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Abstract. Testing from first-order specifications has mainly been studied for flat
specifications, that are specifications of a single software module. However, the
specifications of large software systems are generally built out of small specifi-
cations of individual modules, by enriching their union. The aim of integration
testing is to test the composition of modules assuming that they have previously
been verified, i.e. assuming their correctness. One of the main method for the
selection of test cases from first-order specifications, called axiom unfolding, is
based on a proof search for the different instances of the property to be tested,
thus allowing the coverage of this property. The idea here is to use deduction
modulo as a proof system for structured first-order specifications in the context
of integration testing, so as to take advantage of the knowledge of the correctness
of the individual modules.

Testing is a very common practice in the software validation process. The principle
of testing is to execute the software system on a subset of its possible inputs in order
to detect failures. A failure is detected if the system behaves in a non-conformant way
with respect to its specification.

The testing process is usually decomposed into three phases: the selection of a rel-
evant subset of the set of all the possible inputs of the system, called a test set; the
submission of this test set to the system; the decision of the success or the failure of the
test set submission, called the oracle problem. We focus here on the selection phase,
which is the crucial point for the relevance and the efficiency of the testing process.
In the approach called black-box testing, tests are selected from a (formal or informal)
specification of the system, without any knowledge about the implementation.

Our work follows the framework defined by Gaudel, Bernot and Marre [1], for
testing from specifications expressed in a logical formalism. One approach to selection
consists first in dividing an exhaustive test set into subsets, and then in choosing one
test case in each of these subsets, thus building a finite test set which covers the initial
exhaustive test set. One of the most studied selection method for testing from equational
(and then first-order) specifications is known as axiom unfolding [1–4]. Its principle is
to divide the initial exhaustive test set according to criteria derived from the axioms
of the specification, using the well-known and efficient proof techniques associated to
first-order logic.



Contribution. Test case selection from first-order specifications have mainly been stud-
ied for flat specifications (and then flat programs), that are specifications of a single
software module. However, for the description of large systems, it is convenient to
compose specifications in a modular way [5]. The specification of a large system is
generally built from small specifications of individual modules, that are composed by
making their union and enriching it with new features in order to get new (larger) spec-
ifications, that are themselves composed and so on. The aim of integration testing is
to test the composition of modules, assuming that these modules have previously been
tested and then are correct. The assumption here is that the system under test is struc-
tured according to the structuration of its specification.

Here, we propose to use the knowledge of the correctness of individual modules to
make the test selection method based on axiom unfolding more efficient. Since the mod-
ules are correct (i.e. they have already been sufficiently tested or completely proved),
it is reasonable to assume to have an executable and complete specification of these
modules, either from which their implementations has been build or which would have
been generated from their implementations. Our selection method being defined for
first-order specifications, it is important for this executable specification to be written in
first-order logic. Of course, in the case where the specification has to be generated from
the implementation, the generation may be more or less easy according to the program-
ming language used (imperative or functional), but this is the price to pay to make the
selection method efficient by taking advantage of the specification structure. However,
we can observe that the obtained specification is most often composed of (conditional)
equations that can be oriented from left to right into confluent and terminating (condi-
tional) rewrite rules, and of predicate definition formulas of the form p(t1, . . . , tn)⇔ ϕ,
where ϕ is a quantifier-free formula, that can be oriented into confluent and terminating
rewrite rules on propositions (see Section 2). We will then suppose to have, for each
individual module, a confluent and terminating rewrite system that completely speci-
fies its behaviour. To preserve the black-box aspect of the approach (the tester has no
knowledge about the implementation of the system and its modules), we suppose that
these executable and complete specifications of modules have been written beforehand
by the programmer.

In order to make our selection method more efficient, we propose to use the de-
duction modulo proposed by Dowek, Hardin and Kirchner [6] as a proof system for
structured specifications. Deduction modulo is a formalism introduced to separate com-
putations from deductions in proofs by reasoning modulo a congruence on propositions,
which is defined by a rewrite relation over first-order terms and propositions. The idea
behind deduction modulo is to hide the computational part of the proof in the congru-
ence, in order to focus on its deductive part. In the context of integration testing, the
same idea can be used to focus the proof on the new features coming from the composi-
tion of modules, relying on the correct behaviour of these modules which is embedded
in the congruence. It leads to shorter proofs which take advantage of the structuration
of specifications, thus making the selection procedure more efficient.

Related Work. Testing from structured first-order specifications has already been stud-
ied in the framework of institutions. Machado’s works deal with the oracle problem [7],
that is, whether a finite and executable procedure can be defined for interpreting the re-



sults of tests. When dealing with structured specifications, problems arise in particular
with the union of specifications. Since the same sort and operations may be introduced
and specified in different modules, the union will be consistent only if the different
specifications of the same operations are. Doche and Wiels define an extension of the
notion of institution to take test cases into account [8]. They incrementally generate
tests from structured specifications, generating tests from small specifications and com-
posing them according to a push-out of specifications.

Both of these works aim at building a general test set for the whole structured spec-
ification, composing individual test sets obtained for each of its part. The structuration
of the specification helps to incrementally build the test set but not to actually test the
program in an incremental way. We are here interested in incrementally testing from a
structured specification, basing the construction of a test set on the success of the pre-
vious ones. Moreover, from the selection point of view, none of the mentioned works
propose any particular strategy, but the substitution of axiom variables for some arbi-
trarily chosen data.

Organisation of the Paper. We first recall standard definitions about structuration of
specifications (Section 1) and deduction modulo (Section 2). Section 3 introduces the
general framework for testing from logical specifications and gives the result of the
existence of an exhaustive test set for quantifier-free first-order specifications. We also
prove the existence of an exhaustive test set for structured first-order specifications,
relying on the correctness of the smaller modules. We restrict to quantifier-free formulas
since we showed in [9] that existential formulas are not testable. Testing a formula of
the form ∃xϕ(x) actually comes down to exhibiting a witness value a such that ϕ(a)
is interpreted as true by the system. Of course, there is no general way to exhibit such
a relevant value, but notice that surprisingly, exhibiting such a value would amount to
simply prove the system with respect to the initial property. In Section 4, the selection
method by means of selection criteria is presented. We develop in Section 5 our test
selection method from structured first-order specifications, by unfolding axioms using
deduction modulo. We give the algorithm of the procedure and prove the soundness and
completeness of the method, i.e. the preservation of exhaustiveness through unfolding.

1 Structured First-Order Specifications

A multi-sorted first-order signature Σ = (S, F, P, V ) is composed of a set of sorts S,
a set of operations F , a set of predicates P and a set of variables V over these sorts.
TΣ(V ) and TΣ are both S-indexed sets of terms with variables in V and ground terms,
respectively, freely generated from variables and operations in Σ and preserving arity
of operations. A substitution is any mapping σ : V → TΣ(V ) that preserves sorts.
Substitutions are naturally extended to terms with variables. Formulas (or propositions)
are built as usual in first-order logic from atomic formulas p(t1, . . . , tn), where p is a
predicate and t1, . . . , tn are first-order terms, and Boolean connectives. Here, we only
consider quantifier-free formulas. As usual, variables of quantifier-free formulas are
implicitly universally quantified. A formula over Σ is said ground if it does not contain
variables. Let us denote For(Σ) the set of all formulas over the signature Σ.



