
Patterns of Sharing
Customizable Software

Wendy E. Mackay

Massachusetts Institute of Technology
E40-366
1 Amherst Street
Cambridge, MA 02139

Abstract

The act of customizing software is generally viewed as a solitary activity that allows
users to express individual preferences. In this study, users at two different research sites,
working with two different kinds of customizable software, were found to actively share
their customization files with each other. This sharing allowed the members of each
organization to establish and perpetuate informally-defined norms of behavior.

A small percentage of people within the organization were responsible for most of the
sharing. One group of these were highly-skilled software engineers, who were usually
the first to try new software. They used customization as a way to experiment with and
learn about the software and made their files available to others through various broadcast
mechanisms. This group did not try to determine whether their customizations were
useful to other users. The second group were less skilled technically but much more
interested in interpreting the needs of their colleagues and creating customization files
tailored to those needs. They acted as translators between the highly technical group and
the rest of the organization.

The spontaneous sharing of customization files within an organization has implications
for both organizations and for software designers. Managers should 1) recognize and
support the role of translators, 2) recognize that not all sharing is beneficial, and 3)
provide opportunities for the exchange of customization files and innovations among
members of the organization. Software designers should 1) provide tools that allow
users to evaluate the effectiveness of their customizations through reflective sofrware, 2)
provide well-tested examples of customization files with the first release of the software,
3) explicitly support sharing of customizations, and 4) provide tools to support the
activities of translators.

Introduction

Much of the research in cooperative work develops or examines software that is explicitly
designed to support information sharing, such as electronic mail (Malone et al.. 1987,
Borenstein and ‘lhyberg, 1988), group-oriented decision tools (Stefik et al., 1987), project
management tools (Begeman et al., 1986, Sathi et al., 1986), and electronic calendars
(Greif and Sarin, 1986). However, other types of information sharing occur naturally
within organizations, sometimes in unexpected ways. For example, Nardi and Miller
(1990) describe the extensive sharing of spreadsheets within organizations. The exchange
of customization files provides another example of how users in an organization share
information about their preferred ways of interacting with software.

CSCW 90 Proceedings
.-

October 1990

209

The act of customizing one’s own software applications is usually viewed as a reasonably
solitary task. After aH, what an individual does in the privacy of his or her office, for
reasons of personal taste and efficiency, appears to have little to do with the rest of the
organization. However, because people have varying levels of desire and ability to
customize, and have limited amounts of time, they often look to friends and colleagues
for customization ideas, Borrowing customizations has numerous advantages for
individual users. They can reduce both the time spent learning how to customize and the
risk of making errors, which increases the time available for accomplishing actual work.
They can also experience how other people work, find out out new ways of doing things
and benefit from each other’s innovations.

From a research standpoint, customization files are interesting to study because the users’
patterns of use are encoded as artifacts that can be traced throughout an organization, rather
like tracing the spread of archeological artifacts throughout a population. More
importantly, the use of these files continues to affect daily patterns of behavior over time.
Systematic study of records of changes, correlated across the individuals in an
organization, can provide new views of the communication networks that evolve within
the organization.

The pm-pose of this article is to discuss the social aspects of an apparently non-social
practice, that of customizing one’s software environment. The study was conducted at
two research sites, with two different forms of customizable software. The first is the
Information Lens (Malone et al., 1987), which helps people customize the process of
managing their electronic mail. The second is a set of software for the Unix operating
system, using the X Window System. The associated customization files are designed to
iet people express preferences about how they set up and use software applications.

Exchange of Information Lens Rules

The first study was conducted as part of a study of the Information Lens, which is
designed to help users filter and organize their electronic mail. The Information Lens can
be viewed as a method for customizing the process of managing one’s mail with IF-
THEN rules. The rules usually identify text strings in the TO:, CC:, FROM:, and
SUBJECT: fields of a message and perform operations such as deleting the message or
moving it to a specified mail folder.

Research Site

The research site is a large laboratory with approximately 60 people within a research
center at a major American corporation. The site was chosen because of its use of the
hardware and software environment necessary for the operation of the Lens prototype and
its extensive use of electronic mail. The site and the original study are described in
greater detail elsewhere (Mackay, 1988, Mackay, 1989).

