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Abstract

This paper deals with test case selection from axiomatic specifications
whose axioms are quantifier-free first-order formulæ. Test cases are mod-
eled as ground formulæ and any specification has an exhaustive test data
set whose successful submission means correctness, provided that the soft-
ware under verification can be modeled as a first-order structure over the
same signature. As it has already been done for positive conditional equa-
tional specifications, we derive test cases from selection criteria based on
axiom coverage. Our selection criteria allows us to select test cases by
iteratively unfolding an initial target test purpose, given as a formula.
The initial reference test set is iteratively split into successive subsets.
Each subset of test cases is defined by constraints which are increasingly
introduced by the unfolding procedure to ensure an appropriate matching
between the current test purpose under unfolding and specification ax-
ioms. Our unfolding procedure is sound (no test is added) and complete
(no test is lost) with respect to the starting test purpose. It is exemplified
on a simple example.

Keywords. Specification-based testing, quantifier-free first-order specifi-
cations, selection criteria, test purpose, axiom coverage, unfolding, proof
tree normalization.
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Introduction

Specification-based testing is a particular case of black-box testing which con-
sists in performing the system under test with some input data in order to state
whether its behaviour is conformant to a rigorous specification (i.e. given as a
formal text provided with a clear semantic). Formal specifications make possible
the automation of both test case generation from selection criteria and evalua-
tion of test executions as successful or not. Selection criteria for specification-
based testing generally allow to cover specification requirements (e.g. axioms,
transitions or states). The computation of the success/failure verdict of test
execution tools follows from the comparison between the outputs given by the
system under test and the expected ones defined by the formal specification.
Besides the possibility of computing verdicts for a test case execution, using
formal specifications allows one to properly define the conformance relation,
which states what it means for a system to conform to its specification. Such
a conformance relation depends on both test hypotheses on the system, which
allow to consider it as a formal model, and observability restrictions on the
system. These observability restrictions are used to select test cases which can
be interpreted as successful or not when performed by the system under test.
For instance, in the framework of testing from algebraic specifications, “observ-
able” test cases are any ground equations provided with an equality predicate
within the programming language used to implement the system under test.
When such conditions (test hypotheses on systems and observability restric-
tions) are precisely stated, it becomes possible to formally define the testing
activity [10, 8]. In particular, correctness can be defined up to these conditions
by characterizing an exhaustive test set, whose success is equivalent to system
correctness. Moreover, a testing process can be qualified as sound if selected test
cases cannot discard correct systems, and as complete if any non-correct system
can be detected by at least one test case. In fact, these notions of soundness and
completeness may be slightly adapted depending on whether they are applied
to an exhaustive test set, to a selection criterion, or to a subset of tests targeted
by a test purpose [15].

Testing from algebraic specifications has already been extensively studied [10,
8, 6, 14, 1, 12, 13, 4, 3, 5, 2, 11]. Correctness issues have been investigated in
presence of non-observable types whose equality can only be observed through
observable contexts, i.e. by applying some composition of functions yielding an
observable result. Selection issues have also been investigated. They consist
in either directly covering axioms by instantiating variables with some chosen
data or unfolding axioms in order to make a case analysis of function defini-
tion. In this last case, test cases for a functionality under test are extracted
from the specification by building input data which match the different cases
defined by the specification. For example, when functions are recursively spec-
ified, the analysis can be refined as many times as the tester chooses to do it.
The main drawback of such a selection strategy is that the specification under
consideration has to be under a restrictive form, namely positive conditional
formulæ [6, 14, 1].
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In this paper, we propose a family of selection criteria based on axiom un-
folding for a larger class of axiomatic specifications: quantifier-free first-order
formulæ. The enlargement is twofold. First, we do not reduce atomic formulæ
to equations and consider any kind of predicates. Secondly, formulæ are not
restricted to Horn clauses (called conditional positive formulæ when dealing
with equational logic). Our primary goal was to consider the whole classical
first-order language. However, we immediately eliminate the existential quanti-
fier. Indeed, testing a formula of the form ∃X,ϕ(X) would amount to exhibit
a witness value a such that ϕ(X) is interpreted as true by the system when
substituting X by a. Of course, there is no general way to exhibit such a perti-
nent value, but notice that astonishly, exhibiting such a value would amount to
simply prove the system with respect to the initial property. Thus, existential
properties are not testable. Some works on specification-based testing [12, 13]
have already considered a similar class of formulæ. They propose a mixed ap-
proach combining black-box and white-box testing to deal with the problem
of non-observable data types. From the selection point of view, they do not
propose any particular strategy, but only the substitution of axiom variables
for some arbitrarily chosen data. On the contrary, following the specification-
based testing framework proposed in [10], we characterize an exhaustive test
set for such specifications. Moreover, by extending the unfolding-based selec-
tion criteria family defined for conditional positive equational specifications, we
define a sound and complete unfolding procedure devoted to the coverage of
quantifier-free first-order axioms.

The paper is organized as follows. In Section 1, we recall standard notations
about quantifier-free first-order specifications. Section 2 gives relevant defini-
tions of [10] concerning our framework of testing. In Section 3, an exhaustive
test set for quantifier-free first-order specifications is characterized. Section 4
proposes an unfolding procedure allowing us to define a family of selection crite-
ria for the considered class of specifications. Finally, in Section 4.3, the selection
criteria based on the unfolding procedure is proved to be both sound and com-
plete.

1 Preliminaries

1.1 Quantifier-free first-order specifications

A (first-order) signature Σ = (S, F, P, V ) consists of a set S of sorts, a set F of
operation names each one equipped with an arity in S∗×S, a set P of predicate
names each one equipped with an arity in S+ and an S-indexed set of variables
V . In the sequel, an operation name f of arity (s1 . . . sn, s) will be denoted
by f : s1 × . . . × sn → s, and a predicate name p of arity (s1 . . . sn) will be
denoted by p : s1 × . . . × sn. Given a signature Σ = (S, F, P, V ), TΣ(V ) and
TΣ are both S-sets of terms with variables in V and ground terms, respectively,
freely generated from variables and operations in Σ and preserving arity of
operations. A substitution is any mapping σ : V → TΣ(V ) that preserves sorts.
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Substitutions are naturally extended to terms with variables. Σ-atomic formulæ
are formulæ of the form p(t1, . . . , tn) with p : s1 × . . . × sn and ti ∈ TΣ(V )si

for each i, 1 ≤ i ≤ n. A Σ-formula is a quantifier-free first-order formula built
from atomic formulæ and Boolean connectives ¬, ∧, ∨ and ⇒. As usual, free
variables of quantifier-free formulæ are implicitly universally quantified. A Σ-
formula is said ground if it does not contain variables. Let us denote For(Σ)
the set of all Σ-formulæ. A specification Sp = (Σ, Ax) consists of a signature Σ
and a set Ax of quantifier-free formulæ built over Σ. Formulæ in Ax are often
called axioms.

