
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 0000; 00:1–30
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Exhaustive test sets for algebraic specifications

Marc Aiguier1, Agnès Arnould2, Pascale Le Gall1 and Delphine Longuet3∗

1 CentraleSupelec, MAS, Châtenay-Malabry, France
2Université de Poitiers, XLIM UMR7252, Futuroscope, France

3Université Paris-Sud, LRI UMR8623, Orsay, France

SUMMARY

In the context of testing from algebraic specifications, test cases are ground formulas chosen amongst the
ground semantic consequences of the specification, according to some possible additional observability
conditions. A test set is said to be exhaustive if every program P passing all the tests is correct and for
every incorrect program P , there exists a test case on which P fails. Since correctness can be proved by
testing on such a test set, it is an appropriate basis for the selection of a test set of practical size. The
largest candidate test set is the set of observable consequences of the specification. However, depending
on the nature of specifications and programs, this set is not necessarily exhaustive. In this paper, we study
conditions to ensure the exhaustiveness property of this set for several algebraic formalisms (equational,
conditional positive, quantifier-free and with quantifiers) and several test hypotheses. Copyright c© 0000
John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Specification-based testing; Algebraic specifications; Exhaustiveness; Observability.

1. INTRODUCTION

In the framework of black-box testing, specification-based testing has shown its efficiency to state
conformance of programs with respect to their specifications. When specifications are given with
a formal text provided with mathematical semantics (i.e. formal specification), both test case
generation and evaluation of test executions can be automated [1, 2]. Testing from algebraic
specifications, a family of formalisms used to specify programs through the data types they
manipulate, has already been extensively studied [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In this
context, the basic test hypothesis is to suppose that programs and test cases can respectively be
modeled by Σ-algebras and formulas. Hence, the interpretation of test cases is defined by the notion
of formula satisfaction. Such formulas link input test data to expected results using the functions of
the specification.

∗Correspondence to: Bât. 650, Univ. Paris-Sud 11, 91405 Orsay Cedex, France. E-mail: longuet@lri.fr

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

2 M. AIGUIER ET AL.

As the submission of test cases has to yield a verdict, the formulas that represent test cases
are all formulas that can be interpreted by a computation of the program as “true” or “false”.
These “executable” formulas are called observable and define a subset Obs of the whole set of
formulas. In the framework of algebraic specifications, observable formulas are ground formulas
whose equations are of some given sorts, called observable sorts. A sort is said to be observable if it
is equipped with an equality predicate in the programming language used to implement the program
under test.

Actually, one of the most widely recognised problems related to testing from algebraic
specifications is the so-called oracle problem. This concerns the difficulty of comparing term values
of non-observable sort computed by the system under test [10, 15]. In practice, only the sorts of
the specification that correspond with built-in types of the program are provided with a reliable
decision procedure, hence are considered to be observable. The notion of observable contexts has
been introduced to systematically observe non-observable sorts through successive applications of
operations leading to a result of observable sort [16, 17, 18]. Therefore, equations of non-observable
sort are converted into a family of equations built by surrounding terms that occur in the initial
equation with the same observable context. This has been particularly used for object-oriented
software testing where, by assumption, object states are encapsulated [7, 14, 19].

Since test cases are defined up to observability issues, the notion of correctness is closely
related to observability assumptions. Roughly speaking, correctness is reached when there is a
(possibly infinite) test set that verifies that any correct (resp. incorrect) program successfully (resp.
unsuccessfully) passes the test. Since any program that satisfies all test cases has to be considered
correct, correctness is defined according to an observational approach similar to those used to define
specification refinement [20, 21, 22, 23, 24]: a concrete specification is said to be a refinement of
an abstract specification if any algebra of the concrete specification is observationally equivalent
to an algebra of the abstract specification. Here, by analogy, we say that a program P is correct
with respect to a specification SP if it is equivalent to an algebra of SP, up to the observable
formulas in Obs [1, 9]. Let us point out that by default, the model class defined by SP is not
restricted to a unique model (such as the initial one or the terminal one [25]). Thus, we follow a
loose semantics approach, i.e. the model class associated to SP can contain several models, each
of them likely to represent a different program. The interest is to be able to accept programs
that possibly implement some extra functionalities or properties (contrarily to other approaches
considering terminal semantics [14, 19]).

As usual, SP• denotes the set of all semantic consequences of SP, that is, all formulas satisfied
by all models of SP (see Sect. 2 for the formal definition). The notion of correctness implies that P
must satisfy all observable semantic consequences of SP, i.e. all formulas of SP• ∩Obs. Such set
is actually the largest set of test cases which are both satisfied by all SP-algebras and executable by
any tested program able to interpret formulas in Obs. Thus, SP• ∩Obs is successful on any correct
program. This property corresponds to the so-called unbiased property [1]. On the other hand, when
this set ensures the correctness of any successful program P , then it is said to be exhaustive. The
existence of such an exhaustive test set means that the considered specification SP is testable via
Obs. With such an exhaustive test set, correct programs cannot be rejected or dually, for any incorrect
program, there exists at least a test case whose execution would lead to a failure. Hence, exhaustive

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 3

test sets, when they exist, are appropriate to start the process of selecting test sets of reasonable
size [3, 26, 27].

Exhaustiveness has been often either circumvented by introducing white-box testing [11, 12],
assumed obvious [1] or established for restrictive cases [14]. Besides, when specifications used for
testing are not equipped with a loose semantics and characterize only one model, the exhautiveness
of the generated test set always holds [8]. However, following a loose approach to specification,
depending on the nature of SP, of the set Obs and of programs, SP• ∩Obs is not necessarily
exhaustive.

Contribution. In this paper, we investigate the exhaustiveness of SP• ∩Obs with respect to the
nature of SP, the set Obs and testing hypotheses on programs. Four main families of algebraic
specifications have been widely studied by the community: equational, conditional, quantifier-free
and general specifications. Such families differ from one another with respect to the form of their
axioms, which are, respectively equational, conditional, quantifier-free and first-order formulas. We
study the conditions on specifications and programs under which the exhaustiveness of SP• ∩Obs
is ensured. We show that the conditions on specifications are sensible because they are syntactical
and can be checked automatically. On the contrary, conditions on programs are semantic, and so,
are often difficult or even impossible to check. Moreover, we show that the form of tests has a strong
influence on the conditions on programs.

In this paper, we identify the right sets, namely exhaustive sets, from which it is reasonable to
test. These sets are thus simply identified without being operated to make test case selection. We
then propose some results in connection with the above four families of algebraic specifications and
with some additional hypotheses either on signatures (with constructors or not, with non-observable
sorts or not, etc.) or on programs. In most cases, exhaustive sets are infinite, and then cannot be
directly used as test cases sets. The exhaustiveness property only ensures the relevance of sets from
which the selection of test sets of reasonable size can be initiated. Hence, this property outlines the
upper bound of test effectiveness we can achieve. Therefore, this paper is theoretical in nature, and
does not investigate the question of test case selection.

In practice, although algebraic specifications are little used in industry, several works report
on case studies dealing with testing from algebraic specifications (such as testing object-oriented
programs or test case selection tools [28, 29, 30]). Mostly, these works are based on equational or
conditional specifications for which the initial test set is by construction exhaustive. Of course, if
such an exhaustive test set does not exist, one can still select tests from a randomly generated large
suite of tests. But in this case, whatever the considered selection process, some defaults will be
missed.

Structure of the paper. The paper is organized as follows. In Section 2, we recall basic definitions
and notations about algebraic specifications. Section 3 gives the main definitions of the formal
testing framework over which our work is built. In Section 4, we start by studying the exhaustiveness
result for specifications whose axioms are simple equations and test cases are ground equations
of some observable sorts. In Section 5, we extend the exhaustiveness property to conditional and
quantifier-free first-order specifications. We show that to ensure the exhaustiveness of SP• ∩Obs,
a strong condition has to be imposed on programs: the initiality condition. In Section 6, we then

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

4 M. AIGUIER ET AL.

study two ways to weaken and to remove this condition on programs. In Section 7, we consider the
largest class of specifications (i.e. specifications whose axioms can be any first-order formulas with
quantifiers) while test cases are again ground first-order formulas.

2. PRELIMINARIES

We recall here the basic definitions and notations for algebraic specifications. Such specifications
are widely used for describing so called standard programs, i.e., programs that manipulate complex
data types with simple control structures [9, 31, 32, 33].

Syntax. An (algebraic) signature Σ = (S, F) consists of a set S of sorts and a set F of function
names each one equipped with an arity in S∗ × S. In the sequel, a function f with the arity
(s1 . . . sn, s) is denoted by f : s1 × . . .× sn → s.

Given a signature Σ = (S, F) and an S-indexed set of variables V = (Vs)s∈S , TΣ(V) =

(TΣ(V)s)s∈S is the S-indexed set of terms with variables in V , freely generated from variables
and functions in Σ. TΣ = (TΣs)s∈S denotes the S-indexed set TΣ(∅) of ground terms.

A signature Σ is said sensible for a sort s ∈ S if TΣs is not empty.† A substitution is a family
of mappings ρ = {ρs : Vs → TΣ(V)s}s∈S . A substitution is said ground when its co-domain is
restricted to ground terms. Substitutions are canonically extended to terms with variables.

Σ-equations are formulas of the form t = t′ with t, t′ ∈ TΣ(V)s for s ∈ S. A Σ-formula is a first-
order formula built on Σ-equations, connectives ¬, ∧, ∨, ⇒, and quantifiers ∀ and ∃. For(Σ) is
the set of all Σ-formulas. A quantifier-free Σ-formula is a Σ-formula without quantifiers; variables
of quantifier-free formulas are implicitly universally quantified. A conditional Σ-formula is a Σ-
formula of the form α1 ∧ . . . ∧ αn ⇒ αn+1 where each αi is a Σ-equation (1 ≤ i ≤ n+ 1). For the
particular case n = 0, the formula is called unconditional equation.

A specification SP = (Σ,Ax) consists of a signature Σ and a set Ax of Σ-formulas called axioms.
SP is said equational (resp. conditional, quantifier-free, first-order) if all axioms of SP are Σ-
equations (resp. conditional, quantifier-free, first-order Σ-formulas).

