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Abstract— In this paper, we present a temporal logic called
F whose interpretation is over Input Output Symbolic Tran-
sition Systems (IOSTS). IOSTS extend transition systems to
communications and data in order to tackle communications
with system environment.F is then defined as an extension of
temporal logic CTL∗ (a temporal logic which mixes together
the features of Linear Temporal Logic (LTL) and Computational
Temporal Logic (CTL)). Three basic properties are established on
F : adequacy and preservation of properties along synchronized
product and IOSTS refinement.
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I. I NTRODUCTION

Many works have been done to mathematically model
reactive systems and verify their correctness. Reactive systems
are open and dynamic systems whose behaviours are formally
represented by (labelled) transition systems. Two kinds of
techniques are mainly used to verify correctness of such
systems: model-checking or testing [1], [2]. Most of these
works simply deal with system behaviours, independently of
other aspects such as data. Thus, properties under verifica-
tion are expressed in propositional modal logic. Recently,
in testing context, transition systems have been extended to
communications and data in order to tackle communications
with system environment: this gave rise to Input Output
Symbolic Transition Systems (IOSTS) [3]–[5]. As far as we
know, no logic whose interpretation is over IOSTS has been
defined. However, verification techniques need logic to express
requirements to be verified. In particular, properties verified by
testing are either of the form of a set of finite scenarios (often

called test purpose) or expressed in a simple logic in order to
characterize a class of scenarios such as behavioural patterns
[6]. When dealing with conformance testing for IOSTS1, some
works succeeded considering symbolic test purposes [3]–[5].
However, no work has been done to propose a logic that can
abstractly express properties to test.

This paper is then devoted to define a logic powerful
enough to express properties of reactive systems represented
by IOSTS, mixing both data and communication actions with
dynamic aspects2. To specify the behaviour of IOSTS, we may
choose to extend any possible modal logic to communications
and data (e.g. Hennessy-Milner logic [7], modal fix-point
logic [8], Linear Temporal Logic (LTL) [9], Computational
Tree Logic (CTL) [10]. . . ). In this paper, we choose CTL∗ [11]
which mixes together the features of both LTL and CTL,
to express properties on states and paths respectively. The
reason is that such a temporal logic allows to deal with safety,
liveness and fairness properties. Our approach to extend CTL∗

could also be applied to other modal logics. A basic property
that this logic must satisfy is adequacy [7], that is when two
bisimilar IOSTS are elementary equivalent. In this paper, we
will go beyond that, showing that this logic, in addition to
be adequate, preserves properties along synchronized product

1Conformance testing consists in showing that an implementation meets
all the requirements of its specification when both are formally specified by
transition systems.

2This work is performed within a national French project STACS
(Sṕecification et Test, Abstraits et Compositionnels, de Systèmes) in collab-
oration with the Nuclear Research Center (CEA). This project is devoted to
automatically generate test data sets for Input Output Symbolic Transition
Systems (IOSTS).



and refinement of IOSTS.
The paper is organized as follows. In Section II, we re-

call basic definitions and notations about many-sorted first-
order logic. In Section III, we introduce IOSTS and define
the three operations on IOSTS: synchronized product, strong
bisimulation and refinement. In Section IV, we present a
temporal logic whose interpretation is over IOSTS. Moreover,
we give three results that express respectively that this logic is
adequate, and preserves properties along synchronized product
and refinement.

II. PRELIMINARIES

The data part addresses the functional issues of Input Ouput
Symbolic Transition Systems. It will be described with a
many-sorted first-order logic. As usual,Σ-terms, notedTΣ(V ),
and Σ-formulas, notedSen(Σ), are inductively built over a
many-sorted first-order signature, notedΣ = (S, F,R), and
a set ofmany-sorted variables, notedV = (Vs)s∈S . S is a
set of sorts andF andR are respectively sets of function and
relation names with arities inS.

