equivalent instance of w3 (the answer is the same for both
instances). Thus, such a transformation provides the means for converting any polynomial
algorithm solving 7 into a corresponding polynomial algorithm solving ;.

Next, we introduce the class NP: a decision problem belongs to NP if it can be solved by
a nondeterministic polynomial(-time) algorithm, i.e., an algorithm constiting in two stages: a
guessing stage and a polynomial-time checking stage. The first stage provides a structure s.
The second stage is deterministic and correctly answers YES or NO. For instance, consider
the well-known Travelling Salesman (TS) problem, for which the instance is a set of cities,
the set of integer distances between the cities, and an upper bound B, and the question is
whether there exists a Hamiltonian cycle of length at most B; the guessing stage provides a
sequence s of cities and the checking stage checks in polynomial time if s is a Hamiltonian
cycle of length at most B.

For a set S of problems, let coS be the set of problems that are complementary to those
of S (their answers are reversed). We have P = coP C NP N coNP, but membership of NP

does not seem to imply membership of coNP (see Figure 9). For instance, the complement
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problems

coNP-complete

problems

Fic. 9 — Complexity classes, if NP # coNP.

of TS is to determine whether all Hamiltonian cycles have length at least B + 1, and there
is no known way to verify a YES answer short of examining a very large proportion of all
possible Hamiltonian cycles, which is not known to be achievable in polynomial time.

Among problems in NP, some have the property that all other problems in NP can
be polynomially reduced to them. We denote by NP-C this class and call NP-complete its
members. If one problem in NP-C could be solved in polynomial time, then so could every
problem in NP, and P would be equal to NP. The question “P=NP?” is still open. The
NP-complete problems can be seen as the most difficult in NP. For instance, TS is NP-
complete (Karp [50]), and so is 3-satisfiability (3-SAT) (Cook [35]), for which the instance
is a set of variables and a set of clauses containing exactly three different literals (a literal
is either a variable z; or a negated variable 7;), and the question is whether there exists
a truth assignment to the variables such that each clause has at least one true literal (in
other words, can the Boolean formula F be satisfied, if £ =C;y ACy A ... AC,,, each clause
Ci=x, Va,Va, fort=12,...,m, and z;,, z,,, and z;, are three distinct literals? Such
an expression for F is called its conjunctive normal form).

Some problems might be harder than the NP-complete problems and classes of problems
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FiG. 10 — Complexity classes, if Ypp1 # Hpyq, k> 1.

of increasing apparent difficulty can be defined, which form the polynomial hierarchy. The
notion of completeness can be extended inside these classes: a problem 7 belonging to a
class S of the polynomial hierarchy is S-complete if every problem in S can be polynomially
reduced to .

In particular, the polynomial hierarchy contains classes denoted by Ilg, Iy, ..., II4, ...,
and g, X1, ..., Xk, ..., with the following properties: 1l = ¥y = P, ¥; = NP, II; = coNP,
Iy, = coXy, X UTlp € Xpp1 N1lgyq (see Figure 10).

Roughly speaking, a problem is in ¥, if it can be solved by a nondeterministic polynomial
algorithm with access to an oracle (a subroutine) that provides, in one step of computation,

solutions to a problem in ¥;_;. Another rather informal characterization of ¥ is to represent

the instance of a problem 7 by a string z; now 7= € ¥ if and only if 7 = {z : JyVy,...



L VUMD LEALL Y

QurR(z,y1, Y2, ..., yr)}, where the quantifiers alternate, @) stands for ¥ (respectively, 3) if
k is even (respectively, odd), R is a polynomial-time recognizable relation, and the lengths
of the strings vy, y2, ..., yr are polynomially bounded by the length of the string z. The
same characterization holds for I, with the alternating quantifiers V3V.... The following
problem is Ilz-complete (Meyer and Stockmeyer [67]):

Name: V13,V5. .. Qi-3-satisfiability, where the quantifiers alternate and @) stands for V (res-
pectively, 3) if k is odd (respectively, even).

