
Laboratoire IBISC

Informatique, Biologie Intégrative et Systèmes Complexes

Speci�cation-Based Testing for

CoCasl's Modal Speci�cations

Delphine Longuet and Marc Aiguier

{delphine.longuet,marc.aiguier}@ibisc.univ-evry.fr

Rapport de Recherche

Mars 2007

IBISC, FRE 2873 CNRS - Université d'Évry Val d'Essonne, Genopole
Tour Évry 2, 523 place des terrasses de l'Agora

91000 Évry Cedex, France

Abstract

Speci�cation-based testing is a particular case of black-box testing,
which consists in deriving test cases from an analysis of a formal spec-
i�cation. In the framework of algebraic speci�cations, the method for
selecting test cases which has widely and e�ciently been applied is called
axiom unfolding. It has been shown e�cient both in terms of quality of
the resulting test set, which has been proved sound and complete with
respect to a reference exhaustive test set, and in terms of capability of
automation. We present here an extension of this selection method to
coalgebraic speci�cations, using the modal logic provided by the CoCasl
speci�cation language. The aim is to de�ne a framework for testing dy-
namic and reactive systmes in a more abstract way than the works dealing
with what is called conformance testing.

Keywords. Speci�cation-based testing, axiom unfolding, coalgebraic
speci�cations, modal logic, CoCasl

2

Black-box testing refers to any method used to validate software systems in-
dependently of their implementation. Speci�cation-based testing is a particular
case of black-box testing, which consists of the dynamic veri�cation of a system
with respect to its speci�cation [1, 2, 3]. The system under test is executed on
a �nite subset of its possible input data to check its conformance with respect
to the speci�cation requirements.

The testing process is classically divided into two principal phases:

1. The selection phase where some selection criteria are de�ned to split test
sets into subsets in order to manage their size.

2. The generation phase where some techniques and tools based on constraint
solving are de�ned in order to generate some test cases in each test set to
be submitted to the system under test.

In this paper, we are interested in the selection phase. More particularly, we
will extend to CoCasl speci�cations a very popular and very e�cient selec-
tion method, called axiom unfolding, which has extensively been studied in the
framework of algebraic speci�cations [1, 2, 3, 4, 5, 6, 7, 8, 9].

CoCasl is a coalgebraic extension of the algebraic speci�cation language
Casl that allows to specify processes as coalgebraic types dealing with data
de�ned as algebraic types [10]. CoCasl's modal logic is syntactical sugar to
express properties on such processes, like safety and fairness properties. We then
propose in this paper a selection method for testing dynamic systems speci�ed
with CoCasl's modal logic.

The usual approach of black-box testing for dynamic systems is conformance
testing [11, 12, 13, 14, 15]. In conformance testing, speci�cations, systems and
test purposes are classically represented by input output transition systems.
Test cases are then execution traces selected in the speci�cation by using classic
techniques from the automata theory such as synchronised product, symbolic
evaluation, etc. Recently, some selection methods from test purposes expressed
as temporal properties has been investigated (e.g. see [16]). Taking advantage
of the fact that speci�cations are transition systems, model-checking techniques
have been used to select trace sets. Here, CoCasl speci�cations are logical
theories. Hence, our selection method, based on axiom unfolding, will be algo-
rithmically de�ned by de�ning a search proof strategy. This strategy will enable
one to bound the search space for proofs to a given class of trees having a spe-
ci�c structure (see Section 3). However, the aim of the unfolding procedure will
not be to �nd the entire proof of a test purpose ϕ, but rather to stretch further
the execution of the unfolding procedure in order to make increasingly big proof
whose remaining lemmas will de�ne a �partition� of ϕ. Hence, the procedure
will be able to be stopped at any time when the obtained partition will be �ne
enough according to tester's judgement or needs. Completeness of the unfolding
procedure will then be established by showing that derivability restricted to the
unfolding strategy coincides with the full derivability (i.e. without any speci�c
proof strategy).

3

The paper is organised as follows. Section 1 brie�y presents CoCasl spec-
i�cation language, especially cotype de�nition. Then CoCasl's modal logic
is introduced, and is given a sequent calculus. To set the framework we work
within, Section 2 recalls the relevant de�nitions from [3] we will use in this paper,
such as exhaustive test set, and selection criteria and their associated properties.
We also prove in this section the important result of the existence of a reference
exhaustive test set, allowing to start the selection procedure with. After having
recalled in Section 3.1 the general notions of test set and constrained test set
from [17], Section 3.2 introduces the unfolding procedure from which is de�ned a
family of selection criteria for CoCasl's modal speci�cations. Selection criteria
thus de�ned are proved to be sound and complete in Section 3.3.

1 CoCasl's Modal Logic

CoCasl extends Casl speci�cation language by enriching basic speci�cations
with dual forms of algebraic constructs used in Casl to de�ne inductive data-
types. The basic dual form is the cotype construct which is used to specify
processes. A cotype declaration de�nes a coinductive process by declaring se-
lectors, also called observers, and constructors. Unlike in Casl speci�cations,
constructors here are optional. For example, the two following cotypes can be
declared in CoCasl:

spec Moore =
sorts In, Out
cotype State ::= (next : In → State; observe : Out)

end

spec List =
sort Nat
cotype List ::= empty | insert(head :? Nat; tail :? List)

end

The �rst declaration declares the two observers next : In × State → State
and observe : State → Out . The second similarly declares observers head and
tail over the cotype List, but also constructors empty : List and insert : Nat ×
List → List , where Nat is an imported sort from the local environment. The
parts of the declaration separated by vertical bars are called alternatives. For
instance, in the List speci�cation, alternatives are de�ned by both constructors
empty and insert. Observers may be unary like observe, or may have additional
parameters, which have to come from the local environment, like next. Both
observers and constructors may be partial. Observers are partial as soon as the
cotype is de�ned by several alternatives. As cotypes are dual for types, cotype
declarations can be strengthened by declaring a cogenerated cotype to restrict
the class of models to fully abstract ones, or a cofree cotype to restrict models to
the terminal one. For a complete presentation of CoCasl language, the reader
may refer to [10].

To express properties on processes declared inCoCasl, a multi-sorted modal
logic has been de�ned in [10], where modalities are de�ned from observers used

4

to describe system evolutions. All the sorts de�ned in the cotype are called non-

observable, while sorts from the local environment are called observable. The set
of non-observable sorts de�nes a multi-sorted state space, with observers either
directly producing an observable value, or making the system state evolve.

Actually, the modal logic presented here is both a restriction and an exten-
sion of the one presented in [10]. This is a restriction because we only consider
here quanti�er-free formulae. But the logic we present is also an extension
because atomic formulae are not restricted to equations but may involve any
predicate. The restriction to quanti�er-free formulae is due to the fact that ex-
istentially quanti�ed formulae are impossible to deal with from a testing point
of view. As a matter of fact, testing a formula of the form ∃x ϕ(x) requires
to exhibit a witness value a such that ϕ(a) is evaluated as �true� by the sys-
tem under test. Of course, there is no general way to �nd out such a relevant
value, but to simply prove that the system satis�es the property. This led us to
conclude that existential properties are not testable [8].

Syntax. A CoCasl signature Σ = (S, F, P, V) consists of a set S of sorts with
a partition Sobs and T of observable and non-observable sorts respectively, a set
F of operation names, each one equipped with an arity in S∗ × S, a set P of
predicate names, each one equipped with an arity in S+ and an S-indexed set
V of variables. For all operations f : s1 × . . .× sn → s in F and all predicates
p : s1 × . . . × sn in P , there exists at most one i, 1 ≤ i ≤ n, such that si ∈ T .
We make a distinction between operations coming from the local environment,
i.e. operations f : s1 × . . . × sn → s with s1, . . . , sn, s ∈ Sobs on the one hand,
and constructors and observers, that are operations f : s1 × . . . × sn × s → s′

with s ∈ T on the other hand. Constructors have a non-observable result sort,
while observers may be with observable result sort s′ ∈ Sobs (they are also
called attributes) or with non-observable result sort s′ ∈ T (these are also called
methods). Constructors and methods are only distinguished from each other
thanks to the cotype declaration: the above List declaration declares empty
and insert as constructors, head as an observer with observable sort, and tail as
an observer with non-observable sort. We call an observer f : s1× . . .×sn×s→
s′ observer of cotype s. The set F of operations names is then a partition
F = Fobs q FΩ q (Fs)s∈T where Fobs is the set of operations from the local
environment, FΩ is the set of constructors and for all s ∈ T , Fs is the set of
observers of cotype s. Since a cotype may be declared using several alternatives,
observers for a given cotype are actually de�ned for a given alternative of this
cotype. For a cotype s having m alternatives, we then have Fs =

∐
1≤j≤m Fs,j

where Fs,j is the set of observers for the jth alternative of cotype s. The set P
of predicates is also a partition Pobsq(Ps)s∈T where Pobs is the set of predicates
only involving observable sorts , and for each s ∈ T , Ps is the set of predicates
p : s1 × . . . × sn × s. The above List declaration gives the following CoCasl
signature.

