
Global and Local Testing from Message Sequence
Charts

Delphine Longuet

Univ Paris-Sud, LRI UMR8623, Orsay, F-91405
delphine.longuet@lri.fr

Abstract. Message Sequence Charts are a widely used formalism for describ-
ing scenarios a communicating system must be able to perform. We study inthis
paper different formal frameworks for testing from MSCs. We firstconsider a set-
ting where all the processes of the system can be controlled and observed glob-
ally. Then we study a setting where the system is tested from the point of view
of each process individually, observations remaining local or being gathered at
the end of each test. In each setting, we define a conformance relation based on
global or local observations, for which we build an exhaustive test set.Moreover,
we gather the conditions making local testing as powerful as global testing.

1 Introduction

During the design of a communicating system, a common practice is to visually de-
scribe the architecture of the system in terms of components, together with the desired
interactions between them. Description languages like SDL[13] or UML [18] com-
monly use the Message Sequence Charts standard [14] to formalize these interactions.
A Message Sequence Chart (MSC) shows the different processes of the system as ver-
tical lines interpreted as time axes and communications between these processes as
horizontal or downward-sloping arrows between these lines. Collections of MSCs are
used to specify the scenarios the system must be able to perform. A standard way to
generate sets of MSCs is to use Hierarchical MSCs (HMSCs) or equivalently Messages
Sequence Graphs (MSGs) [14]. An MSG is a finite directed graphwhose nodes are
labelled by MSCs. Each path of an MSG from an initial to a final node defines an MSC
by concatenating the MSCs labelling the nodes along the path.

The aim of this paper is to propose formal frameworks for testing from MSG spec-
ifications. The easiest way to test a distributed system is tohave a global control and
observation of it, meaning that one can trigger the sending of a message from a process
or choose to treat a pending message for another, whenever the sending or the receipt
is possible for the given process. But the nature of the system under test does not al-
ways allow a global control. In this case, one would like to test the system from the
point of view of each component individually, and that it would be sufficient to decide
conformance from a global point of view. We study here different ways of globally and
locally testing a distributed system by defining global and local conformance relations,
for which we build exhaustive test sets. Moreover, we set theconditions under which
local testing is equivalent to global testing. The latter results are based on [4], where the
decidability of these conditions is studied, and which inspired this work.

A formal framework for global testing from a set of MSCs has been proposed in [7].
Two conformance relations are defined, depending on the chosen semantics of the MSC
specification, and a test generation algorithm is presented, but no exhaustivity result is
provided. The closest work to ours are [8, 6]. Even if they arenot all based on MSC
specifications, they address the problem of defining local conformance relations and
studying ways to build tests for these relations. For instance, the notions of independent
and cooperative refinement in [6] are similar to our local conformance relations.

We first recall definitions of MSCs and MSGs in Sec. 2, and the general formal test-
ing framework in Sec. 3. We propose in Sec. 4 a first conformance relation in the global
setting and give an exhaustive test set for it. Then we study in Sec. 5 two conformance
relations in the local setting, depending on the control andobservation being purely
local or distributed on a subset of processes. We give conditions for the equivalence to
the global conformance relation and build exhaustive sets of local or distributed tests.

2 Preliminaries

2.1 Message Sequence Charts

We fix a finite set Proc of process names and a finite set Msg of message types. For any
p, q ∈ Proc withp 6= q and anym ∈ Msg, we denote byp!q(m) the sending byp of the
messagem to q, and byp?q(m) the receipt byp of the messagem from q. Forp ∈ Proc,
we defineΣp = {p!q(m), p?q(m) | q ∈ Proc,m ∈ Msg} the set of communications
involving p. We defineΣ =

⋃
p∈ProcΣp. We denote byΣ! the set{p!q(m) | p, q ∈

Proc,m ∈ Msg} of sendings and byΣ? the set{p?q(m) | p, q ∈ Proc,m ∈ Msg} of
receipts.

A posetover an alphabetΣ is a triple(E,≤, λ) where(E,≤) is a partially ordered
set, andλ : E → Σ is a labelling mapping. A poset can be seen as an abstraction of
the behaviour of a concurrent system: an elemente ∈ E is called aneventand its label
λ(e) is the corresponding communication action performed by thesystem. The partial
order≤ describes the causal dependence between the events, independence of events
meaning that they can be executed concurrently: two elements e ande′ are concurrent
if e 6≤ e′ ande′ 6≤ e.

Forp ∈ Proc, we defineEp = {e ∈ E | λ(e) ∈ Σp} the set of events occurring on
p and fore ∈ E, we defineEa = {e ∈ E | λ(e) = a} the set of events labelled by the
communicationa. We defineE! = {e ∈ E | λ(e) ∈ Σ!} the set of sending events and
E? = {e ∈ E | λ(e) ∈ Σ?} the set of receipt events.

An MSC1 over Proc is a poset(E,≤, λ) overΣ such that: for eachp ∈ Proc, the
relation≤p = ≤ ∩ (Ep ×Ep) is a total order; there is a bijective mappingc : E! → E?

matching corresponding sendings and receipts; and the partial order≤ is the reflexive
and transitive closure of

⋃
p∈Proc≤p ∪ {(e, c(e)) | e ∈ E!}.

