Global and Local Testing from Message Sequence
Charts

Delphine Longuet

Univ Paris-Sud, LRI UMR8623, Orsay, F-91405
del phi ne.l onguet @ri.fr

Abstract. Message Sequence Charts are a widely used formalism for describ-
ing scenarios a communicating system must be able to perform. We stthdyg in
paper different formal frameworks for testing from MSCs. We firstsider a set-

ting where all the processes of the system can be controlled and othggobe

ally. Then we study a setting where the system is tested from the point of view
of each process individually, observations remaining local or beitigegad at

the end of each test. In each setting, we define a conformance relatied ba
global or local observations, for which we build an exhaustive tesMs@ieover,

we gather the conditions making local testing as powerful as global testing.

1 Introduction

During the design of a communicating system, a common medsi to visually de-
scribe the architecture of the system in terms of compon&sgsther with the desired
interactions between them. Description languages like 3] or UML [18] com-
monly use the Message Sequence Charts standard [14] tolizertteese interactions.
A Message Sequence Chart (MSC) shows the different proze$slee system as ver-
tical lines interpreted as time axes and communicationgdrt these processes as
horizontal or downward-sloping arrows between these liGedlections of MSCs are
used to specify the scenarios the system must be able torperfostandard way to
generate sets of MSCs is to use Hierarchical MSCs (HMSCgjuvalently Messages
Sequence Graphs (MSGs) [14]. An MSG is a finite directed grabbse nodes are
labelled by MSCs. Each path of an MSG from an initial to a fired@ defines an MSC
by concatenating the MSCs labelling the nodes along the path

The aim of this paper is to propose formal frameworks folingstrom MSG spec-
ifications. The easiest way to test a distributed system Fat@ a global control and
observation of it, meaning that one can trigger the sendirrgoessage from a process
or choose to treat a pending message for another, whenevsetiding or the receipt
is possible for the given process. But the nature of the systeder test does not al-
ways allow a global control. In this case, one would like tsttde system from the
point of view of each component individually, and that it wbbe sufficient to decide
conformance from a global point of view. We study here déf@rways of globally and
locally testing a distributed system by defining global avchl conformance relations,
for which we build exhaustive test sets. Moreover, we secthwlitions under which
local testing is equivalent to global testing. The latteutes are based on [4], where the
decidability of these conditions is studied, and which irespbthis work.

A formal framework for global testing from a set of MSCs hasibproposed in [7].
Two conformance relations are defined, depending on theechsmmantics of the MSC
specification, and a test generation algorithm is presebtdécho exhaustivity result is
provided. The closest work to ours are [8, 6]. Even if theymoeall based on MSC
specifications, they address the problem of defining locafarmance relations and
studying ways to build tests for these relations. For instathe notions of independent
and cooperative refinement in [6] are similar to our localfoomance relations.

We first recall definitions of MSCs and MSGs in Sec. 2, and theega formal test-
ing framework in Sec. 3. We propose in Sec. 4 a first conformaelation in the global
setting and give an exhaustive test set for it. Then we sta@eic. 5 two conformance
relations in the local setting, depending on the control abservation being purely
local or distributed on a subset of processes. We give dondifor the equivalence to
the global conformance relation and build exhaustive sdtscal or distributed tests.

2 Preliminaries

2.1 Message Sequence Charts

We fix a finite set Proc of process names and a finite set Msg cfagegypes. For any
p, q € Proc withp # g and anym € Msg, we denote by!q(m) the sending by of the
messagen to ¢, and byp?q(m) the receipt by of the message: from ¢. Forp € Proc,
we defineX, = {plg(m),p?q(m) | ¢ € Proc m € Msg} the set of communications
involving p. We defineX = |, ¢poc>p- We denote by the set{plq(m) | p,q €
Procm € Msg} of sendings and by” the set{p?q(m) | p,q € Progm € Msg} of
receipts.

A posetover an alphabeX is a triple(E, <, \) where(E, <) is a partially ordered
set, and\ : £ — X is a labelling mapping. A poset can be seen as an abstradtion o
the behaviour of a concurrent system: an elemaentF is called areventand its label
A(e) is the corresponding communication action performed bysytstem. The partial
order < describes the causal dependence between the events,niddape of events
meaning that they can be executed concurrently: two eleseearide’ are concurrent
if e £ ¢’ ande’ £ e.

Forp € Proc, we defing, = {e € E | A(e) € X, } the set of events occurring on
p and fore € E, we defineE, = {e € E | A(e) = a} the set of events labelled by the
communicatiors. We defineE' = {e € E | A(e) € X'} the set of sending events and
E"={e € E | \(e) € X7} the set of receipt events.