The mathematical interpretation of any signatureΣ =
(S, F, R) is given by aS-set M = (Ms)s∈S provided with
a total functionfM : Ms1 × · · · × Msn → Ms for each
function namef : s1 . . . sn → s ∈ F and an-ary relationrM :
Ms1×· · ·×Msn for each predicate namer : s1 . . . sn ∈ R. The
evaluation ofΣ-terms from aΣ-modelM is given by any total
function σ\ : TΣ(V ) → M defined as the canonical extension
of any interpretation of variablesσ : V → M . Therefore,
we extend any interpretationσ into an unary relationM |=σ

on Σ-formulas as usual. The validation ofΣ-formulas from
Σ-models is defined by:M |= ϕ if and only if for any
σ : V → M, M |=σ ϕ.

We denoteMV the set of mappings fromV to |M|.
III. I NPUT OUTPUT SYMBOLIC TRANSITION SYSTEMS

A. Syntax

Input Output Symbolic Transition Systems (IOSTS) are
used to model reactive systems. A reactive system is a system
which interacts with its environment, represented itself by
another IOSTS. Thus, a reactive system is an open system,
defined by an IOSTS which can also be decomposed into sev-
eral communicating IOSTS, each one representing one of its
subsystems. Communications consist in sending or receiving
messages represented by first-order terms through communi-
cation channels. As usual when considering automata, IOSTS
describe possible evolutions of system states. Elementary
evolutions are represented by a transition relation between
states. Each transition between two states is labelled by
three elements: communication actions (sending or receipt of

messages) or internal actions of the system, guards expressed
here with first-order properties, and assignments. As usual, we
start by defining the language, so-called signature, on which
IOSTS are built:

Definition III.1 (Signature) A signature is a triple L =
(Σ, V, C) where: Σ is a first-order signature,V is a set of

variables overΣ and C is a set whose elements are called

channel names.

Given a signatureL = (Σ, V, C), we can define elements
that label transitions: guard, assignment and actions. Aguard

will be a first-order formula built overΣ. An assignmentwill
be defined by a mappingδ : V → TΣ(V ) preserving sorts (i.e.
∀s ∈ S, δ(Vs) ⊆ TΣ(V )s) andactionsare defined as follows:

ActL = τ | c?x | c!t

wherec ∈ C, x ∈ V and t ∈ TΣ(V ). τ represents an internal
action whilec?x and c!t represent, respectively, a receipt on
the variablex and sending of the valuet through the channel
c.

An IOSTS is then defined as follows:

Definition III.2 (IOSTS) Given a signatureL = (Σ, V, C),
an IOSTS is a triple (Q, q0,T) where:

• Q is a set ofstates
• q0 ∈ Q is the initial state

• T ⊆ Q × ActL × Sen(Σ) × TΣ(V )V × Q is a relation

such that each state ofQ is reachable3 from q0.

Example III.1 All through this paper, we are going to take

the example of a cash dispenser. Its informal specification is

the following. A user inserts his card and keys his code. If it

is wrong, the user has to key his code again, except if it is the

third time that the code is wrong. In this case, the user does not

get his card back, and the dispenser is reinitialized. If the code

is valid, the user keys the amount he wants to withdraw. Then

the dispenser gives an authorization depending on the card

number and the asked amount. According to this authorization,

the dispenser will give or not his card back to the user, and will

give or not his money. In all these cases, when the operation

is finished, the dispenser is reinitialized.

The isvalid function checks the validity of the code. The

authorize function gives an authorization (0, 1 or 2) accord-

ing to the card number and the asked amount.

An IOSTS modelling such a system is shown on figure 1.

3Reachability means: if we noteTQ andT+
Q the projection ofT onQ×Q

and the transitive closure ofTQ, respectively, then for eachq ∈ Q r {q0},
(q0, q) ∈ T+

Q .
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Fig. 1. A cash dispenser

Notation III.1 Note source : T → Q and target : T → Q
such that for eacht = (q, act, ϕ, δ, q′) ∈ T, source(t) = q

and target(t) = q′.
Given an IOSTSG = (Q, q0,T) , a path is a word

tr1 . . . trn on T such that for each1 ≤ j < n, target(tj) =
source(tj+1). Note Path(G) the set of paths ofG. Note

source\ and target\ the canonical extensions ofsource and

target on Path(G).
NotePathq(G) the set{pa ∈ Path(G) | source\(pa) = q}.