Sobs = {Nat} T = {List}
FΩ = {empty : List , insert : Nat × List → List} PList = {def_head : List ,
FList,1 = ∅ def_tail : List}
FList,2 = {head : List → Nat , tail : List → List}

5

where alternative 1 corresponds to the empty list, and alternative 2 to a list
built with constructor insert.

Given a signature Σ = (S, F, P, V), TΣ(V) is the S-set of terms with variables

in V de�ned inductively from variables in V and operations of F : for each
operation f : s1 × . . . × sn → s ∈ Fobs ∪ FΩ, f(t1, . . . , tn) ∈ TΣ(V)s, where
each ti ∈ TΣ(V)si , 1 ≤ i ≤ n; for each observer f : s1 × . . . × sn × s → s′,
f(t1, . . . , tn) ∈ TΣ(V)s′ , where each ti ∈ TΣ(V)si

, 1 ≤ i ≤ n. Notice that,
for observers, the sort s has been removed. This allows to consider states as
implicit, as usual with modal logic. The set of ground terms TΣ is de�ned as
the set of terms built over the empty set of variables TΣ(∅). A substitution is
any mapping σ : V → TΣ(V) that preserves sorts. Substitutions are naturally
extended to terms with variables and then to formulae.

Σ-atomic formulae are sentences of the form p(t1, . . . , tn) where p : s1× . . .×
sn ∈ Pobs or p : s1 × . . .× sn × s ∈ Ps, and ti ∈ TΣ(V)si for each i, 1 ≤ i ≤ n.
A term t with non-observable sort leads to modalities [t], 〈t〉, [t∗] and 〈t∗〉,
intuitively meaning �all next state�, �some next state�, �always� and �eventually�,
respectively. Modalities can be extended to �nite sequences {t1, . . . , tn}, where
[{t1, . . . , tn}]ϕ and 〈{t1, . . . , tn}〉ϕ stand respectively for the conjunction and
the disjunction of the modal formulae obtained for the corresponding individual
modalities. Formulae are then built following the syntax:

ϕ,ψ ::= true | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | [t]ϕ | 〈t〉ϕ | [t∗]ϕ | 〈t∗〉ϕ
| [{t1, . . . , tn}]ϕ | 〈{t1, . . . , tn}〉ϕ | [{t1, . . . , tn}∗]ϕ | 〈{t1, . . . , tn}∗〉ϕ

The set of modalities is denoted by MΣ(V). For(Σ) is the set of all Σ-formulae.
A speci�cation Sp = (Σ,Ax) consists of a signature Σ and a set Ax of formulae
often called axioms. The List declaration above generates, besides the signature
we gave, the following axioms, as well as the standard four axioms specifying
that the equality predicate is a congruence (re�exivity, symmetry, transitivity
and compatibility with operations):

¬def_head(head(empty)) head(insert(n, l)) = n
¬def_tail(tail(empty)) tail(insert(n, l)) = l

Semantics. Given a signature Σ = (S, F, P, V), we denote by Σobs the �observable
subsignature� (S, Fobs q FΩ, Pobs , V) of Σ. A Σobs -model A is then a �rst-order struc-
ture, that is an S-indexed set A, equipped for each operation name f : s1× . . .× sn →
s ∈ Fobs qFΩ with a mapping fA : As1 × . . .×Asn → As, and for each predicate name
p : s1 × . . .× sn ∈ Pobs with an n-ary relation pA ⊆ As1 × . . .×Asn .

Since several cotypes can be declared in CoCasl, the set of states E is said multi-
sorted and is de�ned as a product E =

Q
s∈T Es where for each s ∈ T , Es = As.

Σ-models are then coalgebras (E,α : E → FE) of the functor F such that FE =Q
s∈T FEs and which, for each s ∈ T , associates to Es the set FEs de�ned as follows:

FEs=
a

1≤j≤m

 Y
f :s1×...×sn×s→s′∈Fs,j

s′∈Sobs

A
As1×...×Asn

s′ ×
Y
f :s1×...×sn×s→s′∈Fs,j

s′∈T

E
As1×...×Asn

s′

!
×
Y
p:s1×...×sn×s∈Ps

2As1×...×Asn

6

where sort s is de�ned by m alternatives. 1 We denote by Mod(Σ) the category whose
objects are Σ-models, i.e. the category Coalg(F) of coalgebras over F .

Given a Σ-model (E,α) over a �rst-order structureA, we denote by _A : TΣobs → A
the unique homomorphism that maps any Σobs ground term f(t1, . . . , tn) to its value
fA(tA1 , . . . , t

A
n). A Σ-model is said reachable on data if _A is surjective.

Given a Σ-model (E,α), a Σ-interpretation in A is any mapping ν : V → A
preserving sorts. Given an interpretation of variables ν and a state e = (es)s∈T ∈ E,
the interpretation of terms in TΣ(V) ν\e : TΣ(V) → M is built in the usual way
for variables and operations in Fobs ∪ FΩ, and in the following way for observers: if
f : s1 × . . . × sn × s → s′ ∈ Fs,j is an observer with observable result sort then
ν\e(f(t1, . . . , tn)) = (πf ◦ κj ◦ πs ◦ α)(e)(ν\e(t1), . . . , ν

\
e(tn)), where: πs : E → Es is

the canonical projection to the s-sorted part of a state; assuming that the sort s
is declared by j alternatives, κj is the canonical injection to alternative j; and πf
is the canonical projection from alternative j of Es to the interpretation of f ; if
f : s1 × . . . × sn × s → s′ ∈ Fs,j is an observer with non-observable result sort, then
ν\e(f(t1, . . . , tn)) = e′ such that e′ = (e′s)s∈T ∈ E with e′s′′ = es′′ for all s

′′ 6= s′, and
es′ = (πf ◦ κj ◦ πs ◦ α)(e)(ν\e(t1), . . . , ν

\
e(tn)). By abuse of notation, the extension ν\e

of ν will be denoted by νe.
The satisfaction of a Σ-formula ϕ by (E,α) for an interpretation ν and a state e,

denoted by (E,α) |=ν,e ϕ, is inductively de�ned on the structure of ϕ: (E,α) |=ν,e true
always holds; (E,α) |=ν,e p(t1, . . . , tn) for p ∈ Pobs if and only if (νe(t1), . . . , νe(tn)) ∈
pA; (E,α) |=ν,e p(t1, . . . , tn) for p ∈ Ps if and only if (νe(t1), . . . , νe(tn)) ∈ πp ◦ πs(e);
(E,α) |=ν,e [t]ψ if and only if for all e′ ∈ E such that νe(t) = e′, (E,α) |=ν,e′ ψ. The
other modalities can be de�ned as derived notions. Actually, we have the following
elementary equivalences:2 〈t〉ϕ ≡ ¬[t]¬ϕ; [t∗]ϕ ≡ ϕ∧ [t][t∗]ϕ; [{t1, . . . , tn}]ϕ ≡ [t1]ϕ∧
. . . ∧ [tn]ϕ. Boolean connectives are interpreted as usual. (E,α) validates a formula
ϕ, denoted by (E,α) |= ϕ, if and only if for every interpretation ν : V → A and
every state e ∈ E, (E,α) |=ν,e ϕ. Given Ψ ⊆ For(Σ) and two Σ-models (E,α) and
(E′, α′), (E,α) is Ψ-equivalent to (E′, α′), denoted by (E,α) ≡Ψ (E′, α′), if and only
if we have: ∀ϕ ∈ Ψ, (E,α) |= ϕ ⇔ (E′, α′) |= ϕ. Given a speci�cation Sp = (Σ,Ax),
a Σ-model (E,α) is an Sp-model if for every ϕ ∈ Ax , (E,α) |= ϕ. Mod(Sp) is the
full subcategory of Mod(Σ), objects of which are all Sp-models. A Σ-formula ϕ is
a semantic consequence of a speci�cation Sp = (Σ,Ax), denoted by Sp |= ϕ, if and
only if for every Sp-model (E,α), we have (E,α) |= ϕ. Sp• is the set of all semantic
consequences.

