
In Proceedings of CHI'98, Los Angeles, CA: ACM.

DIVA: Exploratory Data Analysis
with Multimedia Streams

Wendy E. Mackay 1,2 Michel Beaudouin-Lafon2

Centre d'Études de la Navigation Aérienne1 Laboratoire de Recherche en Informatique2

Orly Sud 205 URA CNRS 410
94542 ORLY AÉROGARES LRI - Bâtiment 490 - Université de Paris-Sud

FRANCE 91 405 ORSAY Cedex - FRANCE
mackay@lri.fr mbl@lri.fr

ABSTRACT
DIVA supports exploratory data analysis of multimedia
streams, enabling users to visualize, explore and evaluate
patterns in data that change over time. The underlying
stream algebra provides the mathematical basis for
operating on diverse kinds of streams. The streamer
visualization technique provides a smooth transition
between spatial and temporal views of the data. Mapping
source and presentation streams into a two-dimensional
space provides users with a direct manipulation, non-
temporal interface for viewing and editing streams.

DIVA was developed to help us analyze both qualitative
and quantitative data collected in our research with French
air traffic controllers, including video of controllers at
work, audio records of telephone, radio and other
conversations, output from tools such as RADAR, and
coded logs based on our observations. Although our
emphasis is on exploratory data analysis, DIVA's stream
architecture should prove useful for a wide variety of
multimedia applications.

KEYWORDS: Exploratory data analysis, Hypermedia,
Multimedia, Protocol analysis, Streams, Stream algebra,
Video

INTRODUCTION
Video, audio and other data collected in field studies
continue to be cumbersome to manage and analyze. We
are interested in the problem of how to compute with a
variety of these multimedia data types: to visualize,
explore, analyze and evaluate relationships among
streams of data.

Early systems to support analysis of video records were
influenced by hypermedia, which is a logical extension of
hypertext. Originally proposed by Vannevar Bush (1945),
the basic approach organizes text into separate chunks
that are linked together. Hypermedia adds images, audio
and video, using hypermedia links (Conklin, 1987) to
organize them. Hypermedia has become the dominant
metaphor for managing multimedia data and is used in a
wide variety of applications, including multimedia
documents (Buchanan & Zellweger, 1992), education
(e.g., Denning, 1997), games (e.g., Myst) and of course,

the World Wide Web. An early tool for analyzing video
data, VideoNoter (Trigg, 1989, Roschelle & Goldman,
1991) begins with data streams, and then uses hypermedia
links to organize the relationships among different
aspects of the data.

Another approach emphasizes streams instead of chunks
of information. Rather than treating all data as chunks
and converting naturally-continuous information such as
video into discrete units; all data can be treated as
streams, mapping naturally-discrete objects onto event
streams. The analysis system can operate on all data in a
uniform way, exploring directly the patterns that emerge
from the streams. Hypermedia lets users start and stop
streams; the stream approach lets them highlight,
examine and compute upon the patterns within and
among streams.

EVA, the Exploratory Video Annotator, (Mackay, 1989,
Mackay & Davenport, 1989) was based on this approach.
We were not interested in authoring multimedia
documents that treat video as "illustrations that move".
Instead, we were interested in helping researchers annotate
and visualize patterns and relationships among time-based
multimedia data. EVA's stream metaphor derived from
our work on Muse, a multi-media authoring language
originally designed at Digital Equipment Corp. and
enhanced significantly at MIT's Project Athena (see
Hodges & Sasnett (1993) for a description).

One of the authors (Mackay, 1989) suggested that the
exploratory data analysis techniques pioneered by Tukey
(1977) (see Hartwig & Dearing (1979) for a concise
summary) are more appropriate for examining video data
than the standard statistical techniques used in controlled
laboratory studies. Sanderson and her colleagues
(Sanderson et al., 1994, Sanderson & Fisher, 1994) have
pursued this idea extensively, coining the term
Exploratory sequential data analysis (ESDA) for systems
that support the exploration of multimedia data. Several
systems have been developed to support the analysis of
video data, including Harrison (1991), Olson et al.
(1994), Chua & Ruan (1995), and Plaisant et al. (1996).
Other researchers working in related areas such as video
conferencing have developed similar tools, e.g. the tools
developed at Xerox PARC, including Where Were We?
and its successors (Minneman & Harrison, 1993,
Minneman et al., 1995, Moran et al., 1997), Marquee
(Weber & Poon, 1994), and TimeWarp (Edwards &
Mynatt, 1997).

