
  In CHI'88 Conference Companion Human Factors in
Computing Systems. Washington, D.C.: ACM/SIGCHI.

Video Prototyping:
a technique for developing hypermedia systems

Wendy E. Mackay
Massachusetts Institute of Technology

CHI'88 demonstration
13 April 1988

ABSTRACT
Successful user interfaces create a interactive dialog between
the user and the program that develops over time. Specific
iterative design techniques, such as rapid prototyping and
the Wizard of Oz, have proven particularly effective because
they enable the program designers to test this interaction
before the software is complete. This article describes a new
technique called video prototyping which combines and
extends these techniques, using real-time digitized video on
a networked workstation. Video prototyping is most
effective for developing highly interactive, information-
intensive software, including hypermedia, educational
software, simulations, and multi-media databases. Future
uses will support the evolution of user-computer dialogs
and user-user dialogs mediated by the computer.

INTRODUCTION
The term "user interface" is used to refer to a variety of
issues such as how to lay out a computer screen, the
appropriate use of input and output devices, and deciding
whether or not to provide menus, commands or icons.
Some user interface researchers concentrate on how to
increase the perceived speed of a program or reduce the
number of keystrokes necessary to accomplish a common
task. While these are clearly important, they tend to divert
attention from the interaction of the user with the program
over time. This issue is particularly important with
information- or communication-intensive software. Because
different users use each program differently, the most
critical user interface problems have less to do with speed
and aesthetics and more with comprehensibility and ability
to obtain and manipulate the appropriate information.

Individual users develop dialogs with these programs that
evolve as the user's needs and level of understanding change.
The user interface designer must understand the various
interaction patterns possible and decide how best to support
a range of user needs. Some dialogs will be fast-paced, as in
video games. Others will be slower, as in educational
software. The dialog may be initiated by the computer, as
in a drill-and-practice teaching program, initiated by the

user, as in a spreadsheet, or the control may switch back
and forth, as in some hypermedia systems. The computer
may be passive, as in a database or intrusive, as with an on-
line tutor. Some programs allow users to specify the kinds
of possible dialogs, others are limited to one or two. In any
case, users develop a model of the system and how to
communicate with it that forms the backbone of the user
interface.

This article will describe software tools that use iterative
design techniques to help create effective dialogs between
users and software. These tools have been designed to
facilitate development of highly interactive, information-
intensive software, including hypermedia systems,
databases, on-line documentation, computer-based
instruction, simulations and intelligent tutors.

ITERATIVE DESIGN
Side bar: Iterative design refers to the process of creating a
version of a program, testing it, and using the information
to revise the software. These steps are repeated (iterated)
until the authors are satisfied with the results (or run out of
time and money). Iterative design is useful in situations
where the authors have incomplete information, often the
case in developing user interfaces. Rapid prototyping and
the Wizard of Oz are both iterative design techniques.

Arguments abound in the software community about how
best to design software. Some prefer a structured approach
in which all of the components of the final software are
identified in the initial design phase and then implemented
accordingly. This strategy is suitable when the problem is
well-understood, the end goal is well-defined, and the
intermediate steps are specifiable in advance. An alternative
strategy is to iteratively develop software, by creating
prototypes and testing them. This strategy is more
appropriate when the problem is poorly understood or
evolving, multiple correct solutions are acceptable, and the
intermediate steps are not specifiable in advance.

Information-based software, such as on-line documentation,
intelligent tutors, and educational programs, tend to fall
into the second category. In each case, the problem can be
defined as providing the user with the optimal means of
obtaining appropriate information. The user-computer
dialog is the most critical part of the user interface design
here. Designers of these systems must be prepared for the
evolution of users' conceptions of the program as needs



change, expertise grows and more possibilities present
themselves.

Specifying all this in advance is difficult and sometimes
impossible. Although guidelines exist for creating legible
screen displays and determining which kinds of input
devices are appropriate in which situations, we simply do
not know enough to effectively predict the words of dialogs
users will have with these systems. Just as it would be
difficult to predict the possible avenues of a conversation
with a friend, it is hard to predict the possible kinds of
questions a user may ask of a system.