Semantics. A Σ-algebra A is an S-indexed set A equipped for each f : s1 × . . .× sn → s ∈ F
with a mapping fA : As1 × . . .×Asn → As. A Σ-morphism µ from a Σ-algebraA to a Σ-algebra B
is an S-indexed family of mappings {µs : As → Bs}s∈S such that for all f : s1 × . . .× sn → s ∈ F
and all (a1, . . . , an) ∈ As1 × . . .×Asn , µs(fA(a1, . . . , an)) = fB(µs1(a1), . . . , µsn(an)). Alg(Σ)

is the category whose objects and morphisms are all Σ-algebras and all Σ-morphisms.
Let us note TΣ the Σ-algebra of ground terms, where the S-indexed set is TΣ, equipped for

each function f : s1 × . . .× sn → s with the mapping fTΣ : (t1, . . . , tn) 7→ f(t1, . . . , tn). Given a
Σ-algebra A, we denote by A : TΣ → A the unique Σ-morphism that maps any f(t1, . . . , tn) to
fA(tA1 , . . . , t

A
n). A Σ-algebra A is said reachable if A is surjective. Gen(Σ) is the full subcategory

of Alg(Σ) whose objects are reachable Σ-algebras. Moreover, for any congruence ∼ (i.e. any

†A sufficient condition to ensure that a signature Σ is sensible for a sort s ∈ S is that Σ must contain at least a constant
c :→ s.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 5

equivalence relation compatible with sorts and functions) over TΣ, TΣ/∼ is the Σ-algebra defined
for each s ∈ S by (TΣ/∼)s = (TΣ)s/∼s and for each f : s1 × . . .× sn → s ∈ F and each t1 ∈
(TΣ)s1 , ..., tn ∈ (TΣ)sn by fTΣ/∼([t1], ..., [tn]) = [f(t1, ..., tn)] (where [t] denotes the equivalence
class of t for ∼).

Given a Σ-algebra A, a Σ-valuation in A is a family of mappings ι = {ιs : Vs → As}s∈S , that
canonically extends to terms with variables. For a Σ-equation t = t′,A satisfies t = t′ for ι, denoted
as A |=ι t = t′, if ι(t) = ι(t′) and A satisfies t = t′, denoted as A |= t = t′, if for every Σ-valuation
ι in A, A |=ι t = t′. The satisfaction of a Σ-formula ϕ by A, denoted by A |= ϕ, is inductively
defined on the structure of ϕ from the satisfaction of Σ-equations of ϕ using the classical semantic
interpretations of connectives and quantifiers.

Given Ψ ⊆ For(Σ) and two Σ-algebras A and B, A is Ψ-equivalent to B, denoted by A ≡Ψ B, if
and only if we have: ∀ϕ ∈ Ψ, A |= ϕ⇐⇒ B |= ϕ.

Given a specification SP = (Σ,Ax), a Σ-algebra A is an SP-algebra if for every ϕ ∈ Ax, A |= ϕ.
Alg(SP) is the full subcategory of Alg(Σ) whose objects are SP-algebras. A Σ-formula ϕ is a
semantic consequence of a specification SP = (Σ,Ax), denoted by SP |= ϕ, if for every SP-algebra
A, we have A |= ϕ. We denote by SP• the set of semantic consequences of SP.

All examples of specifications presented in this paper are developed using the Common
Algebraic Specification Language CASL [34]. CASL is a general-purpose specification language
which subsumes many existing specifications languages since it supports predicates, partial
functions, subsorting, but also numerous specification libraries. It allows to specify software both
constructively and more abstractly and to scale up by structuring specifications thanks to integration
operators such as union, enrichment and renaming [35]. It is often recommended to use predicates
instead of Boolean operations specified with equations. However, in the sequel, we systematically
use Boolean operations over the Boolean sort Bool provided with the two usual constants True and
False in order to directly comply with the framework of equation-based algebraic specifications.

3. TESTING FROM FORMAL SPECIFICATIONS

In this section, we give the main definitions of the formal testing framework over which our work is
built [1, 9, 10], independently from the form of observable formulas.

3.1. Program correctness

Let SP be a specification built over a signature Σ. Let Obs ⊆ For(Σ) be a set of observable formulas.
As already said in the introduction, Obs is the set of all formulas eligible as test cases. Let P be a
program defined as a Σ-algebra, i.e., P implements both sorts and functions of the specification.
The success of the submission of a test case ϕ ∈ Obs to P is then defined in terms of formula
satisfaction.

Definition 3.1 (Test case and test set)
A test case for SP is a formula ϕ in Obs. If P |= ϕ (resp. P 6|= ϕ), we say that P passes on ϕ (resp.
fails on ϕ) or equivalently that the submission of ϕ to P is a success (resp. a failure).

A test set T is a set of test cases. P passes T if ∀ϕ ∈ T, P |= ϕ.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 M. AIGUIER ET AL.

Following an observational approach [36], a system will be considered as a correct
implementation of its specification if, as a model, it cannot be distinguished from a model of the
specification. Since the program can only be observed through the observable formulas it satisfies,
it is required to be equivalent to a model of the specification up to these observability restrictions.

Definition 3.2 (Correctness)
Let P be a Σ-algebra. P is correct for SP via Obs, denoted by CorrectObs(P, SP), if and only if there
exists A ∈ Alg(SP) such that A ≡Obs P .

As we follow a loose semantics approach, i.e.Alg(SP) mai contain several models, and so, several
different programs can be correct with respect to SP.

3.2. Exhaustive test sets

It is now possible to link the correctness of a system to the success of the test case submission.
The first property requires that a test set does not reject correct systems. A test set that satisfies
this property is called unbiased. Thus, if a system fails on an unbiased test set, it is proved to be
incorrect. By definition, SP• ∩Obs is the largest unbiased test set since a correct implementation
should satisfy any such formula. Conversely, if a test set rejects any incorrect system (and perhaps
correct ones), it is called valid. Then if a system passes a valid test set, it is necessarily correct.

Therefore, an ideal test set must have both the unbias and validity properties. The success of the
submission of this test set would actually prove the correctness of the system. According to the
classical terminology [1, 4, 9, 10], such a test set is called exhaustive.

As we will see in Section 5, the existence of an exhaustive test set may depend on some
hypotheses on the program under test. The notion of exhaustiveness is defined up to a model class,
denoted generically by K. In the most general case, K is simply the whole class Alg(Σ) when no
additionnal test hypotheses are made on programs, except that it can be modelled by a Σ-algebra. In
practice, depending on the knowledge one has of the program under test, some assumptions can be
made. These conditions correspond to the notion of program hypotheses as introduced by Bernot et
al. [1, 15]. The set K precisely abstracts all the system hypotheses.

Definition 3.3 (Exhaustiveness)
Let K ⊆ Alg(Σ) be a subcategory of algebras. A test set T is exhaustive for K with respect to SP
and Obs if and only if

∀P ∈ K, P |= T ⇐⇒ CorrectObs(P, SP)

Formulas can be removed from an exhaustive test set T , provided that they are redundant to other
formulas of T or that they are implied by the set K.

Definition 3.4 (Equivalent test sets)
Two test sets T and T ′ are equivalent with respect to K, if and only if:

∀P ∈ K, P |= T ⇐⇒ P |= T ′

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 7

In particular, if T and T ′ are such that T ⊆ T ′ and (Σ, T)• = (Σ, T ′)•, then in practice, T is
preferred to T ′. For example, this is the case if T ′\T contains tautologies‡ or more generally, if
T ′\T contains semantic consequences of T , i.e. T ′\T ⊆ (Σ, T)•.

Clearly, if two sets are equivalent with respect to K and one of them is exhaustive for K, then this
is also the case for the other one. Thus, tautologies can be removed from a test set without altering
its error detection power.

In particular, if there exists an exhaustive test set T for K with respect to SP and Obs, then
Obs ∩ SP • is also an exhaustive test set, since it is by construction the largest unbiased test set
that can be considered. Conversely, sometimes, there does not exist an exhaustive test set : in
particular, Obs ∩ SP • is not exhaustive. Indeed, as we will see in the following, the existence of an
exhaustive test set depends on some conditions on programs (and specifications). First, it depends
on the observability of the program, i.e. on the set Obs of observable formulas.

Example 3.5
Let us consider the following specification: it defines a sort Elem with three constants a, b and c,
and it requires that either a equals b or a equals c.§

spec ABC =

type Elem ::= a | b | c
• a = b ∨ a = c

end

This specification has three different models: a model where a = b but a 6= c; a model where
a = c but a 6= b and a model where a = b = c. We consider only equations on sort Elem to be
observable, i.e. Obs is the set of ground equations on sort Elem. To satisfy this specification up
to this observability restriction, an implementation has to satisfy the same observable properties
as one of these three models. Therefore, implementations where either a = b or a = c holds are
different correct implementations of the same specification, and they do not share any property
(except tautologies). However, neither a = b nor a = c are possible tests: an implementation where
a = c and a 6= b will be rejected by the test a = b and conversely, an implementation where a = b

and a 6= c will be rejected by the test a = c, even if those two implementations are correct under
this observability restriction. In fact, the set of observable equations which are consequences of
the specification is {a = a, b = b, c = c}, so no exhaustive test set exists for this specification
under these observability conditions. Of course, if Obs was containing all ground formulas, then
Obs ∩ SP • would contain a = b ∨ a = c and would be exhaustive for K = Alg(Σ).

3.3. Observability issues

Considering algebraic specifications, the set Obs of observable formulas must verify some
constraints so that its formulas can be submitted to the program under test. As explained in the
introduction, most selection methods restrict to ground equations on some given sorts, called

‡A formula ϕ is a tautology iff (Σ, ∅) |= ϕ
§The type construct in CASL is used as an abbreviation for the declaration of a sort with constructors. It does not imply
any constraint on the values of the declarated sort.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 M. AIGUIER ET AL.

observable sorts. By testing hypothesis, the observable sorts are the sorts equipped with a reliable
decision procedure. An observable sort may be provided by the programming language [1] or, by
extension, defined by the user but extensively tested [6, 7]. Let us consider a subset of observable
sorts Sobs ⊆ S and the following associated set of observable equations:

ObsEq(Sobs) = {t = t′ | ∃s ∈ Sobs, t, t
′ ∈ TΣs}

In the sequel, we will adopt the following convention: the notation Obs in the expression
Obs(Sobs) will be subscripted by an abbreviation designating the targeted set of observable formulas
built over Sobs. Thus, ObsEq(Sobs) indicates that observational formulas are equational.

Because test cases are only ground equations, a first condition requires that the set of ground terms
is not empty. This can be easily obtained by imposing that specification signatures are sensible for
any observable sort s ∈ Sobs, i.e. there exists at least one ground term of sort s. Since this property
does not depend on the structure of the specification axioms, we will always suppose in the sequel
of the paper that every specification signature is sensible for all observable sorts.

Observable contexts. A well-known way to circumvent the lack of an equality decision procedure
is to replace an equality by a finite set of equalities obtained by context applications, provided that
the resulting sort is an observable sort of the program P [36]. Thus, instead of directly considering
a test of the form t = t′ with t and t′ of sort s, one considers a set of tests of the form c[t] = c[t′]

with c a context applicable to terms of sort s and yielding an observable sort.
Observable contexts are terms provided with a unique occurrence of a variable 2. Such contexts

capture the testing practice which consists in applying to both sides of an equation the same
functions provided with concrete values, except at the position 2. Formally, they are defined as
follows:

Definition 3.6 (Contexts and observable contexts)
Let Σ = (S, F) be a signature equipped with a subset Sobs ⊆ S. Let us define the set of variables 2
by: 2 = ({2s})s∈S .