B. Semantics of IOSTS

By their construction, semantics of IOSTS must take into
account:

• a first-order structureM in order to give a mathematical
meaning of data,

• and a binary relation on states, which naturally are
defined by variable interpretation. This relation will be
the semantical meaning of transitions, and by relational
composition, of paths.

Intuitively, semantics of paths is defined as the composition of
transition semantics which depend both on guard satisfaction
and variable assignment. The semantics of an IOSTS will then
be the set of semantics of all paths issued from the initial state.

Definition III.3 (Semantics of IOSTS) Let L be a signa-

ture. LetG = (Q, q0,T) be an IOSTS overL whose first-

order structure isM.

For everytr = (q, act, ϕ, δ, q′) ∈ T, note[|tr|] ⊆ MV ×MV

defined by:

(νi, νf ) ∈ [|tr|] iff:

• M ²νi ϕ and νf = νi
a

\ ◦ δ if act = c?x and for all

y 6= x in V , νi
a(y) = νi

• M ²νi ϕ and νf = νi otherwise.

For every pa = tr1tr2 . . . trn in Path(G), [|pa|] =
[|tr1|].[|tr2|] . . . [|trn|] where. is the relational composition4.

The semantics ofG, denoted[|G|], is defined as follows:

[|G|] =
⋃

pa∈Pathq0 (G)

[|pa|]

C. Classical operations on transition systems

1) Synchronized product:Reactive systems are often de-
scribed by synchronizing subsystems together. When using
IOSTS, composition of subsystems is achieved by the alge-
braic operation of synchronized product. This models commu-
nications by “rendez-vous”. This product is informally defined
as follows:

• each transition labelled by a sending through a channel
c is synchronized with a transition labelled by a receipt
through the same channelc,

• other transitions are asynchronous. In other words, they
are fired independently.

Notation III.2 Let Σ be a first-order signature. Letϕ ∈
Sen(Σ). Note ϕ[x ← t] the formula obtained fromϕ by

replacing each occurrence of the free variablex by the term

t ∈ TΣ(V ) (of course,x and t are of the same sort).

Definition III.4 (Synchronized product) Let L1 =
(Σ, V1, C1) and L2 = (Σ, V2, C2) be two signatures

such thatV1 ∩V2 = ∅. NoteL = (Σ, V1 ∪V2, C1 ∪C2). First,

define the triple(Q, q0,T) as follows:

• Q = Q1 ×Q2,

• q0 = (q01 , q02)
• T ⊆ Q×ActL ×Sen(Σ)×TΣ(V )V ×Q is the least set

(according to theoretical set inclusion) such that:

• if (q1, act, ϕ, δ1, q
′
1) ∈ T1 where act = τ or

is of the form c?x or c!t with c /∈ C1 ∩ C2, then

((q1, q2), act, ϕ, δ, (q′1, q2)) ∈ T, where δ|V1
= δ1 and

δ|V2
= idV2

• if (q2, act, ϕ, δ2, q
′
2) ∈ T2 where act = τ or

is of the form c?x or c!t with c /∈ C1 ∩ C2, then

((q1, q2), act, ϕ, δ, (q1, q
′
2)) ∈ T, whereδ|V1

= idV1 and

δ|V2
= δ2

• if (q1, c!t, ϕ1, δ1, q
′
1) ∈ T1 and (q2, c?x, ϕ2, δ2, q

′
2) ∈

T2, then((q1, q2), τ, ϕ, δ, (q′1, q
′
2)) ∈ T, whereϕ = ϕ1 ∧

ϕ2[x ← t], δ|V1
= δ1 and δ|V2

= δ2 ◦ x 7→ t

4. is defined as follows :(a, b).(b, c) = (a, c)



• if (q1, c?x, ϕ1, δ1, q
′
1) ∈ T1 and (q2, c!t, ϕ2, δ2, q

′
2) ∈

T2, then ((q1, q2), τ, ϕ, δ, (q′1, q
′
2)) ∈ T, where ϕ =

ϕ1[x ← t] ∧ ϕ2, δ|V1
= δ1 ◦ x 7→ t and δ|V2

= δ2.