A model of a signature Σ is a first-order structure giving an interpretation to sorts,
operations and predicates of Σ. Mod(Σ) is the set of models of Σ. The satisfaction
of a quantifier-free formula ϕ by a given modelM of Σ is inductively defined on the
structure of ϕ as usual and denoted by M |= ϕ. Given a set of formulas Ψ over Σ
and two modelsM andM′ of Σ, we say thatM is Ψ -equivalent toM′, denoted by
M≡Ψ M′, if and only if for every formula ϕ in Ψ ,M |= ϕ if and only ifM′ |= ϕ.

Given a specification Sp = (Σ,Ax ), a model M of Σ is a model of Sp if M
satisfies all the formulas in Ax . Mod(Sp) is the subset of Mod(Σ) whose elements
are the models of Sp. A formula ϕ over Σ is a semantic consequence of Sp, denoted
by Sp |= ϕ, if and only if every model M of Sp satisfies ϕ. Sp• is the set of all the
semantic consequences of Sp.

The semantics of a specification Sp = (Σ,Ax ) is given by its signature Sig(Sp) =
Σ and its class of models JSpK = Mod(Sp). The specification building operators al-
low to write basic (flat) specifications, to make the union of two specifications and to
enrich specifications with additional sorts, operation and/or predicate and axioms [5].
In general, small specifications are written, for instance specifying basic operations and
predicates for a given sort (Booleans, naturals, lists. . . ), then they are composed by the
union operator, and finally enriched by new sorts, operations, predicates and axioms
involving several of the initial specifications (empty list, list length, list of the divisors
of a natural. . . ). The union and enrichment operators are defined as follows.

Basic Sp = (Σ,Ax )

Sig(Sp) = Σ
JSpK = Mod(Sp)

Union Sp = Sp1 union Sp2

Sig(Sp) = Sig(Sp1) ∪ Sig(Sp2)
JSpK = JSp1K ∩ JSp2K

Enrich1 Sp = enrich Sp1

by sorts S2, ops F2, preds P2, axioms Ax 2

Sig(Sp) = Sig(Sp1) ∪ (S2, F2, P2)
JSpK = {M ∈ Mod(Sig(Sp)) | M|Sig(Sp1)

∈ JSp1K ∧ M |= Ax 2}

2 Deduction Modulo

A term rewrite rule l→ r is a pair of terms l, r such that all free variables of r appear in
l. A term rewrite system is a set of term rewrite rules. A proposition rewrite ruleA→ P
is a pair composed of an atomic proposition A and a proposition P , such that all free
variables of P appear in A. A rewrite system R is a pair consisting of a term rewrite
system and a proposition rewrite system. We denote by P →R Q the fact that P can be
rewritten to Q in the rewrite systemR in one step.R may be omitted if it is clear from
the context. +−→R (resp. ∗−→R) is the transitive (resp. reflexive transitive) closure of this
rewrite relation. We denote by ≡R the congruence generated byR.

In the context of integration testing, we consider a system built from modules com-
posed by union and enrichment and we assume the correctness of these modules. As
we already explained in the introduction, since each module is correct, we suppose to
have the most concrete specification of each individual module. When expressed in

1 M|Σ stands for the reduct ofM over the signature Σ.



first-order logic, this concrete specification (most often) leads to a terminating and con-
fluent rewrite system. We will assume that the behaviour of the module is modelled
by this terminating and confluent rewrite system, where the behaviour of functions and
predicates is defined by rewrite rules over first-order terms and quantifier-free formulas
respectively. For instance, if we take the simple example of the greatest common divisor
(gcd) whose possible implementation written in Caml is:

let rec gcd(x,y) = if y > x then gcd(y,x)
else if x mod y = 0 then y

else gcd(y,x mod y);;

we obtain the following specification:

y > x⇒ gcd(x, y) = gcd(y, x)
¬(y > x) ∧ x mod y = 0⇒ gcd(x, y) = y
¬(y > x) ∧ ¬(x mod y = 0)⇒ gcd(x, y) = gcd(y, x mod y)
x > y ⇔ (¬(x = 0) ∧ y = 0) ∨ (pred(x) > pred(y))

This specification can obviously be transformed into a set of confluent and terminating
(conditional) rewrite rules on terms and propositions. On the contrary, the specification
from which this implementation of gcd has been tested would rather be:

x mod gcd(x, y) = 0 x mod z = 0 ∧ y mod z = 0⇒ gcd(x, y) ≥ z
y mod gcd(x, y) = 0

A congruence relation ≡ over formulas is naturally induced by these rewrite rules. For
instance, we have the following equivalences:

¬
(
gcd(2x+ 1, 2) = gcd(2x, 2)

)
≡
(
¬ gcd(2, 2x+ 1 mod 2) = 2

)
≡ ¬

(
1 = 2

)
Using deduction modulo to guide the selection of test cases thus allows to internalise in
the congruence the knowledge of the individual modules correctness, in order to focus
the testing procedure on the new features of the system coming from the composition
of modules.

In order to deal with structured specifications, we must ensure that termination
and confluence of the rewrite systems underlying the individual modules are preserved
through the union of these modules. It has been proved that these properties of (simple)
termination and confluence are preserved for finite rewrite systems that are compos-
able [10] (the rewrite rules in different systems defining the same operation are the
same). This property of composability is reasonable in a testing framework, since it is
natural to suppose that an operation or a predicate appearing in different modules comes
from the same underlying module (used by these modules) and then is implemented in
the same way in every module. From now on, we will assume that the rewrite systems
underlying the modules are composable pairwise, so their union is also terminating and
confluent.

The sequent calculus modulo extends the usual sequent calculus by allowing to
work modulo the rewrite system R. When the congruence ≡R is the identity, this se-
quent calculus collapses to the usual one. The sequent calculus modulo is as powerful



as the usual sequent calculus: it is shown in [6] that a formula is provable in the se-
quent calculus modulo if and only if it is provable in the usual sequent calculus using
an appropriate set of axioms which are called compatible.

Here, the sequent calculus modulo is dedicated to the inference of quantifier-free
formulas, so the rules for the introduction of quantifiers are omitted. Moreover, the rules
associated to Boolean connectives are reversible. Since we assume that the rewrite sys-
tem R is terminating and confluent, the rules for Booleans connectives can be used to
transform any sequent ` ϕ, where ϕ is a quantifier-free formula, into a set of sequents
Γi ` ∆i where every formula in Γi and ∆i is atomic. Such sequents will be called nor-
malised sequents. This transformation is obtained from basic transformations defined as
rewriting rules between elementary proof trees. We showed in [11] that for the sequent
calculus associated to quantifier-free formulas, every proof tree can be transformed into
a proof tree of same conclusion and such that Cut and Subs rules never occur under
rule instances associated to Boolean connectives. This result states that every sequent
is equivalent to a set of normalised sequents, which allows to deal with normalised se-
quents only. Therefore, in the following, we will suppose that the specification axioms
are given under the form of normalised sequents. We present the sequent calculus mod-
ulo for normalised sequents, which is defined by the following rules where Γ `R ∆ is
a sequent such that Γ and ∆ are two multisets of first-order formulas.