A Σ-context c is a term in TΣ(2)s for s ∈ S with exactly one occurrence of the variable 2s′ in 2

and this is the only symbol of 2 occurring in c. The context c is then called of sort s′, denoted by
c : s′. The application of a context c : s′ to a term t ∈ TΣ(V)s′ , denoted by c[t], is the term obtained
by substituting the term t for 2s′ .

A context c : s′ ∈ TΣ(2)s is an observable context if s′ ∈ S \ Sobs and s ∈ Sobs.

We can restrict ourselves to minimal observable contexts in order to deal with non-observable
equations. An observable context is said to be minimal if it does not contain an observable context
as strict subterm. If an observable context c has an observable context c′ as strict subterm, then
c[z] may be decomposed as c0[c′[z]] where c′ is a context. This implies that for any terms t and
t′, for any Σ-algebra A, A |= c[t] = c[t′] if A |= c′[t] = c′[t′]. Both equalities being observable, the
simplest one, c′[t] = c′[t′], suffices to infer whether c[t] = c[t′] holds or not. In the sequel, all the
observable contexts will be considered to be minimal by default. Let us denote by µCtx the set of
all minimal observable contexts c : s defined on non-observable sorts in S \ Sobs.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 9

Example 3.7
Let us consider the two specifications of lists of natural numbers below. We assume that only natural
numbers and Booleans are observable and lists are not.

spec LISTOBSERVERS1 =

types Nat ::= 0 | s(Nat);
List[Nat] ::= [] | :: (Nat;List[Nat])

ops head : List[Nat]→ Nat;
tail : List[Nat]→ List[Nat]

∀x : Nat;L : List[Nat]
• head(x :: L) = x

• tail(x :: L) = L

end

spec LISTOBSERVERS2 =

types Bool ::= True | False;
Nat ::= 0 | s(Nat);
List[Nat] ::= [] | :: (Nat;List[Nat])

op isin : Nat× List[Nat]→ Bool
∀x, y : Nat;L : List[Nat]
• isin(x, []) = False
• isin(x, x :: L) = True
• isin(x, L) = True⇒ isin(x, y :: L) = True

end

Considering LISTOBSERVERS1, an observable context for a term of sort List can be for instance
head(2), head(tail(tail(2))), head(head(x :: []) :: tail(2)) or head(tail(m :: tail(2))), where x and
m are ground terms of sort Nat. Minimal observable contexts are all terms of the form head(t) where
t is a context of sort List that does not contain a strict sub-context with the operation head as top
operation, i.e. a strict sub-context of the form head(. . .).

A list can also be observed through its elements, as in the specification LISTOBSERVERS2.
Observable contexts in this case can be for instance isin(n,2) or isin(n, x :: y :: 2), where n, x and
y are ground terms of sort Nat. Minimal observable contexts are all the terms of the form isin(x, t),
where x is a ground term of sort Nat and t is a context of sort List.

3.4. Complete specifications

According to the form of the specification, the set SP• ∩ObsEq(Sobs) can be too small to reasonably
test programs from this specification.

Example 3.8
Let us consider the following minimal specification of lists, equipped with an operation reverse
which reverses the order of the elements of a list. A very abstract way to specify this operation is as
follows.

spec REVERSE =

types Nat ::= 0 | s(Nat);
List[Nat] ::= [] | :: (Nat; List[Nat])

op reverse : List[Nat]→ List[Nat]
∀L : List[Elem]

• reverse([]) = []

• reverse(reverse(L)) = L

end

The only consequences of this specification are reverse([]) = [] and ground instances of
reverse2n(L) = L for n ≥ 1. It means that any program that implements reverse with a function
f such that f([]) = [] and f(f(L)) = L passes all tests in SP• ∩ObsEq(Sobs). For example, the
program that implements reverse with a function that only exchanges the first and the last elements
of a list would be considered as correct. Therefore, this specification of reverse is too abstract to

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 M. AIGUIER ET AL.

lead to relevant test cases if the tester wants to target the usual reverse function that exchanges all
elements, two by two, symmetrically positioned with respect to the middle of the list. A solution to
this problem is to inductively specify reverse over the sort List[Nat], thanks to its constructors [] and

:: (see Example 3.10 for a constructor-based specification of the reverse function).

In fact, it is acknowledged that the reference test set that best reflects the practice of testing relies
on a subset of constructors [1, 9]. Given a signature Σ = (S, F), its constructors define a subset
C ⊆ F . We denote by Ω the signature (S,C), and we consider the test set SP• ∩ObsΩ where

ObsΩ = {f(u1, . . . , un) = v | f ∈ F ∧ u1, . . . , un, v ∈ TΩ}

This set is well-suited for testing, provided that the constructors in Ω allow denoting all data values.
Specifications that satisfy such a condition are called complete.

Definition 3.9 (Completeness)
Let SP = (Σ,Ax) be a specification where Σ = (S, F) is a signature with constructors in Ω = (S,C).
SP is complete with respect to constructors, for short complete, if and only if:

∀t ∈ TΣ,∃v ∈ TΩ, SP |= t = v

This condition, although more complicated than the condition of sensible specifications, can
also be automatically checked sometimes when specifications have some special properties such
as constructive specifications [37]. Moreover, complete specifications are rather easy to write, as
shown in the following example. Some systems even allow only constructive specifications like the
theorem prover assistant Isabelle [38].

Example 3.10
The operation reverse can be completely specified with respect to the constructors of the sort
List[Nat], using the concatenation operation on lists in the following way:

spec REVERSECOMPLETE =

types Nat ::= 0 | s(Nat);
List[Nat] ::= [] | :: (Nat; List[Nat])

ops @ : List[Nat]× List[Nat]→ List[Nat];
reverse : List[Nat]→ List[Nat]

∀x : Nat;L,L′, L′′ : List[Nat]
• []@L = L

• (x :: L)@L′ = x :: (L@L′)

• reverse([]) = []

• reverse(x :: L) = reverse(L)@(x :: [])

end

With a simple structural induction over terms, it is easy to show that REVERSECOMPLETE is
complete.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 11

4. GROUND EQUATIONS AS TEST CASES FOR EQUATIONAL SPECIFICATIONS

We first consider specifications where axioms are simple equations. In the presence of non-
observable sorts, as we explained in the previous section, non-observable equations will be observed
through observable contexts. Therefore, we want to consider the following test set:

Exhobs
SP = {c[σ(t)] = c[σ(t′)] | t = t′ ∈ Ax, σ : V → TΣ, c ∈ µCtx}

This set can easily be algorithmically generated, for instance, by using the algorithm proposed by
Kong et al. [32].

Proposition 4.1
Let SP = (Σ,Ax) be an equational specification. Exhobs

SP is exhaustive for K = Alg(Σ).

Proof
Suppose that P |= Exhobs

SP . Let us show CorrectObsEq(Sobs)(P, SP) for K = Alg(Σ). Let TΣ/∼P
be the

quotient of TΣ where ∼P is the congruence on TΣ defined for every t, t′ ∈ TΣs
by:

t ∼P t′ ⇔

{
P |= t = t′ if t = t′ ∈ ObsEq(Sobs)

∀c : s ∈ µCtx, P |= c[t] = c[t′] otherwise

By definition of ∼P , P ≡ObsEq(Sobs) TΣ/∼P
. Let us show that TΣ/∼P

∈ Alg(SP). Let t = t′ be an
axiom of Ax and ι : V → TΣ/∼P

be an interpretation. By structural induction on terms in TΣ, we
can easily show that there exists a ground substitution σ : V → TΣ such that ι = q∼P

◦ σ where
q∼P

: TΣ → TΣ/∼P
is the quotient morphism. Two cases have to be considered:

1. s ∈ Sobs. By definition of Exhobs
SP , σ(t) = σ(t′) ∈ Exhobs

SP . By properties P |= Exhobs
SP and

P ≡ObsEq(Sobs) TΣ/∼P
, we have TΣ/∼P

|= σ(t) = σ(t′) and so TΣ/∼P
|=ι t = t′.

2. s6∈Sobs. By definition of Exhobs
SP , for every c : s ∈ µCtx, c[σ(t)] = c[σ(t′)] ∈ Exhobs

SP . By
property P |= Exhobs

SP and by the definition of ∼P for non-observable sort, we have σ(t) ∼P
σ(t′). Therefore, TΣ/∼P

|= σ(t) = σ(t′) and for any valuation ι : V → TΣ/∼P
, TΣ/∼P

|=ι

t = t′. That is : TΣ/∼P
|= t = t′.

We can conclude that any program that satisfies Exhobs
SP is observationally equivalent to a model of

SP (in this case, TΣ/∼P
).

Reciprocally, suppose that there exists A ∈ Alg(SP) such that A ≡ObsEq(Sobs) P . Let t = t′ ∈
Exhobs

SP . By hypothesis A |= t = t′, then P |= t = t′ as well.

By the inclusion Exhobs
SP ⊆ SP• ∩ObsEq(Sobs), we directly get:

Corollary 4.2
Let SP = (Σ,Ax) be a specification whose axioms are equations. SP• ∩ObsEq(Sobs) is exhaustive
for Alg(Σ) with respect to SP and ObsEq(Sobs).

With constructors. As we already saw in Section 3.4, the test set that best reflects testing practice
given a specification SP is SP• ∩ObsΩ. In the presence of constructors, exhaustiveness depends
on specification completeness. To simplify the proof of this result, we consider that all sorts are
observable (i.e. S = Sobs).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 M. AIGUIER ET AL.

Theorem 4.3
Let SP be an equational specification, complete with respect to constructors. Then, SP• ∩ObsΩ is
exhaustive for K = Alg(Σ).

Proof
Let Teqconst = {t = v | t ∈ TΣ, v ∈ TΩ, SP |= t = v}. Let t = t′ ∈ SP• ∩ObsEq(S) (let us recall that
we suppose S = Sobs). By Definition 3.9, there exists v ∈ TΩ such that SP |= t′ = v, and then
SP |= t = v by transitivity. Hence, by definition, t′ = v, t = v ∈ Teqconst. By both symmetry and
transitivity, Teqconst |= t = t′.

Let us then show that for all t = v ∈ Teqconst, SP• ∩ObsΩ |= t = v. This is proved by induction
on the structure of the term t.

Base case: t is a constant of Σ. Therefore, by Definition 3.9, there exists v ∈ TΩ such that SP |=
t = v, and then t = v ∈ SP• ∩ObsΩ.

