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Abstract—In this paper, we present a temporal logic called called test purpose) or expressed in a simple logic in order to
F whose interpretation is over Input Output Symbolic Tran-  characterize a class of scenarios such as behavioural patterns
sition S)_/ste_ms (IOSTS). IQSTS extend transition sy;tems to [6]. When dealing with conformance testing for I0STSome
communications and data in order to tackle communications S .
with system environment. F is then defined as an extension of works succeeded considering symbolic test purposes [3}-[5].
temporal logic CTL* (a temporal logic which mixes together However, no work has been done to propose a logic that can
the features of Linear Temporal Logic (LTL) and Computational — abstractly express properties to test.

Temporal Logic (CTL)). Three basic properties are established on  This paper is then devoted to define a logic powerful
7 adequacy and presc_ervation of properties along synchronized enough to express properties of reactive systems represented
product and IOSTS refinement. .. L . .
Keywords: input output symbolic transition systems, temporal Iogicby IOS_TS' mixing both d_ata and Communlcatlon actions with
. _ ) ' dynamic aspects To specify the behaviour of IOSTS, we may
strong bisimulation, refinement, adequacy . . L
choose to extend any possible modal logic to communications
and data (e.g. Hennessy-Milner logic [7], modal fix-point
logic [8], Linear Temporal Logic (LTL) [9], Computational

Many works have been done to mathematically mod&ree Logic (CTL) [10]...). In this paper, we choose CT11]
reactive systems and verify their correctness. Reactive systemtich mixes together the features of both LTL and CTL,
are open and dynamic systems whose behaviours are formatlyexpress properties on states and paths respectively. The
represented by (labelled) transition systems. Two kinds mfason is that such a temporal logic allows to deal with safety,
techniques are mainly used to verify correctness of sulibeness and fairness properties. Our approach to extend CTL
systems: model-checking or testing [1], [2]. Most of theseould also be applied to other modal logics. A basic property
works simply deal with system behaviours, independently that this logic must satisfy is adequacy [7], that is when two
other aspects such as data. Thus, properties under verifisgimilar IOSTS are elementary equivalent. In this paper, we
tion are expressed in propositional modal logic. Recentlyill go beyond that, showing that this logic, in addition to
in testing context, transition systems have been extendedbt® adequate, preserves properties along synchronized product
communications and data in order to tackle communications
with system environment: this gave rise to Input Output 1Conformlance testing consis.ts in. showing that an implementatior.w.meets
Symbolic Transition Systems (I0STS) [3]-[5]. As far as W%!;Zﬁigiq:;;et;nn?gts of its specification when both are formally specified by
know, no logic whose interpretation is over IOSTS has beerfThis work is performed within a national French project STACS

defined. However, verification techniques need logic to expre§gcification et Test, Abstraits et Compositionnels, deégys§ in collab-
oration with the Nuclear Research Center (CEA). This project is devoted to

requirements to be verified. In particular, properties verified t?:%tomatically generate test data sets for Input Output Symbolic Transition
testing are either of the form of a set of finite scenarios (oft&ystems (10STS).

I. INTRODUCTION



and refinement of IOSTS. messages) or internal actions of the system, guards expressed
The paper is organized as follows. In Section I, we rdiere with first-order properties, and assignments. As usual, we

call basic definitions and notations about many-sorted firsttart by defining the language, so-called signature, on which

order logic. In Section lll, we introduce I0STS and definéOSTS are built:

the three operations on IOSTS: synchronized product, strong

bisimulation and refinement. In Section IV, we present Refinition Ill.1 (Signature) A signatureis a triple . =

temporal logic whose interpretation is over IOSTS. Moreovey:, V,C) where: ¥ is a first-order signatureV is a set of

we give three results that express respectively that this logicvigriables overX and C is a set whose elements are called

adequate, and preserves properties along synchronized proghennel names

and refinement. Given a signature? = (3, V,C), we can define elements

II. PRELIMINARIES that label transitions: guard, assignment and actiongu&d
The data part addresses the functional issues of Input oufflf P€ a first-order formula built oveE. An assignmentwill
e defined by a mapping: V' — Tx (V') preserving sorts (i.e.

Symbolic Transition Systems. It will be described with ) i
many-sorted first-order logic. As usual;terms notedTs (V), Vs € 5, 8(Vs) € T=(V),) andactionsare defined as follows:

and X-formulas noted Sen(X), are inductively built over a
many-sorted first-order signatureoted® = (S, F, R), and

a set ofmany-sorted variablesnoted V' = (V;)ses. S is @ wherec € C, z € V andt € T (V). T represents an internal

set of sorts and” and R are respectively sets of function andaction while c?z and ¢!t represent, respectively, a receipt on

relation names with arities ify. the variabler and sending of the valuethrough the channel
The mathematical interpretation of any signatdte = .

