
Beaudouin-Lafon & Mackay Draft 1 - 1 Prototype Development and Tools

Chapter 52

Prototyping Tools and Techniques

Michel Beaudouin-Lafon, Université Paris-Sud, mbl@lri.fr

Wendy E. Mackay, INRIA, wendy.mackay@inria.fr

1. Introduction

“A good design is better than you think” (Rex Heftman, cited by Raskin, 2000).

Design is about making choices. In many fields that require creativity and
engineering skill, such as architecture or automobile design, prototypes both
inform the design process and help designers select the best solution.

This chapter describes tools and techniques for using prototypes to design
interactive systems. The goal is to illustrate how they can help designers generate
and share new ideas, get feedback from users or customers, choose among design
alternatives, and articulate reasons for their final choices.

We begin with our definition of a prototype and then discuss prototypes as design
artifacts, introducing four dimensions for analyzing them. We then discuss the
role of prototyping within the design process, in particular the concept of a design
space, and how it is expanded and contracted by generating and selecting design
ideas. The next three sections describe specific prototyping approaches: Rapid
prototyping, both off-line and on-line, for early stages of design, iterative
prototyping, which uses on-line development tools, and evolutionary prototyping,
which must be based on a sound software architecture.

What is a prototype?

We define a prototype as a concrete representation of part or all of an interactive
system. A prototype is a tangible artifact, not an abstract description that requires
interpretation. Designers, as well as managers, developers, customers and end-
users, can use these artifacts to envision and reflect upon the final system.

Note that prototypes may be defined differently in other fields. For example, an
architectural prototype is a scaled-down model of the final building. This is not
possible for interactive system prototypes: the designer may limit the amount of
information the prototype can handle, but the actual interface must be presented at
full scale. Thus, a prototype interface to a database may handle only a small
pseudo database but must still present a full-size display and interaction
techniques. Full-scale, one-of-a-kind models, such as a hand-made dress sample,
are another type of prototype. These usually require an additional design phase in
order to mass-produce the final design. Some interactive system prototypes begin
as one-of-a-kind models which are then distributed widely (since the cost of
duplicating software is so low). However, most successful software prototypes
evolve into the final product and then continue to evolve as new versions of the
software are released.

Beaudouin-Lafon & Mackay Draft 1 - 2 Prototype Development and Tools

Hardware and software engineers often create prototypes to study the feasibility
of a technical process. They conduct systematic, scientific evaluations with
respect to pre-defined benchmarks and, by systematically varying parameters,
fine-tune the system. Designers in creative fields, such as typography or graphic
design, create prototypes to express ideas and reflect on them. This approach is
intuitive, oriented more to discovery and generation of new ideas than to
evaluation of existing ideas.

Human-Computer Interaction is a multi-disciplinary field which combines
elements of science, engineering and design (Mackay and Fayard, 1997, Djkstra-
Erikson et al., 2001). Prototyping is primarily a design activity, although we use
software engineering to ensure that software prototypes evolve into technically-
sound working systems and we use scientific methods to study the effectiveness
of particular designs.

2. Prototypes as design artifacts

We can look at prototypes as both concrete artifacts in their own right or as
important components of the design process. When viewed as artifacts,
successful prototypes have several characteristics: They support creativity,
helping the developer to capture and generate ideas, facilitate the exploration of a
design space and uncover relevant information about users and their work
practices. They encourage communication, helping designers, engineers,
managers, software developers, customers and users to discuss options and
interact with each other. They also permit early evaluation since they can be tested
in various ways, including traditional usability studies and informal user
feedback, throughout the design process.

We can analyze prototypes and prototyping techniques along four dimensions:
• Representation describes the form of the prototype, e.g., sets of paper

sketches or computer simulations;
• Precision describes the level of detail at which the prototype is to be

evaluated; e.g., informal and rough or highly polished;
• Interactivity describes the extent to which the user can actually interact with

the prototype; e.g., watch-only or fully interactive; and
• Evolution describes the expected life-cycle of the prototype, e.g. throw-

away or iterative.

2.1 Representation

Prototypes serve different purposes and thus take different forms. A series of
quick sketches on paper can be considered a prototype; so can a detailed computer
simulation. Both are useful; both help the designer in different ways. We
distinguish between two basic forms of representation: off-line and on-line.

Off-line prototypes (also called paper prototypes) do not require a computer. They
include paper sketches, illustrated story-boards, cardboard mock-ups and videos.
The most salient characteristics of off-line prototypes (of interactive systems) is
that they are created quickly, usually in the early stages of design, and they are
usually thrown away when they have served their purpose.

On-line prototypes (also called software prototypes) run on a computer. They
include computer animations, interactive video presentations, programs written
with scripting languages, and applications developed with interface builders. The
cost of producing on-line prototypes is usually higher, and may require skilled
programmers to implement advanced interaction and/or visualization techniques or

Beaudouin-Lafon & Mackay Draft 1 - 3 Prototype Development and Tools

to meet tight performance constraints. Software prototypes are usually more
effective in the later stages of design, when the basic design strategy has been
decided.

In our experience, programmers often argue in favor of software prototypes even
at the earliest stages of design. Because they already are already familiar with a
programming language, these programmers believe it will be faster and more
useful to write code than to "waste time" creating paper prototypes. In twenty
years of prototyping, in both research and industrial settings, we have yet to find
a situation in which this is true.

