
VIDEO ARTIFACTS FOR DESIGN: BRIDGING THE
GAP BETWEEN ABSTRACTION AND DETAIL

Wendy E. Mackay, Anne V. Ratzer & Paul Janecek

University of Aarhus
Department of Computer Science

34 Åbogade
 8200 Århus N, DENMARK

{mackay,avratzer,pjanecek}@daimi.au.dk

ABSTRACT Lafon, 1998), the problem remains that video is
generally considered too detailed and cumbersome to
work with. Even those who strongly advocate gathering
detailed observations of use seek ways to abstract their
findings, e.g., Ericsson & Simon’s (1993) Verbal
Protocol Analysis and Beyer and Holzblatt’s (1998)
Contextual Inquiry. How can we take advantage of this
highly contextual, qualitative data to generate usable
design abstractions without losing the key details?

Video artifacts help bridge the gap between abstraction
and detail in the design process. This paper describes
how our use and re-use of video artifacts affected the re-
design of a graphical editor for building, simulating,
and analyzing Coloured Petri Nets. The two primary
goals of the project were to create design abstractions
that integrate recent advances in graphical interaction
techniques and to explicitly support specific patterns of
use of Petri nets in real-world settings.

We have been exploring how to use video artifacts
throughout the design process to help us manage the
tension between qualitative details and design
abstractions. Our video artifacts act as both the output
of one design activity and the input to the next. This
reuse provides an efficient way to identify relevant
material and apply it in later design phases. Going back
and forth between detail and abstraction ensures that our
design principles are appropriately grounded and that the
design details are organized in a conceptually useful and
accessible way.

Using a participatory design process, we organized a
series of video-based design activities that helped us
manage the tension between finding useful design
abstractions and specifying the details of the user
interface. Video artifacts resulting from one activity
became the basis for the next, facilitating
communication among members of the multi-
disciplinary design team. The video artifacts provided an
efficient way of capturing and incorporating subtle
aspects of “Petri Nets In Use” into our design and
ensured that the implementation of our design
principles was grounded in real-world work practices. This paper describes how we use video artifacts to

support the design of a new tool for creating and
simulating Coloured Petri Nets. We begin with a brief
description of the CPN2000 design project and then
explain the four key elements of the design framework:
the specific interaction techniques in the user interface,
the design principles that guide the technical design, the
generalized contexts of use and the users’ individual
patterns of interaction. We then explain our design
process, which addresses both the tension between
abstraction and detail and the tension between
technology and use. Finally, we trace the evolution of a
particular design concept, a “styleglass”, showing how
video artifacts support communication and help us
manage issues relating to both abstraction and detail.
We conclude with a discussion of the role of video and
video artifacts in the design process.

Keywords: Coloured Petri Nets, Design abstraction,
Design process, Marking menus, Participatory Design,
Scenario-based design, Toolglasses, Video artifacts,
Video Brainstorming, Video Prototyping

INTRODUCTION
Video is a powerful tool that can be used throughout
the design process, from initial observation of users,
through idea generation (video brainstorming) and
design exploration (video prototyping) to system
evaluation. Mackay and Tatar (1989) present an early
collection of different uses of video as a research and
design tool. More recent examples have highlighted
innovative uses of video to support critical incident
analysis (Hartson and Castillo, 1998) and to examine
quantities of video data (Lange et al., 1998, Buur &
Søndergaard, 2000). While various multimedia data
analysis systems have been developed over the years
(Halasz et al., 1987, Mackay & Davenport, 1989,
Hibino & Rundensteiner, 1998, Mackay & Beaudouin-

The CPN2000 Project
Coloured Petri Nets or CPNs (figure 1) are a graphical
formalism used by researchers and practitioners to
describe, simulate and prove complex concurrent
systems (Jensen, 1992). The Design/CPN tool,
developed in the 1980s at the University of Aarhus,
provides a graphical editor to interactively create,
simulate, and analyze CPNs. The tool has been very
successful and is in active use by over 600
organizations around the world. However, the time has
come to update it, taking advantage of advances in user

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DIS ’00, Brooklyn, New York.

Copyright 2000 ACM 1-58113-219-0/00/0008…$5.00.

interface design and CPN simulation over the past
decade.

Note that both domains involve an inherent tension
between abstractions, which ensure coherent design, and
details, which ensure that the system actually works in
the real world. Good design requires both: The challenge
is to integrate the two, so that they enhance rather than
compete with each other.

Send Packet Receive Ack.

A D

Next Send

Send

INTxDATA

INTxDATA INTxINT

INT

Figure 2 organizes the four main considerations of our
design framework (interaction techniques, design
principles, context of use, and interaction patterns)
along these two axes: technology/use and
abstraction/detail. The next section describes each in
greater detail.

Abstraction Detail

T
ec

hn
ol

og
y

U
se

Interaction
techniques

Contexts
of use

Interaction
patterns

Design
principlesFigure 1: A simple Coloured Petri Net

The CPN2000 project is a complete redesign of the
Design/CPN tool, including radical changes to the user
interface. The project draws from three areas of expertise
within the University of Aarhus computer science
department: Coloured Petri Nets, human-computer
interaction and object-oriented languages. The project,
funded by CIT, Hewlett-Packard and Microsoft
Research, began in February 1999 and involves
participants from each research area, with a core group
of 11 people responsible for design and
implementation.

Figure 2: The design framework

Interaction Techniques
The first consideration in the design framework is
technological: the choice of interaction technique (upper
right-hand corner, figure 2). We are working with the
Instrumental Interaction model (Beaudouin-Lafon, 2000)
in which instruments mediate the interaction between a
user and the objects in the interface. This model extends
Shneiderman’s (1983) description of direct manipulation
interfaces, which follow three principles:

A primary goal of the redesign is to explore how recent
advances in graphical user interfaces and interaction
techniques could improve the CPN editor's support for
Coloured Petri Net designers. This requires an
understanding of “Petri Nets In Use”, our term for the
collection of guidelines, work styles, and interaction
patterns that influence the way designers build CPNs
(Janecek et al., 1999). We used a cooperative design
process (Greenbaum & Kyng, 1991) with users (in our
case, Coloured Petri Net designers) contributing
actively in the evaluation and redesign of their own
"Petri Nets In Use".