Γ,P`R∆,Q
Taut if P ≡R Q

`RP
Axiom if ∃ax ∈ Ax such that P ≡R ax

Γ`R∆

Γ ′`R∆′
Subs if Γ ′ ≡R σ(Γ ) and ∆′ ≡R σ(∆)

Γ,P`R∆ Γ ′`RQ,∆′

Γ,Γ ′`R∆,∆′
Cut if P ≡R Q

where for a multiset Γ , σ(Γ ) is the multiset {σ(ϕ) | ϕ ∈ Γ}.
It is possible to show that, when normalised sequents are transformed into formulas

in clausal form, the cut and substitution rules can be combined to obtain the classical
resolution rule (see [12] for more details). Actually, as we will see afterwards, this is the
rule of resolution which is implemented in our unfolding algorithm. However, we use
the sequent calculus since it makes the correctness proof of this algorithm easier (see
Theorem 3). It is well-known that resolution is complete for quantifier-free formulas.
Then it follows from the results of [6] that the resolution modulo as defined above is
also complete. Since the resolution modulo is equivalent to the sequent calculus modulo
restricted to normalised sequents, this calculus is complete. From now on, we will then
speak about theorems and semantic consequences without making any difference.

Example 1. We give here a specification of rationals, built as an enrichment of a spec-
ification of naturals NAT. Rationals are defined as pairs of naturals and the comparison
predicate strictly less than is defined as usual from the same predicate over naturals.

spec RAT =
enrich NAT by
type Rat ::= / (Nat ,Nat)
pred�: Rat × Rat
vars x, y, u, v: Nat
• x/s(y)� u/s(v)⇔ x× s(v) < u× s(y)

end
This axiom gives the two following normalised sequents:



(1) x/s(y)� u/s(v) ` x× s(v) < u× s(y)
(2) x× s(v) < u× s(y) ` x/s(y)� u/s(v)

The module implementing NAT can be defined by the following rewrite system:

x+ 0→ x x× 0→ 0 x < 0→ ⊥
x+ s(y)→ s(x+ y) x× s(y)→ x+ x× y 0 < s(x)→ >

s(x) < s(y)→ x < y

3 Testing from Logical Specifications

From now on, we assume that the specification of the system to be tested is given as
a (structured) first-order specification Sp = (Σ,Ax ). Following previous works [2, 1,
13], we make the two following assumptions. First, the behaviour of the system under
test can be described as a first-order structure, sharing the same signature as its specifi-
cation. The system under test is thus considered to be a Σ-model. Secondly, test cases
can be expressed as quantifier-free first-order formulas over the signature Σ. Some
observability constraints must be imposed so that the system is able to evaluate the for-
mulas chosen to be test cases as true or false. Such formulas are called observable. Test
cases being quantifier-free first-order formulas, they must not contain non-instantiated
variables to be evaluated by the system. Therefore here, observable formulas are all
ground formulas. We will denote by Obs the set of observable formulas.

The success of the submission of test cases to the system is defined in terms of
formula satisfaction. Since the system is considered to be a formal model S ∈ Mod(Σ)
and a test case is a ground formula ϕ ∈ For(Σ), ϕ is said to be successful for S if and
only if S |= ϕ. A test set T being a set of test cases, that is T ⊆ For(Σ), T will be said
successful for S if and only if every test case in T is successful: S |= T if and only if
for all ϕ ∈ T , S |= ϕ.

Following an observational approach [14], a system will be considered as a correct
implementation of its specification if, as a model, it cannot be distinguished from a
model of the specification. Since the system can only be observed through the observ-
able formulas it satisfies, it is required to be equivalent to a model of the specification
up to this notion of observability.

Definition 1 (Correctness). S is correct for Sp via Obs , denoted by
CorrectObs(S,Sp), if and only if there exists a model M in Mod(Sp) such that
M validates exactly the same observable formulas as S:M≡Obs S.

The correctness of the system could then be proved if we were able to submit to the
system the test set composed of all the observable formulas satisfied by the specifica-
tion. Such a set is then said to be exhaustive.

Definition 2 (Exhaustiveness). Let K ⊆ Mod(Σ) be a class of models. A test set T is
exhaustive for K with respect to Sp and Obs if and only if for all S ∈ K, S |= T ⇔
CorrectObs(S,Sp).

The existence of an exhaustive test set ensures that for any incorrect system, there
exists a test case making this system fail. To put it in a dual way, it ensures that it is



relevant to test this system with respect to its specification since its correctness can be
asymptotically approached by submitting a potentially infinite test set. As a correctness
reference, the exhaustive test set is then appropriate to start the selection of a finite
test set of reasonable size. Note that, as we proved in [9], depending on the nature of
the specification, on the observability restrictions and on the class of systems K, an
exhaustive test set does not necessarily exist.

Theorem 1 ([11]). Let Sp = (Σ,Ax) be a quantifier-free first-order specification and
Obs be the set of ground first-order formulas. Then Sp•∩Obs is exhaustive for Mod(Σ).

In the context of integration testing, we consider a system built from the composi-
tion of individual modules which have already been proved to be correct. The specifi-
cation Sp of this system is structured by the union and the enrichment of its modules
specifications. Since these modules are correct, what remains to be tested are the new
behaviours coming from their composition. These new behaviours are properties in-
volving several modules in the case of a union or involving new sorts, operations or
predicates in the case of an enrichment. They are properties that do not involve a mod-
ule alone, i.e. formulas over the new signature that are not formulas of a module’s
signature alone: formulas in For(Σ) \ (For(Σ1) ∪ For(Σ2)) if Σ is the union of Σ1

and Σ2; formulas in For(Σ) \ For(Σ1) if Σ is the enrichment of Σ1. Let us denote
NewFor these sets of new formulas. Then, the new properties of the system coming
from the composition are the formulas of NewFor which are semantic consequences of
the whole specification Sp. Let us denote NewPr the set NewFor ∩ Sp•. We have the
following important result.

Theorem 2. Let Sp = enrich Sp1 by S2, F2, P2,Ax 2 (resp. Sp = Sp1 union Sp2).
Let K = Mod(Sig(Sp)). For every S ∈ K, if CorrectObs(S|Σ1

,Sp1) (resp. and
CorrectObs(S|Σ2

,Sp2)), then NewPr ∩Obs is exhaustive for S.3

The key argument is that the behaviour of the modules is completely known, so
their specifications are complete and S|Σi is fully characterised by the set of ground
consequences of its specification Spi (it satisfies exactly all formulas of Sp•i ∩Obs and
not any other). Therefore there are no new properties about the modules in NewPr ,
since the observability is the same.