Participants

Eighteen members of the laboratory used the Lens software over a period of three or more
months. 15 are full-time researchers and three are managers. Of the researchers, six are
computer scientists and nine are trained in physics, psychology, anthropology, or
sociology.

Data

The data include a series of open-ended interviews about the use of electronic mail and the
design of Lens rules. Interviews were conducted prior to participation in the study and at

CSCW 90 Proceedings October 1990

210

two-to-three month intervals during the course of the study. In addition, automatically-
generated data were collected, including snapshots of each user’s rules, taken either weekly
or whenever the any of the Lens functions were used.

Results

Four people shared rules or information about rules with others in the organization. The
fist two are not surprising. I, as the researcher, provided five sample rules for beginning
users. Three of these rules were chosen because users in an earlier study had found them
useful and the other two rules illustrated a trick that solved a commonly-encountered
problem. The second person who shared rules was the developer of the local version of
the software. One might have expected him to be the primary source of rules because of
his extensive knowledge of the software. But in fact, although he gave rule advice to
approximately one third of the active Lens users, he rarely gave them actual rules. His
own personal rules were designed to test the system and were quite different from those of
a normal user.

Two regular Lens users also shared their rules with other members of the organization.
One of them could be considered a “rule-guru”: a highly technical person who wrote the
most rules and provided feedback and ideas to the developers. Considered one of the top
technical members of the lab, he began experimenting with Lens as soon as it became
available and created almost 100 rules. He also developed several technical innovations
that were later incorporated into the local version of the software.

The rule guru created several complex rules that could be traced to other people’s rulesets.
I traced three of these rules or rule combinations: One allows users to identify sets of
related but uninteresting messages and delete them (called the “boring” rule). The second
consists of a pair of rules that saves jokes from a well-liked author and deletes jokes by
others. The third rule identifies a person from outside the lab who distributes unwanted
seminar announcements. This rule deletes the announcements without deleting personal
messages from the author. (Most people were uncomfortable with automatically deleting
messages from a particular sender, even if the sender had never sent anything of interest)

Four people copied the boring rule, and three each used the pair of joke rules and the
delete rule. The people who copied these rules are all programmers with from 6 to 62 of
their own rules. One person adopted the rule-guru’s entire set of almost 100 rules. This
colleague quickly found them inappropriate and stopped using Lens for many months. He
then rediscovered its usefulness when filtering mail after returning from a trip.

The fourth person who shared rules had no computer training, but liked and used the
locally-developed version of Lens. He experimented with a set of Lens rules, based on a
strategy, developed by a colleague. He then provided a complete copy of his rules to
another non-technical colleague. He was able to successfully translate from the more
complex version used by the technical staff to a less complex version that directly met the
needs of a fellow staff member with needs similar to his own.

Another form of rule-sharing also occurred. Two manager-secretary teams agreed on a
standard form of communication and created a corresponding set of rules to facilitate
processing of the mail messages. In another case, members of a group agreed to
customize their Lens rules to make their interactions with each other more efficient.
These examples involve a social commitment to work together in a particular way instead
of simply sharing individual patterns of working.

The function served by these rule sharers appears similar but not identical to the
gatekeepers identified by Allen (1972). Gatekeepers are skilled individual contributors

CSCW 90 Proceedings October 1990

211

who actively seek technical information from outside of the organization and translate it
for the use of their colleagues. Here, several people within the organization examined a
new software application and created forms of it specifically tailored to the needs of others
in their group.

These findings raise several questions. What are the characteristics of people who provide
customizations for others? Are customization exchanges one-or two-way? What are the
circumstances under which people decide to share their ideas and customizations? The
second study was designed to investigate these questions further, as part of a larger study
of how users customize software.

Sharing of Unix Customization Files

Research Site

Project Athena was created as an experiment in educational computing at MIT, sponsored
by Digital and IBM. (Balkovich et al., 1985, Champine, 1987). Project Athena has over
1,000 Digital and IBM workstations available 24 hours a day to students, faculty and staff
and is the largest centmiiy-managed distributed computing system in the world. The site
and the original study are described in greater detail elsewhere (Mackay, 1990).