Research context
Our current research (Mackay & Fayard, 1997a) seeks to
provide air traffic controllers with the benefits of
networked computing without forcing them to give up
their successful existing work artifacts, in particular,
paper flight strips. We began with a four-month field
study, following a team of controllers at the Paris en
route control center (Athis Mons). We are now analyzing
over 100 hours of coded event streams, based on
researchers' observations, approximately 50 hours of
video of controllers at work, with corresponding radio,
telephone and local conversations, output from RADAR
and other devices, and copies of relevant artifacts,
particularly paper flight strips.

We use exploratory data analysis techniques to identify
and analyze both qualitative and quantitative aspects of
this data and are particularly interested in finding patterns
that occur across media types. For example, Figure 1
shows two controllers writing simultaneously on two
different flight strips, a relatively rare event. We are
interested in understanding the circumstances that
surround such situations. Are there other patterns of
activity correlated with this one? Are the controllers more
or less likely to talk to each other? Are they likely to
perform other activities at the same time? Can we predict
this pattern from other recurring patterns, e.g., stressful
situations? Are there any events that help predict when
this occurs?

Figure 1 : Two air traffic controllers writing at the
same time on different flight strips.

Discovering the answers to these and related questions not
only increases our understanding of the complexity of
their work, but also helps us better understand how to
create tools that support rather than interfere with their
existing work practices, addressing problems without
adding unnecessary costs (Mackay & Fayard, 1997b).

This article describes DIVA, a system designed to support
computing with streams of multimedia data, enabling
users to visualize, explore, analyze and evaluate patterns
of data that change over time. We present the underlying
system architecture, which involves a common
representation for multimedia streams and an algebra for
manipulating them. We next present the user interface,
which provides interactive temporal and spatial views of
the data. Throughout, we use examples from the air

traffic control project to illustrate the interface to DIVA
and explain how various stream operations work and why
they are useful. We conclude with a summary of the
contributions of DIVA and directions for future research.

STREAM ALGEBRA
DIVA uses the same stream metaphor as the earlier EVA
system, with a more powerful set of operations derived
from a stream algebra. Others have used algebras to deal
with time-based data. For example, Algebraic video (Duda
et al., 1996) defines an algebra to describe the spatial and
temporal composition of video segments. However, the
operators they use are different from DIVA, since the
purpose of their system is the production of video
presentations, not the analysis of time-based data. Rivl
(Swartz & Smith, 1995) is a language that also focuses
on video data and production tasks by providing graphical
operators to create complex presentations.

This section describes the DIVA algebra, with examples
derived from air traffic control data. The algebra is based
on the notion of multimedia streams and a set of
operators to create, modify, play and present streams.

A stream s of type T is defined as a sequence (ti) of n+1
clock times and a sequence (vi) of n values:

s = (t1: v1, t2: v2, ..., tn: v2, tn+1)

The sequence (ti) is increasing, so the stream can also be
viewed as a sequence of stream segments [ti, vi, di]. The
duration of the segment is di = ti+1 - ti. The values vi are
either undefined (denoted as ⊥) or a value of type T, e.g.
boolean, integer, text or image. The value of a stream s
at time t is noted s@t and is defined as follows :

• if t < t1 or t ≥ tn+1 then s@t = ⊥
• if j is such that tj ≤ t < tj+1 then s@t = vj

The empty stream, noted () is a stream whose value is
undefined for any time t.

Example
If we begin with a video clip of two air traffic controllers
writing on two paper flight strips, as in Figure 1, we
have one stream of video data:

s.video = (1:00:00: frame0, 1:00:01: frame1,
1:00:02: frame2, ... , 1:03:00).