An MSC over Proc is a posetE, <, \) over X such that: for eaclp € Proc, the
relation<, = < N (E, x E,) is a total order; there is a bijective mapping ' — E”’
matching corresponding sendings and receipts; and thialparder < is the reflexive
and transitive closure ¢f) ,cp o <p U {(e,c(e)) | e € E'}.

Following the recommendation Z.120 [14], we allow the oakitg of different
messages sent by a proceds a procesg, but forbid the reordering of identical mes-
sages fronmp to ¢. This condition is callecdhon-degeneracyFormally, there must not

! Note that we only consider MSCs describing closed systems, where allébsages are ex-
changed between the processes and no message is sent to odréogivthe environment.

- plg(a) e 7p(a)

- qlr(b) & »e 17q(b)

plr(c) »6 77p(c)

) 4

Fig. 1. An MSC and its partial order representation (Hasse diagram).

be two send events e’ € E' such that\(e) = A\(¢’), e < ¢’ andc(e) < c(e). Since
these messages are indistinguishable, it does not make &eagplicitly specify their
reception to be reversed. However, if the underlying aedhitre is FIFO, the order in
which any two messages sent by a progesse received by a procegamust not be
reversed. Formally, there must not be two send everilq(a) ande’ = plq(b) such
thate < ¢’ andc(e’) < c(e). In the following, we will make no assumption on the
underlying architecture and then only consider the noredetacy condition, but we
will mention when the FIFO condition is needed.

A linearizationof an MSCM = (E, <, \) is an execution of the communication
actions ofX’ compatible with the partial ordex. Formally, a linearization of/ is a
word a; ... a g over X' such that there exists a total ordar. . . e | of the events of
E with X(e;) = a; foralli,1 < i < |E| ande; < e; impliesi < j for all 4, j,

1 <1i,j < |E|. Forinstanceplq(a) ¢?p(a) plr(c) ¢lr(b) r7q(b) r?p(c) is alinearization
of the MSC of Fig. 1. We denote by Li/) the set of all the linearizations af/ (also
called the language d¥7).

Forw € X*, we denote by Préfv) the set of prefixes of: Prefw) = {w; € X* |
Jwy € X% wy.wy = w}. For L C X*, we denote by Préf.) the prefix closure of.

2.2 Message Sequence Graphs

A natural way to specify a communicating distributed sysierby a (possibly infi-
nite) collection of scenarios the system should be able tiope. These scenarios can
be generated by combining basic scenarios in a high-levsgrigition called a high-
level MSC (HMSC) [16]. Without losing expressiveness, wasider only a subclass
of HMSC called Message Sequence Graphs (MSG). A messagerssxjgraph is a
finite directed graph with initial and terminal nodes, wheaeh node is labelled by an
MSC. MSCs along a path in the graph are composed using agyrals concatenation,
defined as follows.

Let M = (E,<,\) andM’ = (E',<', X) be two MSCs such that and E’ are
disjoint. The asynchronous concatenatiod6findM’ is the MSCM oM’ = (E”, <"
,AN)whereE” = EUE', XN'(e) = Ae) if e € Eand)\’(e) = N(e) if e € E’, and
SI/: (S U Sl UUpeProcEp x EI/))*

An MSGis a structurgg = (Q, M, —, I, F, ®) where@ is a finite set of nodes,
I C Q is the set of initial nodest’ C (@ is the set of final nodesy C @ x Q is the

transition relation M is a set of MSCs with disjoint sets of events ahd Q — M
labels each node with an MSC.

We give in Fig. 2(a) an MSG for a simple connection protocdieTprotocolp
allows the higher layek to connect to the lower layér The lower layer can refuse the
connection, which is reinitialized, or accepts the conioecand allowsh to send data
until & decides to end the connection.

h 4 1 h p l
Connect Accept
,M Pt Connect conmect
Accept
oK
Data
Data
End
End
Ack
End Ack

| P 1|
Refuse
Fail RV
« Ack

Fig. 2. An MSG and one of its derived MSC.

A pathr through an MSG is a sequenge— ¢; — -+ — ¢, Where(g;, gi+1) € —
foralli, 1 <14 < n. The MSC generated hyis the asynchronous concatenation of the
MSCs labelling nodes along the paftf:(r) = My o Mj o--- o M,, whereM; = &(q;)
forall i, 1 <1i <n.The pathrisarunifgy € I andg, € F. We denote byM (G) the
set of MSCs generated by runs throughM (G) = {M(x) | wis arun througlG}.

The language defined iy is the union of the languages of all the MSCs generated by
runs throughg: Lin(G) = {Lin(M) | M € M(G)}.