Project Athena’s computational environment is based on B4.3 Unix and the X Window
System. Users have a variety of choices about text editors, formatters, window managers,
mail systems and other application software. Users can specify how each application
looks (e.g. font sizes, borders, colors, shapes) and how to interact with it (mouse, key
bindings, menus, etc.). Users also have a variety of customization options. Some affect
ail applications, while others are specific to a particular application.

Participants

The Project Athena staff includes over 80 people, including managers, secretaries,
technical and non-technical staff. They provide a variety of services, similar to the MIS
department of a large corporation. The major groups include: hardware and software
operations, systems development, external relations, internal relations, finance, personnel,
user services (documentation, consulting, training, user accounts), and administration.
Digital and IBM also maintain technical staff on site. Note that this organization has a
very real customer base and real deadlines: a software company may “slip” a release date,
but MIT never slips the beginning of the semester. An error in the release may affect
thousands of people. 51 staff members volunteered to participate in the study,
representing a cross-section of the staff, including manager, secretaries, systems
programmers, applications programmers and other non-programming staff.

Table One summarizes the technical background of the members of the organization. A
rating of “high” indicates an advanced degree in computer science and five or more years of
computer programming experience. A rating of “medium” indicates 3-5 courses in
computer science and some application programming experience. A rating of “low”
indicates one or no programming courses and no programming experience. Two of the
systems programmers did not have an advanced degree in computer science but had over
fifteen years of systems programming experience. and so were given a “high” technical
rating. Note that only two of the applications programmers have a “high” technical
rating and three have a “low” rating. The majority of the rest of the staff have a “low”
technical rating.

CSCW 90 Proceedings October 1990

212

Table One: Technical Level of Staff Members

High Medium I LOW N Job Category

10 Manager 3

5 secretary 0

12 Sys. Programmer 12

8 AppProgrammer 2

16 Other staff 2

51 Total I 19 I 9 I 23

Data

I conducted one or more open-ended interviews in each participant’s office, over a period of
four months. Participants described their customizations (and innovations) and identified
the sources and recipients of their customization files. Participants also rated their
frequency of communication with each person on the staff and fiIled out a questionnaire
about their work background, technical skills, the software they use and how they
customize it. I obtained copies of the update history for each person’s workstation, at
least two snapshots of their customization files and change dates, and copies of selected
customization files.

Results

Over three-quarters of the participants stated that they had received customization files
from other people when when they joined Athena, in addition to the system default files.
Newcomers, technical or otherwise, tend to ask for help when they arrive, not only to get
examples that have proven to be useful, but also to make social contacts. Staff members
ide tidied the follow&g methods by which they had obtained or given customizations:

1. Someone helps you get set up.
2. You ask someone to help you get set up.

3. You get the standard system file and use it.
4. You have a problem and ask someone for help.

5. New ideas are posted electronically in a common area and you look.
6. Someone has a new idea and tells you about it.

7. Someone tells you to look in the common area.
8. You have a symbolic link to someone else’s file which is automatically updated.

9. You walk by and see someone else’s screen and ask how something was done.
10. You watch someone performing some task, notice a useful technique, and ask

how it’s done.
11. You help a newcomer get set up with a version of your files.

12. You post an idea in the common area.
13. You tell your friends about a new idea.

CSCW 90 Proceedings October 1990

213

Project Athena’s default customization files vary in complexity. Some provide all
possible customization options. A small number of highly skilled users find this useful,
especially when they are interested in seeing a working example of a specific option.
Most other users, who are not only less experienced but also less interested in the
software, find these files overwhelming. They prefer to use more limited files with
customizations that had already proven useful for someone with similar job
responsibilities and work patterns.

Some users are proactive about learning how to customize, others are reactive and
customize only when someone offers to help. Most people (78%) made some
customizations, although only 11% took the time to completely and systematically
customize their work environments. All of the latter were formerly or currently
programmers. Some of these programmers create files for general use and publicize their
customizations electronically, thus sharing their files with the rest of the organization.
However, most other staff members find these files difficult to use. Interestingly, the
most senior of the technical staff choose to customize very little, if at all. Having
experienced many systems changes over the years, they are no longer interested in
“playing” with the system and only create customizations that facilitate their immediate
work. A number of non-technical staff members never create their own customizations
and ask for help if they become stuck. In general, most people described themselves as
“too busy” or not knowledgeable enough to fully customize their software environment.
One moderately technical staff member described the process as follows: “I try out a new
application and decide if it’s useful or not. If it is, I play with it for a while and make
customizations. After that, customizations are very rare.”