(S,F.R) is given by aS-setM = (M;)ecs provided with  An |OSTS is then defined as follows:

a total function f™ : M, x --- x My, — M, for each

function namef : s; ... s, — s € F and an-ary relationr™ :  Definition 11l.2 (IOSTS) Given a signature? = (%, V,C),

My, x---xMj, for each predicate name: s, ...s, € R. The anl|OSTSis a triple (Q, qo, T) where:

evaluation oft-terms from ax-modelM is given by any total  ,  is a set ofstates

function % : T (V) — M defined as the canonical extension qo € Q is the initial state

of any interpretation of variables : V' — M. Therefore, ¢« TCQx Acty x Sen(X) x Tx(V)V x Q is a relation

we extend any interpretation into an unary relatiooM =, such that each state @ is reachablé from go.
on X-formulas as usual. The validation af-formulas from

Y-models is defined byM = ¢ if and only if for any Example I1l.1 All through this paper, we are going to take
o: VoM ME, . the example of a cash dispenser. Its informal specification is
We denoteM" the set of mappings frony to | M]. the following. A user inserts his card and keys his code. If it
is wrong, the user has to key his code again, except if it is the
third time that the code is wrong. In this case, the user does not
A. Syntax get his card back, and the dispenser is reinitialized. If the code
Input Output Symbolic Transition Systems (IOSTS) aris valid, the user keys the amount he wants to withdraw. Then
used to model reactive systems. A reactive system is a systgma dispenser gives an authorization depending on the card
which interacts with its environment, represented itself bhyumber and the asked amount. According to this authorization,
another I0STS. Thus, a reactive system is an open systehg dispenser will give or not his card back to the user, and will
defined by an IOSTS which can also be decomposed into sgi#e or not his money. In all these cases, when the operation
eral communicating IOSTS, each one representing one of igsfinished, the dispenser is reinitialized.
subsystems. Communications consist in sending or receivindThe isvalid function checks the validity of the code. The
messages represented by first-order terms through communithorize function gives an authorization (0, 1 or 2) accord-
cation channels. As usual when considering automata, |OSIR§ to the card number and the asked amount.
describe possible evolutions of system states. ElementaryAn IOSTS modelling such a system is shown on figure 1.
evolutions are represented by a transition relation between y ) N o
. . Reachability means: if we nofgy and Ty, the projection ofl" on Q@ x Q
states. Each transition between two states is labelled BV e transitive closure dtg. respective‘l%’ then for each € O ~ {qo},
three elements: communication actions (sending or receipt(af, q) € 11“5.

Acty =7 | x| clt

1. INPUT OUTPUT SYMBOLIC TRANSITION SYSTEMS
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Fig. 1. A cash dispenser

Notation Ill.1 Note source : T — Q and target : T — Q
such that for eacht = (q,act,¢,0,¢') € T, source(t) = q
and target(t) = ¢'.

Given an I0STSG = (Q,qo,T) , a path is a word
tri...tr, on T such that for each < j < n, target(t;) =
source(tj41). Note Path(G) the set of paths ofz. Note
source? and target? the canonical extensions eburce and
target on Path(G).

Note Path,(G) the set{pa € Path(G) | source®(pa) = q}.

B. Semantics of IOSTS

By their construction, semantics of IOSTS must take int&eﬁne the triple(@, g, T)
» 40

account:

« a first-order structureéV in order to give a mathematical

meaning of data,

o« and a binary relation on states, which naturally are
defined by variable interpretation. This relation will be
the semantical meaning of transitions, and by relational

composition, of paths.

Intuitively, semantics of paths is defined as the composition of
transition semantics which depend both on guard satisfaction

(', vf) € [tr] iff:
« ME, pandv! = i o5 if act = ¢?z and for all
y#zinV, vi(y) =v'
e ME,i pandvf =1 otherwise.
For every pa = tritry...tr, in Path(G), [pa] =
[tri].[tr2] . . . [trn] where. is the relational compositidh
The semantics of, denotedG], is defined as follows:

Gl= U I

pa€ Pathq, (G)
C. Classical operations on transition systems

1) Synchronized productReactive systems are often de-
scribed by synchronizing subsystems together. When using
IOSTS, composition of subsystems is achieved by the alge-
braic operation of synchronized product. This models commu-
nications by “rendez-vous”. This product is informally defined
as follows:

« each transition labelled by a sending through a channel
¢ is synchronized with a transition labelled by a receipt
through the same channel

« other transitions are asynchronous. In other words, they
are fired independently.