Calculus. A calculus for quanti�er-free modal CoCasl speci�cations is de�ned by
the following inference rules, where Γ |∼ ∆ is a sequent such that Γ and ∆ are two
sets of Σ-formulae:

Γ,ϕ |∼ ∆,ϕ
Ax

Γ |∼ ∆,ϕ

Γ,¬ϕ |∼ ∆
Left-¬ Γ,ϕ |∼ ∆

Γ |∼ ∆,¬ϕ
Right-¬

Γ,ϕ,ψ |∼ ∆

Γ,ϕ∧ψ |∼ ∆
Left-∧ Γ |∼ ∆,ϕ Γ |∼ ∆,ψ

Γ |∼ ∆,ϕ∧ψ
Right-∧

1If A and B are two sets, we denote by BA the set of all mappings from A to B.
2Two formulae ϕ and ψ are said elementarily equivalent, denoted by ϕ ≡ ψ, if and only

if for each Σ-model (E,α), for each interpretation ν and every state e, (E,α) |=ν,e ϕ ⇔
(E,α) |=ν,e ψ.

7

Γ,ϕ |∼ ∆ Γ,ψ |∼ ∆

Γ,ϕ∨ψ |∼ ∆
Left-∨ Γ |∼ ∆,ϕ,ψ

Γ |∼ ∆,ϕ∨ψ
Right-∨

Γ |∼ ∆,ϕ Γ,ψ |∼ ∆

Γ,ϕ⇒ψ |∼ ∆
Left-⇒ Γ,ϕ |∼ ∆,ψ

Γ |∼ ∆,ϕ⇒ψ
Right-⇒

Γ |∼ ϕ

[t]Γ |∼ [t]ϕ
Nec

Γ |∼ ∆

σ(Γ) |∼ σ(∆)
Subs

Γ |∼ ∆,ϕ Γ′,ϕ |∼ ∆′

Γ,Γ′ |∼ ∆,∆′ Cut

where [t]Γ = {[t]γ | γ ∈ Γ}, 〈t〉Γ = {〈t〉γ | γ ∈ Γ} and σ(Γ) = {σ(γ) | γ ∈ Γ}. This
calculus is the standard Gentzen sequent calculus for modal logic K which underlies
CoCasl's logic. From rule Nec, we can derive the following rules, which will be helpful
later:

Γ |∼ ϕ

[t∗]Γ |∼ [t∗]ϕ
Nec*

Γ |∼ ϕ

[{t1,...,tn}]Γ |∼ [{t1,...,tn}]ϕ
Necn

Γ |∼ ϕ,∆

[t]Γ |∼ [t]ϕ,〈t〉∆

Γ,ϕ |∼ ∆

[t]Γ,〈t〉ϕ |∼ 〈t〉∆

Γ |∼ ∆

[t]Γ |∼ 〈t〉∆

In order to manipulate less complex formulae, we take advantage of the fact that
the inference rules associated to Boolean connectives de�ne an automatic process that
allows to transform any sequent |∼ ϕ, where ϕ is a modal formula, into a set of
sequents Γ |∼ ∆ where every formula in Γ and ∆ is of the form α1 . . . αnψ, where
αi ∈ MΣ(V) for all i, 1 ≤ i ≤ n, and ψ ∈ For(Σ) is a formula not beginning with a
modality. Let us call such sequents normalised sequents.

More precisely, these normalised sequents are obtained by eliminating every boo-
lean connectives which is not in the scope of a modal operator with the help of the
above sequent calculus. Such a syntactic transformation can be done since the in-
ference rules associated to boolean connectives are reversible: given an inference rule
ϕ1 . . . ϕn

ϕ
amongst {Left-@, Right-@} where @ ∈ {¬,∧,∨,⇒}, we have

V
1≤i≤n ϕi ≡ ϕ.

Then, applying reversed inference rules for boolean connectives to any sequent leads
to an equivalent set of normalised sequents, which allows to only deal with normalised
sequents. Therefore, in the following, we will suppose that speci�cation axioms are
normalised sequents. These transformations enable us to remove the rules associated
to boolean connectives from the unfolding procedure.

Example 1 (Lists) To illustrate our approach, we continue here the speci�cation
of the List cotype. We specify two additional observers odd : List → List and
even : List → List which give a list containing all the elements occurring in oddly
numbered places of the original list, in evenly numbered places respectively. We have
the following modal axioms:3

• head = n⇔ 〈odd〉head = n
• [odd][tail]ϕ⇔ [tail][tail][odd]ϕ
• [even]ϕ⇔ [tail][odd]ϕ

We don't specify the data part here, since we are only interested in specifying the
process part. Axioms are then transformed into normalised sequents, as explained
above. For example, the �rst axiom head = n ⇔ 〈odd〉head = n, which is equivalent
to the formula head = n⇒ 〈odd〉head = n ∧ 〈odd〉head = n⇒ head = n, leads to the

3The second and third axioms actually are axiom schemes, i.e. they denote the sets of all
their instances with any formula substituted for ϕ.

8

two sequents head = n |∼ 〈odd〉head = n and 〈odd〉head = n |∼ head = n.

1. head = n |∼ 〈odd〉head = n 4. [tail][tail][odd]ϕ |∼ [odd][tail]ϕ
2. 〈odd〉head = n |∼ head = n 5. [even]ϕ |∼ [tail][odd]ϕ
3. [odd][tail]ϕ |∼ [tail][tail][odd]ϕ 6. [tail][odd]ϕ |∼ [even]ϕ

Example 2 (Automatic Teller Machine (ATM)) We take here the example of
a cash machine, or ATM, that allows customers to access their bank accounts in
order to make cash withdrawals and to check their account balances. The customer
�rst inserts his card (observer Card), then veri�es his identity by entering a passcode
(observer Passcode). Upon successful entry of the passcode, the customer may perform
a transaction, that is to check his account balance (Check, Balance) or to withdraw cash
(Withdraw). If the number is entered incorrectly three times in a row (Wrongcode),
the card is not given back to the customer (Cardkept). If the customer asks for a
withdrawal, he enters an amount (Amount) that is checked not to go beyond the
authorised threshold for this account. If it is the case, the withdrawal is not authorised
(Threshold), otherwise if the amount is available in the machine (if not Notenough),
the customer is given the money he asked for (Notes), and then may get his card back
(Cardback). Observers with observable sort card?, code? and amount? respectively
attest of the presence of a card in the machine, that a code has been entered, and that
an amount has been chosen. Observer attempts gives the number of times a wrong
passcode has been entered in a row.

spec ATM =
sorts Nat
cotype State ::= (Card : Nat → State; Passcode : Nat → State; Wrongcode : State;

Withdraw : State; Amount : State; Check : State; Balance : State; Cardback : State;
Cardkept : State; Notes : State; Threshold : State; Notenough : State; card? : Bool ;
code? : Bool ; amount? : Bool ; attempts : Nat)
end

A speci�cation of this ATM in our formalism may be the following. Since we are
interested only in the behavioural part of the system, we only specify observers here.
We suppose that the data part has been speci�ed separately.

• ¬card? ⇒ 〈Card(C)〉card?
• card? ⇒ 〈Card(C)〉false
• [Card(C)]¬cardok(C) ⇒ 〈Cardback〉¬card?
• [Cardback](¬code? ∧ ¬amount?)
• [Card(C)](cardok(C) ∧ ¬code?) ⇒ 〈Passcode(c)〉code?
• code? ⇒ 〈Passcode(c)〉false
• [Passcode(c)]codeok(c) ⇒ [Passcode(c)](〈Withdraw〉¬amount? ∧ 〈Check〉true)
• [Passcode(c)]¬codeok(c) ⇒ [Passcode(c)]attempts = attempts + 1
• [Passcode(c)](¬codeok(c) ∧ attempts < 3) ⇒ [Passcode(c)]〈Wrongcode〉¬code?
• card? ∧ ∧attempts < 3 ⇒ 〈Cardback〉¬card?
• [Passcode(c)](¬codeok(c) ∧ attempts ≥ 3) ⇒ [Passcode(c)]〈Cardkept〉attempts = 0
• [Cardkept](¬card? ∧ ¬code? ∧ ¬amount?)
• [Check]〈Balance〉true
• ¬amount? ⇒ 〈Amount(M)〉amount?
• amount? ⇒ 〈Notes〉¬amount? ∨ 〈Threshold〉¬amount? ∨ 〈Notenough〉amount?

9

Then axioms are tranformed into normalised sequents as done above:

1. |∼ card?, 〈Card(C)〉card?
2. card? |∼ 〈Card(C)〉false
3. [Card(C)]¬cardok(C) |∼ 〈Cardback〉¬card?
4. |∼ [Cardback](¬code? ∧ ¬amount?)
5. [Card(C)](cardok(C) ∧ ¬code?) |∼ 〈Passcode(c)〉code?
6. code? |∼ 〈Passcode(c)〉false
7. [Passcode(c)]codeok(c) |∼ [Passcode(c)](〈Withdraw〉¬amount? ∧ 〈Check〉true)
8. [Passcode(c)]¬codeok(c) |∼ [Passcode(c)]attempts = attempts + 1
9. [Passcode(c)](¬codeok(c) ∧ attempts < 3) |∼ [Passcode(c)]〈Wrongcode〉¬code?