Following the recommendation Z.120 [14], we allow the overtaking of different
messages sent by a processp to a processq, but forbid the reordering of identical mes-
sages fromp to q. This condition is callednon-degeneracy. Formally, there must not

1 Note that we only consider MSCs describing closed systems, where all themessages are ex-
changed between the processes and no message is sent to or received from the environment.

p q r

a

b

c

p!q(a) q?p(a)

q!r(b) r?q(b)

p!r(c) r?p(c)

Fig. 1. An MSC and its partial order representation (Hasse diagram).

be two send eventse, e′ ∈ E! such thatλ(e) = λ(e′), e < e′ andc(e′) < c(e). Since
these messages are indistinguishable, it does not make sense to explicitly specify their
reception to be reversed. However, if the underlying architecture is FIFO, the order in
which any two messages sent by a processp are received by a processq must not be
reversed. Formally, there must not be two send eventse = p!q(a) ande′ = p!q(b) such
that e < e′ andc(e′) < c(e). In the following, we will make no assumption on the
underlying architecture and then only consider the non-degeneracy condition, but we
will mention when the FIFO condition is needed.

A linearizationof an MSCM = (E,≤, λ) is an execution of the communication
actions ofΣ compatible with the partial order≤. Formally, a linearization ofM is a
word a1 . . . a|E| overΣ such that there exists a total ordere1 . . . e|E| of the events of
E with λ(ei) = ai for all i, 1 ≤ i ≤ |E| and ei ≤ ej implies i ≤ j for all i, j,
1 ≤ i, j ≤ |E|. For instance,p!q(a) q?p(a) p!r(c) q!r(b) r?q(b) r?p(c) is a linearization
of the MSC of Fig. 1. We denote by Lin(M) the set of all the linearizations ofM (also
called the language ofM).

Forw ∈ Σ∗, we denote by Pref(w) the set of prefixes ofw: Pref(w) = {w1 ∈ Σ∗ |
∃w2 ∈ Σ∗, w1.w2 = w}. ForL ⊆ Σ∗, we denote by Pref(L) the prefix closure ofL.

2.2 Message Sequence Graphs

A natural way to specify a communicating distributed systemis by a (possibly infi-
nite) collection of scenarios the system should be able to perform. These scenarios can
be generated by combining basic scenarios in a high-level description called a high-
level MSC (HMSC) [16]. Without losing expressiveness, we consider only a subclass
of HMSC called Message Sequence Graphs (MSG). A message sequence graph is a
finite directed graph with initial and terminal nodes, whereeach node is labelled by an
MSC. MSCs along a path in the graph are composed using asynchronous concatenation,
defined as follows.

Let M = (E,≤, λ) andM ′ = (E′,≤′, λ′) be two MSCs such thatE andE′ are
disjoint. The asynchronous concatenation ofM andM ′ is the MSCM ◦M ′ = (E′′,≤′′

, λ′′) whereE′′ = E ∪ E′, λ′′(e) = λ(e) if e ∈ E andλ′′(e) = λ′(e) if e ∈ E′, and
≤′′= (≤ ∪ ≤′ ∪

⋃
p∈ProcEp × E′

p)
∗.

An MSG is a structureG = (Q,M,→, I, F, Φ) whereQ is a finite set of nodes,
I ⊆ Q is the set of initial nodes,F ⊆ Q is the set of final nodes,→⊆ Q × Q is the

transition relation,M is a set of MSCs with disjoint sets of events andΦ : Q → M
labels each node with an MSC.

We give in Fig. 2(a) an MSG for a simple connection protocol. The protocolp
allows the higher layerh to connect to the lower layerl. The lower layer can refuse the
connection, which is reinitialized, or accepts the connection and allowsh to send data
until h decides to end the connection.

h p l

Connect
Connect

h p l

Accept
OK

h p l

Data
Data

h p l

Refuse
Fail

h p l

End
End

Ack
Ack

h p l

Connect
Connect
Accept

OK
Data

Data
End

End
Ack

Ack

Fig. 2.An MSG and one of its derived MSC.

A pathπ through an MSG is a sequenceq0 → q1 → · · · → qn where(qi, qi+1) ∈→
for all i, 1 ≤ i < n. The MSC generated byπ is the asynchronous concatenation of the
MSCs labelling nodes along the path:M(π) = M0 ◦M1 ◦ · · · ◦Mn whereMi = Φ(qi)
for all i, 1 ≤ i ≤ n. The pathπ is a run ifq0 ∈ I andqn ∈ F . We denote byM(G) the
set of MSCs generated by runs throughG: M(G) = {M(π) | π is a run throughG}.
The language defined byG is the union of the languages of all the MSCs generated by
runs throughG: Lin(G) = {Lin(M) | M ∈ M(G)}.