Instance: k integers my, ma,. .., my, a quantified Boolean expression Vuy...Vuy,, Jug,
oo 3ug e, Vusy L VU gy QUi - QU g, B/, where B s in conjunctive normal form, each
clause contains exactly three distinct literals, and the quantified variables are all the variables
of F.

Question: Is it true that for every truth assignment to wyy,...,uy m,, there exists a truth
assignment to ugy, ..., Usm,, such that for every truth assignment to usy,...,uzpmy,..., F

is satisfied?

To prove that a problem 7 is S-complete, we have to check that it belongs to S, and that
every problem in S can be polynomially reduced to 7. For the second step, it is sufficient
to prove that some known S-complete problem mg is polynomially reducible to 7, since all
problems in S are polynomially reducible to my and the reduction process is transitive.

Completeness results are conditional; for example, the NP-completeness of a problem =
means that a polynomial algorithm solving 7 exists if and only if P=NP. Analogously, for
k > 1, the ¥i-completeness of 7 implies that 7 € ¥ \ ¥j_1, unless ¥y = ;. It is not
known whether the polynomial hierarchy is finite or infinite. The first alternative occurs if
P=NP; it also occurs if for some kg > 1, ¥y, = Ilg,, since it can be shown that this would
imply that for all & > ko, ¥ = I = ,.

It is widely believed that P#£NP, i.e., that no polynomial algorithm exists for NP-complete
problems.

When faced to NP-complete problems (or even higher in the hierarchy), one can use

heuristics such as simulated annealing, genetic algorithms, taboo search, or noising (see
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Sections 4.1, page 41, and 4.3, page 44).

o> On the theory of complexity and its formal tools (problems and languages, reasonable en-
codings, size of a problem, classes of problems, completeness, reductions, deterministic and
nondeterministic Turing machines, short certificate, class NP, strongly NP-complete pro-
blems, pseudo-polynomial problems, oracle, polynomial hierarchy, ...), as well as its appli-
cations to block codes, cryptography, and vector quantization — see also Sections 3 and 4 —
Jean-Pierre Barthélemy, Gérard Cohen, and myself have written a book, “Algorithmic Com-
plexity and Communication Problems” [6] (in French), published in 1992. It has xxxviii+228
pages, six chapters (1. Problems and languages 2. Machines, languages and problems, classes
P and NP 3. NP-hard problems and languages 4. Complexity and coding 5. Complexity and
cryptology 6. Vector quantization) and was shortly reviewed in 1993 by Professor Cristian
Calude (Auckland University, New-Zealand) in Mathematical Reviews:

The book represents a clear, synthetical and deep presentation of the problem
P =? NP. It contains six chapters (Problems and languages, Classes P and NP,
NP-hard problems, Complexity and coding, Complexity and cryptology, Vector
optimization). It is a serious, updated rival of the famous Garey-Johnson 1979
book. As in most cases in the history of mathematics, the challenging open pro-

blem P =7 NP generates many other problems, often interesting in themselves.

Our book was translated into English (published in 1996 [7]).
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3 Three Cryptosystems

Here we shall describe shortly three public-key cryptosystems which will appear again in the
next sections. Public-key cryptography was born in 1976 (Diffie and Hellman [37]). It does
not require the exchange of a key on a secure channel, but needs trapdoor one-way functions,
i.e., functions which are easy to compute and hard to invert, unless one has additional
information, called the trapdoor of the system. Such functions were designed only in 1978,

and we shall now describe three of them, the RSA, the knapsack and the McEliece.

3.1 The RSA Cryptosystem

The name comes from its designers, Rivest, Shamir, and Adleman [72]. A user B wishing to
receive private messages chooses two large primes p and g and computes n = pg. The set of
plaintext messages M and of ciphertext messages C is the set of integers from 0 to n — 1.
Knowing p and ¢, it is elementary to find two positive integers e and d such that for any
integer M € M, M = M* = M mod n.