10. card?, attempts < 3 |∼ 〈Cardback〉¬card?
11. [Passcode(c)](¬codeok(c) ∧ attempts ≥ 3) |∼ [Passcode(c)]〈Cardkept〉attempts = 0
12. |∼ [Cardkept](¬card? ∧ ¬code? ∧ ¬amount?)
13. |∼ [Check]〈Balance〉true
14. |∼ amount?, 〈Amount(M)〉amount?
15. amount? |∼ 〈Notes〉¬amount?, 〈Threshold〉¬amount?, 〈Notenough〉¬amount?

2 Testing from Logical Speci�cations

The work presented in Section 3 comes within the general framework of testing from
formal speci�cations de�ned in [3]. So that the paper is as self-contained as possible, we
succinctly introduce this framework and we instantiate it to the CoCasl's formalism
presented in Section 1.

Following previous works [1, 3, 7, 9, 18], given a speci�cation Sp = (Σ, Ax), the
basic assumption is that the system under test can be assimilated to a model of the
signature Σ. Test cases are then Σ-formulae which are semantic consequences of the
speci�cation Sp (i.e. elements of Sp•). As these formulae are to be submitted to the
system, test case interpretation is de�ned in terms of formula satisfaction. When a test
case is submitted to a system, it has to yield a verdict (success or failure). Hence, test
cases have to be directly interpreted as �true� or �false� by a computation of the system.
Obviously, systems can't deal with formulae containing non-instantiated variables, so
test cases have to be ground formulae, that is formulae where all variables have been
replaced with actual values. These �executable� formulae are called observable. Then
a test case is any observable semantic consequence. If we denote by Obs ⊆ For(Σ)
the set of observable formulae, then a test set T is any subset of Sp• ∩Obs. Since the
system under test is considered to be a Σ-model P , T is said to be successful for P if
and only if ∀ϕ ∈ T, P |= ϕ.

The interpretation of test cases submission as a success or failure is related to the
notion of system correctness. Following an observational approach [19], to be quali�ed
as correct with respect to a speci�cation Sp, a system is required to be observationally
equivalent to a model of Mod(Sp) up to the observable formulae of Obs, that is, they
have to validate exactly the same observable formulae.

De�nition 1 (Correctness) P is correct for Sp via Obs, denoted by
CorrectObs(P,Sp), if and only if there exists a model M in Mod(Sp) such that
M≡Obs P .

4

4Equivalence of Σ-models with respect to a set of formulae is de�ned in Section 1.

10

A test set allowing to establish the system correctness is said exhaustive. Formally,
an exhaustive set is de�ned as follows:

De�nition 2 (Exhaustive test set) Let K ⊆ Mod(Σ). A test set T is exhaustive
for K with respect to Sp and Obs if and only if

∀P ∈ K, P |= T ⇐⇒ CorrectObs(P,Sp)

The existence of an exhaustive test set means that systems belonging to the class
K are testable with respect to Sp via Obs, since correctness can be asymptotically
approached by submitting a (possibly in�nite) test set. Hence, an exhaustive test set
is appropriate to start the process of selecting test sets. However, such an exhaustive
set does not necessarily exist, depending on the nature of both speci�cations and
systems (whence the usefulness of subclass K of systems in De�nition 2), and on the
chosen set of observable formulae. For instance, we will need here to assume that the
system under test is reachable on data. Among all the test sets, the biggest one is
the set Sp• ∩Obs of observable semantic consequences of the speci�cation. Hence, to
start the selection phase of the testing process, we �rst have to show that Sp• ∩ Obs
is exhaustive. This holds for every system reachable on data as stated by Theorem 1.

Theorem 1 Let Sp = (Σ, Ax) be a speci�cation. Then the test set Sp• ∩ Obs is
exhaustive for every model reachable on data.

Proof. Let S be a system under test, i.e. S ∈ Mod(Σ). Suppose that S |= Sp• ∩Obs.
Let us show that CorrectObs(S,Sp).

Since S ∈ Mod(Σ), S is an F-coalgebra (E,α), built over a �rst-order structure A,
where F is the functor de�ned in Section 1. It is well-known that all functors built from
polynomial functors (constant, identity, sum, product and function space) have a �nal
coalgebra [20]. Mod(Σ) then admits a �nal coalgebra T . Another result, from [10],
states that for a functor F : Setn → Set , if the category of coalgebras on F , denoted
by Coalg(F), has a �nal object T , then each quasi-covariety (i.e. subcategory closed
under coproduct and quotient) in Coalg(F) has a �nal object which is a subcoalgebra
of T .

Therefore, let us de�ne the set of ground modal formulae Th(S) = {ϕ ∈ Obs | S |=
ϕ}. Let us denote by Coalg(F)|Th(S)

the full subcategory of Coalg(F) whose objects
are Σ-models validating Th(S). Coalg(F)|Th(S)

is known to be a covariety (i.e. a
quasi-covariety which is furthermore closed under subcoalgebras). Then Coalg(F)|Th(S)

admits a �nal model, that we will denote by T /Th(S), which is a subcoalgebra of
T . Coalg(F)|Th(S)

being closed under subcoalgebras, let us denote by T /S the F-
coalgebra (E′, α′) over the �rst-order structure A, where E′ = h(E) and h is the
unique morphism from S to T /Th(S). By construction, we have S ≡Obs T /S , since S
and T /S are in Coalg(F)|Th(S)

. Actually, we have a stronger result: the morphism h has
a factorisation h = i◦q where q is surjective from S to T /S . Since q is a morphism, the
set {(e, q(e)) | e ∈ E} is a bisimulation, and then, q is elementary. We then conclude
that for every ground formula ϕ and every state e ∈ E, S |=e ϕ⇔ T /S |=q(e) ϕ.

Let us show now that T /S ∈ Mod(Sp). Let ϕ be an axiom of Ax , let e′ ∈ E′ be a
state and ν′ : V → A be an interpretation, and let us show that T /S |=ν′,e′ ϕ. As S is
reachable on data, for every state e ∈ E and every interpretation ν : V → A, S |=ν,e ϕ.
In particular, this holds for every e ∈ q−1(e′) and for every (νe)e∈E such that for all
e′ ∈ E′, for all e ∈ q−1(e′), νe = ν′e′ . Since S and T /S are elementary equivalent

11

on ground formulae and are both reachable on data, we have T /S |=ν′,e′ ϕ and then
T /S |= ϕ. Therefore, as T /S ∈ Mod(Sp) and S ≡Obs T /S , we have CorrectObs(S,Sp).

Suppose that CorrectObs(S,Sp), i.e. there exists T ∈ Mod(Sp) such that T ≡Obs S.
Let ϕ ∈ Sp• ∩Obs. By hypothesis T |= ϕ, so S |= ϕ too. Then S |= Sp• ∩Obs. 2

The challenge, when dealing with speci�cations de�ned as logical theories, consists
in managing the size of Sp• ∩ Obs, which is most of the time in�nite. In practice,
experts apply some selection criteria in order to extract a set of test cases of su�ciently
reasonable size to be submitted to the system. The underlying idea is that all test cases
satisfying a considered selection criterion reveal the same class of incorrect systems,
intuitively those corresponding to the fault model captured by the criterion. For
example, the criterion called uniformity hypothesis states that test cases in a test set
all have the same power to make the system fail.

A classic way to select test data with a selection criterion C consists in splitting
a given starting test set T into a family of test subsets {Ti}i∈IC(T) such that T =
∪i∈IC(T) Ti holds. A test set satisfying such a selection criterion simply contains at
least one test case for each non-empty subset Ti. The selection criterion C is then a
coverage criterion according to the way C is splitting the initial test set T into the
family {Ti}i∈IC(T) . This is the method that we will use in this paper to select test
data, known under the term of partition testing.

De�nition 3 (Selection criterion) A selection criterion C is a mapping P(Sp• ∩
Obs) → P(P(Sp• ∩ Obs)).5 For a test set T , we note |C(T)| = ∪i∈IC(T) Ti where

C(T) = {Ti}i∈IC(T) . T
′ satis�es C applied to T , noted by T ′ < C(T) if and only if:

∀i ∈ IC(T), Ti 6= ∅ ⇒ T ′ ∩ Ti 6= ∅.

To be pertinent, a selection criterion should ensure some properties between the
starting test set and the resulting family of test sets:

De�nition 4 (Properties) Let C be a selection criterion and T be a test set. C is
said sound for T if and only if |C(T)| ⊆ T . C is said complete for T if and only if
|C(T)| ⊇ T .