Proof. Enrichment. Let Sp = enrich Sp1 by S2, F2, P2,Ax 2. Let Sig(Sp) = Σ and
Sig(Sp1) = Σ1.

Let S ∈ Mod(Σ) be a system under test. Assume that CorrectObs(S|Σ1
,Sp1), and

let us show that S |= NewPr ∩Obs ⇔ CorrectObs(S,Sp).

Since CorrectObs(S|Σ1
,Sp1), the behaviour of the module of S corresponding to

Σ1 being completely known, its specification is complete, so S|Σ1
is fully characterised

by the set of formulas Sp•1 up to observations in Obs:

S|Σ1
|= ϕ⇔ ϕ ∈ Sp•1 ∩Obs

3 S|Σ stands for the reduct of S over the signature Σ.



Since the observability does not change, the formulas overΣ1 satisfied by S are exactly
Sp•1 ∩Obs:

S |= Sp•1 ∩Obs and S 6|= For(Σ1) \ (Sp•1 ∩Obs)

It also implies that Sp•1 ∩ Obs = For(Σ1) ∩ Sp• ∩ Obs . Since NewPr =
(For(Σ) \ For(Σ1)) ∩ Sp•, we then have

Sp• ∩Obs = (Sp•1 qNewPr) ∩Obs

By Theorem 1, we know that CorrectObs(S,Sp) ⇔ S |= Sp• ∩ Obs . Therefore,
S |= NewPr ∩Obs ⇔ CorrectObs(S,Sp).

Union. Let Sp = Sp1 union Sp2. Let Sig(Sp) = Σ, Sig(Sp1) = Σ1 and
Sig(Sp2) = Σ2.

Let S ∈ Mod(Σ) be a system under test. Assume that CorrectObs(S|Σ1
,Sp1) and

CorrectObs(S|Σ2
,Sp2). Let us show that S |= NewPr ∩Obs ⇔ CorrectObs(S,Sp).

By the same reasoning as above, we can deduce from CorrectObs(S|Σ1
,Sp1) and

CorrectObs(S|Σ2
,Sp2) that the formulas over Σi satisfied by S are exactly Sp•i ∩Obs ,

for i = 1, 2. Then S |= Sp•i ∩Obs and Sp•i ∩Obs = For(Σi)∩Sp•∩Obs , for i = 1, 2.
Since NewPr = (For(Σ) \ (For(Σ1) ∪ For(Σ2))) ∩ Sp•, we then have

Sp• ∩Obs = (Sp•1 q Sp•2 qNewPr) ∩Obs

Since by Theorem 1, CorrectObs(S,Sp) ⇔ S |= Sp• ∩ Obs , we can conclude that
S |= NewPr ∩Obs ⇔ CorrectObs(S,Sp).

4 Selection Criteria

When it exists, the exhaustive test set is the starting point for the selection of a practical
test set. In practice, experts apply selection criteria on a reference test set in order to ex-
tract a test set of reasonable size to submit to the system. The aim is to divide the initial
set according to a given criterion, in order to obtain subsets corresponding to particular
behaviours representing this criterion. This selection method is called partition testing.

Definition 3 (Selection criterion). Let Exh be an exhaustive test set. A selection crite-
rion C is a mapping4 P(Exh)→ P(P(Exh)).

For C(T ) a set of test sets Ti, we denote by |C(T )| the set
⋃
i Ti.

Different selection criteria may be applied one after the other to get a finer and
finer partition of the initial test set. When the subdivision of the initial test set is fine
enough according to the tester, the construction of a finite test set covering this partition
remains to be done. This is the generation phase. Here, an important assumption is
needed, which is called the uniformity hypothesis. It states that in each of the obtained
subsets, test cases all are equivalent to make the system fail [1]. In other words, every

4 For a given set X , P(X) denotes the set of all subsets of X .



test case in a subset is representative of the whole subset, with respect to the selection
criterion that has been applied. It is then sufficient to choose one test case in each subset
to cover the whole initial test set. The construction of a test set relevant to a selection
criterion must benefit from the division obtained by the application of this criterion.
Test cases must be chosen so as not to loose any of the cases captured by the criterion.

Definition 4 (Satisfaction of a selection criterion). Let T ⊆ Exh be a test set and C
be a selection criterion. A test set T ′ satisfies the criterion C applied to T if and only if:

T ′ ⊆ |C(T )| ∧ ∀Ti ∈ C(T ), Ti 6= ∅ ⇒ T ′ ∩ Ti 6= ∅

A test set satisfying a selection criterion contains at least one test case of each sub-
set Ti of the initial test set, when Ti is not empty. A selection criterion may then be
considered as a coverage criterion, according to the way it divides the initial test set. It
can be used to cover a particular aspect of the specification. In this paper, the definition
of selection criteria will be based on the coverage of the specification axioms.

The relevance of a selection criterion is determined by the link between the initial
test set and the family of test sets obtained by the application of this criterion.

Definition 5 (Properties). LetC be a selection criterion and T be a test set.C is sound
for T if and only if |C(T )| ⊆ T . C is complete for T if and only if |C(T )| ⊇ T .

These properties are essential for the definition of an appropriate selection criterion.
The soundness of a criterion ensures that test cases are really selected among the initial
test set, the application of the criterion does not add any new test case. Additional test
cases may actually make a correct system fail. Reciprocally, if the selection criterion
is complete, no test case of the initial test set is lost. If some test cases are missing,
an incorrect system may pass the test set, while it should have failed on the missing
test cases. A sound and complete selection criterion then has the property to preserve
exactly all the test cases of the test set it divides, and then to preserve the exhaustiveness
of the initial test set.

5 Axiom Unfolding for Structured Specifications

We present here our method for defining relevant selection criteria in order to guide the
final choice of the test cases. The method we follow is called axiom unfolding [1–4]
and is adapted here to structured specifications in the context of integration testing. It
basically consists of a case analysis of a property to test with respect to the specification
axioms. The application of the selection criterion defined by this case analysis allows to
refine the initial test set associated to the property by characterising test subsets which
respect given constraints on the input data.

5.1 Test Sets for Quantifier-Free First-Order Formulas

Since the exhaustive test set is the set

NewPr ∩Obs = {ρ(ϕ) | ϕ ∈ NewFor , ρ : V → TΣ , ρ(ϕ) ∈ Sp•}



one way to divide it is to divide the test set {ρ(ϕ) | ρ : V → TΣ , ρ(ϕ) ∈ Sp•}
associated to each formula ϕ in NewFor , i.e. the set of all the ground instances of ϕ
that are semantic consequences of Sp. The selection criteria we are going to define
allow to divide a test set associated to a formula, we will explain at the end of this
section how to actually cover the whole exhaustive test set NewPr ∩Obs .