In order to satisfy the condition on transitions of Defini-

tion III.2, we must cut down in the set of statesQ and

only keep states that are reachable fromq0. Hence, the

synchronized product ofG1 and G2, notedG1 ⊗ G2, is the

IOSTS(Q⊗, q0⊗ ,T⊗) over L defined by:

• Q⊗ = {q ∈ Q|(qo, q) ∈ T
+

Q}
• q0⊗ = q0

• T⊗ = {(q, act, ϕ, δ, q′) ∈ T|(q, q′) ∈ Q⊗ ×Q⊗}

2) Bisimulation: Various equivalences have been studied in
the literature that identify transition systems on the basis of
their behaviour. The classic example isstrong bisimulation

denoted by∼. For two given IOSTSG1 = (Q1, q1,T1)
andG2 = (Q2, q2,T2), bisimulation is defined as a relation
between the set of statesQ1 andQ2. As a relation betweenQ1

andQ2, it can be characterized as the greatest fixpointνF∼ of
a certain monotonic functionalF∼. This functional operates
on the complete lattice of relationsR ⊆ Q1 ×Q2 ordered by
set inclusion and is defined by:q F∼(R) q′ iff both following
conditions are satisfied:

• ∀tr1 ∈ T1, source(tr1) = q ⇒

∃tr2 ∈ T2,





source(tr2) = q′∧
[|tr1|] = [|tr2|]∧
target(tr1) R target(tr2)

• ∀tr2 ∈ T2, source(tr2) = q′ ⇒

∃tr1 ∈ T1,





source(tr1) = q∧
[|tr1|] = [|tr2|]∧
target(tr1) R target(tr2)

The two IOSTSG1 andG2 are bisimilar, notedG1 ∼ G2 if
and only if q01 ∼ q02 .

D. Refinement

1) Syntax: IOSTS are mathematical abstractions of sys-
tems. We can then refine IOSTS in order to be closer and
closer to the real implantation of the system. Here, refinement
will only concern dynamic behaviour of systems, that is
transitions and paths. We suppose that data are preserved
from an abstract level to a more concrete one5. First-order
signatures are then preserved in both signatures of refined and
refining IOSTS. Hence, given a signatureL1 = (Σ1, V1, C1)
and anIOSTS G1 = (Q1, q01 ,T1), a refinement ofG1 built
over L1 = (Σ1, V1, C1) will be an IOSTSG2 over signature

5There are many works that have been done on data refinement by using
algebraic techniques. A very good survey on this subject can be found in [12].
Here, we do not consider such a refinement to lighten the paper. However,
such a refinement combining together data and dynamic behaviour refinement
can be found in [13], [14].

L2 = (Σ2, V2, C2) such thatΣ1 = Σ2, V1 ⊆ V2, andC1 ⊆ C2.
Moreover, both are equipped with the same first-order structure
M.

Transition refinement will consist in replacing a transitiontr

of G1 by an IOSTSGtr = (Qtr, q0tr ,Ttr). Three conditions
have to be imposed onGtr:

1) source(tr) is the initial state ofGtr.
2) target(tr) is reachable from each state ofGtr.
3) Finally, each path ofGtr must only contain the action

which occurs intr and no other ones ofL1.

Syntactically, a transition refinement is then defined as follows:

Definition III.5 (Syntactical refinement of a transition)
Let G be an IOSTS overL = (Σ, V, C). Let

tr = (q, act, ϕ, δ, q′) ∈ T1 be a transition. Asyntactical
refinementof tr is an IOSTSGtr = (Qtr, q0tr ,Ttr) over

Ltr = (Σ, Vtr, Ctr) such that:

• Qtr ∩Q1 = {q, q′}
• q0tr

= q

• for eachq′′ ∈ Qtr, there existspa ∈ Pathq′′(Gtr) such

that target\(pa) = q′

• for each pa = tr1 . . . trn ∈ Pathq(Gtr) with

target\(pa) = q′, there exists a unique1 ≤ k ≤ n such

that the action oftk is act, and for each1 ≤ j 6= k ≤ n,

the action oftj is either τ or uses a channel name in

Ctr r C.