These properties are essential for an adequate selection criterion: soundness en-
sures that test cases will be selected within the starting test set (i.e. no test is added)
while completeness ensures that no test from the initial test set is lost. A sound and
complete selection criterion then preserves exactly all the test cases of the initial test
set, up to the notion of equivalent test cases.

3 Selection Criteria Based on Axiom Unfolding

In this section, we study the problem of test case selection for quanti�er-free modalCo-
Casl speci�cations, by adapting a selection criteria based on unfolding of quanti�er-
free �rst-order formulae recently de�ned in the �rst-order speci�cations setting [17].

5For a given set X, P(X) denotes the powerset of X.

12

3.1 Test Sets for Modal CoCasl Formulae

We recall here general de�nitions of test sets from [17]. The selection method that we
are going to de�ne takes inspiration from classic methods that split the initial test set
of any formula considered as a test purpose.

Succinctly, for a modal CoCasl formula ϕ, our method consists in splitting the
initial test set for ϕ into many test subsets, called constrained test sets for ϕ, and
choosing any input in each non-empty subset. First, let us de�ne what test set and
constrained test set for a modal CoCasl formula are.

De�nition 5 (Test set) Let ϕ be a modal formula, called test purpose. The test set
for ϕ, denoted by Tϕ, is the set de�ned as follows:

Tϕ = {ρ(ϕ) | ρ : V → TΣ, ρ(ϕ) ∈ Sp• ∩Obs}

Note that ϕ may be any formula, not necessarily in Sp•. When ϕ /∈ Sp• then
Tϕ = ∅. Constrained test sets will be sets generated by our unfolding procedure. They
are de�ned as follows.

De�nition 6 (Constrained test set) Let ϕ be a modal formula (the test purpose),
C be a set of modal formulae called Σ-constraints, and σ : V → TΣ(V) be a substitution.
A test set for ϕ with respect to C and σ, denoted by T(C,σ),ϕ, is the set of ground
formulae de�ned by:

T(C,σ),ϕ = {ρ(σ(ϕ)) | ρ : V → TΣ, ∀ψ ∈ C, ρ(ψ) ∈ Sp• ∩Obs}

The couple 〈(C, σ), ϕ〉 is called a constrained test purpose.

Note that the test purpose ϕ of De�nition 5 can be seen as the constrained test
purpose 〈({ϕ}, Id), ϕ〉.

3.2 Unfolding Procedure

Given a test purpose ϕ, the unfolding procedure will then replace the initial constrained
test purpose 〈({ϕ}, Id), ϕ〉 with a set of constrained test purposes 〈(C, σ), ϕ〉. This
will be achieved by matching (up to uni�cation), step by step, formulae in C for any
constrained test purpose 〈(C, σ), ϕ〉 with the speci�cation axioms. Hence, step by step,
we will see that the unfolding procedure is building a proof tree of conclusion ϕ having
the following structure :

• no instance of cut occurs over instances of substitution and necessitation

• no instance of substitution occurs over instances of necessitation

• there is no instance of cut with two instances of cut occurring over it.

Hence, the unfolding procedure will only involve cut, substitution and necessitation
rules. In order to allow many applications of the necessitation rule at each step of
the unfolding procedure, let us de�ne the following relation R over tuples of modality
sequences.

De�nition 7 Let p, q ∈ N. R ⊆ (MΣ(V)∗)p × (MΣ(V)∗)q is de�ned for all
(M1, . . . ,Mp) ∈ (MΣ(V)∗)p and (N1, . . . , Nq) ∈ (MΣ(V)∗)q as follows:

(M1, . . . ,Mp)R(N1, . . . , Nq) if and only if

13

1. there exists n ∈ N such that for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, Mi = αi1 . . . α
i
n

and Nj = βj1 . . . β
j
n

2. for all i, 1 ≤ l ≤ n, α1
l , . . . , α

p
l and β1

l , . . . , β
q
l are such that:

(a) there exists t ∈ TΣ(V) such that for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, αil and
βjl all equal to [t] or 〈t〉, or αil and βjl all equal to [t∗] or 〈t∗〉

(b) for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, αil = [t] and βjl = 〈t〉 (resp. αil = [t∗]
and βjl = 〈t∗〉), except perhaps either for one k, 1 ≤ k ≤ p, such that
αkl = 〈t〉 (resp. αkl = 〈t∗〉), or for one k, 1 ≤ k ≤ q, such that βkl = [t]
(resp. βkl = [t∗]).

This relation then ensures the following proposition.

Proposition 1 Let γ1, . . . , γp |∼ δ1, . . . , δq be any sequent. Let (M1, . . . ,Mp) ∈
(MΣ(V)∗)p and (N1, . . . , Nq) ∈ (MΣ(V)∗)q such that (M1, . . . ,Mp)R(N1, . . . , Nq).
Then there exists a proof tree of conclusion M1γ1, . . . ,Mpγp |∼ N1δ1, . . . , Nqδq com-
posed only of instances of the necessitation rule.

We can now proceed with the presentation of the unfolding procedure. The pro-
cedure inputs are:

• a modal CoCasl speci�cation Sp = (Σ, Ax) where axioms of Ax have been
transformed into normalised sequents (see Section 1)

• a modal formula ϕ representing the test purpose 〈({ϕ}, Id), ϕ〉
• a family Ψ of couples (C, σ) where C is a set of Σ-constraints in the form of
normalised sequents, and σ is a substitution V → TΣ(V).

Test sets for ϕ with respect to couples (C, σ) are naturally extended to Ψ as follows:

TΨ,ϕ =
[

(C,σ)∈Ψ

T(C,σ),ϕ. The �rst set Ψ0 only contains the couple composed of the set

of normalised sequents obtained from the modal formula ϕ under test and the identity
substitution.

The unfolding procedure is expressed by the two following rules:6

ReduceΨ ∪ {(C ∪ {Γ |∼ ∆}, σ′)}
Ψ ∪ {(σ(C), σ ◦ σ′)}

∃γ ∈ Γ, ∃δ ∈ ∆ s.t. σ(γ) = σ(δ), σ mgu

Unfold
Ψ ∪ {(C ∪ {φ}, σ′)}

Ψ ∪
[

(c,σ)∈Tr(φ)

{(σ(C) ∪ c, σ ◦ σ′)}

where Tr(φ) for φ = γ1, . . . , γm |∼ δ1, . . . , δn is the set de�ned as follows:„
{(σ(γp+1), . . . , σ(γm), σ(N ′

iζi) |∼ σ(δq+1), . . . , σ(δn)}1≤i≤k
∪ {(σ(γp+1), . . . , σ(γm) |∼ σ(M ′

iξi), σ(δq+1), . . . , σ(δn)}1≤i≤l
, σ

«
˛̨̨̨
˛̨̨̨
˛̨̨̨
ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζk, ϕ1, . . . , ϕq ∈ Ax,
1 ≤ p ≤ m, ∀1 ≤ i ≤ p, ∃Mi ∈MΣ(V)∗ s.t. σ(Miψi) = σ(γi),
1 ≤ q ≤ n, ∀1 ≤ i ≤ q, ∃Ni ∈MΣ(V)∗ s.t. σ(Niϕi) = σ(δi),
∀1 ≤ i ≤ l, ∀1 ≤ j ≤ k,M ′

i , N
′
j ∈MΣ(V)∗

(M1, . . . ,Mp,M
′
1, . . . ,M

′
l)R(N1, . . . , Nq, N

′
1, . . . , N

′
k)

σ uni�er, k, l ∈ N

9>>>>>>=>>>>>>;
6The most general uni�er (or mgu) of two terms γ and δ is the most general substitution

σ such that σ(γ) = σ(δ).

14

The Reduce rule eliminates tautologies 7 from constraints sets (up to substitu-
tion), which are without interest for the unfolding procedure. The Unfold rule is
closely related to the one given in [17] although much more complicated because of
modalities. This rule actually consists in replacing the formula ψ with a set c of con-
straints, which are what remains of the axiom after uni�cation. Then testing σ(ψ)
comes to test the formulae of c. The particular case where no formula has to be cut is
taken into account, since k and l may be equal to zero. Tr(ψ) is then a couple (∅, σ),
and it is the last step of unfolding for this formula.

Each uni�cation with an axiom leads to as much couples (c, σ) as there are
ways to instantiate M ′

1, . . . ,M
′
l and N

′
1, . . . , N

′
k so that (M1, . . . ,Mp,M

′
1, . . . ,M

′
l) and

(N1, . . . , Nq, N
′
1, . . . , N

′
k) belong to R. So the initial formula ψ is replaced with, at

least, as much sets of formulae as there are axioms to which it can be uni�ed. The
de�nition of Tr(ψ) being based on uni�cation, this set is computable if the speci�-
cation Sp has a �nite set of axioms. Therefore, given an atomic formula ψ, we have
the selection criterion Cψ that maps any T(C,σ′),ϕ to (T(σ(C\{ψ})∪c,σ◦σ′),ϕ)(c,σ)∈Tr(ψ) if
ψ ∈ C, and to TC,ϕ otherwise.