Indeed, it suffices to choose e between 2 and n, coprime with (p — 1)(¢ — 1), and to
compute d (using Euclid’s algorithm) such that ed = 1 mod (p — 1)(¢ — 1). Hence, inver-
ting a modular exponentiation, to the left or to the right, is computing another modular
exponentiation, with the exponents satisfying a2’ = 1 mod (p — 1)(¢ — 1).

Are public € and n, are secret d, p, and ¢, the trapdoor. Any A knowing e and n can send
to B a message M € M, whose privacy is protected: A computes the ciphertext message
C € C, C = M® mod n. The receiver, with the secret key d, computes C?¢ = (M¢)? = M =
M mod n.

The cryptanalyst intercepting C' faces the following problem: he knows that C' = M*® mod
n where C, e, and n are known but M unknown; he knows that M = C? mod n where C
and n are known but M and d unknown. The two problems, retrieving M from M*® mod n
(extraction of the e-th root modulo n) without factoring n, or retrieving d without factoring n,
have had no satisfactory solution since the introduction of RSA, and it is believed that the

security of RSA is based on the hardness of factoring large integers.
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RSA requires fast modular exponentiation, since this operation both enciphers and deci-

phers. See Section 5 for methods improving the speed of modular exponentiations.

3.2 The Knapsack Cryptosystem

Several cryptosystems use the following NP-complete decision problem (Karp [50]):

Name: KNAPSACK.
Instance: n + 1 strictly positive integers ay,as,...,a,,S.

Question: Are there n numbers x; (2; = 0 or 1) such that Yi<i<n @i = ST

We describe the first one, by Merkle and Hellman [66]. A user B wishing to receive private
messages chooses two large numbers m and w, coprime (so that there exists an integer w’

such that ww' = 1 mod m). He chooses a superincreasing sequence a (of large length) of

integers ay, as, ..., a,: for all i between 2 and n, a; > 37 1<j<;1 ;. Finally, he chooses a
permutation o over {1,2,...,n}. He “scrambles” the superincreasing knapsack, transforming
it into a knapsack a’ = (a},d}, ..., a}) defined by af = wa,; mod m for i =1,2,...,n.

The knapsack a’ is public, the knapsack a, the permutation o, and the integers w and m,
are the secret trapdoor. The set of plaintext messages M is the set of binary vectors of

length n, the set of ciphertext messages C is the set of integers from 0 to },<;c, a} (or

K3

!/

)] +1). Any A knowing a’ can send to

K3

the set of binary vectors of length [logy(3i<i<, @
B a message M = (M, My, ..., M,) € M, whose privacy is protected: A computes the
ciphertext message C' € C, €' = ¥, <<, M;a;. The receiver, with the secret key a, o, w, and
m, computes Cw' = 37 ;<, Miajw' = 31 <;<,, Mia,(;y mod m. If m is larger than 37, <<, a;,
then Cw' = 31 <;<, Mia,(;), and B can retrieve M, using the superincreasing property.

The cryptanalyst intercepting C' must solve an apparently arbitrary instance of KNAP-
SACK.

3.3 The McEliece Cryptosystem

This system, designed by McEliece in 1978 [64], is based on the following problem, and shows
a direct link between coding and cryptography:
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Name: Linear Decoding (LD).
Instance: A binary matrix H, a binary vector y, an integer w.

Question: Is there a binary vector x, of weight at most w, such that xH? = y?

This problem is NP-complete (Berlekamp, McEliece, and van Tilborg [8] — cf. Section 4.1).
Let n = 2™ and ¢ be an integer. A user B wishing to receive private messages builds a
generator matrix G, of dimensions k x n, of a binary Goppa code, Cgoppa, of parameters
[n,k > n—mt,d> 2t + 1]. He chooses a “scrambling” matrix S, nonsingular, of dimensions
k x k: computing SG produces combinations of rows of G. He chooses a second scrambling
matrix P, a permutation matrix of dimensions n x n: computing G’ = (SG)P permutes the
columns of SG.