Several iterative design strategies have proven effective in
addressing these problems. Rapid prototyping involves
quickly building a prototype, trying it out on users, and
then modifying the prototype as necessary until an
acceptable state has been reached. The only problem is that
building the prototypes may be as expensive as developing
the final software. An alternative is a tool that imitates the
software before it is actually built. This strategy has been
dubbed the Wizard of Oz technique because of the
resemblance to a scene in the movie of the same name.
When Dorothy and her companions first appear before the
Wizard, they see a huge head breathing smoke and speaking
with a deep, impressive voice. Only later do they discover
that the actual wizard is a frail old man, who creates the
illusion of the Wizard by controlling various levers from
behind a curtain.

The software version of the Wizard of Oz operates on the
same principal. A user sits a terminal and interacts with a
program. Hidden elsewhere, the software designer (the
wizard) watches what the user does and by responding in
different ways, creates the illusion of a working software
program. In many cases, the user is unaware that a person,
rather than a computer, is operating the system.

What makes this technique so useful? If user interfaces were
limited to issues of screen design and input/output devices,
the answer would be "not much". But if the scope of the
user interface is expanded to include the dialog between the
user and the computer, then being able to create, modify and
understand interactions over time is critical. The cost of
developing software prototypes can be very high, so it
makes sense to let people imitate computers and take
advantage of their insights to design more effective user-
computer dialogs.

GENERALIZED WIZARD OF OZ TECHNIQUE
The most common use of the Wizard of Oz technique has
been to develop natural language interfaces. Chapanis
(1992) and Kelley (1993) used the term "Wizard of Oz" to
describe their iterative development of a natural language
interface to a checkbook and calendar management program.
Wixon, Whiteside, Good and Jones (1993) used a variation
of the technique to develop a natural language interface to
an electronic mail system, based entirely on interactions
between the user and the designer. Note that these interfaces
involve obtaining information, and unlike video games or
automatic bank tellers, fast response times are not the most

critical issue. Instead, the major problem is to provide a
reasonable way to give the user access to appropriate
information.

A problem with this technique is that designers have had to
build a special-purpose Oz program for each project. The
Educational Services R&D group at Digital was interested
using the technique for a variety of user interface design
questions, so we developed a generalized version that
allowed the designer to intercept text and graphics from
almost any program running under the VAX/VMS
operating system (Mackay, 1984, Mackay, 1986b). The
program was used to help develop an automatic natural
language generator (Van Praag, 1985), an intelligent tutor
for a text editor (Mackay, 1985, 1988) and as a tool for
exploring different ways of accessing a hypermedia database
of educational material (Mackay, 1986a).

The generalized Wizard of Oz system runs in a window
environment on a workstation. The designer can see
different versions of the user's responses, including a picture
of the user's screen and a log of the user's keystrokes. The
latter is sometimes useful in interpreting just what the user
did. When the user types something or makes a choice, the
designer can allow the input to go directly to the program
or intercept it and modify it. Similarly, the designer can
intercept the response from the computer and modify it
before sending it on to the user. In this way, the designer
can control the interaction between the user and the program
and handle problems from either the user's or the program's
side.

Once this system was developed, it became clear that the Oz
system could be extended beyond the simple one user-one
researcher model. For example:

1. Controlled Experiments: A single researcher can
provide exactly the same input to users in different
conditions in an experiment.

2. On-Line Consulting: A single teacher can monitor
several users at once and provide real-time advice.

3. Parallel Processing: Several researchers can observe the
same user, but react to different kinds of behavior,
simulating a real-time parallel processing system.

4. Expert Tutor Development: A chain of a student, an
expert who watches the student and a knowledge
engineer who watches the expert can help determine the
rules the expert uses to tutor the student.

5. Teleconferencing: Several users may share information
from any software package (spreadsheets, databases,
editors, etc.) with each other, real-time.