A Σ-model M is an S-indexed set M equipped for each f : s1 × . . .× sn →
s ∈ F with a mapping fM : Ms1 × . . . ×Msn

→ Ms and for each predicate
p : s1 × . . . × sn with an n-ary relation pM ⊆ Ms1 × . . . ×Msn . Mod(Σ) is
the category objects of which are all Σ-models. Given a Σ-model M, a Σ-
interpretation in M is any mapping ν : V → M . Interpretations are naturally
extended to terms with variables. A Σ-model M satisfies for an interpretation
ν a Σ-atomic formula p(t1, . . . , tn) if and only if (ν(t1), . . . , ν(tn)) ∈ pM. The
satisfaction of a Σ-formula ϕ for an interpretation ν by M, denoted M |=ν ϕ,
is inductively defined on the structure of ϕ from the satisfaction for ν of atomic
formulæ of ϕ and using classic semantic interpretations of Boolean connectives.
M validates a formula ϕ, denoted M |= ϕ, if and only if for every interpretation
ν : V →M , M |=ν ϕ. Given Ψ ⊆ For(Σ) and two Σ-models M and M′, M is
Ψ-equivalent to M′, denoted M≡Ψ M′, if and only if we have: ∀ϕ ∈ Ψ, M |=
ϕ ⇐⇒ M′ |= ϕ. Given a specification Sp = (Σ, Ax), a Σ-model M is an Sp-
model if for every ϕ ∈ Ax, M |= ϕ. Mod(Sp) is the full subcategory of Mod(Σ),
objects of which are all Sp-models. A Σ-formula ϕ is a semantic consequence of
a specification Sp = (Σ, Ax), denoted Sp |= ϕ, if and only if for every Sp-model
M, we have M |= ϕ. Sp• is the set of all semantic consequences.

Given a set of quantifier-free formulæ Ψ ⊆ For(Σ), let us denote HTΣ the
Σ-model, classically called the Herbrand model of Ψ,

• defined by the Σ-algebra, whose carrier is TΣ and whose operation meaning
is defined for every operation f : s1 × . . . × sn → s ∈ F by the mapping
fHTΣ : (t1, . . . , tn) 7→ f(t1, . . . , tn), and

• determined by the set of ground atomic formulæ p(t1, . . . , tn) such that
Ψ |= p(t1, . . . , tn).

It is easy to show that Ψ |= ϕ ⇔ HTΣ |= ϕ for every ground formula ϕ, and
then HTΣ ∈ Mod((Σ,Ψ)).

A calculus for quantifier-free first-order specifications is defined by the fol-
lowing inference rules, where Γ |∼ ∆ is a sequent such that Γ and ∆ are two
sets of quantifier-free first-order formulæ:
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Γ,ϕ |∼ ∆,ϕ
Ax

Γ |∼ ∆,ϕ

Γ,¬ϕ |∼ ∆
Left-¬

Γ,ϕ |∼ ∆

Γ |∼ ∆,¬ϕ
Right-¬

Γ,ϕ,ψ |∼ ∆

Γ,ϕ∧ψ |∼ ∆
Left-∧

Γ |∼ ∆,ϕ Γ |∼ ∆,ψ

Γ |∼ ∆,ϕ∧ψ
Right-∧

Γ,ϕ |∼ ∆ Γ,ψ |∼ ∆

Γ,ϕ∨ψ |∼ ∆
Left-∨

Γ |∼ ∆,ϕ,ψ

Γ |∼ ∆,ϕ∨ψ
Right-∨

Γ |∼ ∆,ϕ Γ,ψ |∼ ∆

Γ,ϕ⇒ψ |∼ ∆
Left-⇒

Γ,ϕ |∼ ∆,ψ

Γ |∼ ∆,ϕ⇒ψ
Right-⇒

Γ |∼ ∆

σ(Γ) |∼ σ(∆)
Subs

Γ |∼ ∆,ϕ Γ′,ϕ |∼ ∆′

Γ,Γ′ |∼ ∆,∆′
Cut

Observe that the inference rules associated to Boolean connectives obviously
define an automatic process that allows to transform any sequent |∼ ϕ, where
ϕ is a quantifier-free formula, into a set of sequents Γ |∼ ∆ where every formula
in Γ and ∆ is atomic. Let us call such sequents normalized sequents.

Moreover, we can show that every proof tree can be transformed into a proof
tree of same conclusion and such that both Cut and Subs rules never occur
under rule instances associated to Boolean connectives. This transformation is
obtained from basic transformations, for example:

Γ |∼ ∆,ψ,ϕ

Γ,¬ϕ |∼ ∆,ψ
Left-¬

Γ′,ψ |∼ ∆′

Γ,Γ′,¬ϕ |∼ ∆,∆′
Cut  

Γ |∼ ∆,ψ,ϕ Γ′,ψ |∼ ∆′

Γ,Γ′ |∼ ∆,∆′,ϕ
Cut

Γ,Γ′,¬ϕ |∼ ∆,∆′
Left-¬

The other basic transformations are defined in the same way. Therefore, using
proof terms for proofs, with a recursive path ordering >rpo to order proofs
induced by the well-founded relation (precedence) > on rule instances

Cut, Subs > Left-@, Right-@, where @ ∈ {¬,∧,∨,⇒}

we show that the transitive closure of  is contained in the relation >rpo, and
thus that  is terminating.

This last result states that every sequent can be written under the form
of a normalized sequent which is equivalent to it. It then allows to only deal
with normalized sequents. Therefore, in the following, we will suppose that
specification axioms are normalized sequents.

1.2 Running example

By way of illustration, we give a specification of sorted lists of positive rationals.
We first give a specification of naturals, built from constructors 0 and suc-

cessor s. Addition add and multiplication mult on naturals are specified as
usual, as well as the predicate “less than” ltn. The constructor operation /
then builds rationals from couples of naturals. Two rationals x/y and u/v are
equal (eqr predicate) if mult(x, v) and mult(u, y) are equal. Since we consider
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only positive rationals, x/y is less than u/v (ltr predicate) if mult(x, v) is less
than mult(u, y).

Lists of rationals are then built from constructors [ ] and :: as usual. The
insertion insert of a rational in a sorted list needs to consider four cases: the
list is empty; the first element of the list is equal to the rational to insert, and
then the element is not repeated; the first element of the list is greater than the
rational to insert, and then it is inserted at the head; the first element of the list
is less than the rational to insert, then the insertion is tried in the rest of the
list. The membership predicate isin is specified saying that there is no element
in the empty list, and that searching for an element in a non-empty list comes
to find it at the head of the list or to search it in the rest of the list.