MSGs describing regular languages (i.e. such that Lin(G) is regular over
Σ) are known to have good properties. For instance, any MSGG describing
a regular language is bounded: along any linearizationℓ ∈ Lin(G), there ex-
ists a constantB such that no channel ever contains more thanB messages.
An example of a non-regular MSG is given Fig. 2(b): every wordin
the language described by this MSG must contain as manyp!q(a)
as q?p(a), so it is clearly not regular. It is undecidable whether a
given MSG describes a regular language [11]. Yet, the regularity of
the language of an MSG can be ensured if one restricts to locally-
synchronised MSGs.

p q

a

The communication graphof an MSC M = (E,≤, λ) is the directed graph
(ProcM , 7→) where ProcM is the set{p ∈ Proc | Ep 6= ∅} of active processes of
M , andp 7→ q if and only if there existse ∈ Ep such thatλ(e) = p!q(m). We
say that an MSC isconnectedif its communication graph consists of one non-trivial
strongly connected component and isolated vertices. The communication graph shows
the directions of communications between processes. The condition for an MSG to be

locally-synchronised ensures that the communications between two processes are not
indefinitely one-way: an MSGG is said to belocally-synchronisedif for every loop
π = q → q1 → . . . → q, the MSCM(π) is connected. The MSG of Fig. 2(a) is
locally-synchronised. It is shown in [3] that locally-synchronised MSGs define regu-
lar languages. In fact, regular languages exactly are the languages defined by locally-
synchronised MSGs [12].

3 Formal Testing

The aim of this paper is to propose different formal frameworks for testing from MSG
specifications. A formal testing framework relies on the definition of a conformance
relation Conf(S,G), which formalises the relation that the system under testS and its
specificationG must verify.

According to the controllability and the observability oneis given on the system
under test, the notion of test is defined. The success of a testis determined by the ver-
dict associated to the result of its execution on the system.We consider three verdicts:
pass, fail andinc. Thepass verdict means that the result of the test is consistent with
the specification according to the conformance relation. The fail verdict means that a
counter-example to conformance has been found. Theinc verdict (for inconclusive) is
used when the test does not show non-conformance but does noteither show the be-
haviour targeted by the test. For instance, the execution stopped without error before
the end of the test or the observed output is not the expected one but still is a possible
output. We say that the submission of a testt is a success (resp. a failure), denoted by
S passest (resp.S fails t), when the verdict of its execution ispass or inc (resp.fail).
The submission of a test set is successful if and only if the submission of every test in
this set is.

In order for a conformance relation to be testable, one must prove that a (potentially
infinite) test set exists whose success is equivalent to conformance: such a test set is
calledexhaustivefor this conformance relation and denoted by ExhConf(G). Two dual
properties must hold:
(1) Any correct system passes the test set:

Conf(S,G) ⇒ ∀t ∈ ExhConf(G), S passest

(2) Any incorrect system fails the test set:

¬Conf(S,G) ⇒ ∃t ∈ ExhConf(G), S fails t

The existence of an exhaustive test set ensures the testability of the conformance rela-
tion.

Test HypothesesWe assume here that the system under test can be modelled by a net-
work of asynchronous concurrent automata. Concurrent automata are the usual frame-
work used for studying realizability of MSCs [17, 1, 2], i.e.the property for a set of
MSCs to describe the behaviour of an actual distributed system. The behaviour of the
system is given by the product automaton of its components. An execution is a finite

path in the product automaton starting from the initial state, and the word labelling an
execution is called a trace.2 Since we are in a black-box testing context, only traces of
the system are observable, so given an MSG specificationG over the alphabet of com-
munication actionsΣ, the observable behaviour of the system under testS is given by
its set of traces written Tr(S), which is a subset of words overΣ. Not all words are
possible traces of a system. The least requirement is that any receipt corresponds to an
emission that occurred before it. Following [1], we say thata wordw ∈ Σ∗ is well-
formed, denoted by WF(w), if and only if all its prefixes satisfy|Ep!q(m)| ≥ |Eq?p(m)|
for all p, q ∈ Proc andm ∈ Msg. A well-formed word is complete if every message
is received. We assume in the following that traces ofS are well-formed words over
Σ. We also assume that the communication channels of the system under test have a
bounded capacity. It ensures that the traces observed during testing will not contain an
arbitrarily large number of pending messages between two processes.

Finally, since concurrent systems are highly non-deterministic, we need to set the
usualfairness hypothesis[5]: there exists a boundn such that if a test is executedn
times on the system under test, then all possible behavioursare observed. It implies
that it is possible to decide without ambiguity the verdict of any test aftern executions
of it. Obviously, the boundn can not be guessed a priori and needs to be determined
experimentally, which is a classical problem when testing non-deterministic systems.

4 Global Testing from MSCs

We first consider the case where all the communications between the system processes
can be controlled and observed at a global level. This setting can be used to check the
consistency of MSC scenarios with an SDL specification for instance, in a similar way
to [9].

The natural conformance relation one can think of is language inclusion: the exe-
cutions of the system under test must all be valid scenarios of the specification. In the
case of an MSG specificationG, it means that the executions of the system must not
contradict the partial order described byG. In other words, all the traces of the system
must be (prefixes of) linearizations ofG.