6. Video prototyping: By adding video, users can do all of
the above while watching each other (as in
teleconferenced meetings). Video allows users to share
anything that appears in the real world, not just each



other's faces, but software on incompatible machines,
objects in the room, or scribbles on a piece of paper.

VIDEO PROTOTYPING
Video prototyping combines the generalized Wizard of Oz
approach with video and sound to create a high-bandwidth
system for developing and supporting user-computer
dialogs. One can think of it as a method of developing
functional specifications for interactive, multi-media
software. Customers, marketing groups and upper level
management can explore different possibilities and develop
a deeper understanding of the eventual user-computer
interaction. A version of a video prototyping system is
being developed at MlT's Project Athena, using the video
windows on the X Window system (Hodges, 1986)

Video is more than just another type of data, presented at 30
frames per second. A video camera can capture the sights
and sounds of the real world. People can talk to each other,
react to changes in body language and facial expressions and
listen to changes in tone of voice. A user can send scribbled
messages on a desk top to a colleague without translating
them into computer-readable formats. A marketing manager
can evaluate a competitor's software by watching a
demonstration. He or she can even get a sense of what it's
like to interact with it, if another person will act as the
wizard. Video prototyping also allows designers to create
both interactive and non-interactive demonstrations of
software that has not yet been designed. Video is not a
replacement for other kinds of information, but it certainly
enhances the range of communication possible.

Multi-window workstations that support video are
decreasing in price and increasing in popularity. Networks
of these workstations will change the way we view both the
development and the delivery of information within
organizations. The concepts developed for video prototyping
are the basis for a multimedia communication system, that
blurs the distinction between prototype and finished
software. People will be able to use the video prototyping
environment to share information and interact with each
other in a variety of ways. Individuals will change over
time, organizations will evolve, and approaches such as
video prototyping will be required to support both user -
computer interaction and user - user interactions mediated
by the computer.

REFERENCES
Chapanis, A. (1982) Man/Computer Research at Johns

Hopkins, Information Technology and Psychology:
Prospects for the Future. Kasschau, Lachman &
Laughery (Eds.) Praeger Publishers, Third Houston
Symposium, NY, NY.

Hodges, M. (1986) The Visual Database Project:
Navigation. Educational Services R&D Technical
Report Series, Digital Equipment Corporation,
Bedford, Massachusetts.

Kelley, J.F. (1983) An empirical methodology for writing
user-friendly natural language computer applications. In

Proceedings of CHI '83 Conference on Human Factors
in Computing Systems. Boston, Massachusetts.

Mackay, W.E. (1984) Wizard of Oz. Educational Services
R&D Newsletter. Burlington, MA.

Mackay, W.E. (1985) Does Tutoring Really Have to Be
Intelligent? (Technical Report) Digital Equipment
Corporation, Educational Services. Bedford,
Massachusetts.

Mackay, W.E. (1986a) Interactive Videodiscs: Database
Driven Courseware. In M. M. Geerling (Ed.),
Computer Based Education in Banking and Finance.
Amsterdam: Elsevier Science Publishers B.V., North
Holland, pp.169-178.

Mackay, W.E. (1986b) Integrated Learning Environments.
In EURIT 86: Developments in Educational Software
and Courseware. Proceedings of the first international
conference on education and information technology.
Oxford: Pergamon Press, pp. 29-34.

Mackay, W.E. (1988) Tutoring, Information Databases and
Iterative Design. In D. Jonassen (Ed.), Instructional
Designs for Microcomputer Courseware. Hillsdale,
New Jersey: Lawrence Ehrlbaum Associates.

VanPraag, J. (1985) A New Approach to English Language
Learning by Computer by Means of Template
Extraction from Wizard of Oz Transactions. Software
Human Engineering Technical Report, No. 413:
Digital Equipment Corporation.

Wixon, Whiteside, Good and Jones (1993) Building a User-
Derived Interface. In Proceedings of CHI'83 conference
on Human Factors in Computing. pp. 24-27.