A data log is another type of stream, consisting of a
series of boolean values that indicate the precise times at
which specific events occur. For example, a boolean
stream can identify every situation in which a controller
writes something on a flight strip:

s.write = (1:00:05: on, 1:00:09: off, 1:02:49: on,
1:02:57: off, 1:03:00).

Session transcripts can be represented as a series of
subtitles. For example, a text stream might identify every
radio conversation between the radar controller and the
pilot, with the specific text appearing as the value
associated with each time segment:

s.radio = (1:00:21: "Maintain flight level",
1:00:34: ⊥,
1:01:58: "Climb to level 310",
1:02:04: ⊥, 1:03:00).

v1s1

v2

d
d'

s2

v1s1

v2

d d'

s2

v1s1

v2

d
d'

s2

Figure 4: Time filtering. Left: v1 before v2 (d>0, d'>0); Center: v1 close to v2 (d<0, d'>0); Right: v1 after v2 (d<0, d' <0)

Streams can contain any type of values. For example, the
RADAR screen presents a 2-dimensional view of the
location of a set of airplanes moving in a 3-dimensional
space. We can define a stream for each airplane that
contains its position over time.

Normalizing streams
Before computing with streams, it is useful to normalize
them: segments with a duration of 0 are removed,
successive segments with the same value are merged, and
leading and trailing segments with value ⊥ are removed.
In other words, if two segments with the same value are
adjacent to each other, the normalized stream contains a
single, longer segment. All streams in this discussion are
assumed to be normalized. We define the extent of the
stream as the interval [t1, tn+1] of its normal form.

Normalizing streams provides a canonical representation
of a stream so that, for example, we know that two
streams are equal if and only if their normal forms are the
same. Normalizing streams also minimizes storage and
reduces processing costs.

Stream expressions
New streams can be created from existing streams by
stream expressions, comparable to the expressions used
to compute a cell from other cells in a spreadsheet. Given
n streams s1, s2, … sn of types T1, T2, … Tn and a
function f : T1 x T2 x … Tn -> T, the stream expression
f (s1, s2, … sn) is a stream s of type T such that :

s@t = f (s1@t, s2@t, … sn@t) for all t
It is assumed that f (⊥, ⊥, … ⊥) = ⊥.

A common stream expression is editing : a source stream
s and an edit stream e, both of type T, are combined with
the following edit function:

edit (vs, ve) = if (ve = ⊥) then vs else ve

The resulting stream is the same as the source stream
except that it is replaced with the edit stream where the
edit stream is defined (Figure 2).

source

edit

result

Figure 2: Editing a stream. Time goes from left to
right. Each rectangle is a stream segment.

Example
Usually, we use at least two researchers to code the
activities. Some situations are ambiguous and we might
have to discuss the final analysis. This technique allows

us to work with one of the annotation streams made by
one researcher and modify it based on the annotation
stream created by another researcher.

Insertion and deletion
Like editing, insertion and deletion are common
operations on streams (Figure 3). Inserting a segment
into a stream creates a new, undefined segment and offsets
the subsequent segments accordingly. Usually, the
inserted part is then replaced with the edit operation
described above. Deletion removes and/or shortens
segments so that a given interval is removed from the
stream. The offset operation is a short-hand for inserting
or deleting a segment before the start of the stream. The
offset d can be positive or negative so that an entire
stream can be offset forward or backward in time.

insert
delete

before

after

Figure 3: Inserting and deleting stream segments.

Example
We need to present collections of examples of activities
observed in our data. For example, we have a video that
presents a series of clips of controllers writing on strips,
pointing to the strips, and rearranging the strips. When
we videotape a new session, we can easily insert new
examples of these activities into the existing set of
streams.

