
Triggers and Barriers to Customizing Software

Wendy E. Mackay

Massachusetts Institute of Technology

E40-366

1 Amherst Street

Cambridge, MA 02139

ABSTRACT

One of the properties of a user interface is that it both

guides and constrains the patterns of interaction between

the user and the software application. Application software

is increasingly designed to be “customizable” by the end

user, providing specific mechanisms by which users may

specify individual preferences about the software and how

they will interact with it over multiple sessions. Users may

thus encode and preserve their preferred patterns of use.

These customizations, together with choices about which

applications to use, make up the unique “softswue

environment” for each individual.

While it is theoretically possible for each user to carefully

evaluate and optimize each possible customization option,

this study suggests that most people do not. In facfi since

time spent customizing is time spent not working, many

people do not take advantage of the customization features

at all. I studied the customization behaviorof51 users of a

Unix software environment, over a period of four months.

This paper describes the process by which users decide to

customize and examines the factors that irdluence when

and how users make those decisions. These findings have

implications for both the design of software and the

integration of new software into an organization.

KEYWORDS: Customization, Tailorability, Unix

Permission to copv without fee all or part of this material is

granted provided that the copiee are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or epecific permission.

01991 ACM 0-89791-383-3/91 1000410153...$1.50

INTRODUCTION

Software manufacturers are beginning to provide users

with a greater range of customization capabilities. Yet we

still know very little about how users actually customize.

A few recent studies have begun to explore how users

customize or tailor diffe.w kinds of software (Trigg et al.,

1987, MacLean et al., 1990, Nardi and Miller, 1990).

However, a number of questions remain. How do people

decide how much to customize? At one extreme, users

may choose to never spend time customizing. They avoid

risks and save time, but never obtain any benefits from

customization. At the other extreme, users who spend all

of their time customizing software will never accomplish

any work and, again, no benefits will accrue from

customization. How then do users decide what to

customize aud when? Are there barriers that reduce the

likelihood of customization? If so, are they related to

features of the software, characteristics of individual users,

social factors, extetnal factors or combinations of the

above? Are there factors that trigger users to customize?

If so, what are they and can they be used to encourage

productive customization?

This paper describes the decision process users use when

choosing to customize soffsvare and identifies the factors

that influence their decisions. Customizable software is

defined here as having mechanisms that allow users to

customize their personal software environment without

writing code, with changes that pemist across sessions, I

collected data about the customization activities of over 50

staff members over a period of four months. A full

description of the research

definition of customization

(1990a).

smdy and a more subtle

can be found in Mackay

153

RESEARCH STUDY

Research Site

MIT’s Project Athena is an eight-year, $100 million

“experiment in educational computing” sponsored jointly

by Digital Equipment Corporation and IBM. The goal was

to provide the membem of the MIT community with a

centralIy-managed distributed network of workstations in

which users can access their files from any of the 1100

Athena wodrstations on the campus. (Champine, 1987) AU

members of the Athena staff, from secretaries to managers

to programmers have at least one high-performance

workstation with a minimum of 6 megabytes of memory

and a 70 megabyte local hard disk, with a mouse and

keyboard for input.

Project Athena’s software environment is based on a

version of the Berkeley Unix operating system. Users may

choose from a variety of text editors, text formatters,

window managers, communication systems and other

softwwe. Each user may choose how much or how little to

customize each application and the software environment

as a whole. Some applications are difficult to Ie% but

provide the greatest amount of power, flexibility and

customization options. Others are designed to be easy to

use but offer limited customization options. A user may

try one application for a while and then try another.

Users may express preferences via different mechanisms at

different levels. The user can specify how an application

looks (e.g. font sizes, borders, colors, shapes), how to

interact with it (e.g. mouse, key bindings, menus) as well

as preserve preferred patterns of use. Some choices affect

all applications, such as the choice of a window manager or

the use of =esources. Others are specific to an

application.