The behaviour of operations add , mult and insert is classically specified by
equations. When dealing with first-order logic, this requires to introduce three
equality predicates =Nat : Nat × Nat , =Rat : Rat × Rat and =List : List × List ,
each one equipped with the following axioms:

x =@ x
x =@ y ⇒ y =@ x
x =@ y ∧ y =@ z ⇒ x =@ z
x1 =@1 y1 ∧ . . . ∧ xn =@n yn ⇒ f(x1, . . . , xn) =@ f(y1, . . . , yn)
x1 =@1 y1 ∧ . . . ∧ xn =@n yn ∧ p(x1, . . . , xn) ⇒ p(y1, . . . , yn)

where @,@i ∈ {Nat ,Rat ,List}, f : @1 × . . .×@n → @ and p : @1 × . . .×@n.
In order not to make heavy specifications, another approach is to transform
any operation f : s1 × . . . × sn → s into a predicate f : s1 × . . . × sn × s
and then to make the equality implicit. This is the approach we will follow in
the specification below. Another consequence of such an approach is to make
the use of our algorithm of selection criteria, based on axiom unfolding, easier
because less axioms are considered.

spec RatList =
sorts Nat, Rat, List
ops 0 : Nat ;

s : Nat → Nat ;
/ : Nat × Nat → Rat ;

[ ] : List ;
:: : Rat × List → List

preds add : Nat × Nat × Nat ;
mult : Nat × Nat × Nat ;
ltn : Nat × Nat ;
eqr : Rat × Rat ;
ltr : Rat × Rat ;
insert : Rat × List × List ;
isin : Rat × List

vars x, y, z, u, v, n, m: Nat ; e: Rat ; l, l′: List
• add(x, 0, x )
• add(x, s(y), s(z )) ⇔ add(x, y, z )
• mult(x, 0, 0)
• add(x, u, z ) ∧ mult(x, y, u) ⇒ mult(x, s(y), z )
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• ltn(0, s(x ))
• ¬ ltn(x, 0)
• ltn(s(x ), s(y)) ⇔ ltn(x, y)
• mult(x, s(v), n) ∧ mult(u, s(y), n) ⇒ eqr(x/s(y), u/s(v))
• ltn(m, n) ∧ mult(x, s(v), m) ∧ mult(u, s(y), n) ⇒ ltr(x/s(y), u/s(v))
• insert(x/s(y), [ ], x/s(y) :: [ ])
• eqr(x/s(y), e) ⇒ insert(x/s(y), e :: l, e :: l)
• ltr(x/s(y), e) ⇒ insert(x/s(y), e :: l, x/s(y) :: (e :: l))
• ltr(e, x/s(y)) ∧ insert(x/s(y), l, l′) ⇒ insert(x/s(y), e :: l, e :: l′)
• ¬ isin(x/s(y), [ ])
• isin(x/s(y), e :: l) ⇔ eqr(x/s(y), e) ∨ isin(x/s(y), l)

end

Axioms are then transformed into normalized sequents, as explained above.
For example, the normalization of the right-to-left implication of the axiom
isin(x/s(y), e :: l) ⇔ eqr(x/s(y), e) ∨ isin(x/s(y), l) leads to two normalized
sequents as follows:

eqr(x/s(y),e) |∼ isin(x/s(y),e::l) isin(x/s(y),l) |∼ isin(x/s(y),e::l)

eqr(x/s(y),e) ∨ isin(x/s(y),l) |∼ isin(x/s(y),e::l)
Left-∨

|∼ eqr(x/s(y),e) ∨ isin(x/s(y),l) ⇒ isin(x/s(y),e::l)
Right-⇒

1. |∼ add(x, 0, x)
2. add(x, s(y), s(z)) |∼ add(x, y, z)
3. add(x, y, z) |∼ add(x, s(y), s(z))
4. |∼ mult(x, 0, 0)
5. add(x, u, z),mult(x, y, u) |∼ mult(x, s(y), z)
6. |∼ ltn(0, s(x))
7. ltn(x, 0) |∼
8. ltn(s(x), s(y)) |∼ ltn(x, y)
9. ltn(x, y) |∼ ltn(s(x), s(y))

10. mult(x, s(v), n),mult(u, s(y), n) |∼ eqr(x/s(y), u/s(v))
11. ltn(m, n),mult(x, s(v), m),mult(u, s(y), n) |∼ ltr(x/s(y), u/s(v))
12. |∼ insert(x/s(y), [ ], x/s(y) :: [ ])
13. eqr(x/s(y), e) |∼ insert(x/s(y), e :: l, e :: l)
14. ltr(x/s(y), e) |∼ insert(x/s(y), e :: l, x/s(y) :: e :: l)
15. ltr(e, x/s(y)), insert(x/s(y), l, l′) |∼ insert(x/s(y), e :: l, e :: l′)
16. isin(x/s(y), [ ]) |∼
17. isin(x/s(y), e :: l) |∼ eqr(x/s(y), e), isin(x/s(y), l)
18. eqr(x/s(y), e) |∼ isin(x/s(y), e :: l)
19. isin(x/s(y), l) |∼ isin(x/s(y), e :: l)

2 A General Framework of Testing from Formal
Specifications

The work presented in Section 4 comes within the general framework of testing
from formal specifications defined in [10]. Here, we succinctly introduce this
framework, then we instantiate it to the formalism we have just defined in
Section 1.
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The interpretation of test cases submission as a success or failure is related
to the notion of program correctness. Following previous works [10, 6, 4, 3,
5], test cases are formulæ and programs are Σ-models. Therefore, test cases
interpretation is defined by formula satisfaction. When a test case is submitted
to a program, it has to yield a verdict (success or failure). Hence, test cases
have to be directly interpreted as “true” or “false” by a “computation” of the
program. These “executable” formulæ are called observable.

Let Sp = (Σ, Ax) be a specification and Obs ⊆ For(Σ) any set of observable
formulæ. Let P be a program which is denoted by a Σ-model of Mod(Σ). Then
test cases are observable formulæ, which are successful for P if and only if P
validates them (i.e. performs them and interprets them as “true”). A test set
T is then a set of test cases. T is said to be successful for P if and only if
∀ϕ ∈ T, P |= ϕ.

Following an observational approach [9], to be qualified as correct with re-
spect to a specification Sp, a program is required to be observationally equivalent
to a model of Mod(Sp), up to the observable formulæ of Obs.