MSGs describing regular languages (i.e. such that(djnis regular over

X)) are known to have good properties. For instance, any MgGlescribing

N

a regular language is bounded: along any linearizatiore Lin(G), there ex-
ists a constantB such that no channel ever contains more thAnmessages.
An example of a non-regular MSG is given Fig. 2(b): every wiord

the language described by this MSG must contain as npégiy:) ,//ﬁ

as q?p(a), so it is clearly not regular. It is undecidable whetherja

given MSG describes a regular language [11]. Yet, the regylaf H D

the language of an MSG can be ensured if one restricts tolyecall J
synchronised MSGs.

The communication graphof an MSCM = (E,<,)\) is the directed graph
(Procy, —) where Prog, is the set{p € Proc | E, # (0} of active processes of
M, andp — ¢ if and only if there existe € E, such that\(e) = plg(m). We
say that an MSC igonnectedf its communication graph consists of one non-trivial
strongly connected component and isolated vertices. Themzmication graph shows
the directions of communications between processes. Tiditean for an MSG to be

locally-synchronised ensures that the communicationsdsst two processes are not
indefinitely one-way: an MS@ is said to belocally-synchronisedf for every loop
T=¢q— q — ... — q,the MSCM () is connected. The MSG of Fig. 2(a) is
locally-synchronised. It is shown in [3] that locally-symonised MSGs define regu-
lar languages. In fact, regular languages exactly are tigukges defined by locally-
synchronised MSGs [12].

3 Formal Testing

The aim of this paper is to propose different formal framekgdpr testing from MSG
specifications. A formal testing framework relies on the migén of a conformance
relation Conf(.S, G), which formalises the relation that the system under$eahd its
specificationg must verify.

According to the controllability and the observability oisegiven on the system
under test, the notion of test is defined. The success of &stdstermined by the ver-
dict associated to the result of its execution on the sysWenconsider three verdicts:
pass, fail andinc. Thepass verdict means that the result of the test is consistent with
the specification according to the conformance relatiore falt verdict means that a
counter-example to conformance has been found.iit&erdict (for inconclusive) is
used when the test does not show non-conformance but doestinet show the be-
haviour targeted by the test. For instance, the executmppsd without error before
the end of the test or the observed output is not the expeciedbat still is a possible
output. We say that the submission of a teist a success (resp. a failure), denoted by
S passes (resp.S fails t), when the verdict of its execution Eass or inc (resp.fail).
The submission of a test set is successful if and only if thersssion of every test in
this set is.

In order for a conformance relation to be testable, one nmasegthat a (potentially
infinite) test set exists whose success is equivalent toocorance: such a test set is
calledexhaustivdor this conformance relation and denoted by ExHG). Two dual
properties must hold:

(1) Any correct system passes the test set:

Conf(S,G) = Vt € Exhconi(G), S passes
(2) Any incorrect system fails the test set:
—Conf(S,G) = 3t € Exhcont(G), S fails t

The existence of an exhaustive test set ensures the tégtabihe conformance rela-
tion.

Test HypothesedVe assume here that the system under test can be modelledely a n
work of asynchronous concurrent automata. Concurrentzatiare the usual frame-
work used for studying realizability of MSCs [17, 1, 2], ithe property for a set of
MSCs to describe the behaviour of an actual distributecesysihe behaviour of the
system is given by the product automaton of its componentseXecution is a finite

path in the product automaton starting from the initialestaind the word labelling an
execution is called a traceSince we are in a black-box testing context, only traces of
the system are observable, so given an MSG specificgtiover the alphabet of com-
munication actions, the observable behaviour of the system underSdstgiven by

its set of traces written T6), which is a subset of words over. Not all words are
possible traces of a system. The least requirement is tlyakeanript corresponds to an
emission that occurred before it. Following [1], we say thatordw € X* is well-
formed denoted by WEw), if and only if all its prefixes satistVE 15 (m)| > [Eqzpm)|

for all p,q € Proc andn € Msg. A well-formed word is complete if every message
is received. We assume in the following that tracess aire well-formed words over
X). We also assume that the communication channels of thensystder test have a
bounded capacity. It ensures that the traces observedgdesting will not contain an
arbitrarily large number of pending messages between tacasses.

Finally, since concurrent systems are highly non-detestimn we need to set the
usualfairness hypothesif]: there exists a bound such that if a test is executed
times on the system under test, then all possible behavarer®bserved. It implies
that it is possible to decide without ambiguity the verdithoy test aftemn executions
of it. Obviously, the bound: can not be guessed a priori and needs to be determined
experimentally, which is a classical problem when testiog-deterministic systems.

4 Global Testing from MSCs

We first consider the case where all the communications legtifee system processes
can be controlled and observed at a global level. This gettim be used to check the
consistency of MSC scenarios with an SDL specification fetance, in a similar way
to [9].