Notation IIl.2 Let ¥ be a first-order signature. Lepp €<
Sen(X). Note p[x « t| the formula obtained fromp by
replacing each occurrence of the free variahleby the term
t € Tx(V) (of course,x and¢ are of the same sort).

Definition 111.4 (Synchronized product) Let £ =
(3,V1,C) and % = (%,V2,C2) be two signatures
such thatV; NV, = (). Note.Z = (3, V3 U V4, Cy UCs). First,
as follows:

e Q=Q1 xQy,

e o = (40 90,)

T CQx Acty x Sen(X) x Tn(V)Y x Q is the least set
(according to theoretical set inclusion) such that:

o if (q1,act,p,01,q;) € T, where act = 7 or
is of the formc?z or c!lt with ¢ ¢ C; N Cq, then
((1,42), act, ¢, 6, (q1,42)) € T, whereo =~ = 6y and
5‘V2 = idv2

o If (g2,act,p,00,q5) € Ty where act = 7 or

and variable assignment. The semantics of an IOSTS will then s of the formc?z or clt with ¢ ¢ C; N Cs, then

be the set of semantics of all paths issued from the initial state.

Definition 111.3 (Semantics of IOSTS) Let . be a signa-
ture. LetG = (Q, ¢o,T) be an IOSTS over whose first-
order structure isM.

For everytr = (q,act, p,d,q') € T, note[tr] C MY x MV
defined by:

((q1,q2),act,,6,(q1,45)) € T, where(S‘V1 = idy, and
5“/2 =0y

o if (Q1,C!t,<p1,51,qi) € Tl and (QQ,C?$7§02,62,QIQ) €
Ta, then((q1,q2), 7, ¢, 9, (¢}, ¢5)) € T, wherep = o A
palx — t], 5“/1 =4; and 6|V2 =fpox =t

4. is defined as follows (a, b).(b, ¢) = (a, ¢)



o if (ql,c‘?x,gol,dl,q'l) S Tl and (QQ,C!t,gOQ,(;Q,QIQ) e 32 = (EQ, ‘/Q,CQ) such tha@l = EQ, Vl Q Vé, andCl Q CQ.
T, then ((q¢1,42),7,9,6,(q},q5)) € T, where ¢ = Moreover, both are equipped with the same first-order structure
gol[gm—t]/\g@z,(ﬂv :510x|—>tand5|V = 0s. M.

1 2

In order to satisfy the condition on transitions of Defini- rp5nsition refinement will consist in replacing a transition

tion 1.2, we must cut down in the set of stat@s and G, by an 10STSG,, = (Qu. qo,., Ts,). Three conditions
only keep states that are reachable frofg. Hence, the have to be imposed 0B, :

synchronized product af; and Go, notedG; ® Gs, is the

1 tr) is the initial state ofGy,.
I0STS(Qg, go,, Te) Over.Z defined by: ) source(ir) IS the init ‘

N 2) target(tr) is reachable from each state @f,.
« Qo = iq € Ql(7,,9) € TG} 3) Finally, each path ofz,, must only contain the action
* 909 =90 o which occurs int and no other ones of.
* Te ={(@act,¢,0,7) € T|(@,7) € Qo x Qa } Syntactically, a transition refinement is then defined as follows:
2) Bisimulation: Various equivalences have been studied in
the literature that identify transition systems on the basis BEfinition 111.5 (Syntactical refinement of a transition)
their behaviour. The classic example song bisimulation Let G be an IOSTS overZ = (X, V.C). Let
denoted by~. For two given I0STSG; = (Qi,q1,T1) tr = (g.act,,6,¢') € T1 be a transition. Asyntactical
and G, = (Qo, g2, T2), bisimulation is defined as a relationrefinementof ¢r is an 10STSGy. = (Qr, qo,,., Ttr) OVer
between the set of stat€@ andQ,. As a relation betwee®; -Zir = (2, Vir, Ctr) Such that:
andQs, it can be characterized as the greatest fixpoifit of e Q1 NQy ={q,¢'}
a certain monotonic functionat.. This functional operates « ¢q, = ¢
on the complete lattice of relation’ C Q; x Q. ordered by  « for eachq” € Q,, there existpa € Path,(G,) such