Time filtering
It is often useful to analyze when a given condition
occurs before or after another condition. We call this
operation time-filtering and define it as follows:

s1 = v1 within [d, d'] of s2 = v2
It creates a boolean stream s defined as follows:

• s@t = ⊥ if s1@t ≠ v1
• s@t = true if ∃ t', t+d < t' < t+d' and s2@t' = v2
• s@t = false otherwise

The resulting stream describes when an occurrence of v1
in stream s1 occurs close to an occurrence of v2 in stream
s2. The interval [d, d'] defines how close (or how far
apart) we want the values to occur (Figure 4).

A variant of time filtering uses a condition that tests
whether the whole segment containing v2 in stream s2 is
within the time interval defined by [d, d']. These
conditions generalize Allen's (1984) algebra on time
intervals by introducing the notion of temporal vicinity
(specified by d and d'). This is necessary for the type of
data analysis we are interested since we need to be able to
look for events that occur at times close to each other.

Example
When two controllers interact with the same set of strips
at the same time, it is an indication of a "charged"
situation. We can find out if there is always a
corresponding rise in the number of new flights or an
increase in conversations between the radar controller and
the pilot, just prior to this event. We can then perform a
time series analysis on the result with an external tool to
determine which activities cluster together and whether or
not we can predict the occurrence of some activities based
on the occurrence of others.

Stretching segments
The last operation defined by the algebra stretches the
segments of a stream by a duration d. Each segment is
extended at the beginning and at the end by d if the
adjacent segment is undefined. Stretching is very useful
to create a control stream (see below) that includes some
context around a specified set of clips (Figure 5).

d

after

before

Figure 5: Stretching a stream by d.

Playing streams
In order to play a stream, it must be bound to a time
base. Several streams are synchronized by binding them
to the same time base. A time base is defined by a start
time, a stop time and a rate. It generates a time value that
changes over time at a pace defined by its rate. The rate is
a real number that specifies whether the time base runs
forward or backward at slow, normal or fast speed or
whether it is stopped (like the jog-shuttle of a VCR).

A time base can have a control stream: the time base
skips undefined segments of the control stream as it runs,
making it easy to play sequences of clips not originally
adjacent to each other in the original streams.

Example
If we are interested in looking at situations where more
than one controller writes at the same time on a strip, we
create a stream identifying this condition, stretch it by 1
or 2 seconds, and use the resulting stream as the control
stream. We can then view in succession all clips in
which more than one controller writes at the same time.

Time warping
A more sophisticated method of controlling playing is to
define the mapping between the time delivered by the
time base and the time used to index the streams. This
mapping is defined by a stream called the warping stream.
Values of a warping stream ws are pairs (t, r) of time
values and rates. Let tb be the time delivered by the time
base (called the playing time) and let [ti, vi, di] be the
segment of the warping stream such that ti ≤ tb < ti + d.
Then ws@tb = vi = (t, r) where t is a time and r is a rate.
The warping tw of time tb is defined as tw = t + r*(tb-ti).

Time warping of a segment is illustrated in Figure 6. The
slope of the diagonal line indicates the rate. If the slope is
45º, the rate is 1 and the clip plays at normal speed. If the

slope is under 45º, the clip plays in slow motion, while
if the slope is over 45º the clip plays in fast motion.
Finally if the diagonal appears in the other direction, the
clip plays backward (at a rate determined by the slope).

Time warping makes it possible to take any combination
of clips from the streams and play them in any order and
at any rate (Figures 7a and 7b).

ti ti+ditb

t

t+r*di

tw

play
time

source
stream
time

Figure 6: A segment of the warping stream.

play
time

source
stream
time

Figure 7a: A warping stream that plays a clip twice:
first at normal speed and then in slow motion.

play
time

source
stream
time

c1

c2

c3

c2 c1 c3

Figure 7b: A warping stream that plays the stream
segments c1, c2, c3 in the order c2, c1, c3.
c1 and c2 play at normal speed; c3 plays backwards.