• continuous representation of the objects of
interest with meaningful visual metaphors,

• physical actions (such as presses of labeled
buttons) instead of complex syntax, and

• rapid incremental, reversible operations
whose effect on the object of interest is
immediately visible.

DESIGN FRAMEWORK
The design of any interactive system involves work
within two domains: The technology domain consists
of the factors that influence the architecture of the
system, its functionality and the interaction techniques.
The use domain consists of design guidelines, overall
work styles and the individual patterns of use.
Addressing the tension between these domains has been
a cornerstone of Human-Computer Interaction research
for the past two decades (Card, Moran and Newell,
1983, Norman & Draper, 1986, Norman, 1988).

Most traditional graphical interfaces implement direct
manipulation through a combination of Windows,
Icons, Menus, and Pointing (WIMP). Although these
have a number of strengths, e.g., when designed well
they are self-revealing to a novice user, they often
distract users from the object of their work and force
them to shift their focus to intermediate command
objects, such as menus and dialog boxes. In the context
of a graphical editor, this separation between object and
action is inefficient and slow.Our design framework highlights two main issues in

each domain. Within the technology domain, we work
out the details of specific interaction techniques as well
as create abstract design principles that unify the
architecture and conceptual model of the new tool. In
the use domain, we examine the detailed interaction
patterns or ways in which CPN designers work as well
as create abstract user models that capture the context of
use, in this case the concept of “Petri Nets in Use”.

Toolglasses (Bier et al., 1993), are a good example of a
“post-WIMP” interaction technique (Kurtenbach et al.,
1997). They are floating, semi-transparent tools that
support instrumental interaction, taking advantage of
direct, two-handed manipulation. For example, a color
palette toolglass, allows the user to apply a color to or

absorb a color directly from an underlying object. She
uses the dominant hand to move the section of the
toolglass containing the desired color over the object of
interest and then uses the dominant hand to apply the
color by “clicking through” the toolglass onto the
underlying object. The user can thus specify both the
object and the action with a single mouse click.

alignment command can be reified into a guideline
object, an instrument that actively maintains the
layout of graphical objects on the screen.

2. Polymorphism , which extends the power of
commands with respect to interface objects,
allowing similar operations to be applied to a
variety of objects. For example, objects can be cut,
copied or pasted, any operation can be undone, and
operations that apply to a single object can be
applied to groups of objects.

Standard architectures for graphical interfaces do not
support most post-WIMP interaction techniques nor are
they trivial to add to existing interface toolkits. One of
our major design activities has been to create an
architecture that lets us explore a variety of these
techniques. At first we believed that we could choose a
single “best” interaction technique, such as toolglasses
or marking menus (Kurtenbach and Buxton, 1994).
However, our empirical studies showed us that users in
different use situations or work contexts have different
preferences among these techniques.

3. Reuse, which provides a way of capturing and
reusing patterns of use. The user can reuse both
previous commands (input) and responses from the
system (output). For example, "redo" and "undo"
commands reuse input whereas command macros
reuse output. New commands may be created from
existing commands, using a partial list of pre-
defined arguments.

We conducted a controlled experiment that asked users
to try each of three different interaction techniques
(toolglasses, marking menus and floating palettes) on
tasks that were identical except for the work context.
(See Mackay et al., 2000, for a preliminary report.) We
found that, while mechanically correcting a net from
hand-written notes may involve exactly the same
actions as thinking through the problem and making
corresponding changes, the user's perception of the task,
and their preference for interaction techniques, are quite
different. No single interaction technique is always
superior (or inferior) to the others. Some individuals
strongly prefer one interaction technique in most
circumstances (preferences are approximately evenly
distributed across the three techniques). Other users
switch their preferences according to the particular
context of use.

The reification principle has strongly influenced the
design of the new tool. For example, in the earlier tool,
the user aligns a set of objects by applying a “vertically
align center” command. To add additional objects, the
user must reselect the aligned objects. In the new tool,
the alignment command is reified into a magnetic
guideline, a visible, first-class object that is
continuously accessible and modifiable. New objects
can be attached to the guideline, and moving the
guideline also moves all the objects attached to it.

These design principles are even more powerful when
combined. For example, they led us to the insight that
we do not need the concept of selection, which in turn
makes it possible to combine and integrate four
interaction techniques: direct bi-manual interaction,
marking menus, floating palettes and toolglasses. In
order to understand how best to combine them from a
user's perspective, we explored abstractions about use,
the third consideration in the design framework (lower-
left, figure 2).

These findings convinced us that we needed to design
the tool to integrate several interaction techniques into a
single user interface and make it easy to swich among
them. In order to do this effectively, we needed to
articulate a set of unifying design principles that would
guide our design choices. This led us to the second
consideration of the design framework (upper-left
corner, figure 2).

Context of Use
Early in the project, we realized that we needed to
distinguish between the creation of pre-defined Petri
Nets and the more pragmatic problem of creating Petri
Nets in everyday work settings. We explored an
abstraction we call "Petri Nets in Use", i.e. the
collection of factors that influence the way a CPN
designer works. We include visual representations and
work styles that vary according to context.

Design principles
Three design principles emerged during the design
process. They began from the initial insights about
instrumental interaction and were influenced by our
interest in integrating multiple interaction techniques.
The videotapes of actual use also influenced the design
principles by clarifying the different contexts in which
the system would be used, and highlighting the
diversity of approaches in the current tool. The
principles, defined in greater detail in Beaudouin-Lafon
& Mackay (2000), are:

Visual representations are essential to a CPN designer’s
work: they communicate the underlying meaning of the
net. Guidelines, such as Jensen’s (1992) readability
guidelines, include suggestions on the use of structure
and graphical attributes to emphasize the flow of data
and the semantic relationships among objects. CPN
designers draw from other sources as well, including
information visualization techniques (Noik, 1994) and
guidelines from graph drawing research (Di Battista,
1999). Understanding these guidelines and how
designers employ them is essential if we are to create a
usable design tool.