Are public G' and ¢, are secret G, S, and P, which are the trapdoor. The set of plaintext
messages M is the set of binary vectors of length k, the set of ciphertext messages C is
the set of binary vectors of length n. Any A knowing G’ and ¢ can send to B a message
M € M, whose privacy is protected: A computes C € C, C = MG’ + E, where E is
a random vector of length n and weight ¢ (vector E, which is not part of the trapdoor,
is kept secret by the sender). The receiver, with the secret key G, S, and P, computes
CP~' = MG'P™' + EP™!' = (MS)G + EP~!, where, because P is a permutation matrix,
EP™' has the same weight as E. A fast decoding algorithm (linear in n) for Cgoppa is applied
to vector CP ™! in order to obtain MS, since the weight of EP ™! is within correction capacity.
The receiver multiplies to the right by S™! and gets M.

The cryptanalyst intercepting C must solve an apparently arbitrary instance of LD.

Note that if vector E has weight less than ¢, the McEliece system can be used combining
both error correction and privacy: during the transmission of C, an error vector E’ from the

channel can be added to E; as long as the weight of E + E’ is not more than ¢, retrieving

MS is possible.
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4 Links Between Coding and Complexity

4.1 Links Between Complexity and Block Codes

The complexity of several decision problems associated to crucial problems in coding theory

has been determined. The following two concern error-correcting codes:

Name: Linear Decoding (LD).
Instance: A binary matrix H, a binary vector y, an integer w.

Question: Is there a binary vector x, of weight at most w, such that xH? = y?

We saw (page 9) that LD is associated to the decoding of a binary linear code C, given by
a parity-check matrix H.

Name: Minimum Weight in a binary linear code (MW).
Instance: A binary matrix H, an integer w.

Question: Is there a nonzero binary vector x, of weight at most w, such that xH? = 0?

Associated to this decision problem is an upper bound on the minimum distance of a binary
linear code (cf. page 8).

LD is NP-complete (Berlekamp, McEliece, and van Tilborg [8]). It has been questioned
whether its statement is the best one for modeling linear decoding (Bruck and Naor [11]):
the code (or the matrix H) is not modified once it has been chosen, only the vector y
changes. It would therefore be possible to apply a preprocessing to H, in order to later process
efficiently (in polynomial time) the vectors when they are received. We can see the instance
of LD in two parts: matrix H is a “fixed” part, and y, the syndrome of the received vector,
a “mobile” part. The problem with preprocessing (LDWP) is formulated by removing H
from the instance. Then one obtains a complexity result weaker than NP-completeness, but
still capable of implying the early collapse of the polynomial hierarchy: the existence of a
polynomial algorithm solving LDWP would imply that Il = ¥, (= Il = ¥ for all & > 2)
(Bruck and Naor [11]).

o> We gave a new proof of it, direct and also valid for any alphabet other than binary
[56], [57].
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o> In the same vein, consider the KNAPSACK problem (Section 3.2). In its cryptographic
use, the n integers ay, ..., a,, are not modified for some time, during which only the message
(the integer S) changes. Again, we can see the instance in two parts: a fixed part (the
integers a;) and a mobile part (the integer S), and the problem with preprocessing is stated
with the integers a; removed from the instance. We showed [57] that the existence of a
polynomial algorithm for this problem would imply that, as for LDWP, 11, = ¥,.

Observe that two of the three public-key cryptosystems described in Section 3 are cons-
tructed on the problems LD and KNAPSACK. However, the above results, dealing with their
complexity with preprocessing, are no additional safeguard: in cryptography, we actually face

polynomial instances, even if they have been scrambled so as to look arbitrary.