Inductive step: t is of the form g(t1, . . . , tn). By Definition 3.9, for every i, 1 ≤ i ≤ n,
there exists ui ∈ TΩ such that SP |= ti = ui and so ti = ui ∈ Teqconst. Hence, by the
induction hypothesis, SP• ∩ObsΩ |= ti = ui. By context passing, we have SP• ∩ObsΩ |=
g(t1, . . . , tn) = g(u1, . . . , un). Two cases have to be considered:

1. g ∈ C. Therefore, v is g(u1, . . . , un), and then SP• ∩ObsΩ |= t = v.
2. g ∈ F \ C. By Definition 3.9, there exists v ∈ TΩ such that SP |= g(u1, . . . , un) = v.

Hence, g(u1, . . . , un) = v ∈ SP• ∩ObsΩ, and then SP• ∩ObsΩ |= t = v by transitivity.

Therefore, SP• ∩ObsEq(S), SP• ∩ObsΩ and Teqconst are equivalent test sets. By Corollary 4.2,
we have shown that SP• ∩ObsEq(S) is exhaustive, so is SP• ∩ObsΩ and Teqconst as well.

This last result can be easily extended for a subset of observable sorts Sobs is considered. In this
case, we consider the set ExhΩ

SP defined as Exhobs
SP except substitutions σ that are restricted to map

into terms in TΩ.

5. GROUND EQUATIONS AS TEST CASES FOR MORE GENERAL SPECIFICATIONS

Many works have been done to select test cases defined by ground equations from conditional or
quantifier-free specifications. From these works came out efficient algorithms and tools to select test
case sets, all of them based on axiom unfolding methods[1, 3, 27]. However, as this will be shown
in Sections 5.2 and 5.3, exhaustiveness can fail without an additional condition on programs: the
initiality condition. The reason is (unlike in Section 4 and like in Example 3.5) that test cases have
a more restricted form than specification axioms.

5.1. Initiality condition

To show the interest of the initiality condition, let us take the case of conditional specifications: we
want to build test cases as unconditional equations from a specification that consists in conditional
axioms. Intuitively, testing a conditional axiom a⇒ b comes down to ensuring that, in the program,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 13

a never holds when b does not. If a would hold but not b, the program would be incorrect. However,
only instances of a that are consequences of the specification can be submitted to the program.
Therefore, some instances of a that are satisfied by the program but not by the specification could
correspond to instances of b that are not satisfied by the program. The program, although incorrect,
would pass the test set of ground equational consequences of the specification, as we can see in the
following example.

Example 5.1
Let us consider the specification REVERSECOMPLETE of Example 3.10 (with natural numbers),
to which we add a new axiom to specify the property for a list to be a palindrome. This new
specification is shown below:

spec PALINDROME =

types Bool ::= True | False;

Nat ::= 0 | s(Nat);
List[Nat] ::= [] | :: (Nat; List[Nat])

ops @ : List[Nat]× List[Nat]→ List[Nat];
reverse : List[Nat]→ List[Nat];
palindrome : List[Nat]→ Bool

∀x : Nat;L,L′, L′′ : List[Nat]
• []@L = L

• (x :: L)@L′ = x :: (L@L′)

• reverse([]) = []

• reverse(x :: L) = reverse(L)@(x :: [])

• reverse(L) = L⇒ palindrome(L) = True
end

Let us suppose a programming environment with lists as a built-in type. In this programming
language, a list of n elements x1, . . . , xn is encoded by the finite sequence [x1, . . . , xn]. Two lists of
elements of a same type [x1, . . . , xn] and [y1, . . . , yp] are equal if, and only if n = p and for every
i, 1 ≤ i ≤ n, xi = yi. In this programming environment, let us suppose two programs P1 and P2

that implement all the operations of the specification PALINDROME. P1 is the program people have
usually in mind, i.e. P1 implements the operations as follows:

• :: puts the element at the head of the list, i.e. :: P1 : (x, [x1, . . . , xn]) 7→
[x, x1, . . . , xn],

• reverse reverses the elements of the list, i.e. reverseP1 : [x1, . . . , xn] 7→ [xn, xn−1 . . . , x2, x1],
• @ concatenates the two lists in argument, i.e. @ P1 : ([x1, . . . , xn], [y1, . . . , yp]) 7→

[x1, . . . , xn, y1, . . . , yp], and
• palindrome checks that the list in argument is a palindrome, i.e.

palindromeP1 : [x1, . . . , xn] 7→

{
True if ∀i, 1 ≤ i ≤ n/2, xi = xn−i+1

False otherwise

P2 is the program that manipulates sorted lists, i.e. we suppose a total order ≤ on the elements of
lists and lists are sorted with respect to this order. The operations are then implemented as follows:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 M. AIGUIER ET AL.

• :: puts the element at the correct position in the list, i.e. :: P2 : (x, [x1, . . . , xn]) 7→
[x1, . . . , xi, x, xi+1, . . . , xn] such that x1 ≤ x2 ≤ . . . xi ≤ x ≤ xi+1 ≤ . . . ≤ xn,

• reverse is the identity, i.e. reverseP2 : [x1, . . . , xn] 7→ [x1, . . . , xn], since the resulting list has
to be sorted and then is in the same order than [x1, . . . , xn],

• @ merges the two lists with respect to the order, and
• palindrome is implemented as in P1, i.e.

palindromeP2 : [x1, . . . , xn] 7→

{
True if ∀i, 1 ≤ i ≤ n/2, xi = xn−i+1

False otherwise

Indeed, P1 satisfies all the axioms of the specification PALINDROME. Surprisingly, P2 meets the
axioms of the specification REVERSE. The reason is that sorting lists has been delegated to the
constructor :: . Unlike P1, the program P2 does not satisfy the last axiom of the specification
PALINDROME. Indeed, reverse(L) = L holds for all lists, in particular for lists which are not
palindromes. Hence, the program P2 is incorrect (it does not satisfy the conditional axiom).
However, it passes all the tests in SP• ∩Obs. The reason is the only equations reverse(L) = L that
are satisfied by all specification models are those satisfied by the initial one. Hence, reverse(L) = L

is a consequence of the specification only for the lists L that are palindromes, and then the only tests
for palindrome are palindrome(L) = True (when L is a palindrome).

A solution to this problem is to impose that the program under test does not satisfy more instances
of axiom premises than the specification does: we say that the program is initial on these equations.
Roughly speaking, this means that, on these equations, the program behaves like the initial algebra
(and so like the specification).

Definition 5.2 (Initiality)
Let SP = (Σ,Ax) be a specification where Σ = (S, F) and P ∈ Alg(Σ) be a program. Let t = t′ be
a ground Σ-equation. P is initial on t = t′ for SP if, and only if we have:

P |= t = t′ ⇐⇒ SP |= t = t′

In the case of conditional specifications, the exhaustiveness of SP• ∩ObsEq(Sobs) relies on the
condition of initiality, that will be imposed on programs on the ground instances of the axiom
premisses of the specification. Imposing initiality prevents a program from satisfying all the
premises of an axiom without satisfying its conclusion, while this conclusion is not a consequence
of the specification. We will see in Section 5.3 how this condition is generalised in the case of
quantifier-free first-order specifications.

In Sections 5.2 and 5.3, the exhaustiveness results need this condition. However, this condition
is often difficult or impossible to check because of its semantic nature. This is why we will see in
Section 6 how in some situations, this condition of initiality can be relaxed.

5.2. Conditional specifications

Conditional equations are the most used and studied specification formalism in the framework of
testing from algebraic specifications. As already explained, the test selection strategies such as the
axiom unfolding method have been introduced to guide test selection from these specifications [1,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 15

3, 9, 13]. Given a specification SP and an equation f(x1, . . . , xn) = y where each xi and y are
variables, most of these selection methods consist in making a partition of the set of ground
substitutions σ such that SP |= f(σ(x1), . . . , σ(xn)) = σ(y). This partition is computed by deriving
constraints on σ from the axioms of the specification, which is natural with axioms as conditional
equations. The resulting equations become the test cases which will be submitted to the program
under test.

As explained above, the exhaustiveness of SP• ∩ObsEq(Sobs) is not straightforward and requires
the initiality condition on all the ground instances of the axiom premises in SP.

Theorem 5.3
Let SP = (Σ,Ax) be a conditional specification and K be the class of programs P which are
initial on all the ground instances of any Σ-equation occurring in the axiom premises in Ax. Then,
SP• ∩ObsEq(Sobs) is exhaustive for K.

Proof
Let P be a program in K (as defined in the theorem) such that P |= SP• ∩ObsEq(Sobs).

Let us show that CorrectObsEq(Sobs)(P, SP). Let us consider the following congruence defined on
TΣ:

t ∼P t
′ ⇐⇒

{
P |= t = t′ if t = t′ ∈ ObsEq(Sobs)

∀c : s ∈ µCtx, P |= c[t] = c[t′] and SP |= t = t′ otherwise

By construction, P ≡ObsEq(Sobs) TΣ/∼P
. Let us show that TΣ/∼P

belongs to Alg(SP). Let ϕ =

t1 = t′1 ∧ . . . ∧ tn = t′n ⇒ t = t′ be an axiom of Ax. Let ι : V → TΣ/∼P
be an interpretation such

that TΣ/∼P
|=ι ti = t′i for every i = 1, . . . , n. We have already stated that there exists a ground

substitution σ : V → TΣ such that ι = q∼P
◦ σ where q∼P

: TΣ → TΣ/∼P
is the quotient morphism.

Then, let us show that SP |= σ(ti) = σ(t′i). Two cases have to be considered:

• ti and t′i are of observable sort. Therefore, by definition of ∼P , TΣ/∼P
|= σ(ti) = σ(t′i)

implies that P |= σ(ti) = σ(t′i). As P is initial on all ground instances of the Σ-equations
which occur in premises of axioms in Ax, we can conclude SP |= σ(ti) = σ(t′i).

• ti and t′i are not of observable sort. By definition of ∼P , we directly have that SP |= σ(ti) =

σ(t′i).

Thus from the axiom t1 = t′1 ∧ . . . ∧ tn = t′n =⇒ t = t′, and from SP |= σ(ti) = σ(t′i) for all i
in 1..n, we get : σ(t) = σ(t′) ∈ SP •.

• if t and t′ are of observable sort, then σ(t) = σ(t′) belongs to SP • ∩ObsEq(Sobs), and
P |= σ(t) = σ(t′), that is TΣ/∼P

|= σ(t) = σ(t′).
• if t and t′ are not of observable sort, then for all contexts c : s in µCtx, c[σ(t)] = c[σ(t′)]

belong to SP • ∩ObsEq(Sobs). As SP |= σ(t) = σ(t′), then by definition of ∼P , TΣ/∼P
|=

σ(t) = σ(t′).

In both cases, TΣ/∼P
satisfies the considered axiom of SP . Then, P is observationally equivalent to

TΣ/∼P
which is a model of SP. We get CorrectObsEq(Sobs)(P, SP) for P initial on all ground instances

of equations occurring in the premises of axioms in Ax.

The opposite implication of exhaustiveness is obvious.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 M. AIGUIER ET AL.