The natural conformance relation one can think of is languaglusion: the exe-
cutions of the system under test must all be valid scenafitisecspecification. In the
case of an MSG specificatigh, it means that the executions of the system must not
contradict the partial order described @yIn other words, all the traces of the system
must be (prefixes of) linearizations gf

Definition 1. (Global conformance relation) A systesrglobally conforms to its MSG
specificatiorg, denoted bycC(S, G), if and only if Ti(.S) C Pref(Lin(G)).

To check this conformance relation, testing that the systeder test can perform
the scenarios of its specification is useless, since it wilaillow to conclude on the
language inclusion. We would rather want to ensure that mocgion of the system
violates the partial order of the specification. To this aartest will be designed to
force the system to exhibit an execution violating this iphdrder. For instance, in the
MSC of Fig. 1, the sending dfby ¢ is forbidden before the reception @by ¢q. Then
the test following the sequence of communications actjgg&:) ¢!r(b) must fail on
a correct implementation. Therefore, we would like to sulimihe system tests built

2 We do not consider final states here, so any finite path from the initial staesigecution.

from words inX " violating the partial order ofj. Actually, it is sufficient to consider
the words diverging from (prefixes of) linearizationsthf

Divg = {w.a € X" |w € PrefLin(g)) Na € ¥
Aw.a & PrefLin(G)) A WF(w.a)}

A basic test built over a word in this set is a linear automategr >’ whose every state
is labelled by a verdigpass, fail or inc. We want the execution of the test to yield the
following verdicts: if the wordw.a is observed as an execution®fthenfail; if S can
performw but nota (it stops afterw), thenpass; if S cannot performo entirely but
only a prefix of it, therinc: no violation of the partial order is observed but the tedt di
not reach the end. Then we have the following definition ofsidotest for a word.

Definition 2. Letw € X+, w = a; ...aya Withn > 0. Abasic test for, denoted by
T'(w), is an automator{@, 9, ¢o) where:Q = {q;to<i<n+1; 0 = {(%, ¢i+1) bo<i<n;
statesqq to ¢,,—1 are labelled byinc, stateq,, is labelled bypass and stateg,,. 1 is
labelled byfail.

Therefore, basic tests for the global conformance relaenbasic tests built over
words in Diy;. We denote by Exgc(G) the test se{T(w) | w € Divg}. Here are
some basic tests for the MSC of Fig. 1. (a) Progessust not be able to sendo r in
the initial state of the system. (b) Processiust not send to r before the reception of
a from p. (c) Proces® must not send to ¢ again after procesgsentb to .

pir(c) plg(a) q'r(b) plq(a) q'p(a) q¢'r(b) ple(a)
pass fail inc pass fail inc inc inc pass fail
@) (b) (©)

Since the system under test is closed (it does not send dveenessages to or from
the environment), the test cannot interact with it by segdind receiving messages,
but it can still control and observe the behaviour of theeysiby synchronising with it.
The execution of a test on the system is then defined as thargyraus product of the
two automata: the test and the system synchronise on idénmmunication actions,
allowing the execution of the test to follow the executiortled system and to yield a
verdict whenever a leaf is reached or a deadlock occurs. Wetha following result.

Theorem 1. The test set Exdx(G) is exhaustive for the global conformance relation
GC.

Proof. (1) We first show that a correct system necessarily passescEsih Let S
be a system failing a tesf(w) € Exhgc(G). Therefore,w is a trace ofS. But by
construction of the set Diwy does not belong to Préfin(G)), so.S does not conform
tog.

(2) We show that an incorrect system necessarily fails ostaneExhsc(G). Let S
be an incorrect system. Then there exists a wamdr'r(.S) which is not in PrefLin(G)).

This word is not empty since € PreflLin(G)), then it can be decomposed into two
wordsw; .we With wy € PrefLin(G)) andwy € X* such thatw, is the maximal prefix
of ¢ in Pref(Lin(G)). The wordws is not empty (otherwisewould be in PrefLin(G)))
then it can be writter.w’ with a € X andw’ € X*. Thereforel'(w;.a) is a test in
Exhsc(G) that would makes fail.

A particular feature of MSG specifications is to describe oy acceptable be-
haviours but complete scenarios. The implementation is &xpected both to be con-
sistent with the partial order specified and to show the cetecenarios of the spec-
ification. In order to refine the outcome of a test, we can fijgmodify the verdicts
associated to its states: in a test built from a word, the last but one statg, is labelled
by pass only if w is a complete linearization, it is labelled mc otherwise.