Definition 1 (Correctness) P is correct for Sp via Obs, denoted by
CorrectObs(P,Sp), if and only if there exists a model M in Mod(Sp) such that
M≡Obs P .

Definition 2 (Exhaustiveness) Let K ⊆ Mod(Σ). A test set T is exhaustive
for K with respect to Sp and Obs if and only if

∀P ∈ K, P |= T ⇐⇒ CorrectObs(P,Sp)

The existence of an exhaustive test set means that Sp is testable via Obs
since correctness can be asymptotically approached by submitting a (possibly
infinite) test set. Hence, an exhaustive test set is appropriate to start the
process of selecting a finite test set with a reasonable size. However, depending
on the nature of Sp, Obs and K, an exhaustive test set does not necessarily
exist. For instance, in [2], we have shown that for positive conditional algebraic
specifications, when Obs is restricted to ground equations, Sp• ∩ Obs is only
exhaustive for algebras satisfying a strong condition, called initiality, which,
roughly speaking, means that the program under test behaves like the initial
algebra of Mod(Sp) for all ground instances of equations occurring in premises
of axioms of Sp. The problem is that showing such a property on a program
may be as difficult as proving its correctness, and then restricts its testability.

In Section 3, we will show that in the presence of a specification Sp with
quantifier-free axioms, and when the set of observable formulæ Obs is the set of
all ground first-order formulæ, the exhaustiveness of Sp• ∩ Obs holds without
conditions on programs, that is K = Mod(Σ).

Test sets can be compared with respect to their ability to reject (or to accept,
from a dual point of view) programs. Two test sets are then said to be equivalent
if and only they accept exactly the same programs.
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The challenge of testing then consists in managing (infinite) test sets. In
practice, experts apply some selection criteria on a reference test set in order to
extract a test set of sufficiently reasonable size to be submitted to the program.
The underlying idea is that all test sets satisfying a considered selection criterion
reveal the same class of incorrect programs, intuitively those corresponding to
the fault model captured by the criterion. For example, the criterion called
“uniformity hypothesis” over a test set T postulates that any chosen value is
equivalent to another one in T .

A classic way to select test data with a selection criterion C consists in
splitting a given starting test set T into a family of test subsets {Ti}i∈IC(T )

such that T = ∪i∈IC(T ) Ti holds. A test set satisfying such a selection criterion
simply contains at least one test case for each non-empty subset Ti. Intuitively,
all test cases in Ti are supposed equivalent to reveal incorrect programs with
respect to the fault model captured by Ti. Hence, the selection criterion C is
a coverage criterion according to the way C is splitting the initial test set T
into the family {Ti}i∈IC(T ) . This is the method that we will use in this paper
to select test data, known under the term of partition testing.

For instance, the selection criterion we will define in the sequel of this paper
consists in splitting a test set into subsets according to specification axioms.
If we come back to the RatList specification, the insert predicate is specified
inductively by four axioms. Testing a formula consists in finding input data,
that is, ground substitutions to apply to the formula in order to submit it to the
program, bringing into play at least once each of these four axioms. Therefore,
the set of test cases associated to insert(r, L, L′), where r, L and L′ are variables,
can be split into four subsets:

1. The set of tests associated to the substitution L 7→ [ ], coming from the
axiom insert(x/s(y), [ ], x/s(y) :: [ ]).

2. The set associated to the case where the rational to insert is equal to the
first element of the list, that is, associated to the substitution r 7→ x/s(y),
L 7→ e :: l with eqr(x/s(y), e), coming from the axiom eqr(x/s(y), e) ⇒
insert(x/s(y), e :: l, e :: l).

3. The set associated to the case where it is less than the first element, that
is, the substitution r 7→ x/s(y), L 7→ e :: l with ltr(x/s(y), e), coming
from the axiom ltr(x/s(y), e) ⇒ insert(x/s(y), e :: l, x/s(y) :: e :: l).

4. The set associated to the case where it is greater than it, that is, the
substitution r 7→ x/s(y), L 7→ e :: l with ltr(x/s(y), e), coming from the
axiom ltr(e, x/s(y)) ∧ insert(x/s(y), l, l′) ⇒ insert(x/s(y), e :: l, e :: l′).

The process can be pursued on each above subset.

Definition 3 (Selection criterion) A selection criterion C is a mapping1 P(Sp•∩
Obs) → P(P(Sp• ∩ Obs)). For a test set T , we denote |C(T )| = ∪i∈IC(T ) Ti
where C(T ) = {Ti}i∈IC(T ) .

1For a given set X, P(X) denotes the set of all subsets of X.
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T ′ satisfies C applied to T , denoted by T ′ < C(T ), if and only if:

∀i ∈ IC(T ), Ti 6= ∅ ⇒ T ′ ∩ Ti 6= ∅

A selection criterion consists of a mapping that splits test sets into families
of test sets. The selection criterion is satisfied as soon as the considered test
set contains at least one test case within each (non-empty) set of the resulting
family. To be pertinent, a selection criterion should ensure some properties
between the starting test set and the resulting family of test sets:

Definition 4 (Properties) Let C be a selection criterion and T be a test set.

• C is said sound for T if and only if |C(T )| ⊆ T ;

• C is said complete for T if and only if |C(T )| = T .

The properties of soundness and completeness are essential for an adequate
selection criterion: soundness ensures that test cases will be selected within
the starting test set (i.e. no test is added) while completeness ensures that we
capture all test cases up to the notion of equivalent test cases (i.e. no test is
lost).

3 An Exhaustive Test Set

Here, we show that for every quantifier-free first-order specification Sp = (Σ, Ax),
Sp•∩Obs is an exhaustive test set for Mod(Σ), when Obs is the set of all ground
formulæ built over Σ.

Theorem 1 Let Sp = (Σ, Ax) be a specification. Then Sp• ∩Obs is exhaustive
for Mod(Σ).

Proof Let P be a program, i.e. P ∈ Mod(Σ), such that P |= Sp• ∩Obs. Let
us show that CorrectObs(P,Sp).

Note Th(P ) = {ϕ ∈ Obs | P |= ϕ}. Let HTΣ ∈ Mod(Σ) be the Herbrand
model of Th(P ). By definition, we have that P ≡Obs HTΣ . Let us then show
that HTΣ ∈ Mod(Sp). Let ϕ be an axiom of Sp. Let ν : V → HTΣ be an
interpretation. By definition, ν(ϕ) is a ground formula. By hypothesis, P |=
ν(ϕ) and then HTΣ |= ν(ϕ). We conclude that HTΣ |=ν ϕ.