DIVA USER INTERFACE
Like EVA and later Video Mosaic (Mackay & Pagani,
1994), DIVA provides two views of the stream data:
temporal and spatial. Spatial views show the current
value of a set of streams at the current time of their time
base. Figure 8 shows an example with a video stream in
the middle, boolean streams on the left side and text
streams at the bottom. Two air traffic controllers are
writing on the strips at the same time (stream 2W). The
radar controller is telling the pilot to "Maintain flight
level" (stream Rad) and the corresponding boolean stream
for talking to the pilot (stream R>P) is on. No one is

speaking on the telephone (stream Tel), and the activity
code for conversations between the two controllers is off
(stream R>O). Other activity codes, including pointing to
the RADAR (PR), adjusting the Digitatron (PD) and
adjusting the RADAR image (MC) are also off. Note that
these activity codes are defined by the user.

Figure 8: Spatial view of a set of streams.

Temporal views show abstracted versions of the changing
state of a set of streams in relation to each other. This
gives us the ability to "lay out time in space" and interact
with various streams in parallel. The temporal view of a
stream displays the stream segments along a timeline. In
horizontal display, segments are represented by rectangles
whose position, size and color represent the segment time
interval and value. A boolean stream can be displayed by
assigning a different color to its true and false segments
or by appearing and disappearing. An integer stream can
be displayed as a histogram and more complex streams
can combine color and height (Figure 9). For a video
stream, the temporal view can present a sequence of video
"best frames", as is often done in commercial systems
such as Adobe Premiere.

Spatial and temporal views complement each other.
Spatial views help capture relationships between the
current values of different streams and, since they are
animated, provide a dynamic display that helps identify
patterns of changes over time. Temporal views help
identify longer term patterns within and among streams.
By showing both past and future events, temporal views
help anticipate what is coming up in the spatial views.

boolean

boolean

integer

cross-
product

 Figure 9: Temporal views for different streams.

Streamer display
In order to better visualize and interact with streams,
DIVA integrates both types of views into a single
display. We were influenced by the video streamer (Elliot,
1993), which generates a stream from a video sequence by
offsetting the edges of each video image. Cruz & Hill

(1994) have also used this technique to visualize changes
in audio level and button states in a video conferencing
application. We have generalized this technique to display
the changes in multiple streams of any type.

Figure 10 (next page) illustrates the smooth transition
between the spatial and temporal views. The streamer
display includes a spatial view in the center of the main
window and a temporal view around it. When the set of
streams is played, the temporal view streams up or down
(depending on whether it is played forward or backward)
so that the spatial view in the central display is always
positioned correctly relative to the streams: streams along
the edge of the spatial view seem to leave a trace that
corresponds to the temporal view. When the temporal
view is "streaming", the parts to the left and top of the
central screen show a trace of what has already occurred
whereas the parts to the right and bottom of the central
screen show what is about to occur (Figure 11-a).

We have also experimented with the display depicted in
Figure 11-b. Here, the streams are fixed: instead of
moving when playing the sequence, a cursor indicates the
current time in the temporal view. The first display
works well for very large sequences because it provides
context around the current time. The second display
collapses long streams into a small screen space, reducing
accuracy for both the display and the interaction. Either
display makes it easy to detect changes in state as the
image "streams" forward or backwards in time.

On a 21" screen, the streamer display can accommodate a
large number of streams: up to 2 video streams, 5 to 10
text streams and 30 activity streams. The user can decide
which streams to display and can define groups of streams
that can be displayed or hidden together. The bottom of
the display (not shown) contains a VCR-like interface to
control the time base. Any stream can be designated as
the control stream and warping streams can be edited in a
separate window.

Present

Future

Past

Past

Present

Streams

Streams

current
time

F
ut

ur
e

Figures 11a & 11b: A comparison of two display
strategies for linking spatial and temporal views.

Creating streams
Creating streams from external sources
Streams can be created from files in various formats:
recorded video or audio signals, a column or row from a
spreadsheet, a text file, the output of devices such as the
Digitatron or the RADAR, etc. Figure 10 shows actual
data imported from an Excel spreadsheet. Streams can
also be exported to these file formats, which makes it
easy to use spreadsheets or statistical analysis packages to
conduct other kinds of data analysis.