1. Reification, which creates interaction objects
that represent concepts in the interface. Thus,
commands can be made accessible as instruments,
combinations of properties can be turned into
styles, and the selection of multiple objects can be
tagged and accessed as groups. For example, the

Work styles describe the CPN designer’s overall process
of creating a net and depend upon the context of use. In
general, our interviews and field observations showed
that CPN designers usually begin by modeling the core
functionality of a net and then progressively add details,
switching between editing (building the model) and
simulation (testing the model). This is similar to
Schon’s (1983) description of design as a process of
“seeing”, “moving” and “reflection-in-action”. We
identified three qualitatively-different CPN design
activities, reflecting three distinct contexts of use:

arcs connecting them. In this context, he would prefer
an interaction technique that facilitated a “command-
first, object-second” syntax, such as a tool palette.

Another CPN designer might perform the identical set
of commands when modifying an existing net, but
perform them in a different order, modifying each object
in turn. She would prefer an interaction technique like a
marking menu, to facilitate an “object-first, command-
second” syntax. A third CPN designer who was creating
a new net from scratch could also perform the identical
set of commands, but in a different order. He would
think about the structure of the net and systematically
work his way around the cycle. He would benefit from
an interaction technique like a toolglass, that made it
easy to switch between object-command and command-
object, facilitating rapid creation of a new CPN.

1 . Edit an existing Petri Net:
Implementing a set of hand-written changes on-line
requires little active understanding of CPNs, but
does require skill with purely graphical or layout
changes to the net.

2 . Modify an existing Petri Net:
Of course, the user interface of any tool also shapes the
users' interaction patterns. For example, Design/CPN
users quickly learn to anticipate future actions so they
can perform the same command numerous times and
reduce the high overhead of switching tools. Identifying
and characterizing these individual interaction patterns
requires access to many examples of individual use of
the tool, under a variety of contexts. Understanding how
these interaction patterns obtain in the existing tool
helps us determine which should be supported in the
new tool, which must be improved, and which could be
omitted entirely.

Copying a working Petri Net and modifying it to
address a new problem requires thinking about Petri
Nets as nets, not simply their graphical
components, but lets the user take advantage of
existing layouts and already-debugged code.

3 . Create a new Petri Net from scratch:
Creating a new net from scratch requires the deepest
understanding of CPNs, but need not require any
attention to layout, which may be done later.

Most current tools are designed to support making final
layout decisions (the first context of use). The
assumption is that the CPN designer already knows
what the net should look like. Our field studies showed
that this use context usually occurs after group design
meetings. One person is assigned to update the on-line
net based on notes taken during the meeting. The
second use context is more common. CPN designers
rarely start with a blank page, instead they prefer to
reuse previously-solved problems. The main difficulty
with this strategy is that it favors experienced CPN
designers who have built up a personal library of usable
nets; novice CPN designers with the least knowledge
and ability are the most likely to be forced to create new
nets from scratch, the least common, but still
important, context of use.

DESIGN PROCESS
Figure 3 shows how our design process maps onto the
design framework in figure 2. We begin by observing
users (1), then brainstorm new ideas (2), narrow down
those ideas into a workable design (3), and finally
evaluate the design (4). Of course, this cycle is
iterative: we conduct additional field studies,
brainstorming, prototyping and evaluation sessions as
needed.

The small gray boxes in figure 3 represent the video
artifacts collected in that step. The arrows illustrate the
dual role of each collection of video artifacts. They both
influence our understanding of the four main
components of the design framework (Interaction
Techniques, Design Principles, Contexts of Use and
Interaction Patterns) and they also directly affect the
collection and interpretation of later video artifacts:
Video clips and related artifacts, such as storyboards, are
not only the output of individual design activities but
also serve as input to subsequent design activities.

Abstracting these three contexts of use enables us to
identify, separate, and understand the reasons behind
many of the interaction patterns we see in our
videotapes. This leads to the fourth consideration in the
design framework (lower-right, figure 2), the detailed
analysis of individual interaction patterns.

Interaction patterns Video clips taken from the field studies provide a
framework for the brainstorming sessions. Video clips
of brainstormed ideas, together with clips of real-world
examples of use, inform the design sessions. The
resulting video prototypes pose questions that guide our
evaluations, including formal experiments, informal
user studies and long-term studies of use in the field.
Finally, video results from the different forms of
evaluation suggest directions for subsequent field
studies, identify new issues that require additional
brainstorming sessions and provide answers or
justifications for particular design decisions.

Interaction patterns describe the low-level sequences of
commands performed by CPN users as they build, edit,
or simulate CPNs. Users perform particular
combinations of commands based on the context of use
as well as the interaction techniques available to them.
We can compare a set of interaction patterns and
examine how they change under each context of use.
For example, a CPN designer, responsible for
implementing a set of graphical changes written on
paper, might turn seven objects blue, rearrange five of
them along a line, then add three new objects and add

Interaction
techniques

1. Observation:
Video clips of
use scenarios

2. Brainstorming:
Video prototypes of
design ideas illustrating
interaction patterns

3. Design:
Video prototypes
illustrating use
in context

4. Evaluation:
Video clips of
use of new tool

Contexts
of use

Interaction
patterns

Design
principles

users had difficulty managing the "red boxes" that are
created by the simulator to display its current state. The
boxes were very small and usually placed on top of the
object that was the subject of the red box, obscuring it.
When users tried to enlarge and move the red boxes,
they would often miss and inadvertently move another
part of the net, requiring the net to be re-edited. Other
common problems included: creating an object called a
guard, following hypertext links to retrieve error
messages, creating an arc, editing text, using "undo" to
recover from a mistake, and negotiating with a
particular dialog box that specifies a simulation step
called “binding”.