5.3. Quantifier-free first-order specifications

Testing from algebraic specifications has been studied for a larger class of specifications, namely
quantifier-free first-order specifications [26, 27], where a test case selection algorithm have been
proposed. In the latter work, a result of exhaustiveness is also established. Here, we generalize this
result by distinguishing observable and non-observable sorts. This requires to extend the initiality
condition to such formulas.

We first need to consider a notion of positiveness in quantifier-free first-order formulas, similarly
to Machado [12]. Roughly speaking, this condition states that non-observable equations only occur
at positive positions. Intuitively, an equation is said to be at a positive position in a formula ϕ if in
the disjunctive normal form of ϕ, the equation is not preceded by a negation.

Notation. Using the standard numbering of tree nodes by strings of natural number, a position in
a formula ϕ is a string ω on N which represents the path from the root of ϕ to the sub-formula at
that position.

Definition 5.4
The property for a Σ-equation t = t′ in a formula ϕ to be positive (resp. negative) at a position ω, is
defined as follows:

• if ϕ is of the form u = v then t = t′ is positive at ω in ϕ iff ω = ε, u = t and v = t′, where ε
denotes the empty word.

• if ϕ is of the form ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2 then ω = i.ω′ with i = 1, 2, and t = t′ is positive
(resp. negative) at ω in ϕ iff t = t′ is positive (resp. negative) at ω′ in ϕi,
• if ϕ is of the form ¬ϕ1 then ω = 1.ω′, and t = t′ is positive (resp. negative) at ω in ϕ iff t = t′

is negative (resp. positive) at ω′ in ϕ1, and
• if ϕ is of the form ϕ1 ⇒ ϕ2 then ω = i.ω′ with i = 1, 2, and t = t′ is positive (resp. negative)

at ω in ϕ iff

– if i = 1 then t = t′ is negative (resp. positive) in ϕ at ω′.
– otherwise, t = t′ is positive (resp. negative) in ϕ at ω′.

A Σ-equation is positive (resp. negative) in ϕ if, and only if it is positive (resp. negative) at position
ε in ϕ.

In Theorem 5.3, the initiality condition is imposed on ground instances of the premises of
conditional axioms, which are the negative equations in these axioms. Following this observation,
the initiality condition will be imposed on all the negative equations of first-order axioms, in order
to get the result of exhautiveness for quantifier-free first-order specifications.

Theorem 5.5
Let SP = (Σ,Ax) be a quantifier-free first-order specification. Let K be the class of programs P
which are initial on all ground instances of any negative Σ-equation occuring in axioms of Ax.
Then, SP• ∩ObsEq(Sobs) is exhaustive for K.

Proof
We only prove the ”only if” part of the exhaustiveness property because the if part is obvious.
Let us show that CorrectObs(Sobs)(P, SP). By following the proof of Proposition 4.1, we define the
congruence ∼P such that P ≡Obs(Sobs) TΣ/∼P

.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 17

Let P be a program such that P |= SP• ∩ObsEq(Sobs). Let ϕ be an axiom of Ax. Let ι : V →
TΣ/∼P

be an interpretation. As in the previous proofs, ι can be factorized as follows : ι = q∼P
◦ σ

where σ : V → TΣ is a ground substitution and q∼P
: TΣ → TΣ/∼P

is the quotient morphism.
Let us denote by Tr(σ(ϕ)) the set of ground formulas obtained from σ(ϕ) by replacing every Σ-
equation t = t′ if non-observable and in negative position by c[t] = c[t′] for every c : s ∈ µCtx.
First, let us show by structural induction on ground Σ-formulas the property P(σ(ϕ)) defined by:

(∀ψ ∈ Tr(σ(ϕ)), TΣ/∼P
|= ψ)⇐⇒ TΣ/∼P

|= σ(ϕ)

• Base case: ϕ is a Σ-equation t = t′ with t, t′ ∈ TΣs
. Here, two cases have to be considered:

1. s ∈ Sobs. Tr(σ(ϕ)) is the singleton {σ(t) = σ(t′)}. But, σ(t) = σ(t′) ∈ SP• ∩
ObsEq(Sobs). We then have TΣ/∼P

|= σ(ϕ).
2. s6∈Sobs. Therefore, Tr(σ(ϕ)) = {c[σ(t)] = c[σ(t′)]|c : s ∈ µCtx}. By the property that
P ≡Obs(Sobs) TΣ/∼P

, we have for every c ∈ µCtx that P |= c[σ(t)] = c[σ(t′)]. By the
definition of ∼P , we then have that σ(t) ∼P σ(t′), and then TΣ/∼P

|= σ(ϕ).

• Inductive step: Let us handle the more complicated case where ϕ is ¬ϕ1. By definition,
Tr(σ(ϕ)) = {¬ψ1|ψ1 ∈ Tr(σ(ϕ1))}.

– Let us suppose that TΣ/∼P
|= ¬σ(ϕ1). σ(ϕ1) being a ground formula, we then have

TΣ/∼P
6|=σ(ϕ1). By the induction hypothesis and the fact that P is initial on all ground

equations in negative position in σ(ϕ1), we can write that for every ψ1 ∈ Tr(σ(ϕ1)),
TΣ/∼P

6|=ψ1, and then TΣ/∼P
|= ¬ψ1.

– Let us suppose that for every ¬ψ1 ∈ Tr(σ(ϕ)), TΣ/∼P
|= ¬ψ1. ψ1 being a

ground formula, we have TΣ/∼P
6|=ψ1. By the induction hypothesis, we then have

TΣ/∼P
6|=σ(ϕ1), and then TΣ/∼P

|= ¬σ(ϕ1).

The cases of the other propositional connectives are simpler and are left to the reader.

Let us now show by structural induction on ground formulas that for every ground Σ-formula ϕ
for which P is initial on all its equations in negative position for SP, we have:

SP |= ϕ⇐⇒ ∀ψ ∈ Tr(ϕ), P |= ψ

The proof is appreciably similar to the previous one.

• Base case: Directy from definitions and hypothesis.
• Inductive step: Here also we propose to handle the case where ϕ is ¬ϕ1. By definition,

Tr(ϕ) = {¬ψ1|ψ1 ∈ Tr(ϕ1)}.

– Let us suppose that SP |= ϕ. Therefore, we have SP 6|=ϕ1. Hence, by the induction
hypothesis, we have for every ψ ∈ Tr(ϕ1) that P 6|=ψ, and then P |= ¬ψ.

– Let us suppose that for every ¬ψ1 ∈ Tr(ϕ), TΣ/∼P
|= ¬ψ1. ψ1 being a ground formula,

we have TΣ/∼P
6|=ψ1. By the induction hypothesis and the fact that P is initial on all

ground equations in negative position in ϕ1, we can write that for every ψ1 ∈ Tr(ϕ1),
TΣ/∼P

6|=ψ1, and then TΣ/∼P
|= ¬ψ1.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 M. AIGUIER ET AL.

As previously, the cases of the other propositional connectives are simpler and are left to the
reader.

Hence, to finish the proof, we know by the previous result that for every axiom ϕ and every
interpretation ι, P |= ψ for every ψ ∈ Tr(σ(ϕ)) where ι = q∼P

◦ σ. We can then conclude, by the
property P(σ(ϕ)), that TΣ/∼P

|= σ(ϕ), and then TΣ/∼P
|=ι ϕ.

6. GETTING AROUND INITIALITY

We saw that when dealing with more expressive specifications than equational ones, the very
strong property of initiality has to be imposed on programs to obtain the exhaustiveness of
SP• ∩ObsEq(Sobs). Since we are testing programs as black boxes, this condition may be impossible
to verify on the program under test. Therefore, we study here how to weaken or to remove the
initiality condition on programs.

6.1. Structured specifications

All the specifications we gave so far are what we call flat specifications, meaning that they are
specifications of a single software module. However, for the description of large systems, it is
convenient to compose specifications in a modular way [39]. The specification of a large system
is generally built from small specifications of individual modules, that are composed by making
their union and enriching the resulting specification with new features in order to get new (larger)
specifications, that are themselves composed and so on.

Example 6.1
We specify sets of natural numbers equipped with the standard operations like union, intersection,
membership and size. The specification SET is built over both specifications of Booleans and natural
numbers. We first make the union of these two specifications (with the and operator in CASL).
Then we enrich the obtained specification (with the then operator in CASL) by adding the new type
Set[Nat] and new operations for this type, involving Booleans and natural numbers.

A set is either the empty set or a finite union of singletons. The union of two sets is specified
only through its properties of associativity, commutativity, idempotence and the empty set being its
neutral element. We use the shortcuts provided by the CASL language for standard properties of
operations, like associativity, commutativity, idempotence and the existence of a neutral element.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 19

spec SET =

BOOL

and NAT

then type Set[Nat] ::= ∅ | { }(Nat) | ∪ (Set[Nat];Set[Nat])
ops ∪ : Set[Nat]× Set[Nat]→ Set[Nat], assoc, comm, idem, unit ∅;

∩ : Set[Nat]× Set[Nat]→ Set[Nat], assoc, comm, idem;

isin : Nat× Set[Nat]→ Bool;
size : Set[Nat]→ Nat

∀x, y : Nat;S, S′, S′′ : Set[Nat]

%% axioms for the membership operation
• isin(x, ∅) = False
• x = y ⇔ isin(x, {y}) = True
• (isin(x, S) = True ∨ isin(x, S′) = True)⇔ isin(x, S ∪ S′) = True

%% axioms for the intersection operation
• S ∩ ∅ = ∅
• isin(x, S) = True⇒ S ∩ {x} = {x}
• isin(x, S) = False⇒ S ∩ {x} = ∅
• S ∩ (S′ ∪ S′′) = (S ∩ S′) ∪ (S ∩ S′′)

%% axioms for the size operation
• size(∅) = 0

• size({x}) = s(0)

• size(S ∪ S′) = (size(S) + size(S′))− size(S ∩ S′)
end

When dealing with such structured specifications, built along union and enrichment, initiality
on programs can be stated by taking advantage of the specification structure. Indeed, as shown
above, programs often implement data structures that are recursively built over elementary data
structures provided by the target programming language. Hence, every program P can be seen as
the enrichment of smaller programs Pi implementing these elementary data structures. Moreover, if
SPi = (Σi,Axi) is the specification of one of these programs Pi, the model of Pi is often the initial
algebra, i.e. it satisfies:

∀t, t′ ∈ TΣi , Pi |= t = t′ ⇐⇒ SPi |= t = t′

Finally, these elementary data types are often the only ones that are observable because they are
provided with an implemented equality. When the specification SP that specifies P has the property
not to generate junks (it is sufficiently complete over SPi for all i) then P is initial for every equation
t = t′ of sort in Si.