The second coding problem, MW, is NP-complete (Vardy [73], 1997, some nineteen years
after it was conjectured in [8]). Before this breakthrough, the NP-completeness of several
variations had been shown: Exact Weight [8], Average Weight (Diaconis and Graham [36]),
Incongruent Weight, Maximum Weight, and Weight-Range (Ntafos and Hakimi [68]), where
the question is whether there exists a codeword with weight equal to w, equal to [n/2]
(n = length of the code), at most w and not a multiple of a given integer, at least w, and

lying between two given integers, respectively.

o> As for us, we had proved [60], among others, that knowing whether there exists a codeword
with weight at most w whose first szﬁj components are ‘1’, is NP-complete for fixed p > 3.

This result is “almost optimal”: if we replace wp/(p + 1) by w — A, A constant, then
the problem is polynomial. Indeed, complete, in all possible ways, with at most A ‘1’, the
length n vector whose first w — A components are ‘1’, and check membership of the code.

The number of checkings is i, (n_(z.u_”), which is in n?, i.e., polynomial in n. If X is a

fraction of w instead of a constant, we have an NP-complete problem.

In the ternary case, note for instance that the existence of a codeword with weight equal

to the length is NP-complete (Barg [5]).

Now we consider covering codes.
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Name: Covering Radius of a binary Linear code (CRL).
Instance: A binary matrix H (of dimensions m x n), an integer w.
Question: For any binary vector y (of length m), is there a binary vector x (of length n),

of weight at most w, such that xH? = y?

Name: Covering Radius of a binary code (CR).
Instance: A binary code C (of length n), an integer w.

Question: For any binary vector y (of length n), is there a codeword ¢ such that d(e,y) < w?

We saw (page 9) how CRL corresponds to bounding above the covering radius of a binary
linear code; CRL is Ily-complete (McLoughlin [65]). The same problem for nonlinear codes,
CR, is “only” coNP-complete (Frances and Litman [43]), whereas CRL is its subproblem.
This paradoxical result can be explained by the more compact representation of a linear
code: the size of a problem involving linear codes [n, k], given by generator or parity-check
matrices, is n -k = n - log, |C|, whereas, for nonlinear codes (n, K), given explicitly but

uneconomically by their elements, the size is n- K = n - |C|.

o> We proved that the same result is true for the minimum norm of a code (defined on
page 12) [46]: bounding above the minimum norm of a binary linear code is IIs-complete,

the same for nonlinear codes is coNP-complete.

These results do not stop the search for codes with good parameters, at least for small
lengths, and the use of iterative heuristics, such as noising or simulated annealing, gave
new constructions. The noising method (see, e.g., Charon and Hudry [14]), described in
Section 4.3 in connexion with the construction of identifying codes, has been successfully
applied to the construction of error-correcting codes over Fy (Bogdanova [10]), improving on
lower bounds on A(n,d) (defined on page 11) for quaternary codes with lengths up to 12.
o> We were less successful when we applied it to covering codes [15], hoping to improve some
upper bounds on K(n,1) (cf. page 10), for n between 9 and 12: we only rediscovered the
known upper bounds. (Note added on April 27, 2001: for length 9, this is not surprising. At
that time, we knew only that 57 < K(9,1) < 62; now it has been proved that K(9,1) =
62 [69].)
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4.2 Links Between Complexity and Arithmetic Codes

As mentioned earlier (page 18) when presenting the Clark-Liang modular weight, its com-
plexity has seemingly never been tackled. If the two modular distances, Rao-Garcia and
Clark-Liang, coincide, then it is sufficient to compare two arithmetic weights. In the general

case however, how many arithmetic weights, what sizes of integers need to be considered?

Recall that the problem is the following: given a radix r, a modulo m, an integer [
between 0 and m — 1, what is the minimum, W, (1), in the set {W(J) : J = I+km,k € Z},
where W(.J) is the arithmetic weight of J, i.e., the minimum number of nonzero terms in a

radix r modified representation of J.

o> We skimmed over the topic in [61]: D¢y is graphical (van Lint [52]); it is the shortest
path distance in the Cayley graph G = (V,E) where V = Z,, and the generators are
{zr*mod m :|z| <r,i=0,1,...}. The generators give the integers with modular weight 1,
thus we know the neighbours of any vertex in V. A breadth-first search, starting from 0,
successively constructs the sets of vertices of modular weight 2, 3, ..., We (). Its complexity
is bounded above by

> deg(v) = 2|E| < m?.

veV
Another, statistical, approach could be used for estimating the Clark-Liang modular

weight; see page 49.