The next step is to factorise tests to avoid tests withpass states. Tests can be
factorised by common (non-empty) prefixes, leading to tlieviang automaton for the
MSC of Fig. 1. For the sake of readability, we gather on theestxamsition the labels of
transitions leading to a state labelled by the same veidieonly show the factorisation
of tests around the linearizatighg(a) ¢?p(a) p'r(c) ¢'r(b) r?q(b) r?p(c), the dashed
arrows leading to the rest of the automaton. All the intestatles are labelled bgc.

fail fail

fail

An automaton gathering the basic tests built from all thedsavith common (non-
empty) prefixes then has a tree-like structure and all itgeledabelled bypass or
fail. Moreover, only states reachable by a complete lineaoratf the specification are
labelled bypass.

5 Local Testing from MSCs

We consider now that the communications inside the systeseruiest cannot be ob-
served at a global level. The system can only be controlleldotaserved locally, from
the point of view of each process individually. We will firdtidy a pure local testing
framework where the system is tested through only one psaiestime. Then we will
study the case where tests have to be executed by severabpescand observations
have to be gathered at the end of the test.

5.1 Local Testing with Local Observations

A natural way to test a distributed system is to replace onertgyeach process of the
system and to record the interactions between this procestha rest of the system.
This is what we will call pure local testing. The system ige¢edocally from the point
of view of each process and the verdict of the tests is alsal,Isince the observations
obtained from the different processes are never gathered.

To define it generally, a local observation of an MSC is theo$dbtally ordered
sequences of events occurring on a given set of procésdeshis subsection, we will
only consider local observations whefds reduced to one process.

Definition 3. Let M be an MSC over Proc andl, p be a process in Proc and be a
word in X*.

The projectionof w on p, denoted byw , is defined inductively by, = ¢ and
(aw')), = a.(w])ifac X, andwl/p otherwise.

For P C Proc a set of processes, tiféobservatiorof M/, denoted byV/, , is defined
as the collectiof{w) },¢cp for any complete linearizatiow of M3

Observing the executions of the system on each processduodlly, we can only
verify that the communications on each process occur aoaptd the total order spec-
ified. We want the projections of the traces of the system coh peocess to correspond
to projections of (prefixes of) linearizations of the MSG @fieation.

Definition 4. The set ofL.-observationsf an MSGG, denoted by locLinG), is the set
{wy, | w € Pref(¢), p € Proc} for any complete linearizatiohof Lin(G).

We write locTr (S) for the set{t|, | t € Tr(S),p € Prog of projections of the
traces ofS on each process of Proc. We then define the following confocmeelation.

Definition 5. (Local conformance relation) A systesthlocally conforms to its MSG
specificatiorg, denoted by.C, (S, G), if and only if locTr (S) C locLin, (G).

Ideally, we would like this conformance relation to be eqléwnt to the global one:
we would like local testing to be sufficient for detecting lementations that do not
respect the global partial order of the specification. Fetance, we would like to be
able to discard an implementation exhibiting the scen&fiof Fig. 3, when only sce-
nariosM; and M- belong to the specification. Unfortunately, the third sceneannot
be distinguished from the others with local observatiorg.@uch a scenario is said to
be implied.

Definition 6. LetP C 2P be a family of subsets of processes. An M3Gs said to
beP-implied by an MSG specificatiof if for every subseP € P, there is an MSQ//’
in M(G) such thatM[= M,.

We denote by, the set{ P C Proc | |P| = k} of all subsets of Proc of sizeand we
say that an MSC ig-impliedif it is P,-implied.

3 Note that the projection of an MSC on a set of processes is unique siantsere totally
ordered on each process.

Fig. 3. M is 1-implied by{ M, M>} but not 2-implied.

The scenaria\/ of Fig. 3 is 1-implied by the two first scenarios. Since tesis d
signed from local observations only would not reject an enpéntation allowing such
a scenario, it has to be already present in the specificalions, local testing allows
to decide global conformance if and only if all the scenafdesplied by the MSG
specification are included in the specification. This coadits called 1-testability [4].

Definition 7. An MSG specificatiog is said to bel-testablef all the MSCs 1-implied
by G are already inM (G).

Theorem 2. LetG be a locally-synchronised MSG specification ahd system under
test. IfG is 1-testable, thets locally conforms ta7 iff S globally conforms ta;.

Proof. The if partis trivial. Let us show the only if part. L&tbe a system which locally
conforms to an MSG specificatian i.e. locTr (S) C locLiny (G). Lett € Tr(S), we
have that for any € Proc, there exists a prefix of linearizatiére PreflLin(G)) such
thatt| = ¢ . Sinceg is 1-testable, every scenario which is 1-implieddjs already
in M (G). The scenario correspondingitbeing the prefix of a 1-implied scenario, it is
the prefix of a complete linearization of a scenaridi{G), hencet € Pref(Lin(G)).