Suppose that there exists M ∈ Mod(Sp) such that M ≡Obs P . Let ϕ ∈
Sp• ∩Obs. By hypothesis, M |= ϕ, then P |= ϕ as well. 2

4 Selection Criteria Based on Axiom Unfolding

In this section, we study the problem of test case selection for quantifier-free
specifications, by adapting a selection criteria based on unfolding of positive
conditional formulæ in the algebraic specification setting [1].
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4.1 Test sets for quantifier-free formulæ

The selection method that we are going to define takes inspiration from classic
methods that split the initial test set of any formula considered as a test purpose.
Succinctly, for a quantifier-free first-order formula ϕ, our method consists in

1. splitting the initial test set for ϕ into many test subsets, called constrained
test sets for ϕ, and

2. choosing any input in each non-empty subset.

First, let us define what test set and constrained test set for a quantifier-free
formula are.

Definition 5 (Test set) Let ϕ be a quantifier-free formula, called test pur-
pose. The test set for ϕ, denoted by Tϕ, is the set defined as follows:

Tϕ = {ρ(ϕ) | ρ : V → TΣ, ρ(ϕ) ∈ Sp• ∩Obs}

Note that ϕ may be any formula, not necessarily in Sp•.

Example 1 Here are some test purposes for the signature of specification
RatList, with examples of associated test cases.

add(x, 0, x). Since add(x, 0, x) is an axiom, all ground instances of this formula
are test cases: add(0, 0, 0), add(6, 0, 6), etc.

eqr(u, v). This predicate is under-specified, the case where a rational is of the
form x/0 is not taken into account, so there cannot be tests on this case.
Test cases may be: eqr(1/2, 1/2), eqr(3/6, 4/8), etc.

add(m,n, r) ⇒ mult(m, 2, r). Only cases where add(m,n, r) is not satisfied or
where m = n are semantic consequences of the specification. The interest-
ing test cases are those where m = n such as add(2, 2, 4) ⇒ mult(2, 2, 4),
add(5, 5, 10) ⇒ mult(5, 2, 10), etc.

insert(r, l, [ ]). The formula is never satisfied for any ground instance of r and
l, so there is no possible test case.

Definition 6 (Constrained test set) Let ϕ be a quantifier-free formula, C be
a set of quantifier-free formulæ called Σ-constraints, and σ : V → TΣ(V ) be a
substitution. A test set for ϕ with respect to C and σ, denoted by T(C,σ),ϕ, is
the set of ground formulæ defined by:

T(C,σ),ϕ = {ρ(σ(ϕ)) | ρ : V → TΣ, ρ(σ(ϕ)) ∈ Sp•∩Obs,∀ψ ∈ C, ρ(ψ) ∈ Sp•∩Obs}

The couple 〈(C, σ), ϕ〉 is called a constrained test purpose.

Note that the test purpose ϕ of Definition 5 can be seen as the constrained
test purpose 〈({ϕ}, id), ϕ〉.
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Example 2 Let us denote a substitution σ : V → TΣ(V ) mapping a set X =
{x1, . . . , xn} to a set Y = {y1, . . . , yn}, such that σ(xi) = yi for all i, 1 ≤ i ≤ n,
by [x1 7→ y1, . . . , xn 7→ yn].

Examples of constrained test purposes may be the following:

〈(∅, [x 7→ s(u)]), add(x, 0, x)〉

〈({ltn(3, x)}, id), add(x, 0, x)〉

〈({ltn(x, z)}, [u 7→ x/s(y), v 7→ z/s(y)]), ltr(u, v)〉

〈({ltn(m,n),mult(x, s(z),m),mult(w, s(y), n)}, [u 7→ x/s(y), v 7→ w/s(z)]),
ltr(u, v)〉

As another example, to come back to the example of splitting the test set
associated to insert(r, L, L′) into four subsets, we can express each of four test
subsets in terms of constrained test purposes as follows:

〈(∅, σ1), insert(r, L, L′)〉
〈({eqr(x0/s(y0), e0)}, σ2), insert(r, L, L′)〉
〈({ltr(x0/s(y0), e0)}, σ3), insert(r, L, L′)〉
〈({ltr(e0, x0/s(y0)), insert(x0/s(y0), l0, l′0)}, σ4), insert(r, L, L′)〉

where
r L L′

σ1 x0/s(y0) [ ] x0/s(y0) :: [ ]
σ2 x0/s(y0) e0 :: l0 e0 :: l0
σ3 x0/s(y0) e0 :: l0 x0/s(y0) :: (e0 :: l0)
σ4 x0/s(y0) e0 :: l0 e0 :: l′0

Only this kind of constrained test sets, built from a case analysis of the
specification axioms, will be of interest. The aim of the unfolding procedure we
will introduce in the next section is to build such test sets.

4.2 Unfolding Procedure

In practice, the initial test purpose is unconstrained. The aim is to replace it
with a set of constrained test purposes. This is what the unfolding procedure
does, matching the initial formula with the specification axioms, when it is
possible.

Therefore, the unfolding procedure inputs are:

• a quantifier-free specification Sp = (Σ, Ax) where axioms of Ax have been
transformed into normalized sequents;

• a quantifier-free formula ϕ seen as the initial constrained test purpose
〈(∅, id), ϕ〉;

• a family Ψ of couples (C, σ) where C is a set of Σ-constraints in the form
of normalized sequents, and σ is a substitution V → TΣ(V ).
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The first set Ψ0 only contains the couple composed of the set of normalized
sequents obtained from the quantifier-free formula ϕ under test and the identity
substitution.

The unfolding procedure is expressed by the following two rules:2

Reduce Ψ ∪ {(C ∪ {Γ |∼ ∆}, σ′)}
Ψ ∪ {(σ(C), σ ◦ σ′)}

∃γ ∈ Γ,∃δ ∈ ∆ s.t. σ(γ) = σ(δ), σ mgu

Unfold
Ψ ∪ {(C ∪ {ψ}, σ′)}

Ψ ∪
⋃

(c,σ)∈Tr(ψ)

{(σ(C) ∪ c, σ ◦ σ′)}

where Tr(ψ) for ψ = γ1, . . . , γm |∼ δ1, . . . , δn is the set defined by:{(
{(σ(γp+1), . . . , σ(γm), σ(ζi) |∼ σ(δq+1), . . . , σ(δn)}1≤i≤k
∪ {(σ(γp+1), . . . , σ(γm) |∼ σ(ξi), σ(δq+1), . . . , σ(δn)}1≤i≤l

, σ

)∣∣∣∣
ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζk, ϕ1, . . . , ϕq ∈ Ax,
1 ≤ p ≤ m,∀1 ≤ i ≤ p, σ(ψi) = σ(γi),
1 ≤ q ≤ n,∀1 ≤ i ≤ q, σ(ϕi) = σ(δi),
σ unifier, k, l ∈ N


The Red rule eliminates tautologies from constraints sets. Intuitively, the

Unfold rule consists in replacing the formula ψ with a set c of constraints, which
are what remains of the axiom after unification. Then testing σ(ψ) comes to
test the formulæ of c. The particular case where no formula has to be cut is
taken into account, since k and l may be equal to zero. Tr(ψ) is then a couple
(∅, σ), and it is the last step of unfolding for this formula.