We write 〈Ψ, ϕ〉 `U 〈Ψ′, ϕ〉 to mean that Ψ′ can be derived from Ψ by applying
Reduce or Unfold. An unfolding procedure is then any program, whose inputs are a
CoCasl's modal speci�cation Sp and a modal formula ϕ, and uses the above inference
rules to generate the sequence 〈Ψ0, ϕ〉 `U 〈Ψ1, ϕ〉 `U 〈Ψ2, ϕ〉 . . .

Termination of the unfolding procedure is unlikely, since it is not checked, during
its execution, whether the formula ϕ is a semantic consequence of the speci�cation or
not. Actually, this will be done during the generation phase, not handled in this paper.
As we already explained in the introduction, the aim of the unfolding procedure is not
to �nd the complete proof of formula ϕ, but to make a partition of Tϕ increasingly
�ne. Hence the procedure can be stopped at any moment, when the obtained partition
is �ne enough according to the judgement or the needs of the tester. The idea is to
stretch further the execution of the procedure in order to make increasingly big proof
trees whose remaining lemmas are constraints. If ϕ is not a semantic consequence of
Sp, then this means that, among remaining lemmas, some of them are not true, and
then the associated test set is empty.

Example 3 (Lists) Let us suppose that we want to test the formula
[even][tail]head = a ⇒ [tail][tail][even]head = b. Then, to perform the �rst
step of the unfolding procedure on the initial family of couples:

Ψ0 = {({[even][tail]head = a |∼ [tail][tail][even]head = b}, Id)}

leads to the following family of couples:

Ψ1 = {({[even][tail]〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1),
({〈even〉[tail]〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1),
({[even]〈tail〉〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1),
({〈even〉〈tail〉〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({[tail][odd][tail]head = n0 |∼ [tail][tail][even]head = m0}, σ1), (5)
({[even][tail]head = n0 |∼ [tail][tail][even]〈odd〉head = m0}, σ2), (2)
({[even][tail]head = n0 |∼ [tail][tail][tail][odd]head = m0}, σ2)} (6)

where σ1 : a 7→ n0, b 7→ m0, n 7→ n0 and σ2 : a 7→ n0, b 7→ m0, n 7→ m0. Each couple of
Ψ1 is labelled by the number of the axiom used for the unfolding of the initial formula.

7In our sequent calculus, a tautology is a sequent of the form Γ, ϕ |∼ ∆, ϕ.

15

The �rst four couples of Ψ1 come from the uni�cation of the initial formula with ax-
iom (1). Since σ1(M1ψ1) = σ1(γ1), whereM1 = [even][tail], ψ1 is the formula head = n
and γ1 is head = a, the resulting constraints are the sequents σ1(N

′
1ζ1) |∼ σ1(δ1) where

ζ1 is the formula 〈odd〉head = n, δ1 is [tail][tail][even]head = b, and N ′
1 must be such

that M1RN1. According to the de�nition of R, several N1 suit, namely [even][tail],
〈even〉[tail], [even]〈tail〉 and 〈even〉〈tail〉, whence the four constraints generated by
the uni�cation with axiom (1).

Notice that the formula under test is a consequence of the speci�cation if and only
if a = b. The unfolding may then generate two kinds of constrained test sets: those
whose substitution σ is such that σ(a) = σ(b), which will lead to test cases since they
are consequences of the speci�cation, and those where σ(a) 6= σ(b), which are not
test cases. Here, when a constraint is uni�ed with both sides of axiom (1) or (2), the
substitution collapses a and b and the resulting constrained test set is a potential test
case.

The unfolding procedure can not distinguish between these two kinds of constrained
test sets, but this distinction will be done before submitting them to the system, by
applying a ground substitution ρ to any formula in constrained test purposes. Since,
by de�nition, ρ(ψ) has to be a consequence of the speci�cation, constrained test sets
where σ(a) 6= σ(b) will not be submitted to the system.

Example 4 (ATM) Let us suppose that we want to test the formula
[Card(A)]cardok(A) ∧ [Card(A)][Passcode(p)]codeok(p)

⇒ [Card(A)][Passcode(p)]〈Cardback〉¬card?
Then, to perform the �rst step of the unfolding procedure on the initial family of
couples:
Ψ0 = {({[Card(A)]cardok(A), [Card(A)][Passcode(p)]codeok(p)

|∼ [Card(A)][Passcode(p)]〈Cardback〉true}, Id)}
leads to the following family of couples:

Ψ1 =
{({[Card(C0)]cardok(C0), [Card(C0)][Passcode(c0)](〈Withdraw〉¬amount? ∧ 〈Check〉true)

|∼ [Card(C0)][Passcode(c0)]〈Cardback〉true}, σ1), (7)
({[Card(C0)]cardok(C0), 〈Card(C0)〉[Passcode(c0)](〈Withdraw〉¬amount? ∧ 〈Check〉true)

|∼ [Card(C0)][Passcode(c0)]〈Cardback〉true}, σ1), (7)
({[Card(C0)]cardok(C0), [Card(C0)][Passcode(c0)]codeok(c0)

|∼ [Card(C0)][Passcode(c0)][Card(C1)]¬cardok(C1)}, σ2), (3)
({[Card(C0)]cardok(C0), [Card(C0)][Passcode(c0)]codeok(c0)

|∼ [Card(C0)][Passcode(c0)]card?,
[Card(C0)]cardok(C0), [Card(C0)][Passcode(c0)]codeok(c0)

|∼ [Card(C0)][Passcode(c0)]attempts < 3}, σ1)}(10)

where σ1 : A 7→ C0, p 7→ c0, C 7→ C0, c 7→ c0 and σ2 : A 7→ C0, p 7→ c0, C 7→ C1, c 7→ c0.

Until now, the unfolding procedure has been de�ned in order to cover the
behaviours of one test purpose, represented by the formula ϕ. When we are interested
in covering more widely the exhaustive set Sp• ∩ Obs, a strategy consists in ordering
modal formulae with respect to their size, as follows:

Φ0 = { |∼ p(x1, . . . , xn) | p : s1 × . . .× sn ∈ P, ∀i, 1 ≤ i ≤ n, xi ∈ Vsi}
Φn+1 ={ |∼ ¬ψ, |∼ [m]ψ, |∼ ψ1@ψ2 |m ∈MΣ(V),@ ∈ {∧,∨,⇒},ψ, ψ1, ψ2 ∈ Φn}

16

Then, to manage the size (often in�nite) of Sp•∩Obs, we start by choosing k ∈ N, and
then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure to each formula
belonging to Φi. Of course, this requires that signatures are �nite so that each set Φi
is �nite too.

3.3 Soundness and Completeness

Here, we prove the two properties that make the unfolding procedure relevant for
the selection of appropriate test cases, i.e. that the selection criterion de�ned by the
procedure is sound and complete for the initial test set we de�ned.

Theorem 2 If 〈Ψ, ϕ〉 `U 〈Ψ′, ϕ〉, then TΨ,ϕ = TΨ′,ϕ.

Proof. (Soundness) Let us prove that if 〈Ψ, ϕ〉 `U 〈Ψ′, ϕ〉, then TΨ′,ϕ ⊆ TΨ,ϕ.
If the last applied rule is Reduce, the result is obvious. If the last rule is Unfold,

by de�nition, what must be proved is that for each (C, σ′) ∈ Ψ, for each ψ ∈ C, for
each (c, σ) ∈ Tr(ψ), T(c,σ◦σ′),ϕ ⊆ T({ψ},σ′),ϕ. We then have to prove that for each
ground substitution ρ : V → TΣ such that Sp |= ρ(χ), for each χ ∈ c, there exists
ρ′ : V → TΣ such that Sp |= ρ′(ψ).

Assuming that the formula ψ is of the form γ1, . . . , γm |∼ δ1, . . . , δn, and that the
set c such that (c, σ) ∈ Tr(ψ) is of the form

{(σ(γp+1), . . . , σ(γm), σ(N ′
iζi) |∼ σ(δq+1), . . . , σ(δn)}1≤i≤k

∪ {(σ(γp+1), . . . , σ(γm) |∼ σ(M ′
iξi), σ(δq+1), . . . , σ(δn)}1≤i≤l

where 1 ≤ p ≤ m and 1 ≤ q ≤ n are such that
ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζk, ϕ1, . . . , ϕq ∈ Ax, for each 1 ≤ i ≤ p there ex-
ists Mi ∈ MΣ(V)∗ such that σ(Miψi) = σ(γi), for each 1 ≤ i ≤ q there exists
Ni ∈ MΣ(V)∗ such that σ(Niϕi) = σ(δi), and M ′

1, . . . ,M
′
l , N

′
1, . . . , N

′
k ∈ MΣ(V)∗

such that (M1, . . . ,Mp,M
′
1, . . . ,M

′
l)R(N1, . . . , Nq, N

′
1, . . . , N

′
k).