4.3 Links Between Complexity and Identifying Codes

Consider, for fixed ¢, the following decision problem:

Name: ¢-Identifying Code.
Instance: A connected bipartite graph G = (V, E), an integer k& < |V/|.

Question: Is there a t-identifying code C' C V of size at most k7

o> We proved [26], [18] that this problem is NP-complete. I give the proof for t = 1. Mem-
bership of NP is easy to check, and we polynomially reduce the NP-complete problem 3-SAT
(cf. page 30):
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Name: 3-satisfiability (3-SAT).

Instance: A set ¢ of clauses over a set X of variables, each clause containing exactly three
distinct literals.

Question: Is there a truth assignment to the variables such that each clause contains at

least one true literal?

From ¢ = {C,Ca,...,C}, X = {z1,22,...,2,}, we construct a bipartite graph G and an
integer k such that ¢ can be satisfied if and only if there is a 1-identifying code of size at

most k. For each variable z; € X, we construct G, = (V;,, Ez,), where
‘/l'i = {ai7 biv Tiy Tiy Cis d2}7

e = {{ai, b}, {bi, 2}, {bi, T}, {2i, i}, {7, e}, {ei, di} }-

For each clause C; = {u;1,u;2,u;3}, we construct the graph Ge, = (VC] , EC]), which contains
two vertices, a; and (3;, and one edge, {a;,3;}, to which we add the set of three edges
Ee, = {Haj,ujnks {aj, ujnt, {og, ujst}

Graph G has vertex set V., U V¢, and edge set F,, U L¢, U Eé] (1 <i<n,1<j5<m;
it is bipartite. We set k = 3n + m.

If € can be satisfied, then a 1-identifying code C', of size k, can be constructed as follows:
for all ¢ between 1 and n, b;, ¢;, and whichever of z; and Z; is true, belong to C; for all 5
between 1 and m, o; € C.

Conversely, assume that C' is a l-identifying code. Then |C' N V¢,| = 1 or 2, and a; is

necessarily covered by a codeword which does not cover ;. Next, |C' N V.| > 3, and, if
|C N V.| = 3, then exactly one of z; or T; belongs to C. So |C| > m + 3n = k, hence
|C| = k, therefore |C N'V,,| = 3, and setting z; true if z; € C, false if T; € C, is a valid
truth assignment to the variables of X. Since «; must be separated from (3;, it is covered by

a codeword corresponding to a literal in clause C;, which shows that in each clause there is

at least one true literal, and ends the proof.

An immediate consequence is that, if ¢ is not fixed, the problem is NP-complete.
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We mentioned on page 23 that identifying codes are recent. However, a close notion, that
of locating-dominating sets, is older (see, e.g., Colbourn, Slater, and Stewart [34]): a subset
of vertices (from now, we’ll say: a code) is (t-)locating-dominating if all vertices which are
not codewords have nonempty and distinct identifying sets.

We learnt the existence of this close concept after having started our own research on
identifying codes, and it turned out that we had taken directions quite different from those
developed by Slater and other authors (besides, they worked only on ¢ = 1); therefore no
common methods have emerged. However, in [34] it is proved that the following decision

problem is NP-complete:

Name: 1-Locating-Dominating Code.
Instance: A connected graph G = (V, F), an integer k£ < |V].

Question: Is there a 1-locating-dominating code C' C V' of size at most k7

This inspired us for proving the NP-completeness of the problem of existence of t-identifying
codes with bounded size.
o> We extended [18] this NP-completeness result concerning 1-locating-dominating codes to
all integers ¢, and for bipartite graphs.