Another type of video analysis, based on activity
theory, examined the focus shifts between the task at
hand and the interface (Bødker, 1996). For example, in
one four-minute clip of students trying to import a text
report, we see 19 shifts of attention between the Petri
net, the text report file, the text box, the windows, the
menus, the dialog boxes and the prompts. Some users
spend so much time shifting between the tool and the
activity that they lose track of what they were
attempting to do in the first place. We created a
summary video of both types of analysis and presented
it to the design group. Although some situations were
very familiar to the CPN developers, others surprised
them: expert users seriously underestimate how much
time they spend on minor manipulations of the tool,
especially those involving layout.

Figure 3: Video artifacts in the design process

Recycling video artifacts is efficient: By continually re-
evaluating the video in different contexts, we achieve
both a deeper understanding of the design problem and
become increasingly familiar with the details of both
the technology and its use.

VIDEO ARTIFACTS IN THE DESIGN PROCESS The third type of video analysis involved the creation of
use scenarios (Mackay & Bødker, 1994, Carroll, 1995)
to create compressed, but real, illustrations of patterns
of use. We created storyboards that illustrated a series of
activities that would be performed by a real user, in a
real context. For example, we selected a collection of
video clips of expert users from our field study of a
small firm that uses the Design/CPN tool. We arranged
the clips into scenarios that illustrate activities the new
tool must accommodate: rearranging the structure of an
existing net, checking syntax and port assignments,
modifying the styles in a telephone protocol, changing
a colour set, and inserting a new component of a net.
We created storyboards with 8-16 elements. Each
element represented a video clip with a still image
("best frame") to the left and a text description of the
context and the activity to the right. We then edited
video clips together into two- to four- minute scenarios.
We gave members of the design team the corresponding
storyboards, so they could follow the story and take
notes while watching the video scenarios.

After some initial skepticism, video has become an
essential and accepted component of our design process.
Video from each activity strongly enhances
communication among members of the design team
(who have diverse backgrounds and knowledge of
CPNs) and with the project sponsors. The next section
describes each phase of the design process, with specific
examples of the types of video we collect and how it
can be reused in later design phases.

Phase 1: Observation
We began the project by finding out as much as we
could about use of the existing Design/CPN tool. We
observed and videotaped expert users from both the local
CPN group and from a local company, as well as
student users learning the tool. We also interviewed
members of each group. We transcribed the videos,
translating from Danish into English where necessary
and highlighting interesting events and problems with
the tool. We also reviewed the tapes several times to
identify "normal" or recurrent patterns of use.

Figure 4 shows several segments of a paper storyboard
used to construct one of these edited video clips. The
clip shows the modification of a simple protocol,
including creation of a new counter and modification of
the corresponding graphical attributes. The series of
images, taken from the video, illustrate the changes
made throughout the task, while the accompanying text
descriptions provide details about the precise operations
performed and any difficulties encountered.

The first type of analysis simply gathered video clips
together to illustrate the most common user interface
problems. In each case, we selected clips of 30-60
seconds that illustrated a particular problem. We edited
them together, ensuring that each problem began with
an expert user, who sometimes, but not always,
performs the task well, followed by student or novice
users struggling with the interface. For example, all

Figure 4: A section of a storyboard with a user scenario

For some scenarios, we used actual video from our field
studies. When the existing video was not sufficiently
clear, we re-taped the situation exactly as in the field
studies. These video scenarios proved useful for a
variety of design activities. They helped us abstract and
generalize important issues that the new tool must
address while remaining grounded in the details and
actual context of use. They served as a method of
interpreting and analyzing the data in terms of work
practices while serving as inspiration for later design
activities. The video clips and interviews also helped
specify required functionality for the new tool and
deepened our own understanding of "Petri Nets in Use".

groups of people. We began with a large workshop that
included members of the local CPN user group. We
asked them to identify good and bad characteristics of
the old tool and generate ideas for the new tool. Later,
we held weekly or bi-weekly design sessions for more
focused brainstorming activities. (These sessions
always included several CPN users.) Sometimes the
topics were open, but more often we addressed issues
raised from the field studies or from the design sessions.
We noticed that the format of the brainstorming session
deeply affected both the quantity and quality of the
resulting ideas. We engaged in four types of
brainstorming:

The observation phase produced two forms of reusable
video. The short clips, illustrating currently-open
design issues, e.g., ineffective interaction patterns,
inspired and stimulated the brainstorming sessions in
phase 2. The longer, more complex use scenarios,
which showed an entire task being performed in a
particular use context, focused and grounded the design
process in phase 3.

1 . “Say it”
A traditional brainstorming exercise, in which
participants describe in words (verbally or on cards)
as many ideas as they can, each of which is written
on the whiteboard for later analysis. This approach
generates the largest quantity of ideas, but they are
often vague or poorly formulated.

2 . “Show it”
Participants draw on the whiteboard to illustrate
their ideas. This results in a reasonable quantity of
ideas that are somewhat better formulated, but they
are often too abstract and “static”; they rarely

Phase 2: Video brainstorming
The purpose of phase 2 is to generate as many new
ideas as possible, without evaluating them. We
performed diverse brainstorming activities with different

provide much insight into the details of the
interaction.

Phase 3: Design
Phase 3 involves the difficult process of narrowing
down the variety of design options generated in phase 2
and selecting those that will appear in the new tool.
Our approach involves both top-down and bottom-up
activities. The former involves the creation of a
functional table that systematically identifies all the
necessary and desired functions of the new tool. Within
each category, e.g., layout, navigation, and creation, we
identify the objects and their corresponding operations.
Then, for each function, we identify a set of possible
interaction techniques. We also link design scenarios,
which include detailed interaction patterns, to the
functional table. This helps us analyze how well the
new design supports Petri Nets In Use and provides an
overview of the components required for the new tool.