Definition 6 (Test set for a formula). Let ϕ ∈ NewFor be a formula, called test
purpose. The test set for ϕ, denoted by Tϕ, is the following set:

Tϕ = {ρ(ϕ) | ρ : V → TΣ , ρ(ϕ) ∈ Sp•}

Note that the formula taken as a test purpose may be any formula, not necessarily a
semantic consequence of the specification. However, only ground substitutions ρ such
that ρ(ϕ) is a semantic consequence of Sp will be built at the generation step.

As we will see in the next subsection, the division of a test set associated to a
formula will result in a set of test subsets, representing sets of particular instances of
the initial formula. These instances, called constrained test purposes, are characterised
by a substitution of the variables and a set of constraints.

Definition 7 (Constrained test set). Let ϕ ∈ NewFor be a formula. Let C ⊆ For(Σ)
be a set of formulas called constraints and σ : V → TΣ(V ) be a substitution. A test set
for ϕ constrained by C and σ, denoted by T(C,σ),ϕ, is the following set:

T(C,σ),ϕ = {ρ(σ(ϕ)) | ρ : V → TΣ , ρ(σ(ϕ)) ∈ Sp•,∀ψ ∈ C, ρ(ψ) ∈ Sp•}

The pair ((C, σ), ϕ) is called a constrained test purpose.

5.2 Unfolding Procedure

The aim of the procedure is to compute a selection criterion dividing the test set asso-
ciated to an initial test purpose, using the specification axioms. Each step of the pro-
cedure returns a partition of the initial test set, where each subset is characterised by
a constrained test purpose. These subsets can themselves be divided again and so on,
until the tester is satisfied with the obtained partition.

The initial test purpose ϕ can be seen as the constrained test purpose (({ϕ}, Id), ϕ),
or even ((C0, Id), ϕ) where C0 is the set of normalised sequents obtained from ϕ. Let
Ψ0 be the set containing the initial constraints of test purpose ϕ, the pair (C0, Id). Con-
strained test sets for formulas are naturally extended to sets of pairs Ψ as follows:
TΨ,ϕ =

⋃
(C,σ)∈Ψ T(C,σ),ϕ. The initial test set Tϕ then is the set TΨ0,ϕ.

The aim of the procedure is to divide this set according to the different cases in
which formula ϕ holds. These cases correspond to the different instances of ϕ that can
be proved as theorems. In the context of integration testing, the idea is to use the sequent
calculus modulo presented in Section 2 to search for proofs of instances of ϕ relying
on the correctness of the smaller modules of the implementation. So basically, the pro-
cedure searches for those proof trees that allow to deduce (instances of) the initial test
purpose from the specification axioms moduloR, whereR is the rewrite system defined
from the correct modules. However, the aim is not to build the complete proofs of these



instances of ϕ, but only to make a partition of TΨ0,ϕ increasingly fine. A first step in the
construction of the proof tree of each instance will give us pending lemmas, constraints
remaining to prove that, together with the right substitution, characterise this instance
of ϕ. We will thus be able to replace Ψ0 with a set of constraints Ψ1 characterising each
instance of ϕ that can be proved from the axioms. The set Ψ1 can itself be replaced by
a bigger set Ψ2 obtained from a second step in the construction of the previous proof
trees, and so on. The procedure can be stopped at any moment, as soon as the tester is
satisfied with the obtained partition.

Note that the procedure only intends to divide the test set associated to a given
formula, by returning a set of constraints which characterise each set of the partition.
The generation phase, not handled in this paper, consists in choosing one test case in
each set of the partition, assuming the uniformity hypothesis, by solving the constraints
associated to each set (which might be an issue in itself, due to the nature of these
constraints).

To find a proof of an instance of ϕ, the procedure tries to unify ϕ with an axiom
modulo R. Only new axioms coming from an enrichment of a previous specification
are considered here, since the behaviour of this previous specification is embedded in
the congruence induced by R. We denote this set of axioms NewAx to avoid ambigu-
ity. More precisely, it tries to unify a subset of the test purpose’s subformulas with a
subset of an axiom’s subformulas, moduloR. Hence, if the test purpose is a normalised
sequent of the form

P1, . . . , Pp, . . . , Pm ` Q1, . . . , Qq, . . . , Qn

the procedure tries to unify a subset of {P1, . . . , Pm, Q1, . . . , Qn} with a subset of the
formulas of an axiom. Then it looks for a specification axiom of the form

A1, . . . , Ap, Ap+1, . . . , Ak ` B1, . . . , Bq, Bq+1, . . . , Bl

such that it is possible to unify Ai and Pi modulo R for all i, 1 ≤ i ≤ p, and to unify
Bi and Qi moduloR for all i, 1 ≤ i ≤ q.

If the unification modulo with an axiom in NewAx is possible, then the correspond-
ing instance of the test purpose is provable from this axiom. SinceAi andPi (1 ≤ i ≤ p)
on one hand and Bi and Qi (1 ≤ i ≤ q) on the other hand are unifiable modulo R,
there exists a substitution σ such that σ(Ai) ≡R σ(Pi) for all i, 1 ≤ i ≤ p, and
such that σ(Bi) ≡R σ(Qi) for all i, 1 ≤ i ≤ q. Let us take the following notations:
Λ = {A1, . . . , Ap}, Ω = {B1, . . . , Bq}, Γ = {P1, . . . , Pp}, Γ ′ = {Pp+1, . . . , Pm},
∆ = {Q1, . . . , Qq}, ∆′ = {Qq+1, . . . , Qn}. We then get a proof tree of the following
form:



...
σ(Γ ′),Sl`σ(∆′)

...
S1`

Subs
Λ,C1,...,Ck`Ω,D1,...,Dl

Ax

σ(Γ ),σ(C1),...,σ(Ck)`σ(∆),σ(D1),...,σ(Dl)

...
`R1

σ(Γ ),σ(C2),...,σ(Ck)`σ(∆),σ(D1),...,σ(Dl)
Cut

...
Cut

σ(Γ ),σ(Ck)`σ(∆),σ(D1),...,σ(Dl)
Cut

...
`Rk

σ(Γ )`σ(∆),σ(D1),...,σ(Dl)
Cut

...
Cut

σ(Γ )`σ(∆),σ(Dl)
Cut

σ(Γ ),σ(Γ ′)`σ(∆),σ(∆′)
Cut

where Ri ≡R σ(Ci) for all i, 1 ≤ i ≤ k and where Si ≡R σ(Di) for all i, 1 ≤ i ≤ l.
The substitution σ together with the set of lemmas

c = { ` R1, . . . , ` Rk, S1 ` , . . . , σ(Γ ′), Sl ` σ(∆′)}

characterise the instance of the test purpose ϕ derived from this proof tree, which cor-
responds to the constrained test purpose ((c, σ), ϕ).

Note that a priori, the lemmas Ri and Si can be any formulas equivalent up to the
congruence ≡R. To avoid this non-determinism, we choose Ri and Si in normal form:
for all i, 1 ≤ i ≤ k, Ri is the normal form of σ(Ci) and for all i, 1 ≤ i ≤ l, Si is the
normal form of σ(Di).