Given these barriers to customization, it is not surprising that users often choose to get
information about customization from each other. Participants were asked to rate the
different sources of information about customization, where 0 = “never use”, 1 = “use
rarely”, 2 = “use sometimes” and 3 = “use often”. The means for each group are listed in
Table Two. The columns are ordered from highest overall rating on the left to lowest on
the right.

Table Two: Mean Ratings for Sources of Information about Customization

Ask a COPY & Manual Documen- Read Write
N Job Category person experiment pages tation source own

10 Manager 2.5 2.5 2.4 1.9 0.7 0.8

5 Qff=-Y 2.6 2.2 1.2 1.8 0.0 0.0

12 Sys.Programmer 1.8 2.1 2.4 1.3 2.3 2.0

8 AppProgrammer 2.4 2.4 2.4 1.6 1.1 1.1

16 Other staff 2.7 2.2 2.1 1.8 1.0 1.1

51 Total 2.4 2.3 2.2 1.7 1.2 1.1

Scale: 0 = never use 1 = use rarely 2 = use sometimes 3 = use often

People in all job categories except systems programmers, preferred to “ask a person”,
followed by “copy and experiment” (which involves borrowing someone else’s file and
editing it). Reading the source code and writing their own version of the code from
scratch were considered the least useful. Systems programmers were almost opposite,
preferring to read the source code and look at the on-line manual pages to asking their

CSCW 90 Proceedings October 1990

214

colleagues. This was true even when they had no specific technical knowledge of the
software.

Figure 1 shows a diagram of the patterns of sharing of’customization files among Athena
staff members. The codes in ovals represent individuals, identified by job category, where
A = manager, B = secretary, C = systems programmer, D = applications programmer, and
E = other staff. The arrows between the ovals indicate that one or more customization
files were exchanged between the two individuals. The direction of the arrow indicates
who was the source and who was the recipient of the customization file. Double-headed
arrows indicate an exchange of customization files.

Visual Computing Group

c Systems programmer
D - Applications programmer
E = Other stafi

Figure 1: Exchange of Customization Files at Project Athena

Members of the video group actively exchange information with each other, but rarely
share their files with others outside the group. Most of the members of the group have
developed at least one customization that others have borrowed. The most active sharer
was formerly D4 and is now D3. The administration group is the least technical of all of
the groups. They receive customization files from outside the group, but rarely give files
to others outside. Here, A10 is the most active, bringing in files from the outside and
giving them to the members of the group. E2 and A3 have also given their files to
members of this group. The remaining groups share as often with members of outside
groups as within their own groups. This is due partly to a recent reorganization, which
affected the majority of the Athena staff.

Table Three presents a different measure of sharing. Participants were asked how many
people they borrowed customization files from and how many they lent customization

CSCW 90 Proceedings October 1990

215

files to. Columns Three and Four show the mean number of people with whom the staff
member has borrowed or lent files. Not surprisingly, the least technical staff members
borrow from the most people and the most technical staff members borrow the least.
However, the systems programmers do not lend to the most people. Instead, the
applications programmers, who represent a mix of technical expertise, lend files to the
most people.

Table Three: Sharing Files

Borrow Lend Same Open Trans-
N Job Category Files Files Layout Files lators

10 Manager 2.6 1.4 80% 20% 20%

5 Secretary 3.2 0.6 80% 0% 0%

12 Sys. Programmer 1.8 2.3 92% 67% 8%

8 AppProgrammer 1.9 3.8 50% 63% 38%

16 Other staff 2.3 2.1 81% 50% 25%

51 Total 2.3 2.0 78% 45% 20%

An interesting indication of the extensive level of sharing is the use of a common screen
layout. Column Five in Table Three shows that 78% of the staff members used the same
basic layout. Seven of the nine people who created unique screen layouts were from the
video group, which is the most isolated of the groups within Athena. Members of the
staff have the option of making their files “open” or freely accessible to others to copy
and use. Column Six shows that 45% make their files accessible in this way. Several of
the systems programmers commented that they found this an especially useful way of
sharing files because it does not require them to talk to the recipients of the files.