We know from [17] that this property is decidable for locadiynchronised MSG
specifications in the non-FIFO settiign the FIFO setting, it is undecidable in gen-
eral [4]. However, as underlined in [4], since we assumetti@bystem under test has
bounded FIFO buffers, it becomes decidable whether its\vbetis, observed only lo-
cally, are included in the behaviours allowed by the MSG #jpation. So in a practical
setting, 1-testability is decidable also for FIFO arcHitees.

Therefore, for locally-synchronised MSG specificatiorst tire 1-testable, pure lo-
cal testing is equivalent to global testing. It implies ttests for the global conformance
relation can be built from projections of (prefixes of) lingations.

We build basic local tests for a proces$rom the projections of linearizations of
MSCsM € M(G) onp like basic global tests are built from linearizationstfThe
only difference is that the divergence from a prefix of a pr need not be a well-
formed word:

Divg, = {w.a € X | 3¢ € PrefLin(G)),w = ¢, Na € X,
AVL € PreflLin(G)),w.a # £, }

Basic local tests for a procegsthen are basic tests built over words in Biy. We
denote by Exfx, (G) the test sefT'(w) | w € Divg p, p € Prog.

41n [17], this result is shown for a larger class of MSG specificationgreltommunication
graphs of loops are only weakly connected (called globally-cooper®t®G in [10]).

In the context of pure local testing, executing a basic tesis lwown to replacing
the corresponding process by a testing process whose behasidescribed by the
test automaton. The execution of the test is then definedeaasynchronous product
between this automaton and the rest of the system. The vésgield whenever a leaf
is reached or a deadlock occurs. We have the following result

Theorem 3. The test set Exl, (G) is exhaustive for the local conformance relation
LC,.

Proof. (1) We show that if a systerfi fails a testt € Exh ¢, (G), then it is incorrect.
Lett = T'(w) with w € Divy, p € Proc.S fails T(w) sow = ¢, fort € Tr(S),

hencew € locTr,(S). By definition of Div,, w # ¢ for any (¢ € PrefLin(G)), so
w ¢ locLiny (G). ThereforeS is incorrect.

(2) We show that for any incorrect systesh there exists a test € Exhc, (9)
making it fail. If S is incorrect, then there existse Tr(S) andp € Proc such that
t), ¢ locLiny(G). The wordt| is not empty since € locLin,(G), then it can be
decomposed into two words; .w, wherew; € locLin;(G) andws € E;, andw; is
the maximal prefix of | in locLin, (G). Sincew is not emptyw, = a.w’ witha € X,
andw’ € Y. ThereforeI'(w;.a) is a test in Exfx, (G) that would makes fail.

Like in the global testing setting, basic local tests fornaegiprocess can be refined
so thatpass states are reachable only by the projection of a complegaiination.
Then they can be factorised by common non-empty prefixes. M#rothe following
local tests for the example of Fig. 1 (internal states artab#lled byinc).

q?p(a) q'r r?q(b) r7p(c

pla(a) plr(c) pass (a) qlr(b) sass (b) 77p(c) ass
'q(a ’p(a r?
P!T(C);P!q(a);p ‘;(f)(c\)‘ q!r(b);q?p(a);q zl(i)b\‘ T?p(C);r?Q(b); zg%\

fail fail fail fail fail fail fail fail fail

5.2 Local Testing with Gathered Observations

If a specification is not 1-testable, it means that testinggfobal conformance to this
specification cannot be purely local. If we consider agadérsitenarios of Fig. 3, we can
see that the scenarid is 1-implied by{ M1, M5} but not 2-implied: if the observations
of M from the two processegsands for instance, are considered together, it appears
that the scenarid/ is not consistent with any of the two scenarids and M. Such a
scenario can then be discarded by a test executed by the twegzep ands whose
observations are gathered at the end.

In this context, testing then consists in replacing, in térprocesses of the system
by k testing processes, locally recording their interactioith #he rest of the system,

and gathering the obtained observations at the end of esiciTtee corresponding con-
formance relation would be the inclusion of tReobservations obtained from the sys-
tem under test in thé>-observations of the specification, for any set of procegset
sizek. We recall thatP, is the set of subsets of Proc of size

Definition 8. The set ok-observation®f an MSGG, denoted by locLip(G), is the set
Hw, }pep | w € Pref(4), P € Py} for any complete linearizatiohof Lin(G).

We denote by locTy(S) the collection of the projections of the tracesbn each
subsetP € Py:locTr,(S) = {{t, }pep | t € Tr(S), P € P.}. We then define the
following conformance relation.

Definition 9. (k-local conformance relation) A syste$rk-locally conforms to its MSG
specificationg, denoted by C, (S, G), if and only if locTy (S) C locLing(G).

Following the same reasoning as in the previous subsedtimngconformance re-
lation is equivalent to global conformance if all the scévak-implied by the MSG
specification are already present in the specification. We Hze following notion of
k-testability [4]:

Definition 10. Letk € N, 1 < k < |Proc|. An MSG specificatio is said to be
k-testablef all the MSCsk-implied byG are already inM (G).