Definition 1. (Global conformance relation) A systemS globally conforms to its MSG
specificationG, denoted byGC(S,G), if and only if Tr(S) ⊆ Pref(Lin(G)).

To check this conformance relation, testing that the systemunder test can perform
the scenarios of its specification is useless, since it will not allow to conclude on the
language inclusion. We would rather want to ensure that no execution of the system
violates the partial order of the specification. To this aim,a test will be designed to
force the system to exhibit an execution violating this partial order. For instance, in the
MSC of Fig. 1, the sending ofb by q is forbidden before the reception ofa by q. Then
the test following the sequence of communications actionsp!q(a) q!r(b) must fail on
a correct implementation. Therefore, we would like to submit to the system tests built

2 We do not consider final states here, so any finite path from the initial state isan execution.

from words inΣ+ violating the partial order ofG. Actually, it is sufficient to consider
the words diverging from (prefixes of) linearizations ofG:

DivG = {w.a ∈ Σ+ | w ∈ Pref(Lin(G)) ∧ a ∈ Σ

∧ w.a 6∈ Pref(Lin(G)) ∧ WF(w.a)}

A basic test built over a word in this set is a linear automatonoverΣ whose every state
is labelled by a verdictpass, fail or inc. We want the execution of the test to yield the
following verdicts: if the wordw.a is observed as an execution ofS, thenfail; if S can
performw but nota (it stops afterw), thenpass; if S cannot performw entirely but
only a prefix of it, theninc: no violation of the partial order is observed but the test did
not reach the end. Then we have the following definition of a basic test for a word.

Definition 2. Let w ∈ Σ+, w = a1 . . . ana with n ≥ 0. A basic test forw, denoted by
T (w), is an automaton(Q, δ, q0) where:Q = {qi}0≤i≤n+1; δ = {(qi, qi+1)}0≤i≤n;
statesq0 to qn−1 are labelled byinc, stateqn is labelled bypass and stateqn+1 is
labelled byfail.

Therefore, basic tests for the global conformance relationare basic tests built over
words in DivG . We denote by ExhGC(G) the test set{T (w) | w ∈ DivG}. Here are
some basic tests for the MSC of Fig. 1. (a) Processp must not be able to sendc to r in
the initial state of the system. (b) Processq must not sendb to r before the reception of
a from p. (c) Processp must not senda to q again after processq sentb to r.

pass fail

p!r(c)

(a)

inc pass fail

p!q(a) q!r(b)

(b)

inc inc inc pass fail

p!q(a) q!p(a) q!r(b) p!q(a)

(c)

Since the system under test is closed (it does not send or receive messages to or from
the environment), the test cannot interact with it by sending and receiving messages,
but it can still control and observe the behaviour of the system by synchronising with it.
The execution of a test on the system is then defined as the synchronous product of the
two automata: the test and the system synchronise on identical communication actions,
allowing the execution of the test to follow the execution ofthe system and to yield a
verdict whenever a leaf is reached or a deadlock occurs. We have the following result.

Theorem 1. The test set ExhGC(G) is exhaustive for the global conformance relation
GC.

Proof. (1) We first show that a correct system necessarily passes ExhGC(G). Let S

be a system failing a testT (w) ∈ ExhGC(G). Therefore,w is a trace ofS. But by
construction of the set Div,w does not belong to Pref(Lin(G)), soS does not conform
to G.

(2) We show that an incorrect system necessarily fails one test in ExhGC(G). Let S
be an incorrect system. Then there exists a wordt in Tr(S) which is not in Pref(Lin(G)).

This word is not empty sinceε ∈ Pref(Lin(G)), then it can be decomposed into two
wordsw1.w2 with w1 ∈ Pref(Lin(G)) andw2 ∈ Σ∗ such thatw1 is the maximal prefix
of t in Pref(Lin(G)). The wordw2 is not empty (otherwiset would be in Pref(Lin(G)))
then it can be writtena.w′ with a ∈ Σ andw′ ∈ Σ∗. ThereforeT (w1.a) is a test in
ExhGC(G) that would makeS fail.

A particular feature of MSG specifications is to describe notonly acceptable be-
haviours but complete scenarios. The implementation is then expected both to be con-
sistent with the partial order specified and to show the complete scenarios of the spec-
ification. In order to refine the outcome of a test, we can slightly modify the verdicts
associated to its states: in a test built from a wordw.a, the last but one stateqn is labelled
by pass only if w is a complete linearization, it is labelled byinc otherwise.

The next step is to factorise tests to avoid tests withoutpass states. Tests can be
factorised by common (non-empty) prefixes, leading to the following automaton for the
MSC of Fig. 1. For the sake of readability, we gather on the same transition the labels of
transitions leading to a state labelled by the same verdict.We only show the factorisation
of tests around the linearizationp!q(a) q?p(a) p!r(c) q!r(b) r?q(b) r?p(c), the dashed
arrows leading to the rest of the automaton. All the internalstates are labelled byinc.

pass
p!q(a) q?p(a) p!r(c) q!r(b) r?q(b) r?p(c)

fail fail fail fail
fail

fail fail

q!r(b)
p!r(c)

p!q(a)
q!r(b)

p!q(a)
p!q(a)

p!r(c)
r?p(c)

p!q(a)
q!r(b)

p!r(c)
r?p(c)

p!q(a)
q!r(b)

p!r(c)

p!q(a)
q!r(b)

p!r(c)

p!r(c) q!r(b)

An automaton gathering the basic tests built from all the words with common (non-
empty) prefixes then has a tree-like structure and all its leaves labelled bypass or
fail. Moreover, only states reachable by a complete linearization of the specification are
labelled bypass.