The Algorithm. The unfolding procedure is formally described by the following algo-
rithm. What it unfolds is a constraint ψ from a set of constraints C associated to some
substitution σ in a pair of constraints (C, σ). The first set of constraints C0 only contains
the set of normalised sequents obtained from the initial test purpose, so the procedure
starts with unfolding one of these sequents. It builds a set Unf (ψ) corresponding to the
unfolding of ψ and containing all the pairs of constraints and substitution obtained by
unfolding. Then it will unfold the obtained constraints, which will be considered them-
selves as test purposes, and so on. Given a constraint ψ = γ1, . . . , γm ` δ1, . . . , δn, the
algorithm can be synthesised in the following way.

(Reduce) The first verification to make is whether some instances of the constraint are
tautologies. If it is possible to unify some γi with some δj modulo R thanks to a
substitution σ, then σ(ψ) always holds and is useless. The formula σ(ψ) is then
removed from the set of constraints associated to the corresponding instance of the
test purpose.

Unfold) As explained before, if a part of the constraint can be unified with a part of an
axiom in NewAx modulo R, then we know that the constraint can be proved from
this axiom with a certain number of applications of the Cut rule where each ` Ri
(1 ≤ i ≤ k) and each Si ` (1 ≤ i ≤ l) is a lemma remaining to prove. One of
those lemmas must bring the formulas of ψ not occurring in the axiom, so Sl is in
the context σ′(Pp+1), . . . , σ′(Pm) ` Sl, σ′(Qq+1), . . . , σ′(Qn).

Then the procedure replaces the initial constraint ψ with the sets of constraints in
Unf (ψ). Each unification with an axiom leads to a pair (c, σ′), so the initial constraint



ψ is replaced with as many sets of formulas as there are axioms with which it can be
unified. The definition of Unf (ψ) being based on unification, this set is computable if
the specification has finitely many axioms.

Given a formula ψ, the unfolding procedure defines the selection criterionCψ which
maps T(C,σ),ϕ to the family of test sets T(σ′(Cr{ψ})∪c,σ′◦σ),ϕ for each (c, σ′) in Unf (ψ)
if ψ belongs to C, and to itself otherwise. To ensure the relevance of this selection
criterion, it must be shown that its application does not add new test cases to T(C,σ),ϕ

(soundness) or remove test cases from it (completeness). These results are proved in the
next subsection.

Algorithm 1 Axiom unfolding
Inputs : structured quantifier-free first-order specification Sp = (Σ,Ax ),

rewrite systemR, test purpose ϕ ∈ NewFor
Output : set of constraints Ψ

Ψ ← {(C0, Id)} where C0 is the set of normalised sequents obtained from ϕ
loop

Take (C, σ) from Ψ and remove it
Take ψ = P1, . . . , Pm ` Q1, . . . , Qn from C s.t. ψ ∈ NewFor and remove it
Unf (ψ)← ∅

(Reduce)
if there exists σ′ ∈ TΣ(V )V mgu, 1 ≤ i ≤ m and 1 ≤ j ≤ n
such that σ′(Pi) ≡R σ′(Qj) then

Add (∅, σ′) to Unf (ψ)

else
for all axioms ax ∈ NewAx do

(Unfold)
if ax is of the form A1, . . . , Ap, C1, . . . , Ck ` B1, . . . , Bq, D1, . . . , Dl

with 1 ≤ p ≤ m, 1 ≤ q ≤ n, and
there exists σ′ ∈ TΣ(V )V mgu such that
for all 1 ≤ i ≤ p, σ′(Ai) ≡R σ′(Pi) and
for all 1 ≤ i ≤ q, σ′(Bi) ≡R σ′(Qi) then
c← { ` Ri}1≤i≤k ∪ {Si ` }1≤i≤l−1

∪ {σ′(Pp+1), . . . , σ′(Pm), Sl ` σ′(Qq+1), . . . , σ′(Qn)}
such that Ri = σ(Ci)↓ and Si = σ(Di)↓
Add (c, σ′) to Unf (ψ)

Add
⋃

(c,σ′)∈Unf (ψ)

{(σ′(C) ∪ c, σ′ ◦ σ)} to Ψ

Coverage of the Exhaustive Test Set. Here, our unfolding procedure has been defined
in order to cover behaviours of one test purpose, represented by the formula ϕ. When



we are interested in covering more widely the exhaustive set NewPr• ∩Obs , a strategy
consists in ordering quantifier-free first-order formulas with respect to their length:

Φ0 =

 ` p(x1, . . . , xn),
` f(x1, . . . , xn) = y

p : s1 × . . .× sn ∈ P,
f : s1 × . . .× sn → s ∈ F,
∀i, 1 ≤ i ≤ n, xi ∈ Vsi , y ∈ Vs



Φn+1 =


p(x1, . . . , xn), Γ ` ∆,

f(x1, . . . , xn) = y, Γ ` ∆,
Γ ` ∆, p(x1, . . . , xn),

Γ ` ∆, f(x1, . . . , xn) = y

Γ ` ∆ ∈ Φn,
p : s1 × . . .× sn ∈ P,
f : s1 × . . .× sn → s ∈ F,
∀i, 1 ≤ i ≤ n, xi ∈ Vsi , y ∈ Vs


Then, to manage the (often infinite) size of NewPr•∩Obs , we start by choosing k ∈ N,
and then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure to each formula
belonging to Φi. Of course, this requires that signatures are finite so that each set Φi is
finite too.

Example 2. We choose as a test purpose the formula x < y ⇒ z/y � z/x. The
associated constrained test purpose for this formula is:

( ( { x < y ` z/y � z/x }, Id ), x < y ⇒ z/y � z/x )

We denote by Ψ0 the set containing this first pair of constraints. After a loop of the
algorithm, we obtain a set Ψ1 of constrained test purposes. To give a better intuition, we
give the associated test subsets. The first set is obtained thanks to a unification of the
test purpose with the left-hand side of axiom (2), and the second with the right-hand
side of the same axiom.

{ x× s(v) < u× s(y)⇒ z/(u× s(y))� z/(x× s(v))
| x/s(y)� u/s(v)⇒ z/(u× s(y))� z/(x× s(v)) }

{ s(x) < s(y)⇒ z/s(y)� z/s(x) | x < y ⇒ z × s(x) < z × s(y) }

The premises of the constraint in the second subset is actually the normal form of the
corresponding formula obtained after unification, which was s(x) < s(y). Deduction
modulo allows here to have a more concise proof, and then a more efficient selection
procedure, thanks to the simplification allowed by the congruence.

5.3 Properties of the Selection Criterion

Here, we prove the two properties that make the unfolding procedure relevant for the se-
lection of appropriate test cases, i.e. that the selection criterion defined by the procedure
is sound and complete for the initial test set we defined.