Each unification with an axiom leads to a couple (c, σ), so the initial formula
ψ is replaced with as much sets of formulæ as there are axioms to which it
can be unified. The definition of Tr(ψ) being based on unification, this set is
computable if the specification Sp has a finite set of axioms. Therefore, given
an atomic formula ψ, we have the selection criterion Cψ that maps any T(C,σ′),ϕ
to (T(σ(C\{ψ})∪c,σ◦σ′),ϕ)(c,σ)∈Tr(ψ) if ψ ∈ C, and to TC,ϕ otherwise.

We write 〈Ψ, ϕ〉 `U 〈Ψ′, ϕ〉 to mean that Ψ′ can be derived from Ψ by
applying Reduce or Unfold. An unfolding procedure is then a program, inputs
of which are a quantifier-free first-order specification Sp and a quantifier-free
formula ϕ, and uses the above inference rules to generate the sequence

〈Ψ0, ϕ〉 `U 〈Ψ1, ϕ〉 `U 〈Ψ2, ϕ〉 . . .

Example 3 We want to test the formula isin(r, L) ⇒ insert(r, L, L′).

2The most general unifier (or mgu) of two terms γ and δ is the most general substitution
σ such that σ(γ) = σ(δ).
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Ψ0 = { ({isin(r, L) |∼ insert(r, L, L′)}, id) }

Ψ1 = { (∅, σ1), (16)
({eqr(x0/s(y0), e0) |∼ insert(x0/s(y0), e0 :: l0, l′0),
isin(x0/s(y0), l0) |∼ insert(x0/s(y0), e0 :: l0, l′0)}, σ2), (17)
({isin(x0/s(y0), e0 :: l0) |∼ insert(x0/s(y0), l0, l′0)}, σ3), (19)
(∅, σ4), (12)
({isin(x0/s(y0), e0 :: l0) |∼ eqr(x0/s(y0), e0)}, σ5), (13)
({isin(x0/s(y0), e0 :: l0) |∼ ltr(x0/s(y0), e0)}, σ6), (14)
{isin(x0/s(y0), e0 :: l0) |∼ ltr(e0, x0/s(y0)),
isin(x0/s(y0), e0 :: l0) |∼ insert(x0/s(y0), l0, l′0)}, σ7) (15) }

where

r L L′ x y e l l′

σ1 x0/s(y0) [ ] x0 y0
σ2 x0/s(y0) e0 :: l0 l′0 x0 y0 e0 l0
σ3 x0/s(y0) l0 l′0 x0 y0 l0
σ4 x0/s(y0) [ ] x0/s(y0) :: [ ] x0 y0
σ5 x0/s(y0) e0 :: l0 e0 :: l0 x0 y0 e0 l0
σ6 x0/s(y0) e0 :: l0 x0/s(y0) :: e0 :: l0 x0 y0 e0 l0
σ7 x0/s(y0) e0 :: l0 e0 :: l′0 x0 y0 e0 l0 l′0

Each couple of Ψ1 is labelled by the number of the axiom used for the unfolding
of the initial formula.

The first couple (∅, σ1) comes from the unification of the initial formula with
the axiom isin(x/s(y), [ ]) |∼ . Since isin(r, L) |∼ insert(r, L, L′) with r = x/s(y)
and L = [ ] is a direct consequence of this axiom, no constraint is generated but
the substitution.

If L is not the empty list, the initial formula isin(r, L) |∼ insert(r, L, L′) is
true if and only if L = L′. Its unfolding when L is not empty will then lead
to two kinds of constraints: those where L = L′ that will become test cases
since they are consequences of the specification, and those where L 6= L′ that
will not lead to test cases. For example, the fifth couple ({isin(x0/s(y0), e0 ::
l0) |∼ eqr(x0/s(y0), e0)}, σ5) is a potential test case since isin(x0/s(y0), e0 :: l0)
and eqr(x0/s(y0), e0) are true simultaneously for any ground substitution. On
the contrary, the sixth couple, whose constraint formula is isin(x0/s(y0), e0 ::
l0) |∼ ltr(x0/s(y0), e0), will never lead to a test case. Indeed, when x0/s(y0) is
in the list e0 :: l0, then it cannot be less than e0, for any ground substitution.

The unfolding procedure cannot distinguish between these two kinds of con-
straints, however, before being submitted to the program, a ground substitution
ρ is applied to constrained test purposes. Since by definition, ρ(ψ) has to be a
consequence of the specification, constraints where L 6= L′ will not be submitted
as test cases to the program.

A second unfolding of, for example, the formula isin(x0/s(y0), e0 ::
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l0) |∼ eqr(x0/s(y0), e0) would lead to the following set:

{ ({eqr(x0/s(y0), e0) |∼ eqr(x0/s(y0), e0)
isin(x0/s(y0), l0) |∼ eqr(x0/s(y0), e0)}, σ′1), (17)
({isin(x0/s(y0), e1 :: e0 :: l0) |∼ eqr(x0/s(y0), e0)}, σ′2), (19)
({isin(x0/s(y0), u0/s(v0) :: l0) |∼ mult(x0, s(v0), n0),
isin(x0/s(y0), u0/s(v0) :: l0) |∼ mult(u0, s(y0), n0)}, σ′3), (10)
({isin(x0/s(y0), l0) |∼ }, σ′4) (17) }

The tautology eqr(x0/s(y0), e0) |∼ eqr(x0/s(y0), e0) would be naturally deleted
with the Reduce rule.

Here, our unfolding procedure has been defined in order to cover behaviours
of one test purpose, represented by the formula ϕ. When we are interested in
covering more widely the exhaustive set Sp•∩Obs, a strategy consists in ordering
quantifier-free first-order formula with respect to their length, as follows:

Φ0 = { |∼ p(x1, . . . , xn) | p : s1 × . . .× sn ∈ P,∀i, 1 ≤ i ≤ n, xi ∈ Vsi}

Φn+1 = {p(x1, . . . , xn),Γ |∼ ∆, Γ |∼ ∆, p(x1, . . . , xn) |
Γ |∼ ∆ ∈ Φn, p : s1 × . . .× sn ∈ P,∀i, 1 ≤ i ≤ n, xi ∈ Vsi}

Then, to manage the size (often infinite) of Sp• ∩ Obs, we start by choosing
k ∈ N, and then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure to
each p(x1, . . . , xn),Γ |∼ ∆ and Γ |∼ ∆, p(x1, . . . , xn) belonging to Φi. Of course,
this requires that signatures are finite so that each set Φi is finite too.