3 . “Act it”
Participants use simple prototyping materials
including colored pens, paper, transparencies, Post-
it notes, and paper versions of real Petri Nets, to
help “act out” each interaction idea. User interface
elements are drawn or cut out as needed and
participants demonstrate the interaction to work out
what the user would actually do. This results in
fewer ideas, but each is better thought out and is
more likely to capture the dynamic nature of the
interaction. Acting it out also facilitates
communication within the design team.

4 . “Videotape it”
Participants use the same prototyping materials as
above but act out each idea in front of the video
camera (figure 5). Once participants are familiar
with the technique, they generate ideas almost as
quickly as in the “Act it” style. Although this
brainstorming technique produces the fewest
number of ideas, they are usually the most detailed
and programmers can use the resulting video clips
to create software prototypes. Participation is also
high: it is difficult to sit quietly when everyone
else is preparing for a new “take”.

The bottom-up activities include video prototyping
sessions designed to illustrate how the new tool might
be used. These sessions differ from brainstorming in
that the goal is to negotiate a single design, not
generate different options. For each particular design
problem, we begin by reviewing video clips of relevant
use scenarios and brainstorming ideas and then develop
a design scenario. We alternate between whiteboard-
based discussions and prototyping sessions with paper-
based mock-ups, periodically referring back to the
design principles. Then subgroups each create video
prototypes of their design scenario, working through
the details of how a user would interact with that
particular design.

Team members enjoy playing with “special effects”
such as starting and stopping the camera to create the
illusion of system feedback. A more subtle technique
involves a second “live” video camera as a “Wizard of
Oz” tool (Chapanis, 1982). The wizard has access to a
set of prototyping materials representing screen objects,
such as CPNs and toolglasses. Other team members
stand by, ready to help move objects as needed. The
live camera is pointed at the wizard’s work area and the
image is projected onto the TV monitor in front of the
user. The user can interact with the different objects that
appear on the screen; the wizard moves the relevant
paper materials in direct response to each user action.
The other camera records the interaction between the
user and the simulated software system on the screen.

Figure 5: A video brainstorming session

The first sessions in which we tried the “act it” and
“videotape it” styles of brainstorming required more
time and some participants wondered if it was worth the
trouble. However, these soon proved to be our most
productive and enjoyable design sessions.

This is a particularly powerful video prototyping
technique because it gives the “user” a real sense of
what it might actually feel like to interact with the
proposed tool, long before it has been implemented.
Seeing a video clip of someone else interacting with a
simulated tool is more effective than simply hearing
about it; but interacting with it directly is more
powerful still. The programmers develop software
prototypes based on the video clips from the video
prototyping design sessions. Both the video clips and
the resulting software prototypes can be evaluated in a
variety of ways.

We continue to use all four forms of brainstorming.
The traditional “Say It” style works well with large
groups and requires no preparation. The “Show it” style
works well in the context of an ordinary meeting, when
a design question comes up and it makes sense to
quickly brainstorm alternatives. However, for most pre-
scheduled brainstorming meetings, we bring a box of
prototyping materials and one or more video cameras,
to make it easy to “Act it” and “Videotape it”.
Although we reuse ideas from each type of
brainstorming session, the videotaped ideas are the most
likely to be remembered and have the greatest influence
on later design activities.

Phase 4: Evaluation
Phase 4 provides feedback about the success of our
design ideas. Of course, a systematic experimental
evaluation of all possible design options is impossible.

The design of the new tool is too complex and each
decision affects numerous others. So, evaluation often
involves returning to previous design phases to gather
more information and video data. For example, at a
CPN workshop, we asked six pairs of CPN designers
who had not been involved in the tool design to first try
and then comment on each of three interaction
techniques. We showed videotapes of our design
scenarios and then presented software prototypes of the
new tool, derived directly from the video brainstorming
videotapes.

cycle. CPN designers want to be able to create
personalized style sheets and search for objects based on
their style attributes.

As mentioned earlier, we also conducted a formal
experiment to compare the different interaction
techniques under different use contexts. We asked 18
experienced CPN designers from outside the project to
work through seven scenarios, derived from our
observations of expert users in an external company.
The scenarios were varied systematically to capture each
of the contexts of use. The video artifacts gathered from
the observation sessions inspired the overall design of
the experiment and provided the basis for some of the
scenarios used in the different experimental conditions.

Figure 6: Managing attributes in the old tool

Figure 6 shows how the former tool, Design/CPN,
manages graphical attributes with a standard, modal
dialog box. Like most commercial software
applications, the user is forced to choose among a large
number of attributes. The “ideal” process has four steps:
select the object, choose the “set graphical attributes”
entry in the menu, select the desired attribute in the
dialog box, and then click “OK”. Repeating this process
for multiple objects is cumbersome and users usually
find it more efficient to copy an object with the desired
style and then modify the non-shared attributes.

Most recently, we conducted a 6-week field study. We
provided a CPN user with version 1 of the new tool and
asked her to record her reactions in a daily log. We also
recorded all her keystrokes in a form that we can replay.
At the beginning and again at the end of the study, we
videotaped her as she worked through a current problem
and showed what she liked and did not like about the
new tool.

Our videotapes of CPN users during these evaluation
exercises gave us additional insights about patterns of
use. For example, we are currently working on the
problem of managing groups of objects. The evaluation
data allowed us to identify several strategies for creating
and managing groups, in different contexts.

We examined numerous video clips of users trying to
change attributes with the current tool. We also looked
for examples in which users expressed their personal
style preferences and when they were required to modify
attributes to meet corporate guidelines. For example,
one company uses line thickness rather than color to
specify different types of network flow, because they
only have a black-and-white printer.

The entire project is tracked via a web server that allows
users to edit and create new pages (see Beaudouin-Lafon,
2000). We include minutes from all design meetings, as
well as results from our data analysis. We also maintain
a video archive, which makes it easy to go back and ask
questions as they arise. For example, we refer back to
the video clips of prototypes made at different stages,
which helps us track changes in the tool, remember
ideas that would otherwise get lost and check for
consistency across versions.