Table 1 lists some of the options users have when

customizing software in the Athena environment:

Table 1: Customization options

Menus Screen background Window manager Key bindings
Fonts Screen layout Window layout Mouse buttons

Colors Screen saver Window size Icon behavior

Aliases Information access Window looks Status indicators

Participants

Project Athena is run by a group of over $0 people,

including managers, secretaries, technical and non-

technical staff. The staff members are lead users

of a highly-customizable software environment, a

distributed network of Unix workstations using the

X Window System. They provide a variety of

services, similar to the hIIS department of a large

corporation, including hardware and software

operations, systems development and third-party

vendor support, public relations, training,

documentation, consulting, faculty liaison,

financial and administrative staff, the visual

computing group and staff fkom IBM and Digital.

Although located at a University, Athena staff

have very real responsibilities and deadlines. A

software company may “slip” a software release

date, but MIT never slips the beginning of the

semester.

51 members of the Athena staff completed the

interviews and supplied all of the requested data.

(Over 60 staff members participated in some part

of the study, but several left Project Athena and

several did not complete all of the questiomaires.)

The study participants include a cross-section of

managers, administrative personnel and both

technical and non-technical individual

contributors. Table 2 lists the numbers of

participants from each job category and their

technical skill levels.

154

Table 2: Technical background of the study participants

I
Technical Level

Job Category N High Medium Low

Managers 10 3 2 5

Secretaries 5 0 0 5
Systems Programmers 12 12 0 0
Applications Programmers 8 2 3 3

Other staff 16 2 4 10

Total 51 2 4 10

Technical skill is defined operationally, based on a

combination of computer education and

programming experience. Individuals rated at a

“high” technical level have an undergraduate major

or graduate education in computer science and four

or more years of experience as a systems

programmer. (Two individuals who were not

computer science majors but who have been

programming as systems programmers for over ten

years were also included in this category.)

Individuals rated at a “medium” technical level

have completed two to five computer science

courses and have up ta four years of job experience

at the applications programmer level, Individuals

rated at a “low” technical level have at most one

computer course and no job expedience as a

programmer.

Data

Data was collected over a period of four months,

during which a number of changes occurred,

including a reorganization of over 80tZ0 of the staff,

a major office move involving over half of the staff,

and a major software upgrade. The data consist of

open-ended interviews, questionnaires, and

automatic records of customization activities. I

conducted the interviews over a period of four

months. Prior to each interview, I asked

participants t.a fill out a two-page

with background information,

programming backgrounds and

questionnaire

e.g. their

current job

responsibilities, information about which software

they use, which applications they customize and

how much, and the sources of information they use

to find out how to make a particular customization.

I also asked participants to fill out two additional

questionnaires, during or after the interviews,

which included usage and customization levels of

different applications.

Interviews were approximately one hour and

conducted in each participant’s office to facilitate

asking questions about particular files or

customization activities. I asked each participant

to print out a second copy of the ordered list of

customization files, which provides an indication of

the user’s rate of customizing and identifies which

files have been changed. I then asked participants

to show me their customization files, describe the

reasons for the customizations and explain the

circumstances under which they were made,

particularly if they were borrowed from or given to

another person. I asked users to remember recent

critical incidents of the previous week. This

strategy is based on the Critical Incident

Technique. (See Chapanis (1969) for a discussion of

the merits and problems of the critical-incident

technique.) I asked about customization strategies,

specific triggers and barriers to customization, and

the process by which users make customization

decisions. I also incorporated new questions as

they arose and interviewed several people a second

time to incorporate additional questions.

155

The process of deciding to customize

What factors influence a user’s decision to

customize? When faced with a problem, users have

a choice: either change their behavior or customize

the software. The latter may take more time, but

poses few risks. One manager observed that her

staff “prepare persomal cheat sheets, th~

effectively customizing themselves rather than the

software.” Another user says that he only

customizes when he has “the leisure time b do it.