4.3 Soundness and Completeness

Here, we prove the two properties that make the unfolding procedure relevant
for selection of appropriate test cases, i.e. that the selection criterion defined
by the procedure is sound and complete for the initial test set we defined.

Test sets for quantifier-free formulæ are naturally extended to sets of couples
Ψ as follows:

TΨ,ϕ =
⋃

(C,σ)∈Ψ

T(C,σ),ϕ

Theorem 2 If 〈Ψ, ϕ〉 `U 〈Ψ′, ϕ〉, then TΨ,ϕ = TΨ′,ϕ.

Proof
(Soundness) Let us prove that if 〈Ψ, ϕ〉 `U 〈Ψ′, ϕ〉, then TΨ′,ϕ ⊆ TΨ,ϕ.

If the last applied rule is Reduce, the result is obvious. If the last rule is
Unfold, by definition, what must be proved is that for each (C, σ′) ∈ Ψ, for
each ψ ∈ C, for each (c, σ) ∈ Tr(ψ), T(c,σ◦σ′),ϕ ⊆ T({ψ},σ′),ϕ. We then have to
prove that for each ground substitution ρ : V → TΣ such that Sp |= ρ(χ), for
each χ ∈ c, there exists ρ′ : V → TΣ such that Sp |= ρ′(ψ).
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Assuming that the formula ψ is of the form γ1, . . . , γm |∼ δ1, . . . , δn, and that
the set c such that (c, σ) ∈ Tr(ψ) is of the form

{(σ(γp+1), . . . , σ(γm), σ(ζi) |∼ σ(δq+1), . . . , σ(δn)}1≤i≤k
∪ {(σ(γp+1), . . . , σ(γm) |∼ σ(ξi), σ(δq+1), . . . , σ(δn)}1≤i≤l

where 1 ≤ p ≤ m and 1 ≤ q ≤ n are such that
ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζk, ϕ1, . . . , ϕq ∈ Ax, σ(ψi) = σ(γi) for each
1 ≤ i ≤ p and σ(ϕi) = σ(δi) for each 1 ≤ i ≤ q. We have then the following
proof tree, where Γ = {ψ1, . . . , ψp}, ∆ = {ϕ1, . . . , ϕq}, Γ′ = {γp+1, . . . , γm},
∆′ = {δq+1, . . . , δn}, for each i, 1 ≤ i ≤ l, Ωi = {ξi, . . . , ξl} and for each i,
1 ≤ i ≤ k, Λi = {ζi, . . . , ζk}. The composition σ′ ◦ σ of two substitutions
σ : V → TΣ(V ) and σ′ : TΣ(V ) → TΣ(V ), applied to a formula ϕ, is denoted by
σ′σ(ϕ).

...
ρσ(Γ′) |∼ ρσ(ξl),ρσ(∆′)

...
ρσ(Γ′) |∼ ρσ(ξ2),ρσ(∆′)

...
ρσ(Γ′) |∼ ρσ(ξ1),ρσ(∆′) ST

ρσ(Γ),ρσ(Γ′),ρσ(Ω2) |∼ ρσ(∆),ρσ(∆′)
Cut

...
Cut

ρσ(Γ),ρσ(Γ′),ρσ(Ωl) |∼ ρσ(∆),ρσ(∆′)
Cut

ρσ(Γ),ρσ(Γ′) |∼ ρσ(∆),ρσ(∆′)
Cut

where ST is the following subtree:

Γ,Ω1 |∼ Λ1,∆

ρσ(Γ),ρσ(Ω1) |∼ ρσ(Λ1),ρσ(∆)
Subs

...
ρσ(Γ′),ρσ(ζ1) |∼ ρσ(∆′)

ρσ(Γ),ρσ(Γ′),ρσ(Ω1) |∼ ρσ(Λ2),ρσ(∆),ρσ(∆′)
Cut

...
ρσ(Γ′),ρσ(ζ2) |∼ ρσ(∆′)

...
Cut

ρσ(Γ),ρσ(Γ′),ρσ(Ω1) |∼ ρσ(∆),ρσ(∆′)
Cut

(Completeness) Let us prove that if 〈Ψ, ϕ〉 `U 〈Ψ′, ϕ〉, then TΨ,ϕ ⊆ TΨ′,ϕ.
By definition of rule Unfold, what must be proved is that T({ψ},σ′),ϕ ⊆⋃

(c,σ)∈Tr(ψ)

T(c,σ◦σ′),ϕ. We then have to prove that for each ground substitution

ρ : V → TΣ such that Sp |= ρ(ψ), there exists (c, σ) ∈ Tr(ψ) such that there
exists ρ′ : V → TΣ such that Sp |= ρ′(χ) for each χ ∈ c. In other words, we
have to prove that ρ(ψ) can be deduced from specification Sp if there exists
(c, σ) ∈ Tr(ψ), and ρ′ : V → TΣ such that Sp |= ρ′(χ) for each χ ∈ c.

First, let us note that the unfolding procedure defines a strategy which
bounds the search space for proof trees to a class of trees having a specific
structure. The procedure defines a proof search strategy which selects proof
trees where:

• no instance of cut occurs over instances of substitution;

• there is no instance of cut with two instances of cut occurring over it.

We then have to prove that there exists a proof tree having the structure we
just described and of conclusion ρ(ψ). We are actually going to prove a stronger
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result: we are going to define elementary transformations of proof trees, which
allow to rewrite elementary combinations of inference rules, and then we will
prove that the resulting global proof trees transformation is weakly normalizing
and normal forms are proof trees with the above structure.

The case of cut over substitution:
Γ |∼ ∆,ϕ Γ′,ϕ |∼ ∆′

Γ,Γ′ |∼ ∆,∆′
Cut

σ(Γ),σ(Γ′) |∼ σ(∆),σ(∆′)
Subs  

Γ |∼ ∆,ϕ

σ(Γ) |∼ σ(∆),σ(ϕ)
Subs

Γ′,ϕ |∼ ∆′

σ(Γ′),σ(ϕ) |∼ σ(∆′)
Subs

σ(Γ),σ(Γ′) |∼ σ(∆),σ(∆′)
Cut

The case of two cuts over a third one has to be divided into four cases,
according to the position of the last cut formula in the premises of the two cuts
of the top.