Since (M1, . . . ,Mp,M
′
1, . . . ,M

′
l)R(N1, . . . , Nq, N

′
1, . . . , N

′
k), we have the following

proof tree, denoted by Ax in the sequel:

ψ1,...,ψp,ξ1,...,ξl |∼ ζ1,...,ζk,ϕ1,...,ϕq

...
M1ψ1,...,Mpψp,M

′
1ξ1,...,M

′
lξl |∼ N′

1ζ1,...,N
′
kζk,N1ϕ1,...,Nqϕq

where the suspension points stand for multiple applications of necessitation rules.
We have then the following proof tree, where Γ = {M1ψ1, . . . ,Mpψp}, ∆ =

{N1ϕ1, . . . , Nqϕq}, Γ′ = {γp+1, . . . , γm}, ∆′ = {δq+1, . . . , δn}, for each i, 1 ≤ i ≤ l,
Ωi = {M ′

iξi, . . . ,M
′
l ξl} and for each i, 1 ≤ i ≤ k, Λi = {N ′

iζi, . . . , N
′
kζk}. The compo-

sition σ′ ◦ σ of two substitutions σ : V → TΣ(V) and σ′ : TΣ(V) → TΣ(V), applied to
a formula ϕ, is denoted by σ′σ(ϕ).

...
ρσ(Γ′) |∼ ρσ(ξl),ρσ(∆′)

...
ρσ(Γ′) |∼ ρσ(ξ2),ρσ(∆′)

...
ρσ(Γ′) |∼ ρσ(ξ1),ρσ(∆′) ST

ρσ(Γ),ρσ(Γ′),ρσ(Ω2) |∼ ρσ(∆),ρσ(∆′)

...
ρσ(Γ),ρσ(Γ′),ρσ(Ωl) |∼ ρσ(∆),ρσ(∆′)

ρσ(Γ),ρσ(Γ′) |∼ ρσ(∆),ρσ(∆′)

17

where ST is the following subtree:

Ax

ρσ(Γ),ρσ(Ω1) |∼ ρσ(Λ1),ρσ(∆)

...
ρσ(Γ′),ρσ(ζ1) |∼ ρσ(∆′)

ρσ(Γ),ρσ(Γ′),ρσ(Ω1) |∼ ρσ(Λ2),ρσ(∆),ρσ(∆′)

...
ρσ(Γ′),ρσ(ζ2) |∼ ρσ(∆′)

...
ρσ(Γ),ρσ(Γ′),ρσ(Ω1) |∼ ρσ(∆),ρσ(∆′)

(Completeness) Let us prove that if 〈Ψ, ϕ〉 `U 〈Ψ′, ϕ〉, then TΨ,ϕ ⊆ TΨ′,ϕ.
By de�nition of rule Unfold, what must be proved is that T({ψ},σ′),ϕ ⊆[

(c,σ)∈Tr(ψ)

T(c,σ◦σ′),ϕ. We then have to prove that for each ground substitution

ρ : V → TΣ such that Sp |= ρ(ψ), there exists (c, σ) ∈ Tr(ψ) such that there ex-
ists ρ′ : V → TΣ such that Sp |= ρ′(χ) for each χ ∈ c. In other words, we have to
prove that ρ(ψ) can be deduced from speci�cation Sp if there exists (c, σ) ∈ Tr(ψ),
and ρ′ : V → TΣ such that Sp |= ρ′(χ) for each χ ∈ c.

First, let us note that the unfolding procedure de�nes a strategy which bounds
the search space for proof trees to a class of trees having a speci�c structure. The
procedure de�nes a proof search strategy which selects proof trees where:

• no instance of cut occurs over instances of substitution and necessitation

• no instance of substitution occurs over instances of necessitation

• there is no instance of cut with two instances of cut occurring over it.

We then have to prove that there exists a proof tree having the structure we just
described and of conclusion ρ(ψ). We are actually going to prove a stronger result: we
are going to de�ne elementary transformations of proof trees, which allow to rewrite
elementary combinations of inference rules, and then we will prove that the resulting
global proof trees transformation is weakly normalizing and normal forms are proof
trees with the above structure.

The case of cut over substitution:

Γ |∼ ∆,ϕ Γ′,ϕ |∼ ∆′

Γ,Γ′ |∼ ∆,∆′ Cut

σ(Γ),σ(Γ′) |∼ σ(∆),σ(∆′)
Subs

Γ |∼ ∆,ϕ

σ(Γ) |∼ σ(∆),σ(ϕ)
Subs

Γ′,ϕ |∼ ∆′

σ(Γ′),σ(ϕ) |∼ σ(∆′)
Subs

σ(Γ),σ(Γ′) |∼ σ(∆),σ(∆′)
Cut

The case of cut of necessitation:

Γ |∼ ∆,ϕ Γ′,ϕ |∼ ∆′

Γ,Γ′ |∼ ∆,∆′ Cut

[t]Γ,[t]Γ′ |∼ 〈t〉∆,〈t〉∆′ Nec

Γ |∼ ∆,ϕ

[t]Γ |∼ 〈t〉∆,〈t〉ϕ
Nec

Γ′,ϕ |∼ ∆′

[t]Γ′,〈t〉ϕ |∼ 〈t〉∆′ Nec

[t]Γ,[t]Γ′ |∼ 〈t〉∆,〈t〉∆′ Cut

The case of two cuts over a third one has to be divided into four cases, according
to the position of the last cut formula in the premises of the two cuts of the top.

The case where ϕ is in both left premises:
Γ1 |∼ ∆1,ϕ1,ϕ Γ′1,ϕ1 |∼ ∆′

1

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ2,ϕ |∼ ∆2,ϕ2 Γ′2,ϕ2 |∼ ∆′

2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

Γ1 |∼ ∆1,ϕ1,ϕ Γ2,ϕ |∼ ∆2,ϕ2

Γ1,Γ2 |∼ ∆1,∆2,ϕ1,ϕ2
Cut

Γ′2,ϕ2 |∼ ∆′
2

Γ1,Γ2,Γ
′
2 |∼ ∆1,∆2,∆

′
2,ϕ1

Cut
Γ′1,ϕ1 |∼ ∆′

1

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

18

The case where ϕ is in both right premises:
Γ1 |∼ ∆1,ϕ1 Γ′1,ϕ1 |∼ ∆′

1,ϕ

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ2 |∼ ∆2,ϕ2 Γ′2,ϕ2,ϕ |∼ ∆′

2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ1 |∼ ∆1,ϕ1

Γ′1,ϕ1 |∼ ∆′
1,ϕ

Γ2 |∼ ∆2,ϕ2 Γ′2,ϕ2,ϕ |∼ ∆′
2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ′1,Γ2,Γ
′
2,ϕ1 |∼ ∆′

1,∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in the left premise of the left cut, and in the right premise of
the right cut:
Γ1 |∼ ∆1,ϕ1,ϕ Γ′1,ϕ1 |∼ ∆′

1

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ2 |∼ ∆2,ϕ2 Γ′2,ϕ2,ϕ |∼ ∆′

2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ2 |∼ ∆2,ϕ2

Γ1 |∼ ∆1,ϕ1,ϕ Γ′1,ϕ1 |∼ ∆′
1

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ′2,ϕ2,ϕ |∼ ∆′

2

Γ1,Γ
′
1,Γ

′
2,ϕ2 |∼ ∆1,∆

′
1,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in the right premise of the left cut, and in the left premise of
the right cut:
Γ1 |∼ ∆1,ϕ1 Γ′1,ϕ1 |∼ ∆′

1,ϕ

Γ1,Γ
′
1 |∼ ∆1,∆

′
1,ϕ

Cut
Γ2,ϕ |∼ ∆2,ϕ2 Γ′2,ϕ2 |∼ ∆′

2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ1 |∼ ∆1,ϕ1

Γ′1,ϕ1 |∼ ∆′
1,ϕ

Γ2,ϕ |∼ ∆2,ϕ2 Γ′2,ϕ2 |∼ ∆′
2

Γ2,Γ
′
2,ϕ |∼ ∆2,∆

′
2

Cut

Γ′1,Γ2,Γ
′
2,ϕ1 |∼ ∆′

1,∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2 |∼ ∆1,∆

′
1,∆2,∆

′
2

Cut

Let us denote m(π) for π =
π1 π2

Γ1,Γ2 |∼ ∆1,∆2
Cut the measure of π de�ned by:

m(π) =

(
1 +m(π1) +m(π2) if each πi =

πi1 πi2
Γi |∼ ∆i

Cut i = 1, 2

m(π1) +m(π2) otherwise

A proof tree is said maximal if and only if it is of the form

π11 π12

Γ1 |∼ ∆1, ϕ
Cut π21 π22

Γ2, ϕ |∼ ∆2

Cut

Γ1,Γ2 |∼ ∆1,∆2

Cut

and m(πij) = 0 for i, j = 1, 2. Therefore, by applying the strategy which consists in
reducing maximal proof trees, we show that the measure m decreases for each basic
transformation given above.