Example III.2 We are going to refine one of the transitions

of the IOSTS presented in example III.1. We refine it making

more explicit what theauthorize function does. The dispenser

calls the bank to first check the date of validity of the card. If

it is over, then the dispenser gives authorization 0. If the card

is valid, then the dispenser asks the bank the total amount

available on the user’s account. If the amount the user wants

to withdraw is available, he is given authorization 2, and if

it is not, he is given authorization 1. An IOSTS refining this

transition is shown on figure 2

Remark. A transition tr = (q, act, ϕ, δ, q′) can also be
considered as an IOSTSGId

tr = (Qtr, q0tr ,Ttr) whereQtr =
{q, q′}, q0tr = q andTtr = {tr}. By Definition III.5, GId

tr is
a syntactical refinement oftr.

Syntactical refinement of an IOSTS is then defined as
follows:

Definition III.6 (Syntactical refinement of an IOSTS) A

syntactical refinementof G1 = (Q1, q1,T1) is an IOSTS

G2 = (Q2, q2,T2) defined from a T1-indexed family
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a 7→ 0

V alidDate!C
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TotalAccount?T

TotalAccount!C
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Fig. 2. Syntactical refinement of a transition

(Gtr)tr∈T1 where6 Gtr is a syntactical refinement oftr, as

follows:

• Q2 =
⋃

tr∈T1

Qtr

• q02 = q01

• T2 =
⋃

tr∈T1

Ttr

A refinement ofG1 is then an IOSTS composed of the
refinements of all the transitions ofG1.

Remark. We deduce from Definition III.5 and Definition III.6
thatQ1 ⊆ Q2 andT1 ⊆ T2.

2) Correctness: Refinement correctness holds when re-
finement IOSTS completely preserves dynamic behaviour of
refined one. Formally, this is expressed as follows:

Definition III.7 (Refinement correctness) Let G2 be a syn-

tactical refinement ofG1. This refinement iscorrectif and only

if U([|G2|]) = [|G1|] whereU([|G2|]) means:

U([|G2|]) = {(νi
|V1

, νf
|V1

)|(νi, νf ) ∈ [|G2|]}

Of course, it is not reasonable to refine an IOSTS as a whole
in a single step. Large softwares usually require many re-
finement steps before obtaining efficient programs. This leads
to the notion of sequential composition of refinement steps.
Usually, composition of enrichment is mainly divided into two
concepts: horizontal composition and vertical composition.

Horizontal composition deals with refinement of subparts
of systems when they are structured into “blocks”. Here,

6If Gtr is the IOSTSGId
tr , then it simply means that the corresponding

transitiontr is not refined.

blocks are IOSTS and structuring is defined by synchronized
product. On the contrary, vertical composition deals with many
refinement steps, that is it is the transitive closure of correct
refinements. In both cases, we have shown that correctness is
preserved. For lack of space, we do not present these results.
However, they can be found in [13], [14].

IV. A TEMPORAL LOGIC FORIOSTS

We present in this section a first-order temporal logic
F whose interpretation will be over IOSTS.F extends
CTL∗ [11] to first-order in order to take into account com-
munication actions adding the modalityafter[a] wherea is
a finite sequence of actions.after[a]ϕ roughly means from
the current sequence of transitionsσ thatϕ is satisfied for the
subsequence ofσ that directly follows the sequencea in σ.
Observe thatafter[a] is the extension to paths of the modality
[a] of the standard Hennessy-Milner logic [7]. Hence,F is a
branching-time temporal logic where the structure representing
all possible executions istree-like rather than linear.

A. Syntax

As interpretation ofF is over IOSTS, signatures are those
of Definition III.1. Actions are extended in order to consider
finite sequences of actions.

Hence, actions are defined asActL for L a signature,
to which we add the productionActL ;ActL . By the as-
sociativity property,a is a sequence of elementary actions
a = a1; . . . ; an where for each1 ≤ i ≤ n, ai denotes internal
action, receipt or sending.

Definition IV.1 (Formulas) Let L = (Σ, V, C) be a signa-

ture. Formulas are defined as follows:

For := Sen(Σ)| after[ActL ]For|αFor|
For U For|∀For|∃For| ¬For| ForβFor

whereα ∈ {X,F,G} and β ∈ {∨,∧,⇒}.

Example IV.1 We give here some formulas we can express

on the IOSTS of example III.1.