The case where ϕ is in both left premises:
Γ1 |∼ ∆1,ϕ1,ϕ Γ′1,ϕ1 |∼ ∆′

1

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ2,ϕ |∼ ∆2,ϕ2 Γ′2,ϕ2 |∼ ∆′

2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

 

Γ1 |∼ ∆1,ϕ1,ϕ Γ2,ϕ |∼ ∆2,ϕ2

Γ1,Γ2 |∼ ∆1,∆2,ϕ1,ϕ2

Cut

Γ′2,ϕ2 |∼ ∆′
2

Γ1,Γ2,Γ
′
2 |∼ ∆1,∆2,∆

′
2,ϕ1

Cut

Γ′1,ϕ1 |∼ ∆′
1

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in both right premises:
Γ1 |∼ ∆1,ϕ1 Γ′1,ϕ1 |∼ ∆′

1,ϕ

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ2 |∼ ∆2,ϕ2 Γ′2,ϕ2,ϕ |∼ ∆′

2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ1 |∼ ∆1,ϕ1

Γ′1,ϕ1 |∼ ∆′
1,ϕ

Γ2 |∼ ∆2,ϕ2 Γ′2,ϕ2,ϕ |∼ ∆′
2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ′1,Γ2,Γ
′
2,ϕ1 |∼ ∆′

1,∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in the left premise of the left cut, and in the right
premise of the right cut:
Γ1 |∼ ∆1,ϕ1,ϕ Γ′1,ϕ1 |∼ ∆′

1

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ2 |∼ ∆2,ϕ2 Γ′2,ϕ2,ϕ |∼ ∆′

2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ2 |∼ ∆2,ϕ2

Γ1 |∼ ∆1,ϕ1,ϕ Γ′1,ϕ1 |∼ ∆′
1

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut

Γ′2,ϕ2,ϕ |∼ ∆′
2

Γ1,Γ
′
1,Γ

′
2,ϕ2 |∼ ∆1,∆

′
1,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in the right premise of the left cut, and in the left
premise of the right cut:
Γ1 |∼ ∆1,ϕ1 Γ′1,ϕ1 |∼ ∆′

1,ϕ

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ2,ϕ |∼ ∆2,ϕ2 Γ′2,ϕ2 |∼ ∆′

2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ1 |∼ ∆1,ϕ1

Γ′1,ϕ1 |∼ ∆′
1,ϕ

Γ2,ϕ |∼ ∆2,ϕ2 Γ′2,ϕ2 |∼ ∆′
2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ′1,Γ2,Γ
′
2,ϕ1 |∼ ∆′

1,∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut
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Let us denote m(π) for π =
π1 π2

Γ1,Γ2 |∼ ∆1,∆2
Cut the measure of π defined

by:

m(π) =

{
1 +m(π1) +m(π2) if each πi =

πi1 πi2
Γi |∼ ∆i

Cut i = 1, 2

m(π1) +m(π2) otherwise

A proof tree is said maximal if and only if it is of the form

π11 π12

Γ1 |∼ ∆1, ϕ
Cut π21 π22

Γ2, ϕ |∼ ∆2

Cut

Γ1,Γ2 |∼ ∆1,∆2

Cut

andm(πij ) = 0 for i, j = 1, 2. Therefore, by applying the strategy which consists
in reducing maximal proof trees, we show that the measure m decreases for each
basic transformation given above.

Since by hypothesis, Sp |= ρ(ψ), and ψ is not a tautology, there exists
necessarily either an axiom ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζr, ϕ1, . . . , ϕq and a
ground substitution ρ′ such that ρ′(ψi) = ρ′(γi) for each 1 ≤ i ≤ p and ρ′(ϕi) =
ρ′(δi) for each 1 ≤ i ≤ q. Hence ρ′ is a unifier of each ψi and γi, and of each
ϕi and δi. So there exists a proof tree resulting of the transformation defined
above, of conclusion ρ(ψ), where ρ = ρ′, of the form:

...
ρσ(Γ′) |∼ ρσ(ξl),ρσ(∆′)

...
ρσ(Γ′) |∼ ρσ(ξ2),ρσ(∆′)

...
ρσ(Γ′) |∼ ρσ(ξ1),ρσ(∆′) ST

ρσ(Γ),ρσ(Γ′),ρσ(Ω2) |∼ ρσ(∆),ρσ(∆′)
Cut

...
Cut

ρσ(Γ),ρσ(Γ′),ρσ(Ωl) |∼ ρσ(∆),ρσ(∆′)
Cut

ρσ(Γ),ρσ(Γ′) |∼ ρσ(∆),ρσ(∆′)
Cut

where ST is the following subtree:

Γ,Ω1 |∼ Λ1,∆

ρσ(Γ),ρσ(Ω1) |∼ ρσ(Λ1),ρσ(∆)
Subs

...
ρσ(Γ′),ρσ(ζ1) |∼ ρσ(∆′)

ρσ(Γ),ρσ(Γ′),ρσ(Ω1) |∼ ρσ(Λ2),ρσ(∆),ρσ(∆′)
Cut

...
ρσ(Γ′),ρσ(ζ2) |∼ ρσ(∆′)

...
Cut

ρσ(Γ),ρσ(Γ′),ρσ(Ω1) |∼ ρσ(∆),ρσ(∆′)
Cut

and where Γ = {ψ1, . . . , ψp}, ∆ = {ϕ1, . . . , ϕq}, Γ′ = {γp+1, . . . , γm}, ∆′ =
{δq+1, . . . , δn}, for each i, 1 ≤ i ≤ l, Ωi = {ξi, . . . , ξl} and for each i, 1 ≤ i ≤ k,
Λi = {ζi, . . . , ζk}. 2

Conclusion

In this paper, we have extended a selection criterion, based on unfolding of
positive conditional axioms in the algebraic specification setting, to quantifier-
free first-order specifications. Our unfolding procedure consists in dividing an
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initial test set into subsets and then selecting test cases within each subset. We
have then proved that this unfolding is complete. Moreover, we have shown that
given a quantifier-free first-order specification Sp, Sp• ∩ Obs is an exhaustive
set whatever the system under test is.

Research on this unfolding procedure is mainly continued on two aspects.
First, we are specializing our unfolding procedure by handling equality (when
it occurs) in a efficient way. Indeed equality often occurs in software specifica-
tions. When dealing with first-order logic, the axiomatization of equality leads
to uniformly tackle this predicate as the others, without taking advantage of the
efficient, natural and concise kind of reasoning which is attached to, namely, re-
placement of equal by equal. We are then adapting our unfolding procedure by
defining it from sequent calculus LK= or G= [7]. Finally, our goal is to pro-
pose a framework of functional testing with selection criteria including primitive
structuration, following [13, 11].
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