A few people actively share their files and talk directly to the recipients of the files.
These people have been designated as translators. Column Seven lists the percentage of
people in each group who act as translators. Note that the systems programmers, who are
the most likely to make their files accessible to others are among the least likely to act as
translators. Managers rarely act as translators. Of the two who do, one does it to protect
her group from an ineffective translator and the other does it in lieu of some of her other
job responsibilities (and has been down-graded as a result.)

At the time of the study, each group had a single, self-appointed translator. Although
several people in each group expressed an interest in this role, only one person acted as a
translator at a time. However, two people acted as “translators-at-large” for the entire
organization. Table Four shows the translators identified for each group, both prior to the
study and at the time of the study. Managers are coded with an A, secretaries with a B,
systems programmers with a C, applications programmers with a D, and other staff
members with an E. These people are notable in Figure One because they exchange files
with more people in the organization.

Note that systems programmers (code C) do not act as translators, nor do they need or
want someone in their group performing this function for them. None of the secretaries
(code B) have sufficient technical skills to act as translators for the others. In the
Administration group, E2 (a non-programmer) originally provided the files for secretaries.
As mentioned earlier, the manager (AlO) took over the translation role herself after she

CSCW 90 Proceedings October 1990

216

discovered that E2’s files contained errors, were confusing and made their software
environments non-standard. She told her staff to ignore the contributions from E2 but
did not tell E2 that his tiles were no longer welcome.

Table Four: Translators within each group

Group Before Study

Administration E2

Video group D3

Operations (hardware) Dl

operations (software) El3

User Services El6

Education Initiatives El

Systems Development none

Works with several groups El6 A3

During study

A10
D4

El3
El3

El6
El

none
El6 A3

An applications programmer in the video group, D3, acted as a translator for several
years. When D4 arrived and showed an interest in helping the other members of the
group, D3 stopped acting as a translator. He felt it was convenient to stop this role
“when someone else appeared on the scene to do it...we don’t need two people to do it”.
He described the group’s attitude: “If there’s a vacuum, someone steps in to fill it.” The
situation was somewhat different in the operations groups. Dl performed this role for the
hardware group and was then promoted to an applications programmer position. He
became the least technical member of his new group and stopped acting as a translator.
E13, who acted as a translator for the software operations group, expanded his role to
include the hardware group as well when Dl left. El6 and A3 act as translators for
people throughout the organization.

A common impetus for sharing, particularly by translators, is any change in the software
environment. Many users come to rely upon their customizations and actively resist
situations that force them to change their behavior. This was apparent when the standard
window manager for Project Athena changed as part of a regularly-scheduled software
release. All users (except a few senior technical staff) received it automatically. Several
staff members deeply resented this change. One said, “I hate having MWM [the new
window manager] forced on me -- I hunt it down and kill it with extreme
prejudice”. This staff member is the translator for his group and sent an electronic mail
message with instructions on how to revert back to the old window manager. He later
sent out instructions for how to incorporate customizations from the old window manager
to make the new one act like the old one.

Only 40 of the 51 participants in the study were faced with a change from the previous
window manager to the new one. (The others were new to the organization and were
given the new window manager as soon as they arrived.) Of these, 78% found a way to
maintain a stable user interface, either by retrofitting their existing customizations from
the old window manager or setting a variable to enable them to continue using the old
window manager (shown in Table Five). All of the people who kept their interactions
the same had already customized their software in some way. The remaining 22% of the
staff changed their interaction patterns by learning the new window manager when it
appeared. None of these people had customized their previous window manager. The
members of this group gave several reasons for learning the new software rather than
continuing to use the software they were accustomed to. Seven of the non-technical staff

CSCW SO Proceedings October 1990

217

members were unaware that they could revert to the old software. Faced with a
completely new interface, each expressed dismay, but didn’t realize they had the
option of changing it. Others explicitly chose to use the standard Athena software. Still
others simply refused to customize, even if it meant extra time in learning a new user
interface.