set inclusion and is defined by:F.(R) ¢’ iff both following that target®(pa) = ¢’
conditions are satisfied: o for each pa = tri...tr, € Pathy(Gs) with
o Vtry € Ty, source(tr)) = q = target®(pa) = ¢, there exists a uniqué < k < n such
source(tra) = ¢'A that the action of, is act, and for eachl < j # k <mn,
Jtry € Ta, § [tri] = [tra)A the action oft; is either 7 or uses a channel name in
target(tr1) R target(tra) Cir N C.
o Viry € Ty, source(trs) = ¢ =
source(try) = g/ Example 1.2 We are going to refine one of the transitions
Jtry € Ty, ¢ [tra] = [tra)A of the IOSTS presented in example 11l.1. We refine it making

target(tri) R target(trz) more explicit what thewuthorize function does. The dispenser
The two I0STSG, and G, are bisimilar, noteds, ~ G if  calls the bank to first check the date of validity of the card. If
and only if g, ~ qo,. it is over, then the dispenser gives authorization 0. If the card
is valid, then the dispenser asks the bank the total amount

1) Svntax: I0STS are mathematical abstractions of s available on the user’s account. If the amount the user wants
) Sy ] Y30, withdraw is available, he is given authorization 2, and if

tems. We can then refine IOSTS in order to be closer aﬂd|s not, he is given authorization 1. An IOSTS refining this

closer to the real implantation of the system. Here, refineme%nt L )
_ . i transition is shown on figure 2
will only concern dynamic behaviour of systems, that is
transitions and paths. We suppose that data are preserResnark. A transition tr = (q,act,,d,q') can also be
from an abstract level to a more concrete drigirst-order considered as an I0ST8!¢ = (Qy,, qo,,, Ts,) WhereQ,, =
signatures are then preserved in both signatures of refined @ady'}, qo,, = ¢ and Ty, = {tr}. By Definition I11.5, G2 is
refining IOSTS. Hence, given a signatuéd = (3;,V1,C1) a syntactical refinement af-.
and anIOSTS Gy = (Q1, qo,, T1), a refinement ofz; built

over £, = (X1, V1,C1) will be an I0STSG, over signature

D. Refinement

Syntactical refinement of an IOSTS is then defined as
follows:
5There are many works that have been done on data refinement by using
algebraic techniques. A very good survey on this subject can be found in H@efinition 1.6 (Syntactical refinement of an IOSTS) A
Here, we do not consider such a refinement to lighten the paper. However, . . .
ntactical refinementf G; = (Qi,¢1,T1) is an I0STS

such a refinement combining together data and dynamic behaviour refinentafy
can be found in [13], [14]. Gy = (Q2,¢2,T2) defined from aT;-indexed family
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blocks are IOSTS and structuring is defined by synchronized
product. On the contrary, vertical composition deals with many
refinement steps, that is it is the transitive closure of correct
refinements. In both cases, we have shown that correctness is
preserved. For lack of space, we do not present these results.
However, they can be found in [13], [14].

q12

d= true\

q11

IV. A TEMPORAL LOGIC FORIOSTS

We present in this section a first-order temporal logic

}V““d’:"”e"d F whose interpretation will be over IOSTSF extends

q10

. CTL* [11] to first-order in order to take into account com-
4 .
}V““‘m“t”‘!c munication actions adding the modalifter[a] wherea is
Amount?M ¥ a finite sequence of actionafter[a]e roughly means from
a +— authorize(M, C) [Amount?M - . _
the current sequence of transitiomghat ¢ is satisfied for the
g3 q3

subsequence of that directly follows the sequencein o.
Observe thaafter[a]- is the extension to paths of the modality
[a]- of the standard Hennessy-Milner logic [7]. Hendgjs a
branching-time temporal logic where the structure representing
(G )irer, Wheré Gy, is a syntactical refinement af-, as all possible executions isee-like rather than linear.

follows:

Fig. 2. Syntactical refinement of a transition

A. Syntax
+ Q2= tgy Qir As interpretation ofF is over IOSTS, signatures are those
T 1
* Jo, = qo, of Definition I1l.1. Actions are extended in order to consider

o« To = U Tyr finite sequences of actions.
trey Hence, actions are defined akty, for £ a signature,
A refinement ofG; is then an IOSTS composed of theo which we add the productionict¢; Acte. By the as-
refinements of all the transitions &f;. sociativity property,a is a sequence of elementary actions

Remark. We deduce from Definition 111.5 and Definition 111.6 * . BLi-- s (_l" where fgr eachl < i <mn, a; denotes internal
thatQ, C Q, andT, C Ty, action, receipt or sending.