Definition 6.2 (Sufficient completeness [31])
Let SP = (Σ,Ax) be a specification where Σ = (S, F), and let SP0 = (Σ0,Ax0) where Σ0 =

(S0, F0) be a subspecification of SP (i.e. Σ0 ⊆ Σ and Ax0 ⊆ Ax). SP is said to be sufficiently

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 M. AIGUIER ET AL.

complete over SP0 if and only if

∀s ∈ S0,∀t ∈ TΣs ,∃t0 ∈ TΣ0s
, SP |= t = t0

Intuitively, SP is sufficiently complete over SP0 if the new operations in SP do not create new
values of sort in S0.

We can see that the structured specification SET of Example 6.1 is sufficiently complete over
BOOL and NAT. It is sufficiently complete over BOOL since the specification of the membership
operation associates a Boolean term to any term of the form isin(x, S) where x is of sort Nat and
S of sort Set[Nat]. It would not be sufficiently complete over BOOL if we replaced for instance
the second axiom of isin with the implication x = y ⇒ isin(x, {y}) = True only. Then the term
isin(0, {s(0)}) of sort Bool would denote a new Boolean value. Similarly, the specification SET is
sufficiently complete over NAT since the specification of the size operation associates a term of
sort Nat to any term of the form size(S) where S is of sort Set[Nat]. It would not be sufficiently
complete over NAT if we forgot for instance the first axiom for size. Then the term size(∅) of sort
Nat would denote a new natural, different from all the natural numbers that can be built from 0 and
the successor operation.

Considering that only the sorts of Si are observable, we can show that a program P is initial when
each Pi is supposed to be initial and SP is sufficiently complete over each subspecification SPi.

Proposition 6.3
Let SP = (Σ,Ax) be a specification where Σ = (S, F), and let SP0 = (Σ0,Ax0) where Σ0 =

(S0, F0) be a subspecification of SP such that SP is sufficiently complete over SP0. Let P ∈ Alg(Σ)

be a program such that P |= SP• ∩ObsEq(S0) and

∀s ∈ S0,∀t, t′ ∈ TΣ0s
, P |= t = t′ ⇔ SP0 |= t = t′

Then, for every ground Σ-equation t = t′ of sort in S0, P is initial on t = t′ for SP.

Proof
Let P |= t = t′ with t, t′ ∈ TΣs

for s ∈ S0. By hypothesis, there exist u, v ∈ TΣ0s
such that SP |=

t = u and SP |= t′ = v. Hence, t = u, t′ = v ∈ SP• ∩ObsEq(S0). By hypothesis, we deduce that
P |= t = u and P |= t′ = v, and then by transitivity, P |= u = v. By hypothesis, we then have that
SP0 |= u = v and then SP |= u = v, whence we deduce that SP |= t = t′.
Let SP |= t = t′ with t, t′ ∈ TΣs

for s ∈ S0. By hypothesis, we obviously get that P |= t = t′.

Therefore, with a structured specification SP sufficiently complete over its subspecifications SPi,
the test set SP• ∩ObsEq(∪iSi) is exhaustive for any program P which is initial on the equations
built from SPi only.

Corollary 6.4
Let SP = (Σ,Ax) be a specification where Σ = (S, F), and let SP0 = (Σ0,Ax0) where Σ0 =

(S0, F0) be a subspecification of SP.
If SP is sufficiently complete over SP0, then SP• ∩ObsEq(S0) is exhaustive for the class of programs
P satisfying:

∀s ∈ S0,∀t, t′ ∈ TΣ0s
, P |= t = t′ ⇔ SP0 |= t = t′

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 21

6.2. Ground conditional formulas as test cases

We can see that the initiality property on programs is needed when test cases have a more restricted
form than axioms. On the contrary, we saw with Proposition 4.1 and Corollary 4.2 that SP• ∩Obs
is exhaustive for any program when both axioms and test cases are unconditional equations. We
propose in this paragraph to extend this result by studying the exhaustiveness result for conditional
specifications, when test cases are ground conditional formulas. We will see that, here also, no
condition on programs is needed to get the exhaustiveness result. On the other hand, a condition
has to be imposed on specification. Indeed, it is well-known that if unobservable equations occur
in the premises of axioms, some semantic problems may occur [1, 9]. Since a non-observable
equation t = t′ can only be (partially) observed through observable contexts, the satisfaction of
all the equations c[t] = c[t′] built from contexts c ∈ µCtx is not equivalent to the satisfaction of the
equation t = t′. Then the premises of an axiom may be satisfied through contexts by the program
under test without being fully satisfied.

Example 6.5
Let us add to the specification LISTOBSERVERS2 an axiom which prevents the operation of
insertion at the head of a list from being idempotent:

spec LISTINSERT =

types Bool ::= True | False;

Nat ::= 0 | s(Nat);
List[Nat] ::= [] | :: (Nat; List[Nat])

op isin : Nat× List[Nat]→ Bool
∀x, y : Nat;L : List[Nat]
• isin(x, []) = False
• isin(x, x :: L) = True
• isin(x, L) = True⇒ isin(x, y :: L) = True
• x :: (x :: L) = x :: L⇒ True = False

end

Here, only natural numbers and Booleans are observable, lists are observed through the membership
predicate isin. If we apply contexts to build a test set from this specification, as we did for equational
specifications, we obtain in particular the following formula:

isin(n, n :: (n :: L))) = isin(n, n :: L)⇒ True = False

where n is any natural. But this formula cannot be a test case, because it is not a semantic
consequence of the specification. Actually, isin(n,L) = isin(n,L′) for all n ∈ N does not imply
L = L′. As a consequence, the above formula is not a test for the property n :: (n :: L) = n :: L⇒
True = False, since the program under test can pass the test for all possible values of n without
satisfying the property.

A sufficient condition to solve this problem is to impose that only observable equations occur in
premises of axioms. Such specifications are called positive.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 M. AIGUIER ET AL.

Definition 6.6 (Positive conditional specification)
A specification SP = (Σ,Ax) with a set Sobs of observable sorts is said positive if and only if all
equations occurring in the premises of axioms in Ax are observable: for every t1 = t′1 ∧ . . . ∧ tn =

t′n ⇒ t = t′ in Ax and for every i, 1 ≤ i ≤ n, there exists s in Sobs such that ti, t′i ∈ TΣ(V)s.

Unlike initiality on programs, this condition can be easily and automatically checked on
specifications.

Theorem 6.7
Let SP = (Σ,Ax) be a positive conditional specification where Σ = (S, F) has a set of observable
sorts Sobs ⊆ S. Then, SP• ∩ObsCond(Sobs) is exhaustive for K = Alg(Σ).

Proof
We only prove the ”only if” part of the exhaustiveness property because the if part is obvious.

Let us suppose that P |= SP• ∩ObsCond(Sobs). Let us show that CorrectObsCond(Sobs)(P, SP). By
following the proof of Proposition 4.1, we define the congruence ∼P such that P ≡ObsCond(Sobs)

TΣ/∼P
.

Let ϕ : t1 = t′1 ∧ . . . ∧ tn = t′n ⇒ t = t′ be a conditional axiom of Ax. Let ι : V → TΣ/∼P
be

an interpretation. As in the previous proofs, ι can be factorized as follows : ι = q∼P
◦ σ where

σ : V → TΣ is a ground substitution and q∼P
: TΣ → TΣ/∼P

is the quotient morphism. Let us
denote by Tr(σ(ϕ)) the set of ground formulas obtained from σ(ϕ) by replacing the Σ-equation
t = t′ if non-observable by c[t] = c[t′] for every c : s ∈ µCtx. From the hypothesis that SP is
positive, we have that Tr(σ(ϕ)) ⊆ SP•, and then Tr(σ(ϕ)) ⊆ SP• ∩ObsCond(Sobs). Because SP is
positive and by definition of ∼P , we can easily show that:

(∀ψ ∈ Tr(σ(ϕ)), TΣ/∼P
|= ψ)⇐⇒ TΣ/∼P

|=ι ϕ

We further know that for every formula ϕ, Tr(σ(ϕ)) ⊆ SP• ∩ObsCond(Sobs). By hypothesis, we
then have for every ψ ∈ Tr(σ(ϕ)) that P |= ψ. By the property that P ≡ObsCond(Sobs) TΣ/∼P

, we
deduce that TΣ/∼P

|= ψ. We conclude that TΣ/∼P
|=ι ϕ.

6.3. Ground first-order formulas as test cases

To extend the previous result in order to get the exhaustiveness result without imposing the initiality
condition on programs, the family of selection criteria based on axiom unfolding has been extended
to the class of axiomatic specifications whose axioms are quantifier-free first-order formulas [26].
Some works on specification-based testing [11, 12] have already considered a similar class of
formulas. They propose a mixed approach combining black-box and white-box testing to deal with
the problem of non-observable data types. From the selection point of view, they do not propose
any particular strategy, except for substituting axiom variables by some arbitrarily chosen data.
Following the specification-based testing framework [10], we showed that for every specification
SP whose axioms are quantifier-free formulas, SP• ∩Obs is exhaustive for any program without
constraint when Obs is the set of ground formulas over Σ (no observability constraint is supposed,
i.e. every sort is observable) [26, 27].

Here, as in Section 5.3, we propose to extend this result by considering a subset of observable sorts
which, as already explained in Section 3, is a realistic assumption for most programs. Therefore,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 23

given a subset Sobs of observable sorts for a signature Σ, the set Obs(Sobs) contains all ground
first-order formulas in which all equations are on observable sorts. Unlike the exhaustiveness
result established in our previous work [26, 27] and as in the previous section, a constraint has
to be imposed on specifications to obtain the exhaustiveness of SP• ∩Obs(Sobs). This constraint
generalizes Definition 6.6 to quantifier-free first-order formulas and is similar to the one used by
Machado [11]. Roughly speaking, this condition states that non-observable equations only occur at
positive positions.

Definition 6.8 (Positive first-order specifications)
A first-order specification SP = (Σ,Ax) with a subset of observable sorts Sobs is said positive if and
only if for all axioms ϕ ∈ Ax, all equations of non-observable sort are positive in ϕ.

Theorem 6.9
Let SP = (Σ,Ax) be a positive quantifier-free first-order specification where Σ = (S, F) has a set of
observable sorts Sobs ⊆ S. Then, SP• ∩ObsQF(Sobs) is exhaustive for K = Alg(Σ).

Proof
We only prove the ”only if” part of the exhaustiveness property because the if part is obvious.

Let us suppose that P |= SP• ∩ObsQF(Sobs). Let us show that CorrectObsQF(Sobs)(P, SP). By
following the proof of Proposition 4.1, we define the congruence ∼P such that P ≡ObsQF(Sobs)

TΣ/∼P
.