5 Local Testing from MSCs

We consider now that the communications inside the system under test cannot be ob-
served at a global level. The system can only be controlled and observed locally, from
the point of view of each process individually. We will first study a pure local testing
framework where the system is tested through only one process at a time. Then we will
study the case where tests have to be executed by several processes and observations
have to be gathered at the end of the test.

5.1 Local Testing with Local Observations

A natural way to test a distributed system is to replace one byone each process of the
system and to record the interactions between this process and the rest of the system.
This is what we will call pure local testing. The system is tested locally from the point
of view of each process and the verdict of the tests is also local, since the observations
obtained from the different processes are never gathered.

To define it generally, a local observation of an MSC is the setof totally ordered
sequences of events occurring on a given set of processesP . In this subsection, we will
only consider local observations whereP is reduced to one process.

Definition 3. Let M be an MSC over Proc andΣ, p be a process in Proc andw be a
word inΣ∗.
The projection of w on p, denoted byw|p , is defined inductively byε|p = ε and
(a.w′)|p = a.(w′

|p
) if a ∈ Σp andw′

|p
otherwise.

For P ⊆ Proc a set of processes, theP -observationof M , denoted byM|P , is defined
as the collection{w|p}p∈P for any complete linearizationw of M .3

Observing the executions of the system on each process individually, we can only
verify that the communications on each process occur according to the total order spec-
ified. We want the projections of the traces of the system on each process to correspond
to projections of (prefixes of) linearizations of the MSG specification.

Definition 4. The set of1-observationsof an MSGG, denoted by locLin1(G), is the set
{w|p | w ∈ Pref(ℓ), p ∈ Proc} for any complete linearizationℓ of Lin(G).

We write locTr1(S) for the set{t|p | t ∈ Tr(S), p ∈ Proc} of projections of the
traces ofS on each process of Proc. We then define the following conformance relation.

Definition 5. (Local conformance relation) A systemS locally conforms to its MSG
specificationG, denoted byLC1(S,G), if and only if locTr1(S) ⊆ locLin1(G).

Ideally, we would like this conformance relation to be equivalent to the global one:
we would like local testing to be sufficient for detecting implementations that do not
respect the global partial order of the specification. For instance, we would like to be
able to discard an implementation exhibiting the scenarioM of Fig. 3, when only sce-
nariosM1 andM2 belong to the specification. Unfortunately, the third scenario cannot
be distinguished from the others with local observations only. Such a scenario is said to
be implied.

Definition 6. Let P ⊆ 2Proc be a family of subsets of processes. An MSCM is said to
beP-impliedby an MSG specificationG if for every subsetP ∈ P, there is an MSCM ′

in M(G) such thatM ′
|P

= M|P .
We denote byPk the set{P ⊆ Proc | |P | = k} of all subsets of Proc of sizek and we
say that an MSC isk-implied if it is Pk-implied.

3 Note that the projection of an MSC on a set of processes is unique since events are totally
ordered on each process.

p q r s

a

b

M1

p q r s

a

c

M2

p q r s

a

b c

M

Fig. 3.M is 1-implied by{M1, M2} but not 2-implied.

The scenarioM of Fig. 3 is 1-implied by the two first scenarios. Since tests de-
signed from local observations only would not reject an implementation allowing such
a scenario, it has to be already present in the specification.Thus, local testing allows
to decide global conformance if and only if all the scenarios1-implied by the MSG
specification are included in the specification. This condition is called 1-testability [4].

Definition 7. An MSG specificationG is said to be1-testableif all the MSCs 1-implied
byG are already inM(G).

Theorem 2. LetG be a locally-synchronised MSG specification andS a system under
test. IfG is 1-testable, thenS locally conforms toG iff S globally conforms toG.

Proof. The if part is trivial. Let us show the only if part. LetS be a system which locally
conforms to an MSG specificationG, i.e. locTr1(S) ⊆ locLin1(G). Let t ∈ Tr(S), we
have that for anyp ∈ Proc, there exists a prefix of linearizationℓ ∈ Pref(Lin(G)) such
that t|p = ℓ|p . SinceG is 1-testable, every scenario which is 1-implied byG is already
in M(G). The scenario corresponding tot being the prefix of a 1-implied scenario, it is
the prefix of a complete linearization of a scenario inM(G), hencet ∈ Pref(Lin(G)).