Table Five: Resistance to Change

N Job Category

8-a

1 secretary 0% 0%

11 Sys. Programmer 27% 82%

7 AppProgrammer 14% 85%

13 Other staff 23% 85%
\

40 Total I 60% 18% 78%

Retrofit old
Window Manager

63%

0%

55%

71%

62%

Refuse new Total Percent who
Window Manager stay the same

63%

3
Summary and Conclusions

An important property of any user interface is that it both guides and constrains the
patterns of interaction between the user and the software application. Increasingly,
application software is designed to be “customizable” by the end user, providing specific
mechanisms by which users may specify individual preferences about the software and
how they will interact with it over multiple sessions. Users may thus encode and
preserve their preferred patterns of use. These customizations, together with choices
about which applications to use, make up the unique “software environment” for each
individual user.

In this study, users actively shared customization files with each other. Users have a
number of incentives to share customizations, including taking advantage of each other’s
work, learning new methods of accomplishing useful tasks, avoiding errors, and generally
saving time. The net result is that users adopt patterns of use from each other,
propagating both useful innovations and errors throughout the organization.

Users are most likely to spend time customizing when they first learn a new software
application, which is also when they have the least knowledge about the software and
their eventual use of it. They are also most likely to borrow customizations at this time
and adopt other people’s patterns of working, regardless of whether those patterns are
effective. Once users invest time in developing and learning a set of customizations,
they will attempt to maintain those customizations over time. Thus, software upgrades
that change the user interface are likely to cause users to spend time customizing some or
all of the new interface to act like the old.

Some of the people who share customizations are highly-technical programmers, who
experiment with the software and then make their first set of customizations available to
others in the organization. These files are often complex and rarely refIect the needs of
other users in the organization. Despite this, many people adopt these files to avoid
learning how to make their own customizations.

CSCW 90 Proceedings October 1990

218

A second group of customization sharers act as translators, creating simplified and more
task-specific sets of customizations. These people often base their work on the files
created by the technical experts. Unlike the first group, who usually share their files
through various broadcast mechanisms, they enjoy talking directly to their colleagues and
get satisfaction from helping to make their colleagues’ lives easier. Although most are
not trained programmers, most translators understand the basic design of the software. As
one said, “In X, you learn that everything visible is probably customizable...After you
know that, you just have to decide to figure out what something is called and then where
to change it.” Translators are interested in customizations that solve practical problems
rather than those that demonstrate technical skill. They try to protect those who either
don’t understand or are simply not interested in learning more about the software.
Unfortunately, because translators rarely have technical training, their customization files
are more likely to contain errors. Since translators are also the most likely to provide
files for newcomers to the organization, inefficient or buggy files may easily be
propagated throughout the organization.

The sharing of customization files has implications for both organizations and for
software designers. In this study, few of the managers were aware that customization
files were being exchanged and none were aware of the extent of sharing. Staff members
are not rewarded for sharing and in some cases are down-graded for it because it distracts
them from their daily work. Yet, members of the organization clearly feel a strong need
to borrow working examples of customization files from each other. Staff members
usually appreciate the files created by translators. However, files created by two
translators created problems for the recipients. It is not clear how to ensure that files
from translators are effective, unless the software provides a mechanism for evaluating the
effectiveness of particular customizations. In many organizations, users take software
training courses once, prior to or when just learning a new software application.
Providing periodic discussions for group members with similar uses of the software
would help users to exchange effective customizations, learn new features, provide
feedback to people who act as translators and provide a mechanism for identifying
problems and errors.

The participants in this study requested the following in the design of customizable
software:

1. The ability to browse through others’ useful ideas,
2. Better mechanisms for sharing customizations,
3. Methods of finding out which customizations are used and effective, and
4. Methods of identifying customizations that are ineffective.

These suggest several design implications. Software manufacturers should consider
designing software to be reflective, allowing users to become more aware of their own
patterns of use and providing methods for evaluating effectiveness. Reflective software is
somewhat different from Z&offs (1988) notion of “informating”, which provides users
with information about the state of the system, Rcffcctive software should increase the
user’s awareness of how they actually use the software. Techniques used to instrument
software for feedback to user interface researchers may be useful here, particularly those
that summarize behavior. (Raw data, such as keystroke logs, are unlikely to help.) Since
most people do not spend much time evaluating their own patterns of use, these features
may be of more help to the translators than regular users. However, given the influence
of these people on the rest of the organization, it is important to help them reduce the
number of inefficient or ineffective customizations and increase the creation and sharing of
user innovations.