Let ϕ be an axiom of Ax. Let ι : V → TΣ/∼P
be an interpretation. As in the previous proofs, ι can

be factorized as follows : ι = q∼P
◦ σ where σ : V → TΣ is a ground substitution and q∼P

: TΣ →
TΣ/∼P

is the quotient morphism. Let us denote by Tr(σ(ϕ)) the set of ground formulas obtained
from σ(ϕ) by replacing every non-observable Σ-equation t = t′ with t, t′ ∈ TΣs by c[t] = c[t′] for
every c : s ∈ µCtx. From the hypothesis that all non-observable Σ-equations are positive in ϕ, we
have that Tr(σ(ϕ)) ⊆ SP•, and then Tr(σ(ϕ)) ⊆ SP• ∩ObsQF(Sobs). By structural induction on ϕ,
let us show the property P(σ(ϕ)) defined by:

(∀ψ ∈ Tr(σ(ϕ)), TΣ/∼P
|= ψ)⇐⇒ TΣ/∼P

|=ι ϕ

• Base case: ϕ is a Σ-equation t = t′ with t, t′ ∈ TΣs
. Here, two cases have to be considered:

1. s ∈ Sobs. Therefore, Tr(σ(ϕ)) is the singleton {σ(t) = σ(t′)}.
If TΣ/∼P

|= σ(t) = σ(t′) then σ(t) ∼P σ(t′). We then conclude that TΣ/∼P
|=ι t = t′.

If TΣ/∼P
|=ι t = t′ then σ(t) ∼P σ(t′). We then conclude TΣ/∼P

|= σ(t) = σ(t′).
2. s6∈Sobs. Therefore, Tr(σ(ϕ)) = {c[σ(t)] = c[σ(t′)]|c : s ∈ µCtx}.

Suppose that for every c : s ∈ µCtx, TΣ/∼P
|= c[σ(t)] = c[σ(t′)]. By the property that

P ≡ObsQF(Sobs) TΣ/∼P
, we have for every c : s ∈ µCtx that P |= c[σ(t)] = c[σ(t′)]. By

the definition of the congruence ∼P , this means that σ(t) ∼P σ(t′). We then conclude
that TΣ/∼P

|=ι t = t′.
Suppose that TΣ/∼P

|=ι t = t′. By definition, this means that σ(t) ∼P σ(t′). By
definition of the congruence of ∼P , we then have for every c : s ∈ µCtx that P |=
c[σ(t)] = c[σ(t′)]. By the property that P ≡ObsQF(Sobs) TΣ/∼P

, we then conclude that for
every c : s ∈ µCtx, TΣ/∼P

|= c[σ(t)] = c[σ(t′)].

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 M. AIGUIER ET AL.

• Inductive step: Let us handle the case where ϕ is ¬ϕ1. By definition, we have that Tr(σ(ϕ)) =

{¬ψ1|ψ1 ∈ Tr(σ(ϕ1))}.
Suppose that for every ¬ψ1 ∈ Tr(σ(ϕ)), TΣ/∼P

|= ¬ψ1. By the property that all the ψ1 ∈
Tr(σ(ϕ1)) are ground formulas, this means that for every ψ1 ∈ Tr(σ(ϕ1)), TΣ/∼P

6|=ψ1. By the
induction hypothesis, we then have that TΣ/∼P

6|=ιϕ1 whence we conclude TΣ/∼P
|=ι ¬ϕ1.

Suppose that TΣ/∼P
|=ι ¬ϕ1. This means that TΣ/∼P

6|=ιϕ1. By the induction hypothesis and
because SP is positive, we then have that for every ψ1 ∈ Tr(σ(ϕ1)), TΣ/∼P

6|=ψ1. We then
conclude that for every ψ1 ∈ Tr(σ(ϕ1)), TΣ/∼P

|= ¬ψ1.
The cases of the other propositional connectives are simpler and are left to the reader.

Moreover, we know that for every formula ϕ, Tr(σ(ϕ)) ⊆ SP• ∩ObsQF(Sobs). By hypothesis,
we then have for every ψ ∈ Tr(σ(ϕ)) that P |= ψ. By the property that P ≡ObsQF(Sobs) TΣ/∼P

, we
deduce that TΣ/∼P

|= ψ. Finally, by the property P(ϕ), we conclude TΣ/∼P
|=ι ϕ.

Theorem 6.9 allows us to extend the framework of testing from algebraic specifications to a very
large class of specifications. In particular, in [26, 27], we considered test case selection based on
axiom unfolding technics for general quantifier-free first-order specifications. Indeed, as we will see
in the next section, testing is not well-suited from a specification where axioms can be existentially
quantified, because testing comes down to proving the program correctness.

7. GENERAL FIRST-ORDER AXIOMS

When dealing with more general first-order formulas, i.e. formulas with quantifiers, the existence
of an exhaustive test set is no longer possible to ensure. The presence of an existential quantifier in
an axiom actually prevents from building a relevant test set for this axiom.

The problem comes from the fact that the specification cannot be used to build the relevant data
on which to execute the program. If the specification requires that there exists an element a verifying
a certain property, there is no way to deduce from the specification only some elements a satisfying
this property in the program.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 25

Example 7.1
Let us consider the following specification of natural numbers equipped with multiplication.

spec MULTIPLE =

types Bool ::= True | False;

Nat ::= 0 | s(Nat)
ops + : Nat× Nat→ Nat;

∗ : Nat× Nat→ Nat;
multiple : Nat× Nat→ Bool

∀x, y : Nat
• x+ 0 = x

• x+ s(y) = s(x+ y)

• x ∗ 0 = 0

• x ∗ s(y) = x+ (x ∗ y)

• multiple(x, y) = True⇔ ∃z : Nat • x = y ∗ z
end

To test if 18 is a multiple of 3 in the program, we must be able to find z such that 18 = 3 ∗ z,
which is of course impossible as the program is a black-box.¶ In fact, exhibiting such a value would
amount to simply prove the system with respect to the axiom. Therefore, testing a program with
respect to such a specification amounts to proving the correctness of this program as established by
Theorem 7.2.

Given a Σ-algebra A, we denote by Th(A) the closed theory of A, that is Th(A) = {ϕ | A |=
ϕ, ϕ closed}. A formula is closed when each occurrence of its variables is in the scope of a
quantifier. A theory is closed when each of its formulas is closed.

Theorem 7.2
Let SP = (Σ,Ax) be a consistent specification (i.e. Alg(SP) 6= ∅). Let K be a full subcategory of
Gen(Σ). Then, SP• ∩Obs is exhaustive for K if and only if for every A ∈ K, (Σ,Ax ∪ Th(A)) is
consistent.

Proof
The if part. Let P ∈ K such that P |= SP• ∩Obs. Let us show that CorrectObs(P, SP). As SP ∪
Th(P) is consistent, there exists a Σ-algebra A such that A |= SP ∪ Th(P). By definition, Th(P)

is a complete theory. In first-order logic, it is well-known that every Σ-algebra A |= Th(P) is
elementarily equivalent to P on closed formulas. Therefore, for every ϕ ∈ Obs, A |= ϕ⇔ P |= ϕ

whence A ≡Obs P .

Suppose that there exists a Σ-model A ∈ Alg(SP) such that A ≡Obs P . Let ϕ ∈ SP• ∩Obs. By
hypothesis A |= ϕ, then so does P |= ϕ as well.

The only if part. Suppose that SP ∪ Th(P) is not consistent and let us show that SP• ∩Obs is
not exhaustive. Suppose that P |= SP• ∩Obs. As SP ∪ Th(P) is inconsistent, the only possibility

¶Note that if the value of z could be deduced from the specification, this specification would be equivalent to a
specification with no existential quantifier.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 M. AIGUIER ET AL.

is that for every Σ-algebras A ∈ Alg(SP), there exists ϕ ∈ Th(P) such that A6|=ϕ.‖ As P is
reachable, then this means that for every Σ-algebra A ∈ Alg(SP), A6≡ObsP . We then conclude that
CorrectObs(P, SP) fails.

8. RELATED WORK

Loose semantic and class of tests. Taking all the observable semantic consequences of SP
for properly representing the class of all possible test cases means that all observable properties
induced by the specification axioms, and only them, can be tested and that nothing is required on
other properties. In particular, it is not required that a correct program has to compute as false
any property which cannot be derived from the specification. Some works advocate an opposite
position [14, 19, 40]: roughly speaking, in such frameworks, a test case is no more a simple formula,
but can be represented as a couple (ϕ, b) composed of a ground formula ϕ and a Boolean value b
such that a correct program has to compute the formula ϕ as true (resp. false) if the Boolean value
b is true (resp. false). Obviously, from ground instances ϕ of specification axioms, one can derive a
positive test case of the form (ϕ,True), while negative test cases of the form (ϕ,False) are new test
cases that we do not consider in this paper (except in the presence of negation ¬ for quantifier-free
first order specifications and general first-order specifications). For example, a possible negative test
case could be (5 + 0 = 7,False). To successfully pass this negative test case, a correct program has
to compute different values for 5 + 0 and 7. All these negative properties are not directly implied
by the specification axioms. In general, when adopting both positive and negative test cases, one
considers a particular model for defining specification semantics, either the so-called initial model
of the specification or the so-called terminal model. Thus, considering both negative and positive
test cases is well-adapted for stating by testing techniques whether or not a program under test
behaves as a targeted model. Initial semantics often requires to consider executable specifications.
For example, axioms of SP can be turned into a term rewriting system verifying that any term can
be made equal to a normal form. The use of normal forms has been widely advocated for testing
object-oriented programs from algebraic specifications [7, 19, 41]. In a loose approach, in order
to obtain such kinds of negative test cases, one has to consider hypotheses on the specification (as
the use of constructors or of well structured specifications). In particular, we have introduced in
Definition 5.2 the initiality hypothesis that precisely imposes that the program satisfies an equation
if and only if it is a semantic consequence of the specification. Thus, somehow, initiality hypothesis
encompasses a negative test case.

‖The other possibility is there exists ϕ ∈ Ax such that P 6|=ϕ. But in this case, P 6|=SP• ∩ Obs which is impossible since
we supposed the contrary.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 27

However, if we consider abstract or incomplete specifications, then it is important not to consider
negative tests. Let us take an example to illustrate this claim:

spec NAT =

sort Nat;
ops 0 :→ Nat;
∞ :→ Nat;
s : Nat→ Nat;

+ : Nat× Nat→ Nat;
∀x, y : Nat;
• x+ 0 = x

• x+∞ =∞
• x+ s(y) = s(x+ y)

end

In the above specification, there can be several possible ways to interpret the constant ∞: as a
natural number playing the role of a bound whose precise value is not specified, for example, or as
a constant outside the set of natural numbers abstractly representing the cardinality of all natural
numbers. Thus, this specification is abstract since the designer has several choices to implement∞.

To conclude, loose and initial semantics have always coexisted for algebraic specifications [25].
The initial semantics focuses on a unique model and is preferred at the very late stages of the design
process, and for specifying usual built-in types provided with programming languages (as Booleans,
natural numbers. . .). The loose semantics considers the class of all models satisfying axioms and is
preferred at the first stages, when design choices are still to be done, and for high-level abstract data
types (as sets or height-balanced binary search trees for example).