We know from [17] that this property is decidable for locally-synchronised MSG
specifications in the non-FIFO setting.4 In the FIFO setting, it is undecidable in gen-
eral [4]. However, as underlined in [4], since we assume thatthe system under test has
bounded FIFO buffers, it becomes decidable whether its behaviours, observed only lo-
cally, are included in the behaviours allowed by the MSG specification. So in a practical
setting, 1-testability is decidable also for FIFO architectures.

Therefore, for locally-synchronised MSG specifications that are 1-testable, pure lo-
cal testing is equivalent to global testing. It implies thattests for the global conformance
relation can be built from projections of (prefixes of) linearizations.

We build basic local tests for a processp from the projections of linearizations of
MSCsM ∈ M(G) on p like basic global tests are built from linearizations ofG. The
only difference is that the divergence from a prefix of a projection need not be a well-
formed word:

DivG,p = {w.a ∈ Σ+
p | ∃ℓ ∈ Pref(Lin(G)), w = ℓ|p ∧ a ∈ Σp

∧ ∀ℓ ∈ Pref(Lin(G)), w.a 6= ℓ
p
}

Basic local tests for a processp then are basic tests built over words in DivG,p. We
denote by ExhLC1

(G) the test set{T (w) | w ∈ DivG,p, p ∈ Proc}.

4 In [17], this result is shown for a larger class of MSG specifications, where communication
graphs of loops are only weakly connected (called globally-cooperative MSG in [10]).

In the context of pure local testing, executing a basic test boils down to replacing
the corresponding process by a testing process whose behaviour is described by the
test automaton. The execution of the test is then defined as the asynchronous product
between this automaton and the rest of the system. The verdict is yield whenever a leaf
is reached or a deadlock occurs. We have the following result.

Theorem 3. The test set ExhLC1
(G) is exhaustive for the local conformance relation

LC1.

Proof. (1) We show that if a systemS fails a testt ∈ ExhLC1
(G), then it is incorrect.

Let t = T (w) with w ∈ Divp, p ∈ Proc.S fails T (w) so w = t|p for t ∈ Tr(S),
hencew ∈ locTr1(S). By definition of Divp, w 6= ℓ|p for any ℓ ∈ Pref(Lin(G)), so
w 6∈ locLin1(G). ThereforeS is incorrect.

(2) We show that for any incorrect systemS, there exists a testt ∈ ExhLC1
(G)

making it fail. If S is incorrect, then there existst ∈ Tr(S) andp ∈ Proc such that
t|p 6∈ locLin1(G). The wordt|p is not empty sinceε ∈ locLin1(G), then it can be
decomposed into two wordsw1.w2 wherew1 ∈ locLin1(G) andw2 ∈ Σ+

p , andw1 is
the maximal prefix oft|p in locLin1(G). Sincew2 is not empty,w2 = a.w′ with a ∈ Σp

andw′ ∈ Σ∗
p . Therefore,T (w1.a) is a test in ExhLC1

(G) that would makeS fail.

Like in the global testing setting, basic local tests for a given process can be refined
so thatpass states are reachable only by the projection of a complete linearization.
Then they can be factorised by common non-empty prefixes. We obtain the following
local tests for the example of Fig. 1 (internal states are alllabelled byinc).

pass
p!q(a) p!r(c)

fail fail fail

p!r(c) p!q(a) p!q(a)
p!r(c)

pass
q?p(a) q!r(b)

fail fail fail

q!r(b) q?p(a) q?p(a)
q!r(b)

pass
r?q(b) r?p(c)

fail fail fail

r?p(c) r?q(b) r?q(b)
r?p(c)

5.2 Local Testing with Gathered Observations

If a specification is not 1-testable, it means that testing for global conformance to this
specification cannot be purely local. If we consider again the scenarios of Fig. 3, we can
see that the scenarioM is 1-implied by{M1,M2} but not 2-implied: if the observations
of M from the two processesp ands for instance, are considered together, it appears
that the scenarioM is not consistent with any of the two scenariosM1 andM2. Such a
scenario can then be discarded by a test executed by the two processesp ands whose
observations are gathered at the end.

In this context, testing then consists in replacing, in turn, k processes of the system
by k testing processes, locally recording their interactions with the rest of the system,

and gathering the obtained observations at the end of each test. The corresponding con-
formance relation would be the inclusion of theP -observations obtained from the sys-
tem under test in theP -observations of the specification, for any set of processesP of
sizek. We recall thatPk is the set of subsets of Proc of sizek.

Definition 8. The set ofk-observationsof an MSGG, denoted by locLink(G), is the set
{{w|p}p∈P | w ∈ Pref(ℓ), P ∈ Pk} for any complete linearizationℓ of Lin(G).

We denote by locTrk(S) the collection of the projections of the traces ofS on each
subsetP ∈ Pk: locTrk(S) = {{t|p}p∈P | t ∈ Tr(S), P ∈ Pk}. We then define the
following conformance relation.

Definition 9. (k-local conformance relation) A systemS k-locally conforms to its MSG
specificationG, denoted byLCk(S,G), if and only if locTrk(S) ⊆ locLink(G).