CSCW 90 Proceedings October 1990

219

Software manufacturers should also consider the impact of delivering a poorly-conceived
set of default values when the first version of the software is shipped. Unlike many
features that can be fixed in subsequent updates, decisions that affect individual patterns of
use are likely to have long-term effects. Many of the users in this study insisted on using
the first pattern they learned when they arrived at the site, and a number spent a
significant amount of time retrofitting new “improved” software to be like the old
familiar software. The solution is not to release software without any examples of
customization. This simply shifts the burden of creating sharable customizations to
volunteers in the organization, who may lack both technical skills and an appreciation for
the elements of a good user interface. Even though some people will continue to
improve their customizations, these improvements are less likely to be shared among
members of the organization.

The prevalence of sharing within this organization, particularly in the Athena study,
suggests that software designers should consider providing explicit mechanisms for
sharing customizations within an organization. This may affect the choice of the
customization mechanisms provided to users. For example, some kinds of direct
manipulation interfaces may be easier to use but harder to share. Finally, software
designers should consider how to assist the people who become the translators or sources
of customizations for their peers. The quality of the customizations the translators create
will affect the overall perception and use of the manufacturer’s software.

In conclusion, this study has demonstrated that customization is not a purely individual
activity. Members of an organization may actively share customization files with each
other and affect each others’ behavior for long periods of time, perhaps years. This
sharing of customization files may serve to establish and perpetuate standard patterns of
behavior throughout the organization.

References

Allen, T.J. (1972). Communication Networks in R&D Laboratories. R&D
Management, pp. 14-21.

Balkovich, E., Lerman, S. & Parmelee, R.P. (1985). Computing in Higher Education:
The Athena Experience. Communications of the ACM, ll(28). p.p. 112-
124.

Begeman, M., Cook, P., Ellis, S., Graf, M., Rein, G., and Smith, T. (December 1986).
Project Nick: Meetings Augmentation and Analysis. Proceedings on the
Conference for Computer-Supported Cooperative Work. Austin, Texas.

Borenstein, N.S. & Thyberg, C.A. (September 1988). Cooperative Work in the Andrew
Message System. Proceedings on the Conference for Computer-Supported
Cooperative Work. Portland, Oregon.

Champine, G. (1987). Project Athena as a Next Generation Educational Computing
System.

Greif, I. and Sarin, S. (December 1986). Data Sharing in Group Work. Proceedings on
the Conference for Computer-Supported Cooperative Work. Austin, Texas.

Mackay, W.E. (September 1988). More than Just a Communication System: Diversity
in the Use of Electronic Mail. Conference on Computer-Supported
Cooperative Work. Portland, Oregon: ACM.

CSCW 90 Proceedings October 1990

220

Mackay, W.E. (May 1989). Tools for Supporting Cooperative Work Near and Far:
Highlights from the CSCW Conference. CHI ‘89 Conference on Human-
Computer Interaction. Austin, Texas: ACMSIGCHI, Panel presentation.

Mackay, W.E. (May 1990). Users and Customizable Software: A Co-Adaptive
Phenomenon. Doctoral Dissertation, Sloan School of Management,
Massachusetts Institute of Technology.

Malone, T.W., Grant, K.R., Turbak, R.A., Brobst, S.A., & Cohen, M.D. (1987).
Intelligent Information-Sharing Systems. Communications of the ACM,
30,484497.

Nardi, B. and Miller, J. (October 1990) Twinkling Lights and Nested Loops:
Distributed Problem-Solving and Spreadsheet Development. Conference on
Computer-Supported Cooperative Work. Los Angeles, California: ACM.

Sathi, A., Morton, T., and Roth, S. (Winter 1986). Callisto: An Intelligent Project
Management System. The AI Magazine.

Stelik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S., & Suchman, L. (1987).
Beyond the chalkboard: using computers to support collaboration and
problem solving in meetings. Communications of the ACM, 30, 32-47.

Z&off, S. (1988). In the Age of the Smart Machine. New York: Basic Books.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying
is by permisssion of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission

@ 1990 ACM 089791-402-3/90/0010/0221 $1.50

CSCW 90 Proceedings October 1990

221