Exhaustiveness. Similar exhaustiveness results as the ones given in Section 4 have also been
obtained by Chen et al. [6, 7] and Zhu [14].

However, the result presented in Theorem 4.3 is different from the one of Zhu [14] (Theorem 4.4)
due to the loose semantics followed here. The reason is the following. Although SP is complete,
this does not imply that all models in Alg(SP) are elementary equivalent (we accept that two terms
in TΩ are equal in a model). Hence, by using our notations, consider the observational equivalence
∼obs defined by Zhu [14] as follows:

t ∼obs t
′ ⇔ (∀c : s ∈ µCtx, SP |= c[t] = c[t′])

It verifies that if P is successful then ∼obs⊆∼P . However, we cannot conclude that ∼obs=∼P (that
is P • ∩Obs = SP• ∩Obs) except if P implements the initial model of Alg(SP). In the latter case,
the model associated to P is by construction the terminal model of Zhu [14], and is considered as
correct in both approaches. On the contrary, any other correct program, in our sense, only verifies
the inclusion ∼obs⊆∼P . This means, adequately with an algebraic loose approach, that a correct
program may implement more equalities than strictly required by the specification. To illustrate
this, let us consider the following specification, which specifies a counter that rings every second

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

28 M. AIGUIER ET AL.

tick.
spec COUNTER =

type Bool ::= True | False;

sort Count;
ops reset :→ Count;

tick : Count→ Count;
ring : Count→ Bool;

∀c : Count;
• ring(reset) = True
• ring(tick(reset)) = False
• ring(tick(tick(c))) = ring(c)

• tick(c) = reset =⇒ True = False
end

The last axiom requires that the counter never resets, since it prevents any tick(c) to be equal to
the reset constant. The loose semantics admit as models, the initial one (ensuring that tickn(reset)
is not equal to reset for any n), and some others such that the one for which tick6(reset) is equal to
reset. This last model is such that True is equal to False, while the first one makes different True and
False.

Zhu looks for the terminal model by testing all equalities t = t′, and inequalities t 6= t′, up to
observability, that hold in the terminal model. In particular, it must be checked that True does not
equal to False in the program. Here, there is at least one model where True equals to False (for
example the trivial model where each sort is reduced to only one value) and one model where True
and False are different (for example the initial model), therefore such (inequality) test cases do not
make sense.

9. CONCLUSION

In this paper, we studied conditions on specifications and programs to ensure that the set of semantic
consequences of the specification of a program is an exhaustive test set for this program. The
existence of an exhaustive test set is an essential property in a testing framework because it prevents
from rejecting a correct program or dually to accept an incorrect program. We studied conditions for
exhaustiveness in different algebraic formalisms (equational, conditional, quantifier free and general
first-order formulas) provided with a loose semantics and in the presence of non-observable sorts.
We show in particular that the easiest way to get an exhaustive test set is to consider test cases of
the same shape as the axioms of the specification. Otherwise, some rather strong hypotheses have
to be imposed, in particular on the program under test, which may not be easy to verify.

Acknowledgements. Special thanks for Paolo Ballarini and Thomas Bellet for their careful
reading of this text and for their linguistic corrections.

REFERENCES

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EXHAUSTIVE TEST SETS FOR ALGEBRAIC SPECIFICATIONS 29

1. Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Software testing based on formal specifications: a theory
and a tool. Software Engineering Journal, 6(6):387–405, 1991.

2. David Lee and Mihalis Yannakakis. Principles and methods of testing finite state machines: a survey. In IEEE
Computer Society Press, editor, Proceedings of the IEEE, volume 84(8), pages 1090–1123, 1996.

3. Marc Aiguier, Agnès Arnould, Clément Boin, Pascale Le Gall, and Bruno Marre. Testing from algebraic
specifications: test data set selection by unfolding axioms. In Formal Approches to Testing of Software, volume
3997 of Lecture Notes in Computer Science, pages 203–217. Springer-Verlag, 2005.

4. Agnès Arnould and Pascale Le Gall. Test de conformité : une approche algébrique. Technique et Science
Informatiques, 21(9):1219–1242, 2002.

5. Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. A first step in the design of a formally verified constraint-
based testing tool: Focaltest. In Tests and Proofs, volume 7305 of Lecture Notes in Computer Science, pages 35–50.
Springer, 2012.

6. Huo Yan Chen, T. H. Tse, F. T. Chan, and Tsong Yueh Chen. In black and white: an integrated approach to
class-level testing of object-oriented programming. ACM Transactions on Software Engineering Methodology,
7(3):250–298, 1998.

7. Huo Yan Chen, T. H. Tse, and Tsong Yueh Chen. TACCLE: a methodology for object-oriented software testing at
the class and cluster level. ACM Transactions on Software Engineering Methodology, 10(1):56–109, 2001.

8. Achim D. Brucker and Burkhart Wolff. On theorem prover-based testing. Formal Aspects of Computing,
25(5):683–721, 2013.

9. Marie-Claude Gaudel and Pascale Le Gall. Testing data types implementations from algebraic specifications. In
Formal Methods and Testing, volume 4949 of Lecture Notes in Computer Science, pages 209–239. Springer, 2008.

10. Pascale Le Gall and Agnès Arnould. Formal specification and test: correctness and oracle. In International
Workshop on Recent Trends in Algebraic Development Techniques, volume 1130 of Lecture Notes in Computer
Science, pages 342–358. Springer-Verlag, 1996.

11. Patrı́cia Machado. On oracles for interpreting test results against algebraic specifications. In Algebraic
Methodology and Software Technology, volume 1548 of Lecture Notes in Computer Science. Springer, 1999.

12. Patrı́cia Machado. Testing from structured algebraic specifications. In Algebraic Methodology and Software
Technology, volume 1816 of Lecture Notes in Computer Science, pages 529–544. Springer, 2000.

13. Bruno Marre. Toward automatic test data set selection using algebraic specifications and logic programming. In
International Conference on Logic Programming, pages 25–28. MIT Press, 1991.

14. Hong Zhu. A note on test oracles and semantics of algebraic specifications. In International Conference on Quality
Software, pages 91–99. IEEE Computer Society Press, 2003.

15. Gilles Bernot. Testing against formal specifications: a theoretical view. In Theory and Practice of Software
Development, volume 494 of Lecture Notes in Computer Science, pages 99–119. Springer, 1991.

16. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor specifications. Science of
Computer Programming, 25(2-3):149–186, 1995.

17. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Characterizing behavioural semantics and abstractor
semantics. In European Symposium on Programming, volume 788 of Lecture Notes in Computer Science, pages
105–119. Springer, 1994.

18. Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural properties. Theoretical
Computer Science, 165(1):3–55, 1996.

19. Roong-Ko Doong and Phyllis G. Frankl. The ASTOOT approach to testing object-oriented programs. ACM
Transactions on Software Engineering Methodology, 3(2):101–130, 1994.

20. Fernando Orejas, Marisa Navarro, and Ana Sánchez. Implementation and behavioural equivalence: a survey. In
Workshop on Specification of Abstract Data Types, volume 655 of Lecture Notes in Computer Science, pages 144–
163. Springer, 1993.

21. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic specification. Journal of
Computer and System Sciences, 34(2/3):150–178, 1987.

22. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from algebraic specifications:
Implementations revisited. Acta Informatica, 25(3):233–281, 1988.

23. Rolf Hennicker. A semi-algorithm for algebraic implementation proofs. Theoretical Computer Science, 104(1):53–
87, 1992.

24. Fernando Orejas, Marisa Navarro, and Ana Sánchez. Implementation and behavioural equivalence: A survey.
In Recent Trends in Data Type Specification, volume 655 of Lecture Notes in Computer Science, pages 93–125.
Springer, 1993.

25. Egidio Astesiano, Hans-Joerg Kreowski, and Bernd Krieg-Brueckner. Algebraic foundations of systems
specification. Springer-Verlag New York, Inc., 1999.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

30 M. AIGUIER ET AL.

26. Marc Aiguier, Agnès Arnould, Pascale Le Gall, and Delphine Longuet. Test selection for quantifier-free first-order
specifications. In International Symposium on Fundamentals of Software Engineering, volume 4767 of Lecture
Notes in Computer Science, pages 144–159. Springer-Verlag, 2007.

27. Delphine Longuet, Marc Aiguier, and Pascale Le Gall. Proof-guided test selection from quantifier-free first-order
specifications with equality. Journal of Automated Reasoning, special issue on Tests and Proofs, 45(4):437–473,
2010.

28. Isabel Nunes and Filipe Luı́s. Testing Java implementations of algebraic specifications. In Workshop on Model-
Based Testing, volume 111 of Electronic Proceedings in Theoretical Computer Science, pages 35–50, 2013.

29. Francisco Rebello de Andrade, João Pascoal Faria, and Ana C. R. Paiva. Test generation from bounded algebraic
specifications using Alloy. In International Conference on Software and Data Technologies, volume 2, pages 192–
200. SciTePress, 2011.

30. Isabel Pita and Adrián Riesco. A tool for testing data type implementations from Maude algebraic specifications.
Electronic Notes in Theoretical Computer Science, 282:61–71, 2012.

31. John V. Guttag and James J. Horning. The algebraic specification of abstract data types. Acta Informatica, 10:27–
52, 1978.

32. Liang Kong, Hong Zhu, and Bin Zhou. Automated testing EJB components based on algebraic specifications. In
International Computer Software and Applications Conference, Vol. 2, pages 717–722. IEEE Computer Society
Press, 2007.

33. Huo Yan Chen and T. H. Tse. Equality to equals and unequals: A revisit of the equivalence and nonequivalence
criteria in class-level testing of object-oriented software. IEEE Transcations on Software Engineering,
39(11):1549–1563, 2013.

34. Michel Bidoit and Peter D. Mosses. Casl User Manual - Introduction to Using the Common Algebraic Specification
Language, volume 2900 of Lecture Notes in Computer Science. Springer, 2004.

35. Tomasz Borzyszkowski. Logical systems for structured specifications. Theoretical Computer Science, 286(2):197–
245, 2002.

36. Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for structured specifications with observability
operators. Theoretical Computer Science, 173(2):393–443, 1997.

37. Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of Abstract Data Types. John Wiley & Sons,
1996.

38. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer Science. Springer-Verlag, 2002. Official website : http:
//isabelle.in.tum.de/.

39. Martin Wirsing. Handbook of Theoretical Computer Science, volume B, Formal models and semantics, chapter
Algebraic Specification. Elsevier, 1990.

40. Stéphane Barbey, Didier Buchs, and Cécile Péraire. A theory of specification-based testing for object-oriented
software. In European Dependable Computing Conference, volume 1150 of Lecture Notes in Computer Science,
pages 303–320. Springer, 1996.

41. Huo Yan Chen and T. H. Tse. Automatic generation of normal forms for testing object-oriented software. In
International Conference on Quality Software, pages 108–116. IEEE Computer Society, 2009.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