Following the same reasoning as in the previous subsection,this conformance re-
lation is equivalent to global conformance if all the scenarios k-implied by the MSG
specification are already present in the specification. We have the following notion of
k-testability [4]:

Definition 10. Let k ∈ N, 1 ≤ k ≤ |Proc|. An MSG specificationG is said to be
k-testableif all the MSCsk-implied byG are already inM(G).

Theorem 4. LetG be a locally-synchronised MSG specification andS a system under
test. IfG is k-testable, thenS k-locally conforms toG iff S globally conforms toG.

Proof. The proof is a direct generalization of the proof of theorem 2.

We do not know about the decidability ofk-testability in the non-FIFO setting.
However, in the FIFO setting, as for the 1-testability condition,k-testability is undecid-
able in the general case [4]. Assuming bounded buffers fortunately makes it decidable,
so in practice, it can be verified that an MSG specification is closed byk-implied sce-
narios.

We denote byΣP the set
⋃

p∈P Σp. We define the projection of a wordw ∈ Σ∗

over a set of processesP ⊆ Proc, writtenw|P , inductively byε|P = ε and(a.w′)|P =
a.(w′)|P if a ∈ ΣP andw′

|P
otherwise.

As a generalisation of the construction of tests in the previous subsection, a test for
this local conformance relation will be built from projections of (prefixes of) lineariza-
tions ofG on each set of processes of sizek. Therefore, a local test for a set of processes
P will be built from words in DivG,P :

DivG,P = {w.a ∈ Σ+
P | ∃ℓ ∈ Pref(Lin(G)), ℓ|P = w ∧ a ∈ ΣP

∧ ∀ℓ ∈ Pref(Lin(G)), ℓ|P 6= w.a}

To base the decision of the verdict of a test on the combined observations made on thek
processes of a setP , the projections of a given word in DivG,P on each processp of P

must be kept together. A local test for a word in DivG,P will be distributed on processes
of P in the following way.

Definition 11. Let P ⊆ Proc. Letw ∈ ΣP , w = w′.a with a ∈ Σp for p ∈ P . A
basic test forw distributed on the set of processesP , denoted byTP (w), is a tuple of
automata(Tq)q∈P , where for allq ∈ P , q 6= p, Tq is a linear automaton overw|q where
internal states are labelled byinc and the leaf is labelled bypass, andTp = T (w|p).

A distributed test then consists of a tuple of automata that have to be run together,
with the rest of the system under test, to yield a verdict. Formally, the execution of a
distributed test on the system under test is the asynchronous product of thek automata
of TP (w) and the rest of the system. The test is a success if all the automata ofTP (w)
reach apass or inc state, and is a failure if thefail state is reached. We denote by
ExhLCk

(G) the test set{TP (w) | w ∈ DivG,P , P ∈ Pk} and prove it to be exhaustive.

Theorem 5. The test set ExhLCk
(G) is exhaustive for thek-local conformance relation

LCk.

Proof. (1) We show that if a systemS fails a testt ∈ ExhLCk
(G), thenS is incorrect.

Let t = TP (w), with w ∈ DivP , P ∈ Pk. S fails TP (w) so (w|p)p∈P ∈ locTrk(S).
Now, w ∈ DivP implies that there does not exist any linearizationℓ ∈ Pref(Lin(G))
such thatℓ|P = w, therefore(w|p)p∈P 6∈ locLink(G) andS is incorrect.

(2) We show that for any incorrect systemS, there exists a testt ∈ ExhLCk
(G)

making it fail. Let t ∈ Tr(S) such that(t|p)p∈P 6∈ locLink(G). Thent|P 6= ℓ|P for
all ℓ ∈ Pref(Lin(G)). Sincet is not empty, it can be decomposed into two words
w1.w2 wherew1 ∈ Pref(Lin(G)) andw2 ∈ Σ∗ andw1 is the maximal prefix oft
in Pref(Lin(G)). Since(t|p)p∈P 6∈ locLink(G), we have thatw2|P is not empty. Let
w2|P = a.w′ with a ∈ Σp, p ∈ P andw′ ∈ Σ∗

P . It is easy to see thatw1|P .a belongs
to DivP , thereforeTP (w1|P .a) is a test that would makeS fail.

As we already did in the previous frameworks, we would like torefine the verdicts
of tests in order to distinguish complete linearizations from other authorised behaviours.
We then change a little the verdicts associated to states of distributed tests: in a basic
distributed testTP (w.a) wherea ∈ Σp, the final states of all automataTq, q 6= p and the
last but one state ofTp will be labelled bypass only if w is a complete linearization;
they will be labelled byinc otherwise. As before, we want to factorise the tests built
from words with common prefixes, in order to avoidinc verdicts as much as possible.
However, if we factorise naively the tests obtained for eachprocess separately, we lose
the global observation that we need to conclude on the resultof a test. The information
of the linearization (or equivalently, the MSC) from which adistributed test is issued
must be kept on the automata of this test. We will then label each MSC ofG by a natural,
and transfer this labelling on the states of each projectionon a set of processes.5 Thus,
the success of the execution of a test is determined by reaching pass or inc states in
all the automata of the test, but these states have to be labelled by the same number,
meaning that they were reached by projections of a linearization of the same MSC.