After the user’s card is inserted, the counter is initialized:

after[Card?C](count = 0)
If the code is valid, the authorization given after the receipt

of the amount will be 0, 1 and 2:

F(b = true) ⇒ after[Amount?M ](a = 0 ∨ a = 1 ∨ a = 2)
If the given authorization is 1, then the variablea will keep

this value at least until the counter is reinitialized:

F(a = 1) ⇒ (a = 1)U(count = 0)
The counter is always greater than or equal to 0 and less than

or equal to 3:

G(¬(count < 0 ∨ count > 3))



If the given authorization is 2, then the user will be given his

card back and his money:

F(a = 2) ⇒ after[Card!C; Money!M ]>
where> stands for the always true formula.

B. Semantics

As already said above, formulas are interpreted over IOSTS.
Of course, IOSTS and formulas must be built over a same
languageL . Before giving satisfaction of formulas, we first
have to define the notion of embedding of a term in paths
of a given IOSTS. The satisfaction of formulas of the form
after[a]ϕ will be based on this notion.

Definition IV.2 (Embedding of a term in a path) Let a =
a1; . . . ; an be a term. Letpa = tr1 . . . trm ∈ Path(G) be

a path wherem ≥ n and for each1 ≤ i ≤ m, tri =
(qi, acti, ϕi, δi, q

′
i). a is said embeddedinto pa if and only

if there exists a sequence(i1, . . . , in) such that for every

1 ≤ j ≤ n, ij ∈ {1, . . . , m}, ij < ij+1, in = m, and

aj = actij .

In IOSTS, only paths starting from the initial state make
sense. Therefore, formulas satisfaction will only be defined
from sequences of actions whose source isq0, and variable
interpretations. This gives rise to the following definition:

Definition IV.3 (Satisfaction) Let L be a signature. LetG
be an IOSTS overL together withM as underlying first-

order structure. Letϕ be a formula overL . Let σ =
(tr0, . . . , trn, . . .) be a sequence of actions ofG, so-called

run, satisfying: ∀i ∈ N, target(tri) = source(tri+1). Let

ν : V →M be an interpretation of variables.G satisfiesfor

σ and ν the formulaϕ, notedG |=σ,ν ϕ if and only if: for

everyi ∈ N, noteσi = (tri, . . . , trn, . . .) the subsequence of

σ

• if ϕ ∈ Sen(Σ), thenG |=σ,ν ϕ iff M |=ν ϕ,

• if ϕ is of the form after[a]ψ, then G |=σ,ν ϕ iff

there existsi ∈ N such thata is embedded inpa =
(tr0, . . . , tri−1) and for every(ν, ν′) ∈ [|pa|], G |=σi,ν′ ψ,

• if ϕ is of the formXψ, thenG |=σ,ν ϕ iff for every

(ν, ν′) ∈ [|tr0|], G |=σ1,ν′ ψ,

• if ϕ is of the formFψ, thenG |=σ,ν ϕ iff there existsi ∈
N such that for every(ν, ν′) ∈ [|tr0 . . . tri−1|],G |=σi,ν′ ψ,

• if ϕ is of the formGψ, thenG |=σ,ν ϕ iff for everyi ∈ N
and for every(ν, ν′) ∈ [|tr0 . . . tri−1|], G |=σi,ν′ ψ,

• if ϕ is of the form ψUχ, then G |=σ,ν ϕ iff there

existsi ∈ N such that for every(ν, ν′) ∈ [|tr0 . . . tri−1|]
G |=σi,ν′ χ and for every1 ≤ k < i and every

(ν, ν′) ∈ [|tr0 . . . trk−1|], G |=σk,ν′ ψ,

• if ϕ is of the form∀ψ, thenG |=σ,ν ϕ iff for every run

σ′ sharing the same initial state withσ, G |=σ′,ν ψ,

• if ϕ is of the form∃ψ, thenG |=σ,ν ϕ iff there exists a

run σ′ sharing the same initial state withσ, G |=σ′,ν ψ,

• propositional connectives are handled as usual.

G satisfiesϕ, notedG |= ϕ if and only if for every runσ

starting atq0 and every interpretationν, G |=σ,ν ϕ.

C. Preservation results

In this section, we establish three results which show that
F is well-adapted to express properties on IOSTS. For lack of
space, we do not give their proofs here. For interested readers,
they can be found in [13], [14].