Video brainstorming Workshop
We selected a range of video clips concerning attribute
changes and presented them to the design team. We
asked them to brainstorm ideas for a “styleglass”, a
toolglass that would let users specify styles in a
lightweight, natural way. We also identified a set of
video clips of innovative new interaction techniques
that could facilitate use of styles, i.e. toolglasses,
zoomable and mark-based interfaces.

DESIGN PROBLEMS AND SOLUTIONS
We claimed that video artifacts gathered in one phase
provide important input to later phases of the design
process. This section gives an example, tracing the
evolution of the styleglass through the reuse of video
artifacts.

We faced a dilemma when planning the initial
brainstorming session. On the one hand, we were eager
to expose the members of the design team to alternative
user interface techniques. On the other hand, we did not
want to simply pick our favorites and impose them
upon the group. We decided to show individuals
different videos of these interaction techniques, at least a
week before the first brainstorming session. The goal
was to seed new ideas, but not make them the driving
force in the brainstorming sessions. This worked well:
the developers drew ideas from their own experiences,

One of the first issues raised in our interviews and
brainstorming sessions was the problem of managing
attributes, such as color and line thickness. Effective
use of these graphical attributes enhances readability of
the net, helps make semantically-similar objects look
the same, emphasizes differences among functionally-
distinct objects and highlights the main flow of a CPN

e.g., an emacs-style interface for editing CPNs, as well
as from the new techniques. The group considered a
wide variety ideas and rejected most of them, including,
to our regret, gestural input and zoomable interfaces.

Once members of the design team had a chance to
actually try the styleglass, they were convinced of its
potential and decided to pursue it as a fundamental part
of the design. This was not a minor decision: users of
the new system would be required to use both a mouse
and a separate pointing device, such as a trackball.
However, with the growing popularity and lower cost
of USB devices, it seemed worth the risk.

The most radical idea to be explored by the design team
was the toolglass. They were intrigued by the use of
two hands because they thought it might significantly
reduce the number of keystrokes and frustration
involved in changing attributes. However, they were
unsure about the coordination required between the two
hands. Prior to the first two-hour video brainstorming
session, design team members watched a compilation of
video clips of users struggling to change attributes with
the old tool and everyone saw the CHI ‘94 videotape of
Toolglasses and Magic Lenses (Bier et al., 1994).

Once the design team members saw a direct link
between the video artifacts they had created and working
software, they were more open to subsequent video
brainstorming and prototyping sessions. The video
archive helped designers judge how faithfully the
software reflected their original design ideas and helped
keep track of ideas that would otherwise have been lost.
This built confidence in both the video artifacts and the
software prototypes and significantly enhanced
communication among CPN designers and software
developers.

We invited a large number of CPN experts to join us
and divided the group into three multi-disciplinary
teams. Each group watched a different video clip of a
use scenario and generated ideas on how to use a
toolglass to improve the interaction. Figure 7 shows a
design idea drawn on a transparency from a subgroup
exploring a CPN layout scenario, the first “styleglass”.

Design
The design phase involves making choices among
design alternatives. After referring back to the videos of
the original use scenarios, the video brainstorms and the
software prototypes, the design team began the process
of video prototyping. Each subgroup discussed ideas for
a design scenario that would capture a real-world
example of using the new tool. For example, one
group explored ideas for a “search and replace”
styleglass that would make it easy to find and change
items with a certain properties or combination of
properties.

Based on these ideas, each group was given an empty
version of the storyboard in figure 4 and asked to create
a design scenario, with sketches and descriptions of how
a user in a real-world situation would use the tool.
Unlike the video brainstorming exercises, which
allowed individuals to pursue their own ideas, video
prototyping exercises require group consensus. Team
members must discuss and negotiate the ideas before
coming to agreement on a common solution.
Discussions of the abstract principles of reification,
polymorphism and design both helped to generate new
possibilities and to choose among design alternatives.

Figure 7: “Styleglass”: Style preview toolglass

The styleglass allows the user to display objects in the
net with different styles: one style for the client side of
the network, one for the server side. Other group
members explored variations, including one-handed
styleglasses, styleglasses that can be resized, and
styleglasses that permit cutting and pasting of graphical
structures.

Design scenarios require relatively long sequences of
steps which are separated with short, explanatory title
cards, as in a silent film. This facilitates editing in the
camera and also makes the subsequent video clip easier
to understand. In most video prototyping sessions, each
design team would create a five to ten minute video
clip, videotaped directly from the storyboard. As with
video brainstorming, the fact that the group had to
collaborate and act out the interactions in front of the
camera. increased the overall level of participation and
communication among team members.

The three design groups brainstormed from three to 11
video illustrations each. (The group with three video
clips had a number of ideas in each clip, whereas the
groups with more ideas created a separate clip for each
individual idea.) The resulting video clips proved to be
an extremely efficient method of communicating to
members of the programming team who had not
participated in the video brainstorming sessions. One
programmer implemented several of the most
interesting ideas over a couple of days, so that the entire
design team was able to experience their “look-and-feel”
at the next week’s meeting. We later systematically
modified the characteristics of these software
prototypes, changing the number and color of the cells,
switching between one and two-handed input, and
switching between transparent and opaque cells, in order
to better understand the details of the interaction.

Figure 8 shows one of the ideas for a search-and-replace
styleglass used in a video prototype. The circular
styleglass has three sections around the outside to
specify line style, line thickness, and line color. It is
drawn on a transparency and placed over a pre-printed
net, to show what it would mean to “click through” and

change a graphical attribute. In this design, the center
area contains the current settings of each of the different
sections of the styleglass, and highlights other objects
in the diagram with the same attributes. A related
styleglass allows the user to specify the values of
attributes to search for and the attributes to replace them
with. This would make it possible, for example, to set
the styleglass so that it finds all objects that are red and
makes their outlines dashed.

design solutions and asked them which they preferred.
We added the video clips of these observations to our
video archive and used them to help develop the second
major set of software prototypes.