Since by hypothesis, Sp |= ρ(ψ), and ψ is not a tautology, there exists necessar-
ily an axiom ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζr, ϕ1, . . . , ϕq and a ground substitution ρ′

such that for each 1 ≤ i ≤ p, there exists Mi ∈ MΣ(V)∗ such that ρ′(Miψi) = ρ′(γi),
for each 1 ≤ i ≤ q there exists Ni ∈ MΣ(V)∗ such that ρ′(Niϕi) = ρ′(δi), and
(M1, . . . ,Mp,M

′
1, . . . ,M

′
l)R(N1, . . . , Nq, N

′
1, . . . , N

′
k). Hence ρ

′ is a uni�er of each ψi
and γ′i, and of each ϕi and δ′i. So there exists a proof tree resulting of the transforma-
tion de�ned above, of conclusion ρ(ψ), where ρ = ρ′, of the form:

19

...
ρσ(Γ′) |∼ ρσ(ξl),ρσ(∆′)

...
ρσ(Γ′) |∼ ρσ(ξ2),ρσ(∆′)

...
ρσ(Γ′) |∼ ρσ(ξ1),ρσ(∆′) ST

ρσ(Γ),ρσ(Γ′),ρσ(Ω2) |∼ ρσ(∆),ρσ(∆′)

...
ρσ(Γ),ρσ(Γ′),ρσ(Ωl) |∼ ρσ(∆),ρσ(∆′)

ρσ(Γ),ρσ(Γ′) |∼ ρσ(∆),ρσ(∆′)

where ST is the following subtree:

Ax

ρσ(Γ),ρσ(Ω1) |∼ ρσ(Λ1),ρσ(∆)

...
ρσ(Γ′),ρσ(ζ1) |∼ ρσ(∆′)

ρσ(Γ),ρσ(Γ′),ρσ(Ω1) |∼ ρσ(Λ2),ρσ(∆),ρσ(∆′)

...
ρσ(Γ′),ρσ(ζ2) |∼ ρσ(∆′)

...
ρσ(Γ),ρσ(Γ′),ρσ(Ω1) |∼ ρσ(∆),ρσ(∆′)

with Ax the subtree:
ψ1,...,ψp,ξ1,...,ξl |∼ ζ1,...,ζk,ϕ1,...,ϕq

...
M1ψ1,...,Mpψp,M

′
1ξ1,...,M

′
lξl |∼ N′

1ζ1,...,N
′
kζk,N1ϕ1,...,Nqϕq

2

Conclusion

In this paper, we have extended the method for selecting test cases known as axiom
unfolding to coalgebraic speci�cations of dynamic systems. As in the algebraic spec-
i�cations setting, our unfolding procedure consists in dividing the initial test set for
a formula into subsets. The generation of a test set for this formula then arises from
the selection of one test case in each resulting subset. We have proved this procedure
to be sound and complete, so that test cases are preserved at each step. We have also
proved the exhaustiveness of the set of observable consequences of the speci�cation for
every reachable systems, and proposed a strategy to cover this exhaustive test set.

Ongoing research concerns the extension of this work to the very recent extension
of CoCasl logic [21]. This logic deals with modalities at a more abstract level than
the one presented here, using Pattinson's predicate liftings. This extension of CoCasl
allows to specify in several modal logics that were not handled with basic CoCasl,
such as probabilistic modal logic. De�ning testing for such an extension of CoCasl
would allow us to handle a larger variety of modal formalisms in our framework.

Another important future work will be to include structuration, such as provided
by Casl and CoCasl languages, in our framework, both on its �rst-order side, by
extending our work developed in [17], and on its coalgebraic side, by extending the
present work. This work will surely take inspiration from [6, 22].

References

[1] Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Software testing based
on formal speci�cations: a theory and a tool. Software Engineering Journal,
6(6):387�405, 1991.

20

[2] Marie-Claude Gaudel. Testing can be formal, too. In Theory and Practice of
Software Development (TASPOFT'95), volume 915 of Lecture Notes in Computer
Science, pages 82�96, 1995.

[3] Pascale Le Gall and Agnès Arnould. Formal speci�cation and test: correctness
and oracle. In 11th Workshop on Algebraic Development Techniques (WADT'96),
volume 1130 of Lecture Notes in Computer Science, pages 342�358, 1996.

[4] Bruno Marre. LOFT : a tool for assisting selection of test data sets from algebraic
speci�cations. In Theory and Practice of Software Development (TAPSOFT'95),
volume 915 of Lecture Notes in Computer Science, pages 799�800, 1995.

[5] Marc Aiguier, Agnès Arnould, Clément Boin, Pascale Le Gall, and Bruno Marre.
Testing from algebraic speci�cations: test data set selection by unfolding axioms.
In Formal Approaches to Testing of Software (FATES'05), volume 3997 of Lecture
Notes in Computer Science, pages 203�217, 2005.

[6] Patrícia Machado and Donald Sannella. Unit testing for Casl architectural spec-
i�cations. In Mathematical Foundations of Computer Science, volume 2420 of
Lecture Notes in Computer Science, pages 506�518, 2002.

[7] Agnès Arnould, Pascale Le Gall, and Bruno Marre. Dynamic testing from
bounded data type speci�cations. In Dependable Computing - EDCC-2, volume
1150 of Lecture Notes in Computer Science, pages 285�302, 1996.

[8] Marc Aiguier, Agnès Arnould, and Pascale Le Gall. Exhaustive test sets for
algebraic speci�cation correctness. Technical report, IBISC - Université d'Évry-
Val d'Essonne, 2006.

[9] Agnès Arnould and Pascale Le Gall. Test de conformité : une approche algébrique.
Technique et Science Informatiques, Test de logiciel, 21:1219�1242, 2002.

[10] Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic speci�cation in CoCasl. Journal of Logic and Algebraic
Programming, 67(1-2):146�197, 2006.

[11] M. Yannakakis and David Lee. Testing �nite state machines. In Symposium on
Theory of Computing (STOC'91), pages 476�485. ACM Press, 1991.

[12] Jan Tretmans. Testing labelled transition systems with inputs and outputs. In
International Workshop on Protocols Test Systems (IWPTS'95), 1995.

[13] Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An approach to symbolic test
generation. In Integrated Formal Methods (IFM '00), pages 338�357. Springer-
Verlag, 2000.

[14] Lars Frantzen, Jan Tretmans, and Tim Willemse. Test generation based on sym-
bolic speci�cations. In Formal Approaches to Testing of Software (FATES'04),
volume 3395 of Lecture Notes in Computer Science, pages 1�15, 2005.

[15] Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic
execution techniques for test purpose de�nition. In Testing Communicating Sys-
tems (TestCom'06), volume 3964 of Lecture Notes in Computer Science, pages
1�18, 2006.

[16] Paul Ammann, Wei Ding, and Daling Xu. Using a model checker to test safety
properties. In International Conference on Engineering of Complex Computer
Systems (ICECCS'01), pages 212�221, 2001.

21

[17] Marc Aiguier, Agnès Arnould, Pascale Le Gall, and Delphine Longuet. Test
selection criteria for quanti�er-free �rst-order speci�cations. In Fundamentals of
Software Engineering (FSEN'07), Lecture Notes in Computer Science, 2007. To
appear.

[18] Gilles Bernot. Testing against formal speci�cations: a theoretical view. In Theory
and Practice of Software Development (TAPSOFT'91), volume 494 of Lecture
Notes in Computer Science, pages 99�119, 1991.

[19] Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for struc-
tured speci�cations with observability operators. Theoretical Computer Science,
173(2):393�443, 1997.

[20] Jan Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249:3�80, 2000.

[21] Lutz Schröder and Till Mossakowski. Coalgebraic modal logic in CoCasl. In
Recent Trends in Algebraic Speci�cation Techniques (WADT'06), volume 4409 of
Lecture Notes in Computer Science, pages 128�142, 2007.

[22] Patrícia Machado. Testing from structured algebraic speci�cations. In Algebraic
Methodology and Software Technology (AMAST'00), volume 1816 of Lecture Notes
in Computer Science, pages 529�544, 2000.

22