It won’t take long, but if something goes wrong, 111

take a productivity hit.” The alternative is to learn

more about the system and risk spending an

unknown amount of time making the change and

possibly breaking something. Previous successes

and failures affect the decisions here. One of the

most common ways to reduce risk is to seek help

fkom others. If someone else has already invested

the time to make something work, then the

chances that it will break are much smaller.

All users in this study borrowed some or all of their

customization files from other people in the

organization (Mackay, 1990b).

Figure 1 summarizes users’ decision process when

learning a new software application and deciding

whether or not to customize it. The first decision is

whether or not to try the software. If the

application promises a significant improvement

over an existing application, but requires extra

effort to learn, this may be a difficult choice. The

user may decide to “play with it” as a way to

determine how easy or hard this transition will be.

If the user decides that it is worth the effort, he or

she must then decide whether or not to customize

the application. Such customizations are often

made as another way to explore the software. If

the user decides to make an initial set of

customizations, they will influence the use of the

software in the future.

i
Yes

9-Adopt it? ‘o m

Yes

Figure 1: Decision process for customizing software

156

Users spend varying amounts of time and effort

customizing, ranging fi-om once every six months to

every few days. However, users still spend most of

their time simply “using” the software and

concentrating on the tasks at hand. Usually, users

need a reason to customize. The most common are

external events that force them to stop and reflect

on their behavior. Users identified the following

kinds of reasons:

1. External Events: Job changes, office moves,

personnel changes, going on trips (or experiencing

an earthquake!) that force users to stop their

normal work and think about how they organize

their time and use of the software.

2. Social Pressurcx Interruptions by colleagues

who want to share or provide help or when the user

sees something he or she would like to borrow.

3. Software changes: Breakdowns, upgrades, or

the addition of a new program, may also force the

user to spend time customizing. Interestingly,

users often customize to maintain a stable

interaction with the software, rather than to take

advantage of new features. Mackay (1990a) found

that all of the users who had customized their

software at all included customizations that helped

them maintain stable usage patterns, either by

retrofitting the new software to be like the old or

refusing to use the new software. 100% of those

who had avoided customizing learned to use the

new software.

4. Internal Factortx Boredom or sudden access to

spare time (e.g. a three-day weekend or an evening

in a hotel room while on a trip), or sudden insights

about new ways of making the system do

something, often in the context of trying something

new or running across a previously unknown

feature. Sometimes, users become fed up that

something does not work properly and decide to fix

it or discovers that he or she performs the same

task repeatedly and devises a way to make the

process happen automatically (e.g. creating aliases

(shorthands) for moving from one place to another,

setting options or arranging windows on the

screen).

TRIGGERS AND BARRIERS TO CUSTOMIZATION

Table 3 summarizes the factors that users cite as

both triggers and bafiers in their decision-making

process about when and how to customize software.

The table is organized according to the four factors

influence a user’s decisions: the technology itself,

the properties of the institution, external events,

and individual factors. The factors are listed from

most to least common in each category, preceded by

the percentage of study participants who cited the

factor. These data were compiled from the open-

ended interviews or when users gave specific

reasons for making or avoiding particular

customizations. Participants were not given this

list.

Participants identified 31 unique triggers and cited

a total of 226, an average of 4.4 triggers per person.

All but two participants cited at least one trigger

and one person cited 11. Participants were most

likely to customize when they discovered that they

were doing something repeatedly and chose to

automate the process or when the system changed

and they modified the s~ftware to make it act as it

did before the system change. Also very common

was customization for the purpose of stopping

something that was annoying or slow. (This was

often cited in conjunction with automating a

common practice.) Observing something that

another staff member does, either by walking by or

when working with them, was the fourth most

common. The next most common set of triggers

include fixing something that no longer works,

exploring the system when it is new, having

someone set up the system when new, and creating

a stable environment for people who need to switch

from one to another (either from a machine at work

to one at home or among machines at work).