Theorem 4. Let G be a locally-synchronised MSG specification ghd system under
test. IfG is k-testable, therd k-locally conforms tqg iff .S globally conforms t@.

Proof. The proof is a direct generalization of the proof of theorem 2

We do not know about the decidability éftestability in the non-FIFO setting.
However, in the FIFO setting, as for the 1-testability caiodi, 4-testability is undecid-
able in the general case [4]. Assuming bounded buffersriately makes it decidable,
S0 in practice, it can be verified that an MSG specificatioriased byk-implied sce-
narios.

We denote byX'p the setl ., X,. We define the projection of a word € X*
over a set of processés C Proc, writtenw, ., inductively bye|, = ¢ and(a.w’)
a.(w')), if a € X'p andwy,, otherwise.

As a generalisation of the construction of tests in the previsubsection, a test for
this local conformance relation will be built from projemtis of (prefixes of) lineariza-
tions of G on each set of processes of skz& herefore, a local test for a set of processes
P will be built from words in Diy; p:

lp =

Divg p = {w.a € X} | 3¢ € PrefLin(G)), (|, =wAa € Xp
AVL € PreflLin(G)), ¢, # w.a}

To base the decision of the verdict of a test on the combinsdrehtions made on the
processes of a sét, the projections of a given word in Djvp on each procegsof P
must be kept together. A local test for a word in Piv will be distributed on processes
of P in the following way.

Definition 11. Let P C Proc. Letw € Yp, w = w'.a witha € X, forp € P. A
basic test forw distributed on the set of processBsdenoted byl'»(w), is a tuple of
automata(7y),c p, where for allg € P, q # p, T, is alinear automaton over; where
internal states are labelled bipc and the leaf is labelled byass, and7}, = T'(w),).

A distributed test then consists of a tuple of automata thaeho be run together,
with the rest of the system under test, to yield a verdictntaly, the execution of a
distributed test on the system under test is the asynchsomaauct of thek automata
of Tr(w) and the rest of the system. The test is a success if all thenatboof7p (w)
reach apass or inc state, and is a failure if théail state is reached. We denote by
Exh.c, (G) the test se{Tp(w) | w € Divg p, P € P} and prove it to be exhaustive.

Theorem 5. The test set Exla, (G) is exhaustive for thé-local conformance relation
LCy.

Proof. (1) We show that if a systetfi fails a testt € Exh.c, (G), thenS is incorrect.
Lett = Tp(w), withw € Divp, P € Py. S fails Tp(w) so (w),)pep € lOCTr(S).
Now, w € Divp implies that there does not exist any linearizattoa PrefLin(G))
such that|, = w, thereforg(w),),ep ¢ locLing(G) andsS is incorrect.

(2) We show that for any incorrect syste$h there exists a test € Exh.c, (G)
making it fail. Lett € Tr(S) such that(t|),ep & locLing(G). Thent,, # ¢, for
all ¢ € PreflLin(G)). Sincet is not empty, it can be decomposed into two words
wi.we Wherew; € PreflLin(G)) andws € X* andw; is the maximal prefix ot
in PrefLin(G)). Since(t|,),ep ¢ locLing(G), we have thatv,, is not empty. Let
wa|, = aw' witha € X, p € Pandw’ € X}. Itis easy to see thatzup.a belongs
to Divp, thereforel’p (wy,,.a) is a test that would make fail.

As we already did in the previous frameworks, we would likedfine the verdicts
of tests in order to distinguish complete linearizatiosrfrother authorised behaviours.
We then change a little the verdicts associated to stateswibdited tests: in a basic
distributed tesT» (w.a) wherea € X, the final states of all automalg, ¢ # p and the
last but one state df, will be labelled bypass only if w is a complete linearization;
they will be labelled byinc otherwise. As before, we want to factorise the tests built
from words with common prefixes, in order to avant verdicts as much as possible.
However, if we factorise naively the tests obtained for garcitess separately, we lose
the global observation that we need to conclude on the refaltest. The information
of the linearization (or equivalently, the MSC) from whictdsstributed test is issued
must be kept on the automata of this test. We will then labeh 84SC ofG by a natural,
and transfer this labelling on the states of each projediva set of processésThus,
the success of the execution of a test is determined by mgphiss or inc states in
all the automata of the test, but these states have to bdddli®t the same number,
meaning that they were reached by projections of a linetimizaf the same MSC.