Figure 9a shows the version that a user clicks through
to apply an attribute to an underlying object. Figure 9b
shows a Magic Lens version with transparent cells
showing the net underneath in different styles and a
click-through technique for applying the styles. The
upper two cells of the styleglass show the objects in
different line thicknesses and the lower two cells show
the arcs in different colors.

Figure 10 shows the most recent version of the
styleglass, in version 1 of the new CPN tool. The user
can change the color, dash pattern or line thickness of
an object by “clicking through” the appropriate cell in
the top four rows. The last row has cells for picking up
styles from existing objects and applying them to other
objects. The user can carry as many as four personalized
styles, to use as needed. This design reduces the number
of steps required for applying an attribute, from four in
the old tool to one in the new tool.

Figure 8: Graphical search and replace styleglass

Evaluation
We continued to refine and evaluate the low-level
interactions with styleglasses by testing them with the
use scenarios. We also used the design principles to
ensure consistency among design ideas and to generate
new avenues for exploration. We conducted design
walkthroughs with both design team members and
outside CPN users, using video clips as source
materials. We ran several studies of the interaction
details, i.e. reaction time, styleglass appearance, the use
of two hands and the contexts of use.

Figure 10: Attribute styleglass in the new tool

The specific appearance of and interaction with the
styleglass is based on our on-going examinations of the
video artifacts produced during the different design
activities and continuously asking users for feedback.
Although it is easy to see the connection between the
first idea sketched in figure 6 and the final version
shown in figure 10, many of the details have changed.

The role of the video camera
The video camera plays different roles throughout the
design process. During the design process, the camera
can serve as an unobtrusive “fly on the wall” to collect
information about users at work. In contrast, the
presence of the camera directly affects participant’s
behavior during video brainstorming and prototyping
sessions; focusing their attention, increasing their
awareness of the details of the interaction, and
facilitating communication among the participants.

Figure 9: Styleglass prototypes.
(a) Click through Styleglass.

(b) Magic Lens version of Styleglass.
We were surprised at how differently participants acted
between the “act it” (without the camera) and the
“videotape it” video brainstorming exercises. Knowing

For example, we presented the prototypes described in
the previous section to a dozen CPN users at a CPN
workshop. We videotaped their use of the different

that ideas will be captured and viewed later encourages
participants to think through each idea and really work
out the details. Also, preparing an idea so that it can
stand alone on a videotape requires teamwork: several
people must manipulate the materials together to give
the illusion of the user’s interaction from the camera’s
perspective. This increases the required level of
communication and improves the understandability of
each idea. Similarly, the camera’s presence actively
changes the behavior of participants during video
prototyping. The combination of the written storyboard
and the video tape helps the team members create a
coherent sequence of activities that is grounded in a real-
world context, but illustrated in a way that can be
implemented directly with the software.

ACKNOWLEDGMENTS
Our thanks to all the members of the CPN2000 design
team who participated in our design process, including
members of the Beta, HCI, and CPN groups. We would
also like to thank the CPN users, students, and experts
who participated throughout the design process. Thanks
especially to Michel Beaudouin-Lafon for comments on
an earlier draft of this paper.

REFERENCES
Beaudouin-Lafon, M. (2000) Instrumental Interaction:

An Interaction Model for Designing Post-WIMP
User Interfaces. In Proceedings of Human Factors
in Computing Systems, ACM/CHI2000, the
Hague, the Netherlands, ACM Press, pp. 446-453.

Beaudouin-Lafon, M. (2000) The TWIKI interactive
web server. DAIMI Technical Report, University
of Aarhus. (http://www.daimi.au.dk/~mbl/twiki)

Most of the local CPN users were not active
participants in the weekly brainstorming or design
sessions and only saw the results of their video
brainstorming ideas after an interval of six months.
They were pleased to see the direct link between their
early brainstormed ideas and the working version of the
new tool. Several commented that it was not until then
that they finally understood the purpose of the video
brainstorming sessions.

Beaudouin-Lafon, M. and Mackay, W. (2000)
Reification, Polymorphism and Reuse: Three
principles for designing visual interfaces. In
Proceedings of Advanced Visual Interfaces, AVI
2000, Palermo, Italy, pp. 102-109.

Beyer, H. & Holtzblatt, K. (1998) Contextual Design.
Defining Customer-Centered Systems. Morgan
Kaufmann Publishers.

CONCLUSION
Our design process exploits the use of video artifacts to
capture and communicate the details of how users
interact with software. We use these artifacts to
manage the tension between abstract discussions of
design principles and detailed discussions of the user
interface. One can deride observations of use in the field
as merely “anecdotal evidence”, which may or may not
be typical of ordinary use. Yet, we have found that even
small quantities of video examples shown to system
designers may surprise them and challenge their
assumptions about how users use existing systems.
Video clips of external users, ranging from novice to
expert, help counterbalance the often strongly-held
opinions of the CPN experts participating in the tool’s
design.

Bier, E., Stone, M., Pier, K., Buxton, W., and
DeRose, T. (1993) Toolglass and magic lenses:
The see-through interface. In Proceedings of the
20th annual conference on Computer graphics, pp.
73-80.

Bier, E., Stone, M., Fishkin, K., Buxton, W., and
Baudel, T. (1994) A taxonomy of see-through
tools. CHI ‘94 video, In CHI'94 Conference
Companion, p.225.

Bødker, S. (1996). Applying Activity Theory to Video
Analysis: How to Make Sense of Video Data. In
Human-Computer Interaction. In Nardi, B.A. (ed.)
Context and Consciousness - Activity Theory and
Human-Computer Interface. The MIT Press. (pp.
147-174)

While we cannot hope to capture every aspect of use,
we can capture the most important aspects of both
usual and unusual situations, providing a rich and
concrete basis from which to design. A potential danger
in using many unrelated video clips is the temptation to
create separate solutions to deal with each individual
problem. Abstract design principles that apply in many
situations help us to uncover the more general
problems hidden in specific examples and provide
simpler, more elegant solutions that address a wider
range of needs.