Theorem 3 (Soundness and completeness). Let ϕ be a quantifier-free first-order for-
mula, C a set of constraints and σ : V → TΣ(V ) a substitution. Let ψ ∈ C. The
selection criterion for ψ is sound and complete for the test set for ϕ constrained by C
and σ: |Cψ(T(C,σ),ϕ)| = T(C,σ),ϕ



To prove the soundness of the procedure comes down to proving that the instance
σ′(ϕ) of the initial formula ϕ can be derived from the set of constraints c and the
axiom with which it has been unified. Thus we prove that the test set obtained by the
application of the procedure does not contain new test cases, since it is only composed
of instances of the initial test purpose.

To prove the completeness, we prove that all the possible instances of the test pur-
pose can be proved with a proof tree of the form we showed earlier, and that the proce-
dure generates all possible constraints for proving this instance. We thus prove that no
test case is lost. Actually, we can observe that our unfolding procedure defines a proof
search strategy that enables to limit the search space to the class of proof trees having
the following structure: no instance of cut occurs over instances of substitution; there is
no instance of cut whose premises both are instances of cut. We then have to prove that
the derivability defined by our unfolding strategy coincides with the full derivability. To
achieve this purpose, we define basic transformations to rewrite proof trees into ones
having the above structure, and show that the induced global proof tree transformation
is weakly normalising.

Proof. Soundness. Let us prove that |Cψ(T(C,σ),ϕ)| ⊆ T(C,σ),ϕ.
By definition, it is sufficient to prove that for each (C, σ) ∈ Ψ , for each ψ ∈ C, for

each (c, σ′) ∈ Unf (ψ), T(c,σ′◦σ),ϕ ⊆ T({ψ},σ),ϕ. We then have to prove that for each
ground substitution ρ : V → TΣ such that Sp |= ρ(χ), for each χ ∈ c, there exists
ρ′ : V → TΣ such that Sp |= ρ′(ψ).

(Reduce) If there exists a substitution σ′ such that σ′(ψ) is a tautology, then any ground
instance ρσ′(ψ) can be proved with no additional constraints.

(Unfold) Let us assume that the formula ψ is of the form P1, . . . , Pm ` Q1, . . . , Qn,
and that the set c such that (c, σ′) ∈ Unf (ψ) is of the form

{ ` Ri}1≤i≤k
∪ {Si ` }1≤i≤l−1

∪ {σ′(Pp+1), . . . , σ′(Pm), Sl ` σ′(Qq+1), . . . , σ′(Qn)}

where 1 ≤ p ≤ m and 1 ≤ q ≤ n are such that there exists an axiom

A1, . . . , Ap, C1, . . . , Ck ` B1, . . . , Bq, D1, . . . , Dl

such that

σ′(Ai) ≡R σ′(Pi),∀1 ≤ i ≤ p Ri = σ′(Ci)↓,∀1 ≤ i ≤ k
σ′(Bi) ≡R σ′(Qi),∀1 ≤ i ≤ q Si = σ′(Di)↓,∀1 ≤ i ≤ l

If we take the following notations:

Λ = {A1, . . . , Ap} Γ = {P1, . . . , Pp} ∆ = {Q1, . . . , Qq}
Ω = {B1, . . . , Bq} Γ ′ = {γp+1, . . . , γm} ∆′ = {δq+1, . . . , δn}

we get the following proof tree:5

5 The composition σ ◦ σ′ of two substitutions σ′ : V → TΣ(V ) and σ : TΣ(V ) → TΣ(V ),
applied to a formula ϕ, is denoted by σσ′(ϕ).



...
ρσ′(Γ ′),ρ(Sl)`ρσ′(∆′)

...
ρ(S2)`

...
ρ(S1)` ST

ρσ′(Γ )`ρσ′(∆),ρσ′(D2),...,ρσ
′(Dl)

Cut

...
Cut

ρσ′(Γ )`ρσ′(∆),ρσ′(Dl)
Cut

ρσ′(Γ ),ρσ′(Γ ′)`ρσ′(∆),ρσ′(∆′)
Cut

where ST is the following subtree:

Subs
Λ,C1,...,Ck`Ω,D1,...,Dl

Ax

ρσ′(Γ ),ρσ′(C1),...,ρσ
′(Ck)`ρσ′(∆),ρσ′(D1),...,ρσ

′(Dl)

...
`ρ(R1)

ρσ′(Γ ),ρσ′(C2),...,ρσ
′(Ck)`ρσ′(∆),ρσ′(D1),...,ρσ

′(Dl)
Cut

...
Cut

ρσ′(Γ ),ρσ′(Ck)`ρσ′(∆),ρσ′(D1),...,ρσ
′(Dl)

Cut

...
`ρ(Rk)

ρσ′(Γ )`ρσ′(∆),ρσ′(D1),...,ρσ
′(Dl)

Cut

Completeness. Let us prove that T(C,σ),ϕ ⊆ |Cψ(T(C,σ),ϕ)|.
By definition, it is sufficient to prove that T({ψ},σ),ϕ ⊆

⋃
(c,σ′)∈Unf (ψ)

T(c,σ′◦σ),ϕ.

We then have to prove that for each ground substitution ρ : V → TΣ such that Sp |=
ρ(ψ), there exists (c, σ′) ∈ Unf (ψ) such that there exists ρ′ : V → TΣ such that
Sp |= ρ′(χ) for each χ ∈ c. In other words, we have to prove that ρ(ψ) can be deduced
from specification Sp if there exists (c, σ′) ∈ Unf (ψ), and ρ′ : V → TΣ such that
Sp |= ρ′(χ) for each χ ∈ c.

(Reduce) If ρ(ψ) is a tautology, it is a ground instance of a tautology σ′(ψ). Therefore,
there exists a pair (∅, σ′) ∈ Unf (ψ) build by the (Reduce) part of the algorithm.

(Unfold) If it is not a tautology, let show that there exists a pair (c, σ′) ∈ Unf (ψ) and
a substitution ρ′ such that ρ(ψ) can be deduced from the set of all ρ′(χ) for χ ∈ c.

First, let us note that the unfolding procedure defines a strategy which bounds the
search space for proof trees to a class of trees having a specific structure. The procedure
defines a proof search strategy which selects proof trees where:

– no instance of cut occurs over instances of substitution
– there is no instance of cut whose premises both are instances of cut.

We then have to prove that there exists a proof tree having the structure we just described
and of conclusion ρ(ψ). We are actually going to prove a stronger result: we are going
to define elementary transformations of proof trees, which allow to rewrite elementary
combinations of inference rules, and then we will prove that the resulting global proof
trees transformation is weakly normalizing and normal forms are proof trees with the
above structure.