2) Correctness: Refinement correctness holds when r&Sefinition 1V.1 (Formulas) Let.Z — (%,V,C)
finement IOSTS completely preserves dynamic behaviourt(&fre_ Formulas are defined as follows:
refined one. Formally, this is expressed as follows:

be a signa-

For := Sen(X)| after[Act.y|For|aFor|
Definition 11.7 (Refinement correctness) Let G, be a syn- For U For|VFor|3For| =For| ForFor
tactical refinement ofs, . This refinement isorrectif and only - wheren € {X,F, G} and 8 € {V, A, =}.
if U([G2]) = |G1] whereU([G2]) means:
Example V.1 We give here some formulas we can express
on the IOSTS of example III.1.

- ' After the user's card is inserted, the counter is initialized:
Of course, it is not reasonable to refine an IOSTS as a whole after|Card?C)(count = 0)

in a single step. Large softwares usually require many rg-he code is valid, the authorization given after the receipt
finement steps before obtaining efficient programs. This leagsihe amount will be 0. 1 and 2:
to the notion of sequential composition of refinement stepF(b = true) = after[Amount?’M](a=0Va=1Va =2)

Usually, composition of enrichment is mainly divided into twg¢ e given authorization is 1, then the variabtewill keep
concepts: horizontal composition and vertical composition. 4is value at least until the counter is reinitialized:

Horizontal composition deals with refinement of subparts Fla=1) = (a = 1)U(count = 0)
of systems when they are structured into “blocks”. Hergye counter is always greater than or equal to 0 and less than

Pr equal to 3:
G (—(count < 0V count > 3))

U((Gs)) = {(v,, . v], )|, vF) € [Gal}

1

8If Gy, is the IOSTSG/4, then it simply means that the correspondin
transitiontr is not refined.



If the given authorization is 2, then the user will be given his « if ¢ is of the formvy, thenG |=,, ¢ iff for every run

card back and his money: o’ sharing the same initial state with, G =, ., 1,
F(a = 2) = after[Card!C; Money! M|T o if ¢ is of the form3y, thenG =, , ¢ iff there exists a
where T stands for the always true formula. run o’ sharing the same initial state with, G =, ¥,

« propositional connectives are handled as usual.

B. Semantics
G satisfiesp, notedG = ¢ if and only if for every runc

As already said above, formulas are interpreted over I0STsarting atq, and every interpretatiow, G oy @
Of course, IOSTS and formulas must be built over a same
language.?. Before giving satisfaction of formulas, we firstC. Preservation results
have to define the notion of embedding of a term in paths |, this section, we establish three results which show that
of a given IOSTS. The satisfaction of formulas of the formy js well-adapted to express properties on I0STS. For lack of
after[a] will be based on this notion. space, we do not give their proofs here. For interested readers,
they can be found in [13], [14].

1) Synchronized productSynchronized product restricts
ay;...;an, be aterm. Letpa = tri...tr, € Path(G) be |osTS pehaviour. Therefore, preservation cannot hold for all
a path wherem > n and for eachl < i < m, tri = formulas. It can only hold for a subset of them. Actually, all
(gi, acti, i, i, q;). a is said embeddednto pa if and only  formylas implicitly dealing with existness quantifiers such as

Definition 1V.2 (Embedding of a term in a path) Leta =

if there exists a sequenc,...,i,) such that for every {he modalitiesF, U, and3 do not preserve properties along
L<j <mi;e{l...om}d; < ijpr, in = m, and  gqunehronized product. This subset of formulas is defined as
a;j = acti;. follows:

In IOSTS, only paths starting from the initial state make For' :== Sen(Y)| after[Acty|For'|aFor|
sense. Therefore, formulas satisfaction will only be defined VFor| ForBFor
from sequences of actions whose sourcegisand variable

interpretations. This gives rise to the following definition: wherea € {X, G} andf € {A,=}.