Bødker, S. (1996). Applying Activity Theory to Video
Analysis: How to Make Sense of Video Data. In
Human-Computer Interaction. In Nardi, B.A. (ed.)
Context and Consciousness - Activity Theory and
Human-Computer Interface. The MIT Press. pp.
147-174.

Buur, J. & Søndergaard, A. (2000) Video Card Game:
An augmented environment for User Centered
Design discussions, In Proceedings of DARE
2000, Designing Augmented Reality
Environments. Elsinore, Denmark. ACM/SIGCHI,
pp.63-70.

Video artifacts may serve multiple roles in any design
process. They capture not only the basic functions of
the software, but also more subtle considerations of the
software as it is used in real-world contexts. By
recycling video artifacts, we can move between
activities that stress the specifics of the interaction and
those that explore the general principles underlying the
design, integrating the two and bridging the gap
between abstraction and detail.

Chapanis, A. (1982) Man/Computer Research at Johns
Hopkins, Information Technology and Psychology:
Prospects for the Future. Kasschau, Lachman &
Laughery (Eds.) Praeger Publishers, Third Houston
Symposium, NY, NY.

Card, S., Moran, T., and Newell, A. (1983) The
Psychology of Human-Computer Interaction.
Hillsdale, N.J.: Lawrence Ehrlbaum Associates.

Kurtenbach, G., Fitzmaurice, G., Baudel, T., &
Buxton. W. (1997). The Design of a GUI Paradigm
based on Tablets, Two-hands, and Transparency. In
Proceedings of ACM Human Factors in
Computing Systems, CHI'97, ACM Press, pp.35-
42.

Carroll, J. (1995) Scenario-based design. Envisioning
work and technology in system development. NY:
Wiley & Sons.

Lange, B.M., Jones, M.A. & Meyers, J.L. (1998)
Insightlab: An immersive team environment
linking paper, displays, and data. In Proceedings of
ACM CHI ‘98 Human Factors in Computing
Systems. Los Angeles, California: ACM/SIGCHI,
pp. 416-423. pp. 550-557.

Di Battista, G., Eades, P., Tamassia, R., & Tollis, I.
(1999) Graph Drawing -- Algorithms for the
Visualization of Graphs. Prentice Hall, New
Jersey.

Ericsson, K.A. & Simon, H.A. (1993) Protocol
Analysis: Verbal Reports as Data. Cambridge: MIT
Press.

Mackay, W.E. and Davenport, G. (July 1989). Virtual
Video Editing in Interactive Multi-Media
Applications. Communications of the ACM, Vol.
32(7), pp. 802-810.

Greenbaum, J. & Kyng, M. (1991) Design at work:
Cooperative design of computer systems. NY:
Lawrence Erlbaum Associates, Inc. Mackay, W.E. and Tatar, D. (1989) Workshop on

Video as a Research and Design Tool. Special Issue
of the SIGCHI Bulletin. ACM/SIGCHI.

Halasz, F., Moran, T. & Trigg, R. (1987) Notecards in
a Nutshell. In Proceedings of CHI+GI ‘97, Human
Factors in Computing Systems. Toronto, Canada,
ACM Press. pp. 45-52.

Mackay, W.E. and Bødker, S. (1994) Workshop on
Scenario-Based Design. In CHI’94 Conference
Companion., Boston, MA: ACM Press.Hartson, R. and Castillo, J. (1998). Remote evaluation

for post-deployment usability improvement.
Proceedings of ACM AVI ‘98, Conference on
Advanced Visual Interfaces. Bari, Italy: ACM.

Mackay, W. & Beaudouin-Lafon, M. (1998) DIVA:
Exploratory Data Analysis with Multimedia
Streams. In Proceedings of ACM CHI ‘98 Human
Factors in Computing Systems. Los Angeles,
California: ACM/SIGCHI, pp. 416-423.

Hibino, S. & Rundensteiner, E. (1998) Comparing
MMVIS to a time-line for temporal trend analysis
of video data. In Proceedings of ACM AVI ‘98,
Conference on Advanced Visual Interfaces. Bari,
Italy: ACM. pp.195-204.

Mackay, W.E, Beaudouin-Lafon, M., Ratzer, A.V. and
Janecek, P. (2000) The effect of work context on
the use of three interaction techniques. DAIMI
Technical Report, University of Aarhus.
http://www.daimi.au.dk/~mackay/publications.html

Janecek, P., Ratzer, A., & Mackay, W. (13-15 October
1999) Petri Nets in Use: Redesigning Design
CPN. In Proceedings of the Second Workshop on
Practical Use of Coloured Petri Nets and
Design/CPN. (K. Jensen, Ed.). Aarhus, Denmark,
pp.119-131

Norman, D.A. and Draper, S.W. (1986). User-Centered
System Design. Hillsdale, New Jersey: Ehrlbaum
Associates.

Norman, D. A. (1988) The Design of Everyday Things.
New York: Basic Books.Jensen, K. (1992) Coloured Petri Nets -- Basic

Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts. EATCS Monographs
on Theoretical Computer Science, Springer-Verlag.

Noik, E. G. (1994) A Space of Presentation Emphasis
Techniques for Visualizing Graphs. In Proceedings
of Graphics Interface ‘94, pp. 225-233.

Kurtenbach, G. & Buxton, W. (1994). User Learning
and Performance with Marking Menus. In
Proceedings of ACM Human Factors in
Computing Systems, CHI'94, ACM Press,
pp.258-264.

Schon, D. (1983) The Reflective Practitioner. New
York: Basic Books.

Shneiderman, B. (1983). Direct Manipulation: a Step
Beyond Programming Languages. IEEE Computer ,
16(8), pp. 57-69.