We give here the elementary transformations of basic proof trees. For instance, when
an instance of the cut rule occurs over an instance of the substitution rule, we have the



following rewriting rule to make the instance of substitution go over the instance of cut:

Γ1`∆1,P Γ2,Q`∆2

Γ1,Γ2`∆1,∆2
Cut

Γ ′1,Γ
′
2`∆

′
1,∆

′
2

Subs  

Γ1`∆1,P

Γ ′1`∆
′
1,R

Subs
Γ2,Q`∆2

Γ ′2,S`∆
′
2

Subs

Γ ′1,Γ
′
2`∆

′
1,∆

′
2

Cut

By the application of the cut rule on the left, we know that P ≡R Q, so if R ≡R σ(P )
and S ≡R σ(Q), then we have R ≡R S and the cut rule applies on the right.

The case of an instance of cut whose premises both are instances of cut has to be
divided into four cases, according to the position of the last cut formula in the premises
of the two cuts of the top.

The case where ϕ is in both left premises:

Γ1`∆1,P,R Γ ′1,P
′`∆′1

Γ1,Γ
′
1`∆1,∆

′
1,R

Cut
Γ2,R

′`∆2,Q Γ ′2,Q
′`∆′2

Γ2,Γ
′
2,R

′`∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

 

Γ1`∆1,P,R Γ2,R
′`∆2,Q

Γ1,Γ2`∆1,∆2,P,Q
Cut

Γ ′2,Q
′`∆′2

Γ1,Γ2,Γ
′
2`∆1,∆2,∆

′
2,P

Cut
Γ ′1,P

′`∆′1
Γ1,Γ

′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in both right premises:

Γ1`∆1,P Γ ′1,P
′`∆′1,R

Γ1,Γ
′
1`∆1,∆

′
1,R

Cut
Γ2`∆2,Q Γ ′2,Q

′,R′`∆′2
Γ2,Γ

′
2,R

′`∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ1`∆1,P

Γ ′1,P
′`∆′1,R

Γ2`∆2,Q Γ ′2,Q
′,R′`∆′2

Γ2,Γ
′
2,R

′`∆2,∆
′
2

Cut

Γ ′1,Γ2,Γ
′
2,P

′`∆′1,∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in the left premise of the left cut, and in the right premise of
the right cut:

Γ1`∆1,P,R Γ ′1,P
′`∆′1

Γ1,Γ
′
1`∆1,∆

′
1,R

Cut
Γ2`∆2,Q Γ ′2,Q

′,R′`∆′2
Γ2,Γ

′
2,R

′`∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ2`∆2,Q

Γ1`∆1,P,R Γ ′1,P
′`∆′1

Γ1,Γ
′
1`∆1,∆

′
1,R

Cut
Γ ′2,Q

′,R′∆′2

Γ1,Γ
′
1,Γ

′
2,Q

′`∆1,∆
′
1,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in the right premise of the left cut, and in the left premise of
the right cut:



Γ1`∆1,P Γ ′1,P
′`∆′1,R

Γ1,Γ
′
1`∆1,∆

′
1,R

Cut
Γ2,R

′`∆2,Q Γ ′2,Q
′`∆′2

Γ2,Γ
′
2,R

′`∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

 Γ1`∆1,P

Γ ′1,P
′`∆′1,R

Γ2,R
′`∆2,Q Γ ′2,Q

′`∆′2
Γ2,Γ

′
2,R

′`∆2,∆
′
2

Cut

Γ ′1,Γ2,Γ
′
2,P

′`∆′1,∆2,∆
′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

Let us define the measure m of a proof tree π =
π1 π2

Γ1, Γ2 ` ∆1, ∆2
Cut by:

m(π) =

1 +m(π1) +m(π2) if each πi =
πi1 πi2
Γi ` ∆i

Cut, i = 1, 2

m(π1) +m(π2) otherwise

A proof tree π is in normal form if and only ifm(π) = 0. A proof tree π =
π1 π2

ϕ
is called maximal if and only if π1 and π2 are in normal form but π is not. Therefore,
by applying the strategy which consists in reducing first maximal proof trees, we show
that the measure m decreases for each basic transformation given above.

Since by hypothesis, Sp |= ρ(ψ), and ψ is not a tautology, there necessarily exists
either an axiom

A1, . . . , Ap, C1, . . . , Ck ` B1, . . . , Bq, D1, . . . , Dl

and a ground substitution ρ′ such that

– ρ′(Ai) ≡R ρ′(Pi) for each 1 ≤ i ≤ p
– ρ′(Bi) ≡R ρ′(Qi) for each 1 ≤ i ≤ q

Hence ρ′ is a unifier of each Ai and Pi and of each Bi and Qi. So there exists a proof
tree resulting of the transformation defined above, of conclusion ρ(ψ) where ρ = ρ′,
and of the form:

...
ρ(Γ ′),ρ(Sl)`ρ(∆′)

...
ρ(S2)`

...
ρ(S1)` ST

ρ(Γ )`ρ(∆),ρ(D2),...,ρ(Dl)
Cut

...
Cut

ρ(Γ )`ρ(∆),ρ(Dl)
Cut

ρ(Γ ),ρ(Γ ′)`ρ(∆),ρ(∆′)
Cut

where ST is the following subtree:

Subs
Λ,C1,...,Ck`Ω,D1,...,Dl

Ax

ρ(Γ ),ρ(C1),...,ρ(Ck)`ρ(∆),ρ(D1),...,ρ(Dl)

...
`ρ(R1)

ρ(Γ ),ρ(C2),...,ρ(Ck)`ρ(∆),ρ(D1),...,ρ(Dl)
Cut

...
Cut

ρ(Γ ),ρ(Ck)`ρ(∆),ρ(D1),...,ρ(Dl)
Cut

...
`ρ(Rk)

ρ(Γ )`ρ(∆),ρ(D1),...,ρ(Dl)
Cut



and where Λ = {A1, . . . , Ap}, Ω = {B1, . . . , Bq}, Γ = {P1, . . . , Pp}, Γ ′ =
{Pp+1, . . . , Pm}, ∆ = {Q1, . . . , Qq}, ∆′ = {Qq+1, . . . , Qn}, and where ρ(Ri) ≡R
ρ(Ci) for each 1 ≤ i ≤ k and ρ(Si) ≡R ρ(Di) for each 1 ≤ i ≤ l.

6 Conclusion

In this paper, we investigated the problem of test case selection from structured specifi-
cations in the context of integration testing. The problem was to use the structuration of
the specification as well as the unit testing result on the smaller modules of the system
to select test cases allowing to test the new features of the system only, relying on the
correctness of the modules. We used deduction modulo to guide the test case selection
because it allows to easily integrate the knowledge of the correctness of the smaller
modules in the rewrite system used as a congruence.

The definition of test selection criteria is the first step towards the construction of
a practical test set to submit to the system. The next step is the generation of a test
set satisfying these criteria. In our framework, the generation consists in applying the
uniformity hypothesis to the constrained test sets obtained by unfolding an initial test
purpose. It actually comes down to solve the constraints associated to each constrained
test purpose, in order to build one test case corresponding to this purpose. Therefore,
we plan to study the definition of an efficient algorithm of test case generation for
(structured) quantifier-free first-order specifications.
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