Before expressing this preservation result, nétthe mapping
that transforms every action over the two signatutés —
(3,V1,C1) and % = (%, V;,C2) into an action over? =
(X, V4 UV,,Cp UCs) as follows:

Definition 1V.3 (Satisfaction) Let . be a signature. LeG
be an IOSTS overZ together with M as underlying first-
order structure. Lety be a formula over?. Let ¢ =

(tro,...,trn,...) be a sequence of actions &f, so-called T T

run, satisfying:Vi € N, target(tr;) = source(tr;+1). Let cHu T if c€CinCy
v:V — M be an interpretation of variablesz satisfiesfor cH#u — cftu if cgCiNCy
o and v the formulay, notedG =, , ¢ if and only if: for ar;az — atial

everyi € N, notec* = (¢ry,...,tr,,...) the subsequence of

where# € {?,!} andu € T%(V;) i = 1,2. Note also_* its

7 ) ) canonical extension to formulas ifor’ defined as follows:
o if p € Sen(X), thenG =, , ¢ iff M |, ¢,
. if ¢ is of the formafter[a)s), then G k=, ¢ iff p € Sen(X) — ¢
there existsi € N such thata is embedded ipa = after|a]p — after(a®]®
(tro, ..., tr;_1) and for every(v, ') € [pal, G |=yi . ¥, ap = ap®
« if ¢ is of the formXy, thenG |, ¢ iff for every Vo = Vet
(Vv VI) € [tTOH! G ':al,u’ ¥, ¥ By SD. Byt

« if p is of the formFy, thenG |=, ., ¢ iff there exists €  wherea e {X,G} andj € {A, =}
N such that for everyv,v') € [trg ... tri—1], G =i, 1,

o if @ is of the formGy, thenG |-, ,  iff for everyi € N Theorem IV.1 LetG; be an IOSTS ovet, = (%, V;,C;) for
and for every(v,v') € [tro ... tri—1], G Fgi v ¥, i = 1,2 such thatV; NV, = . Let ¢ be a formula over

o if ¢ is of the formy Uy, then G |-, ¢ iff there & — (53 v; U3, ¢, UC,) that satisfies production rules of
existsi € N such that for every,v') € [tro...tri-1]  For/. Then, we have:

G s x and for everyl < k < i and every
(v, V') €ftro...trr—1], G =or v ¥, GiEeANG =616 E=¢°
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property about the next state. Indeed, if the transition leadin§! D Kozen, *Results on the propositional mu-calculugheoretical

. . . Computer Sciengevol. 27, pp. 333—-354, 1983.
to this next state is refined by an IOSTS, then the Property) A pnueli, “The temporal logic of programs,” Proceedings of the 18

will be verified ina next state but not ithe next state. Then IEEE Symposium on Foundations of Computer Scien@CM, 1977,
we need to restrict the initial set of formulas as follows: Pp. 46-77. _ _
[10] E. M. Clarke and E.-A. Emersohogics of Programs Springer, 1981,
ch. Design and synthesis of synchronisation skeletons using branching

"._
For" .= Sen(X)| after[Act »|For|aFor| time temporal logics, pp. 52-71.

For U For|VFor|3For| ~For| For@For [11] E.-A. EmersonHandbook of Theoretical Computer Scienc&lsevier,
1990, ch. Temporal and Modal Logic, pp. 995-1073.
wherea € {F,G} andj3 € {V,A,=}. [12] H. Ehrig and H. KreowskiAlgebraic Foundations of Systems Specifica-

We can now show the following result for this set of tion, ser. IFIP State-of-the-Art Reports. Springer, 1999, ch. Refinement
. d implementation, pp. 201-243.
formulas: an
ormulas [13] D. Longuet, “Une tleorie du raffinement orie@é proprétes pour les
automates communicants,” Master’s thesis, University of Evry, 2004,

Theorem IV.3 LetG; andG, be two IOSTS built respectively available at http://www.lami.univ-evry.f/dlonguet/.

over % and % Assuming thats, is a correct refinement [14] M. Aiguier, C. Gaston, P. L. Gall, D. Longuet, and A. Touil, “A temporal
L 2 2 logic for input output symbolic transistion systems,” University of Evry,

of G;. Then, for every formula> built over .#; satisfying Tech. Rep., 2005, available at http://www.lami.univ-evryidlonguet/.
production rules ofF'or” we have:

GiEp=G v

V. CONCLUSION

In this paper, we have defined a logic dedicated to express
properties on IOSTS. This logic has been defined as an
extension ofC'T'L* to take into account communications and
data. Moreover, we have established appropriate properties on
it such as adequacy w.r.t. strong bisimulation, and preservation
of properties along refinement.

We are currently investigating how to automatically generate
test cases from test purposes given by properties.ii/e are
also investigating how to test conformance between a more
concrete IOSTS w.r.t. an abstract one. This will be based on
the refinement relation as presented in this paper.
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