1) Synchronized product:Synchronized product restricts
IOSTS behaviour. Therefore, preservation cannot hold for all
formulas. It can only hold for a subset of them. Actually, all
formulas implicitly dealing with existness quantifiers such as
the modalitiesF, U, and∃ do not preserve properties along
synchronized product. This subset of formulas is defined as
follows:

For′ := Sen(Σ)| after[ActL ]For′|αFor′|
∀For| ForβFor

whereα ∈ {X,G} andβ ∈ {∧,⇒}.
Before expressing this preservation result, note• the mapping
that transforms every action over the two signaturesL1 =
(Σ, V1, C1) and L2 = (Σ, V2, C2) into an action overL =
(Σ, V1 ∪ V2, C1 ∪ C2) as follows:

τ 7→ τ

c#u 7→ τ if c ∈ C1 ∩ C2

c#u 7→ c#u if c6∈C1 ∩ C2

a1; a2 7→ a•1; a
•
2

where# ∈ {?, !} and u ∈ TΣ(Vi) i = 1, 2. Note also • its
canonical extension to formulas inFor′ defined as follows:

ϕ ∈ Sen(Σ) 7→ ϕ

after[a]ϕ 7→ after[a•]ϕ•

αϕ 7→ αϕ•

∀ϕ 7→ ∀ϕ•
ϕ β ψ 7→ ϕ• β ψ•

whereα ∈ {X,G} andβ ∈ {∧,⇒}

Theorem IV.1 LetGi be an IOSTS overLi = (Σ, Vi, Ci) for

i = 1, 2 such thatV1 ∩ V2 = ∅. Let ϕ be a formula over

L = (Σ, V1 ∪ V2, C1 ∪ C2) that satisfies production rules of

For′. Then, we have:

G1 |= ϕ ∧G2 |= ϕ ⇒ G1 ⊗G2 |= ϕ•



2) Adequacy:In a modal logicL interpreted over symbolic
transition systems(Q, q,T), L is saidadequatew.r.t. a binary
relation R on Q (which is usually the strong bisimilarity
relation) if and only if:

∀G1,G2, (∀ϕ,G1 |= ϕ ⇔ G2 |= ϕ) ⇐⇒ G1 ∼ G2

Theorem IV.2 F is adequate w.r.t.∼.

3) Refinement:Refinement correctness as defined in Defi-
nition III.7 expresses the fact that the refining IOSTS meets all
properties of the refined IOSTS, except those dealing with too
specific states, like the modalityX which unables to express a
property about the next state. Indeed, if the transition leading
to this next state is refined by an IOSTS, then the property
will be verified in a next state but not inthe next state. Then
we need to restrict the initial set of formulas as follows:

For′′ := Sen(Σ)| after[ActL ]For|αFor|
For U For|∀For|∃For| ¬For| ForβFor

whereα ∈ {F,G} andβ ∈ {∨,∧,⇒}.
We can now show the following result for this set of

formulas:

Theorem IV.3 LetG1 andG2 be two IOSTS built respectively

over L1 and L2. Assuming thatG2 is a correct refinement

of G1. Then, for every formulaϕ built over L1 satisfying

production rules ofFor′′ we have:

G1 |= ϕ ⇐⇒ G2 |= ϕ

V. CONCLUSION

In this paper, we have defined a logic dedicated to express
properties on IOSTS. This logic has been defined as an
extension ofCTL∗ to take into account communications and
data. Moreover, we have established appropriate properties on
it such as adequacy w.r.t. strong bisimulation, and preservation
of properties along refinement.
We are currently investigating how to automatically generate
test cases from test purposes given by properties inF . We are
also investigating how to test conformance between a more
concrete IOSTS w.r.t. an abstract one. This will be based on
the refinement relation as presented in this paper.
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automates communicants,” Master’s thesis, University of Evry, 2004,
available at http://www.lami.univ-evry.fr/∼dlonguet/.

[14] M. Aiguier, C. Gaston, P. L. Gall, D. Longuet, and A. Touil, “A temporal
logic for input output symbolic transistion systems,” University of Evry,
Tech. Rep., 2005, available at http://www.lami.univ-evry.fr/∼dlonguet/.