Figure 10: DIVA main display. The spatial view is in the center and the temporal view is on the sides. When the time
base is running, the spatial view is constantly updated and the temporal view streams from bottom-right to top-left.

Creating streams by direct input
Streams can also be created explicitly by the user: the
user defines the type and names of the stream in the
stream's creation box (Figure 11). The user can then work
in live mode by starting the time base and clicking the
value buttons in the creation box to create segments.
Each click creates a segment that starts at the time of the
click. The user can also work in off-line mode by
selecting a start and stop time in the time base control
panel and a value in the stream creation box. This creates
a new segment in the stream with the specified times and
value. Several streams can be created simultaneously by
opening as many creation boxes as necessary, and
keyboard equivalents can be defined for each stream to
speed up input.

For example, to code the data in a video stream, a user
may create a set of binary streams that identify specific
activities of the controllers. The user creates a stream and
specifies its short and long names (e.g. "2W" and "Two
controllers writing simultaneously"), its type (boolean)
and its colors (e.g. green and red). The user then starts the
time base and records stream values by clicking the
on/off/undefined buttons in the creation box at the
appropriate times. Since the rest of the interface is active,
the user can see the other streams play in the main
display, especially the video streams.

Figure 11: Stream property box

Creating streams with the stream algebra
Streams can also be created with the stream algebra. After
selecting the "expression" type in the stream's creation
box, the user can enter a stream expression using any of
the operators of the stream algebra. By default, the
resulting stream is re-computed every time a stream that
appears in the expression is changed, as in a spreadsheet.

For example, if the user is interested in seeing the video
segments in which two controllers are writing on the
flight strips at the same time (stream 2W) and the radar
controller is talking to the pilot (stream R>P), the user

can perform a logical and between the two relevant
streams:

2W = on and R>P = on
The resulting stream shows situations in which both
events occur simultaneously. In order to find situations
where the two controllers write at the same time shortly
after the radar controller talks to a pilot, the expression
uses time filtering:

2W = on within [0, 2s] of R>P = on
The user can further investigate these events by stretching
the stream to provide context, making it the control
stream and playing the result.

Editing Streams
DIVA allows the user to edit existing streams in several
ways, depending on the type of the stream and the scope
of the edit. Streams that result from stream expressions
cannot be edited directly since they are re-computed each
time one of their dependent streams is modified. However
the stream expression itself can be edited to re-create the
stream.

Editing segments
The value of a segment can be changed by clicking on it
when it is visible in a temporal or spatial view. The start
and stop times of a segment can be changed in a temporal
view by selecting a segment and dragging or resizing it.
They can be changed in a spatial view by selecting the
view when the segment is visible and setting the start and
stop times in the time base control panel. Such editing is
used mostly to fine-tune a stream after it has been created
in live mode.

Editing streams individually
More radical editing is achieved by creating an "edit"
stream with one of the stream creation methods (usually
live mode) and using the "edit" operation of the stream
algebra on the original stream. This modifies the original
stream and creates an "undo" stream that can re-generate
the previous version of the stream from the modified
version with the same "edit" operation of the stream
algebra. This is often used to re-record a part of a stream
that is incorrect.

Editing multiple streams
The stream algebra can be used to apply the same
operation to a set of streams. This is mostly used with
the insert, delete and time-warping operations to
reorganize the contents of a set of related streams. For
example, once a specific set of events has been identified,
all the irrelevant segments in all the streams can be
deleted to keep only the interesting material.

Editing warping streams
Editing the warping stream is performed in a separate
window similar to the display in Figure 7. Clips can be
reordered, stretched or shrunk by direct manipulation.
Several warping streams can be created and edited, but at
most one can be designated as the current warping stream.

IMPLEMENTATION
The first prototype of DIVA was implemented in Tcl/Tk
(Ousterhout, 1994), which allowed us to validate the key
concepts of DIVA: stream algebra, streamer display and
time-warping. The second version (currently under

development) is implemented on the Apple Macintosh as
a set of extensions to Tcl/Tk, which allows us to reuse
parts of the prototype. We use QuickTime (Apple
Computer, 1993) to implement the time base and to play
audio and video streams. The stream algebra is
implemented in C++ for better efficiency. The current
version is functional and we are re-implementing a larger
part of the system in C++.