We also generalized the two notions, of identifying code and of locating-dominating code,
to directed graphs, and proved that the corresponding decision problems are NP-complete,

too, for all ¢ fixed or not, and for bipartite graphs [17].

On the one hand, we established complexity results; on the other hand, we built identifying
codes with size as small as possible, in the four graphs described in Section 1.3.
o> We developed construction algorithms [16] which we now describe shortly.

The goal being to construct codes with low density in some infinite graphs, we searched
only for periodic codes. Having showed that, in order to consider all periodic codes in Z x Z, it
suffices to consider rectangular tiles inside which we put codewords, we proceeded as follows:
we fix integers t, w, h, @ (0 < o < w), and ¢ (¢ < w x h), and we search for a subset Cg,
of size ¢, of a rectangle R with width w and height A, such that, by translating R by the

vectors (w,0) and (a, k), we obtain a t-identifying code C. In the example of Figure 7, the
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values of w, h, a, and ¢ are 10, 2, 3, and 7, respectively. A solution is any subset Cg of R,
with size ¢, and we define an objective function f for each solution. If this function, taking
into account the vertices which are not ¢-covered by any codeword, and the pairs of vertices
which are t-covered by the same codewords, is zero, then Cgr induces a t-identifying code.

To this model, we can apply iterative descent methods, for instance with noising (cf.
page 41): we arbitrarily fix ¢ codewords inside R. We successively consider each of the code-
words, and compute the move which minimizes f. Each time, we move the codeword either
on the place minimizing f, or randomly, with a probability to be in the latter case progres-
sively decreasing, from an initial value (typically, 0.2 or 0.3) down to zero. The algorithm
stops when f = 0 or when a certain number of moves (typically, 300 times the number of
vertices in R) has been made.

Scanning small values of w, h, «, ¢, we search for codes whose density wi improves on

the known upper bounds. See [16] for results.
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5 Links Between Coding and Cryptography

Many links exist between coding and cryptography, whose common goal is to protect infor-
mation transmission, from either transmission errors or attacks threatening the data privacy
or integrity. An elegant example uniting these two aspects of security is given by the McE-
liece system (cf. Section 3.3), which uses error-correcting codes and can behave like a code

and a cryptosystem at the same time (see page 37).

We were given the opportunity to investigate another relation between coding and cryp-
tography, existing between the different representations of integers used in the framework
of arithmetic codes (see Section 1.2.1) and the RSA system, which requires fast modular
exponentiations (see Section 3.1).

We wish to compute M€ or M? mod n, where n = pg and e, d are two integers satisfying
ed =1mod (p—1)(g—1). If d = dy—1ds—3 .. .d1dy is the radix 2 representation of d (with
di—y = 1), the well-known “square-and-multiply” method computes M? with ¢ squarings
and w multiplications, where w is the number of nonzero components d;: set B = 1 and at
each step 7, 1 < 1 < /, compute R < R?, and if d,_; = 1, also compute R < MR. The
final R is M<.

o> We exploited the following two basic ideas [32], [29]:

1) Using the nonadjacent modified representation (NAMR — cf. page 17) of d, we hope to
have fewer nonzero components and save multiplications.

2) MHEE=1(=1) = M7 mod n, for all k. We hope to find an exponent d + k(p — 1)(q — 1)

having a representation with “few” nonzero components, and save multiplications.

Consider the binary NAMR of d:

=
d=>Y d2 =d,_d,_,...d\dy, where d; =0,1, or —1,dj,_; =1,did},; = 0,0 <{+1.
=0
This representation is minimum and gives the arithmetic weight of d. Now it can be

shown that the average arithmetic weight of an integer whose NAMR has length ¢ is ¢/3,

whereas the average Hamming weight of a length ¢ binary vector is £/2.
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The drawback of the NAMR is that it contains ‘—1’. This can be circumvented by
grouping together the ‘1’ and the ‘—1’, to have only one modular division to perform: let

d=dt —d with dt =542, d™ = Y;ep2'; then M4 = MY /M*© .