Participants identified 20 unique barriers and cited

a total of 102, an average of two barriers per

person. AU but four participants cited at least one

barrier and one person cited seven. By far the

biggest barrier is lack of time, cited by almost two

thirds of the participants (63%). “Lack of time”

often means that the user is not willing to risk

157

spending an unknown amount of time on as a barrier. Lack of interest and the general

customization. One third cited lack of knowledge feeling that a particular problem isn’t worth fting

about how to make desired customizations (33%) are also cited.

Table 3: Factors cited as triggers and barriers to customization activity

Percent Triggers of Percent Barriera to
of Users Customization of Users Customization

Teclmology influences user

29% Something breaks 33% Too hard to modify
25% Learn new systam 10% Poor documentation
25% Switch environments 6% New customization format

2% File system gets full 4% Unpleasant customization process
2% Poor documentation 4% System is too slow

4% Avoid software to avoid retrofit
2% Software too limited
2% Too cumbersome to find info

Organization or other individuals ixd3uence user

39~o I see something neat 8% Use Athena’s standard commands
25% Setup for me when I arrived

4% Someone posts an idea
4% Make generalizable for others
2% My manager suggested it

External evente iufluence user

43% Retrofit when system changed 12% System upgrade broke things

12% Change job or activities 470 Early bad experience

1070 Urgent need 2% System changes too often

4% Test new application

4% System upgrade

Individual tbctors influence user

43% Notice own repeated patterns 63% Lack of time

41~o When it gets too annoying 12% I’m not interested

22% I think of something new 10% Lack isn’t painful enough

18% Learn from it, curiosity 8% I’m rooted in my old patterns

16% I delete when I don’t need it 6% I don’t know the possibilities

14~o Aesthetics 6% I’m afraid to risk it

14% When I’m bored or waiting 470 I don’t know what I need yet

10% Whim 2% I refuse to sanction it

6% Increase productivity

6% It’s fun
6% I’m bored with current one

4% Remove clutter

4% My mental timer goes off

4% Finally understand a customization

4% Increase efficiency

2% Tending my “personal repertoire”

31 Unique triggers 20 Unique barriers
226 Total responses 102 Total responses

51 Participants 51 Participants
96?L0 Percent of participants (49/51) 92% Percent of participants (47/51)

4.4 Mean triggers cited per person) 2 Mean barriers cited per person

158

DISCUSSION

Although software manufacturers are increasingly

likely to provide customization options, very little

is understood about how users actually customize.

We do know that users often resist using new

software features. Mackay (1988a) found that 50q0

of full-time secretaries in a research study, selected

because they had 1.5 or more years of experience

with a text editor, had not learned basic editing

functions such as “cut and paste” or “replace text

string”. Norman (1981) found that even expert

Unix programmers used a small subset of the

commands available to them, suggesting that lack

of knowledge is not the only barrier to using the

system.

The data in this study show that simply providing

a set of customization features does not ensure that

users will take advantage of them. Customizing

involves a tradeoff for usera, who must choose

between activities that accomplish work directly

and activities that may increase future satisfaction

or productivity, such as customization, learning

new features, coordinating activities, or creating

innovations. In each case, the user trades off a

short-term investment for a longer-term potential

benefit.

One can compare the decisions about customizing a

new software package to choosing when to invest in

a new, depreciable capital investment. The new

software package has a learning curve associated

with it, which is the cost of ‘buying’ it. (For the

sake of discussion, assume that the user has free

choice of using any of a number of software

packages that are available.) Each software

package ‘depreciates’ as other more effective

packages become available or as new features are

added to the existing package that must be

learned. When do users stop their work and take

the time to learn the features or customize to take

advantage of them? At what point does the cost of

learning something new become preferable to using

out-of-date software? These data support the idea

that users ‘satisfice’ rather than optimize. They

are busy and customizing takes time, so they only

customize when they deem it worth the trouble and

they understand how to make the desired changes.

“Optimal” amounts of customization change with

the user’s work context. For example, a user may

need to produce a report by 5:00 pm. She may

decide that a customization designed to automate a

procedure and save 20 minutes is less optimal than

doing the same procedure manually, since the

former poses a risk of not producing the report at

all and she derives no benefit from turning the

report in by 4:30.