SUMMARY AND CONCLUSIONS
DIVA provides a significant advance over the earlier EVA
system at both the architectural level and the user
interface level. The major contributions at the
architectural level include:

1. A stream algebra that provides a simple but
mathematically powerful model of streams and
operations upon them,

2. Precise and powerful control and editing
functions such as time warping and time
filtering.

DIVA's user interface is designed to support the
generation and analysis of not only the multimedia
streams themselves, but the relationships among them.
The major contributions at the interface level include:

1. The smooth transition between the temporal and
spatial views of the data, using the streamer
visualization technique,

2. The ability to browse, edit and modify the data
using either view (temporal or spatial) or the
stream algebra,

3. The two-dimensional direct manipulation
interface for editing streams, using spatial rather
than temporal views, and

4. The ability to use an external package to
perform statistical computations, such as
identifying correlations, on the results of stream
operations.

Informal evaluations using data from our study of air
traffic controllers have shown the power of linking the
spatial and temporal views. Compared with a spreadsheet
display, the dynamic aspect of streaming gives an entirely
different perspective on the data. We were also able to
isolate key events using the stream expressions. We plan
to conduct more in-depth evaluations of DIVA as we
analyze additional data sets.

DIVA is clearly designed to support a particular kind of
interaction with multimedia data, i.e. exploratory data
analysis. Yet the stream algebra and the streamer interface
should be useful for a variety of other multimedia
applications, including analysis of video conferencing,
editing for multimedia presentations, educational
applications and games.

ACKNOWLEDGEMENTS
Thanks to Eddie Elliot and Glorianna Davenport for
conversations about the streamer technique, which we
found to be a wonderful solution to our interface
problem. Also, thanks to Anne-Laure Fayard for all her
work on data coding and analysis and to the members of
Equipe 9West at Athis Mons en route air traffic control
center, for generating all that data!

REFERENCES
Apple Computer (1993) Inside Macintosh - Quicktime.

Reading, MA: Addison Wesley.

Allen, J.F. (1984) Towards a general theory of action and
time. Artificial Intelligence. 23, pp. 123-154.

Buchanan, M.C. and Zellweger, P.T., (1992) Specifying
Temporal Behaviour in Hypermedia Documents, in
Proc ECHT'92, European Conference on Hypermedia
Technology, Milan, Italy.

Bush, V. (1945) As We May Think. Atlantic Monthly ,
July issue, pp.101-108.

Chua, T.S. & Ruan, L.Q. (1995) A Video Retrieval and
Sequencing System. A C M Transactions on
Information Systems. 13(4), pp. 373-407.

Conklin, J., (1987) Hypertext: A Survey and
Introduction, IEEE Computer, 20(9), pp. 17-41.

Cruz, G. & Hill, R. (1994) Capturing and playing
multimedia events with streams. In Proc.
Multimedia '94, pp. 193-200, ACM.

Denning, P.J. (1997) How we will learn. In Beyond
Calculation: The Next Fifty Years. pp. 267-286.
New York, NY: Copernicus.

Duda, A., Weiss, R., & Gifford, D.K. (1996) Content-
based access to Algebraic Video. IEEE Multimedia.

Elliott, E.L. (1993) Watch-Grab-Arange-See: Thinking
with Motion Images via Streams and Collages. MIT
MS Visual Studies Thesis.

Edwards, W.K. & Mynatt, E.D. (1997) Timewarp:
Techniques for autonomous collaboration. In Proc.
CHI '97 Human Factors in Computing Systems.
pp.218-225. Atlanta, GA: ACM.

Harrison, B. (1991) Video annotation and multimedia
interfaces: from theory to practice. In Proc. Human
Factors Society 35th Annual Meeting, pp. 319-323.

Hartwig, F. & Dearing, B.E. (1979) Exploratory Data
Analysis. Beverly Hills, CA: Sage Publications.