Coming back to the example of Fig. 3, we want to build tests2ftwcal confor-
mance to the specificatiah composed only of the MSC&/; andMs. These tests will
be able to discard the scenari6, sincelM is not 2-implied. Tests are built from words

5 M(G) is countable if Msg is countable agtlis locally-synchronised.

in Divg p for any subset of two processBsC {p, ¢, r, s}. These words are divergences
of projections onP of a linearization ofA/; or a linearization ofA/,. To keep the in-
formation of the MSCM; from which each basic test is built, we index hy = 1,2,
each verdict of the basic test built from a linearization\@f. For instance, tests built
from words in Diy; ¢,) With states labelled by verdiglass;, inc; andfail;, i = 1,2,
can be safely factorised, giving the following automata.

fail; faily fail; faily
faily failo faily faily
O

rls(c)

rls(c)
»>(O—
incy incy pass, pass, fail
incy pass, faila incy pass,

Executing these tests on a system allowing the scefdryields the verdictpass,
andfail, for p, andfail; andpass, for r, showing the incompatibility of the observa-
tions.

We can generalize this way of distributing tests to the calserak = n, with n
the number of processes of the specification. NoticertHatal conformance is equiv-
alent to global conformance without condition since an M$€ctication is always-
testable. Thus we obtain local tests distributedhgorocesses for global conformance
as an alternative to global tests.

6 Conclusion and Future Work

We showed in this paper how to locally test a system for glaomformance to its

MSG specification. We saw that a closure condition on theipation was needed

to ensure the equivalence of the global and local conformaalations. It does not
mean that local testing is impossible without this conditibut only that the local

conformance relation is weaker than the global one, whidoisiecessarily a problem.
For instance, one can consider the closure by implied sienas the semantics of the
MSG specification and then accept them as valid scenarios.

A natural extension of the proposed frameworks is to comsaleMSC as a de-
scription of the interactions of a (distributed) systemhaat distributed environment,
the system being represented as a strict subset of proc&sstiag such a system con-
sists in setting a testing process at each port (insteadobf gacess representing the
environment) which controls and observes the system ttrthig interface. Different
conformance relations can be defined depending on howigttiet partial order spec-
ified for the system must be implemented.

Afterwards, selection criteria must also be investigatedrder to choose a repre-
sentative subset of the exhaustive test set and then geretedt set of reasonable size
to submit to the system. Selection by test purposes likeShrfiust also be dealt with.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Alur, K. Etessami, and M. Yannakakis. Inference of messagaence chartslEEE
Transactions on Software Engineerjrp(7):623-633, 2003.

. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verificatibM8C graphs.

Theoretical Computer Sciencg31(1):97-114, 2005.

. R. Alur and M. Yannakakis. Model checking of message sequeimags. INnCONCUR

volume 1664 oLNCS pages 114-129, 1999.

. P. Bhateja, P. Gastin, M. Mukund, and K. N. Kumar. Local testing e§sage sequence

charts is difficult. InFCT, volume 4639 o NCS pages 76-87, 2007.

. A. Cavalcanti and M.-C. Gaudel. Testing for refinement in CSRCKFEM, volume 4789 of

LNCS pages 151-170, 2007.

. A. Cavalcanti, M.-C. Gaudel, and R. M. Hierons. Conformancetiogia for distributed

testing based on CSP. IBTSSLNCS, 2011. To appear.

. I.S.Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and B.-S. Leetifigof concurrent programs

based on message sequence chartPDS8E pages 72—-82, 1999.

. H. Dan and R. M. Hierons. Conformance testing from messagesegcharts. IMCST,

pages 279-288. IEEE Computer Society, 2011.

. D. D'Souza and M. Mukund. Checking consistency of SDL+MSQ#jpations. InNSPIN

volume 2648 oLNCS pages 151-165, 2003.

B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state higell&1SCs: Model-
checking and realizabilitydournal of Computer and System Scien@e¢4):617-647, 2006.
J. G. Henriksen, M. Mukund, K. N. Kumar, M. A. Sohoni, and PTRiagarajan. A theory
of regular MSC languagesnformation and Computatiqr202(1):1-38, 2005.

J. G. Henriksen, M. Mukund, K. N. Kumar, and P. S. Thiagarajan message sequence
graphs and finitely generated regular MSC languagesCALP, volume 1853 ofLNCS
pages 675-686, 2000.

ITU-TS. Recommendation Z.100: Specification and descriptiorukgey 2002.

ITU-TS. Recommendation Z.120: Message sequence chabi, 20

C. Jard. Synthesis of distributed testers from true-concurrendgls of reactive systems.
Information & Software Technolog$5(12):805-814, 2003.

S. Mauw and M. A. Reniers. High-level message sequence cHar&DL Forum pages
291-306. Elsevier, 1997.

R. Morin. Recognizable sets of message sequence chaB8FADSvolume 2285 of NCS
pages 523-534, 2002.

OMG. Unified Modeling Language version 2.3, 2010.