Coming back to the example of Fig. 3, we want to build tests for2-local confor-
mance to the specificationG composed only of the MSCsM1 andM2. These tests will
be able to discard the scenarioM , sinceM is not 2-implied. Tests are built from words

5 M(G) is countable if Msg is countable andG is locally-synchronised.

in DivG,P for any subset of two processesP ⊆ {p, q, r, s}. These words are divergences
of projections onP of a linearization ofM1 or a linearization ofM2. To keep the in-
formation of the MSCMi from which each basic test is built, we index byi, i = 1, 2,
each verdict of the basic test built from a linearization ofMi. For instance, tests built
from words in DivG,{p,r} with states labelled by verdictpassi, inci andfaili, i = 1, 2,
can be safely factorised, giving the following automata.

inc1

inc2

inc1

pass
2

pass
1

fail2

p!s(a) p!q(b)

fail1
fail2

fail1
fail2

fail1
fail2

p!q(b) p!s(a)
p!s(a)

p!q(b)

pass
1

inc2

fail1
pass

2

r!s(c)

fail1
fail2

r!s(c)

Executing these tests on a system allowing the scenarioM yields the verdictspass1

andfail2 for p, andfail1 andpass2 for r, showing the incompatibility of the observa-
tions.

We can generalize this way of distributing tests to the case wherek = n, with n

the number of processes of the specification. Notice thatn-local conformance is equiv-
alent to global conformance without condition since an MSG specification is alwaysn-
testable. Thus we obtain local tests distributed onn processes for global conformance
as an alternative to global tests.

6 Conclusion and Future Work

We showed in this paper how to locally test a system for globalconformance to its
MSG specification. We saw that a closure condition on the specification was needed
to ensure the equivalence of the global and local conformance relations. It does not
mean that local testing is impossible without this condition, but only that the local
conformance relation is weaker than the global one, which isnot necessarily a problem.
For instance, one can consider the closure by implied scenarios as the semantics of the
MSG specification and then accept them as valid scenarios.

A natural extension of the proposed frameworks is to consider an MSC as a de-
scription of the interactions of a (distributed) system with a distributed environment,
the system being represented as a strict subset of processes. Testing such a system con-
sists in setting a testing process at each port (instead of each process representing the
environment) which controls and observes the system through this interface. Different
conformance relations can be defined depending on how strictly the partial order spec-
ified for the system must be implemented.

Afterwards, selection criteria must also be investigated in order to choose a repre-
sentative subset of the exhaustive test set and then generate a test set of reasonable size
to submit to the system. Selection by test purposes like in [15] must also be dealt with.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.IEEE
Transactions on Software Engineering, 29(7):623–633, 2003.

2. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs.
Theoretical Computer Science, 331(1):97–114, 2005.

3. R. Alur and M. Yannakakis. Model checking of message sequencecharts. InCONCUR,
volume 1664 ofLNCS, pages 114–129, 1999.

4. P. Bhateja, P. Gastin, M. Mukund, and K. N. Kumar. Local testing of message sequence
charts is difficult. InFCT, volume 4639 ofLNCS, pages 76–87, 2007.

5. A. Cavalcanti and M.-C. Gaudel. Testing for refinement in CSP. InICFEM, volume 4789 of
LNCS, pages 151–170, 2007.

6. A. Cavalcanti, M.-C. Gaudel, and R. M. Hierons. Conformance relations for distributed
testing based on CSP. InICTSS, LNCS, 2011. To appear.

7. I. S. Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and B.-S. Lee. Testing of concurrent programs
based on message sequence charts. InPDSE, pages 72–82, 1999.

8. H. Dan and R. M. Hierons. Conformance testing from message sequence charts. InICST,
pages 279–288. IEEE Computer Society, 2011.

9. D. D’Souza and M. Mukund. Checking consistency of SDL+MSC specifications. InSPIN,
volume 2648 ofLNCS, pages 151–165, 2003.

10. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs: Model-
checking and realizability.Journal of Computer and System Sciences, 72(4):617–647, 2006.

11. J. G. Henriksen, M. Mukund, K. N. Kumar, M. A. Sohoni, and P. S. Thiagarajan. A theory
of regular MSC languages.Information and Computation, 202(1):1–38, 2005.

12. J. G. Henriksen, M. Mukund, K. N. Kumar, and P. S. Thiagarajan. On message sequence
graphs and finitely generated regular MSC languages. InICALP, volume 1853 ofLNCS,
pages 675–686, 2000.

13. ITU-TS. Recommendation Z.100: Specification and description language, 2002.
14. ITU-TS. Recommendation Z.120: Message sequence charts, 2004.
15. C. Jard. Synthesis of distributed testers from true-concurrency models of reactive systems.

Information & Software Technology, 45(12):805–814, 2003.
16. S. Mauw and M. A. Reniers. High-level message sequence charts. In SDL Forum, pages

291–306. Elsevier, 1997.
17. R. Morin. Recognizable sets of message sequence charts. InSTACS, volume 2285 ofLNCS,

pages 523–534, 2002.
18. OMG. Unified Modeling Language version 2.3, 2010.