Hodges, M.E. & Sasnett, R. (1993) Mul t imedia
Computing: Case Studies from MIT Project Athena.
Cambridge, MA: Addison-Wesley.

Mackay, W. E., & Davenport, G. (July, 1989) Virtual
Video Editing in Interactive Multimedia
Applications, Comm. ACM, 32(7), pp. 802-810.

Mackay, W. E. (October, 1989) EVA: An Experimental
Video Annotator for Symbolic Analysis of Video
Data, ACM SIGCHI Bulletin, 21(2), pp. 68-71.

Mackay, W.E. and Pagani, D. (October 1994). Video
Mosaic: Laying out time in a physical space. In
Proc. Multimedia '94. San Francisco, CA: ACM.

Mackay, W.E. & Fayard, A.L. (1997a) HCI, Natural
Science and Design: A Framework for Triangulation
Across Systems. In Proc. DIS '97, Designing
Interactive Systems, Amsterdam: ACM.

Mackay, W.E. & Fayard, A.L. (1997b) Radicalement
nouveau et néanmoins familier: Les strips papiers

revus par la réalité augmentée. In IHM'97 Actes
9èmes Journées sur l'Interaction Homme-Machine.,
Poitiers, France: Cépaduès Editions.

Minneman, S. and Harrison, S.R.(1993) Where Were
We: Making and using near-synchronous, pre-
narrative video, In Proc. Multimedia '93, pp. 1-6,
Anaheim, CA: ACM.

Minneman, S., Harrison, S., Janssen, B., Kurtenbach,
G., Moran, T., Smith, I. & van Melle, W. (1995) A
confederation of tools for capturing and accessing
collaborative activity. In Proc. Multimedia '95. San
Francisco, CA: ACM.

Moran, T., Palen, L., Harrison, S., Chiu, P., Kimber,
S., Minneman, S, van Melle, W., & Zellweger, P.
(1997) I'll get that off the audio: A case study of
salvaging multimedia meeting records. In Proc. CHI
'97 Human Factors in Computing Systems. Atlanta,
GA: ACM.

Olson, G.M., Herbsleb, J. & Rueter, H. (1994)
Characterizing the sequential structure of interactive
behaviors through statistical and grammatical
techniques. Human-Computer Interaction, 9(3), pp.
427-472.

Ousterhout, J.K (1994) Tcl and the Tk Toolkit. Reading,
MA: Addison-Wesley.

Plaisant, C., Milash, B., Rose, A., Widoff, S.,
Shneiderman, B. (1996) LifeLines: Visualizing
Personal Histories. In Proc. CHI'96, Human Factors
in Computing Systems. pp. 221-227. Vancouver,
BC: ACM.

Roschelle, J. & Goldman, S. (1991) VideoNoter: A
productivity tool for video data analysis. Behavior
Research Methods, Instruments and Computers. 23,
pp. 219-224.

Sanderson, P., Scott, J., Johnston, T., Mainzer, J.,
Watanabe, L., James, J. (1994) MacSHAPA and the
enterprise of exploratory sequential data analysis.
(ESDA), International Journal of Human-Computer
Studies, 41(5), pp. 633-681.

Sanderson, P. & Fisher, C. (1994) Exploratory sequential
data analysis: foundations. Human-Computer
Interaction, 9(3), pp. 251-317.

Swartz, J. & Smith, B. (1995) A resolution-independent
video language. In Proc. Multimedia '95, San
Francisco, CA: ACM.

Tukey, J.W. (1977) Exploratory Data Analysis. .
Reading, MA: Addison-Wesley.

Trigg, R.H. (1989) Computer Support for Transcribing
Recorded Activity. ACM SIGCHI Bulletin: Special
Issue on Video as a Research and Design Tool,
21(2), pp. 72-74.

Weber, K. & Poon, A. (1994) Marquee: A Tool for Real-
Time Video Logging. Proceedings of CHI'94,
Human Factors in Computing Systems. pp. 58-64.
Boston, MA: ACM.