Now we study the average improvement obtained by replacing d by d = d+k(p—1)(g—1);
we consider that the cost of a multiplication is « times the cost of a squaring, and for the
sake of simplicity, we investigate only the case using the binary representation of d and d,
not their NAMR. We wish to minimize, among a set of possible exponents J, the quantity
ﬁ(ci) + oz'w(ci), where E(J) is the length, and w(ci) the number of nonzero components, of
the representation of d, since this quantity expresses the equivalent number of squarings
necessary to compute Me.

We set £ = {(d), (= K(CZ), Uk)=1tl, = (p—1)(g—1), and use the following approxima-
tions (the integer n is 500 bits long, and the secret key d must be grosso modo of the same

order of magnitude):
(= 0(d+ kp) ~ ((kp) = (k) + [($) and £~ ().

As a consequence, (=~ (1 4+ t)f. Now we assume that, when k ranges over the integers of
length (k) = t/, the set of the 2 vectors of length £ = (1 +1)¢ representing the exponents d
behaves like a set of vectors chosen randomly and independently among the 2t binary vectors

of length /. Then, the expectation of the number of vectors with weight v in this set is:

2@

(i) > 2 (5.9)

Let & = ming,>;u = yl. Using the binary entropy H,, an approximation of (5.9) is:

Eu:2”><@

and is greater than 1 as long as

gHg(y) =/{, or Hy(y) = 1/(1 +1¢). So the average number of squarings, ﬁ(ci) + ozw(ci), is

(+ait={(1+ay) = (1 +)(1 + a;" <t4%1))

Its qualitative behaviour with ¢ is given by Figure 11.
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cost A

FiG. 11 — Behaviour of the cost of a modular exponentiation.

A more detailed report can be found in [32], [29]: minimum cost and value of ¢ for which it
is reached, with different assumptions on the ratio o between the cost of a multiplication and
the cost of a squaring, in the case of binary representation as well as of modified representa-
tion. For instance, with the assumption that a = 2, in the case of the binary representation
we have just described, there is an average improvement of slightly more than 9%, for an
exponent length increasing by slightly less than 11%.

Our simulations corroborated these results and validated our theoretical model, vindica-

ting our approximations and assumptions.

The study of the case of modified representations could be done in the same way, this
time trying to minimize W(cz) instead of E(J) + on(ci), and we see that this is exactly trying
to estimate the Clark-Liang modular weight of d modulo ¢, since we search for d=d+ ko,
with minimum arithmetic weight (cf. Sections 1.2.1 and 4.2).

This possible, statistical, approach, does not exempt from a more theoretical investigation

on the complexity of this problem, in view of results better than those of Section 4.2.
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6 Prospects

Identifying codes are relatively new and offer vast possibilities for combinatorial or geometric
investigations. This is why I plan to dedicate most of my future research to this topic.

One can for instance think of new techniques for lower bounds on the cardinality of an
identifying code (i.e., nonexistence results); study classes of graphs such as chains or trees
[work in progress], or, for the infinite grids of Section 1.3, jump from dimension two to three;
find the complexity of the problem for certain graphs [work in progress for the n-cubel;
apprehend, in the n-cube, the behaviour of the spheres when we increase the radius: after a
while, their “identifying power” decreases — when we take spheres of radius n, we cannot
identify any vertex.

Finally, in the case of the aforementioned infinite grids, one possible generalization seems
particularly rich: let V- = Z x Z be the vertex set. Up to now, we considered edges and spheres,
and spheres were patterns used for covering V' and identifying the vertices: for instance, in
the king grid, a sphere of radius ¢ is a square with sides of size 2t + 1. Now, we directly
consider a pattern, e.g., a square with sides of even size. It is not a sphere, however we can
try to use it and cover V', in such a way that two distinct vertices are differently covered.

Now all sorts of patterns can be used...
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