Customizations that allow users to continue

working as they did before, without learning new

patterns of behavior, and customizations tb.at

increase efficiency by performing a commonly

occurring set of actions with a single command, are

most likely to be considered ‘worth it’. Functions

that become ‘automatic’, such as use of particular

keys for particular functions, are very resistant to

change and users like to retrofit the software back

if the overall system changes. Unless the user is

bored or just learning a new system,

customizations that make the software

environment aesthetically pleasing or more

interesting are generally avoided.

Current software designs do not take into account

that users are more likely to customize at certain

times, that customizing is often a social process,

and that certain kinds of events are likely to

dramatically increase or decrease the probability of

any individual user deciding to customize. They

also don’t recognize that users most often want to

customize patterns of behavior rather than lists of

features. Software designers should develop

designs that allow users to learn about effect usage

patterns and modify them as such. (Keyboard

macros provide a limited version of this idea.)

Users want information about their own use and

that of other people with similar job

responsibilities and attitudes from which they can

base their customization decisions. Software

designers should permit users to capture individual

patterns of use and share them with others.

159

Managers should note the importance of external

events on user’s customization decisions.

Artificially creating situations that allow users to

stop and reflect upon their own interactions with

the software will increase the probability that

users will take the time to customize, Similarly,

bringing users into contact with each other to

explicitly share customization ideas will increase

the applicability and usefidness of individual

custmnization decisions. These are especially

important because, otherwise, users are most likely

b customize when they first learn the software,

which is when they know too little to make

effective decisions. Providing opportunities for

customization later in the use cycle should increase

the overall effectiveness of those customizations.

Finally, managers should understand that users

want to maintain existing, well-known patterns of

behavior and will resist new features or software

products that force them to change these patterns.

Encouraging or providing customizations that

enable users to maintain stable usage patterns will

increase their ability to quickly use new software

packages.

In summary, users follow common patterns when

customizing their software. Some factors may

trigger users to customize, while others may act as

barriers and reduce the probability of

customization, These factors include social

pressure and other influences fkom the

organization, external events, internal factors

specific to an individual user and the

characteristics of the technology itself.

Understanding how thes factors influence users’

decisions about when and how to customize should

provide information to software designers,

managers and users who create, introduce and use

customizable software.

Champine, G. (1987). Project Athena as a Next

Generation Educational Computing System.

In ASEE Annuul Conference Proceedings.
ASEE,

Chapanis, A. (1969). Research Techniques in
Human Engineering. Baltimore, Maryland:

John Hopkins Press.

Mackay, W.E. (1988). Tutoring, Information
Databases and Iterative Design, In
D. Jonassen (Ed.), Instructional Designs for

Microcomputer Courseware. Hillsdale, New

Jersey: Lawrence Ehrlbaum Associates.

Mackay, W.E. (May 1990a). Users and

Customizable Sofiware: A Co-Adnptive

Phenomenon. Doctoral dissertation,
Massachusetts Instititute of Technology.

Mackay, W.E. (October 1990b). Patterns of
Sharing Customizable Software, Conference

on Computer-Supported Cooperative Work.

Los hgeles, California: ACM.

MacLean, A., Carter, K., Lovstrand, L., and Moran,
T. (April 1990). User-tailorable systems:
Pressing the issues with buttons. CHI ’90

Conference on Human-Computer Interaction.
Seattle, Washington: ACIWSIGCHI.

Nardi, B. and Miller, J, (October 1990). Twinkling
lights and nested loops: Distributed problem

solving and spreadsheet development.
Conference on Computer-Supported
Cooperative Work. Los Angeles, California:
ACM.

Norman, D.A. (November 1981). The Trouble
With Unix The User Interface is Horrid.

Datamxttion, , pp. 139-150.

l%gg, R., Moran, T. and Halasz, F. (1987).
Adaptability and Tailorability in NoteCards.
Proceedings of Interact ’87. Stuttgart,
Germany.

160