First, off-line prototypes are very inexpensive and quick. This permits a very
rapid iteration cycle and helps prevent the designer from becoming overly attached
to the first possible solution. Off-line prototypes make it easier to explore the
design space (see section 3.1), examining a variety of design alternatives and
choosing the most effective solution. On-line prototypes introduce an intermediary
between the idea and the implementation, slowing down the design cycle.

Second, off-line prototypes are less likely to constrain how the designer thinks.
Every programming language or development environment imposes constraints
on the interface, limiting creativity and restricting the number of ideas considered.
If a particular tool makes it easy to create scroll-bars and pull-down menus and
difficult to create a zoomable interface, the designer is likely to limit the interface
accordingly. Considering a wider range of alternatives, even if the developer ends
up using a standard set of interface widgets, usually results in a more creative
design.

Finally and perhaps most importantly, off-line prototypes can be created by a
wide range of people: not just programmers. Thus all types of designers, technical
or otherwise, as well as users, managers and other interested parties, can all
contribute on an equal basis. Unlike programming software, modifying a story-
board or cardboard mock-up requires no particular skill. Collaborating on paper
prototypes not only increases participation in the design process, but also
improves communication among team members and increases the likelihood that
the final design solution will be well accepted.

Although we believe strongly in off-line prototypes, they are not a panacea. In
some situations, they are insufficient to fully evaluate a particular design idea. For
example, interfaces requiring rapid feedback to users or complex, dynamic
visualizations usually require software prototypes. However, particularly when
using video and wizard-of-oz techniques, off-line prototypes can be used to create
very sophisticated representations of the system.

Prototyping is an iterative process and all prototypes provide information about
some aspects while ignoring others. The designer must consider the purpose of
the prototype (Houde and Hill, 1997) at each stage of the design process and
choose the representation that is best suited to the current design question.

2.2 Precision

Prototypes are explicit representations that help designers, engineers and users
reason about the system being built. By their nature, prototypes require details. A
verbal description such as "the user opens the file" or "the system displays the
results" provides no information about what the user actually does. Prototypes
force designers to show the interaction: just how does the user open the file and
what are the specific results that appear on the screen?

Beaudouin-Lafon & Mackay Draft 1 - 4 Prototype Development and Tools

Precision refers to the relevance of details with respect to the purpose of the
prototype1. For example, when sketching a dialog box, the designer specifies its
size, the positions of each field and the titles of each label. However not all these
details are relevant to the goal of the prototype: it may be necessary to show where
the labels are, but too early to choose the text. The designer can convey this by
writing nonsense words or drawing squiggles, which shows the need for labels
without specifying their actual content.

Although it may seem contradictory, a detailed representation need not be precise.
This is an important characteristic of prototypes: those parts of the prototype that
are not precise are those open for future discussion or for exploration of the
design space. Yet they need to be incarnated in some form so the prototype can be
evaluated and iterated.

The level of precision usually increases as successive prototypes are developed
and more and more details are set. The forms of the prototypes reflect their level
of precision: sketches tend not to be precise, whereas computer simulations are
usually very precise. Graphic designers often prefer using hand sketches for early
prototypes because the drawing style can directly reflect what is precise and what
is not: the wigglely shape of an object or a squiggle that represents a label are
directly perceived as imprecise. This is more difficult to achieve with an on-line
drawing tool or a user-interface builder.

The form of the prototype must be adapted to the desired level of precision.
Precision defines the tension between what the prototype states (relevant details)
and what the prototype leaves open (irrelevant details). What the prototype states
is subject to evaluation; what the prototype leaves open is subject to more
discussion and design space exploration.

2.3 Interactivity

An important characteristic of HCI systems is that they are interactive: users both
respond to them and act upon them. Unfortunately, designing effective interaction
is difficult: many interactive systems (including many web sites) have a good
“look” but a poor “feel”. HCI designers can draw from a long tradition in visual
design for the former, but have relatively little experience with how interactive
software systems should be used: personal computers have only been common-
place for about a decade. Another problem is that the quality of interaction is
tightly linked to the end users and a deep understanding of their work practices: a
word processor designed for a professional typographer requires a different
interaction design than one designed for secretaries, even though ostensibly they
serve similar purposes. Designers must take the context of use into account when
designing the details of the interaction.

A critical role for an interactive system prototype is to illustrate how the user will
interact with the system. While this may seem more natural with on-line
prototypes, in fact it is often easier to explore different interaction strategies with
off-line prototypes. Note that interactivity and precision are orthogonal
dimensions. One can create an imprecise prototype that is highly interactive, such
as a series of paper screen images in which one person acts as the user and the
other plays the system. Or, one may create a very precise but non-interactive

1 Note that the terms low-fidelity and high-fidelity prototypes are often used in the literature. We
prefer the term precision because it refers to the content of the prototype itself, not its
relationship to the final, as-yet-undefined system.

Beaudouin-Lafon & Mackay Draft 1 - 5 Prototype Development and Tools

prototype, such as a detailed animation that shows feedback from a specific action
by a user.

Prototypes can support interaction in various ways. For off-line prototypes, one
person (often with help from others) plays the role of the interactive system,
presenting information and responding to the actions of another person playing
the role of the user. For on-line prototypes, parts of the software are
implemented, while others are "played" by a person. (This approach, called the
Wizard of Oz after the character in the 1939 movie of the same name, is explained
in section 4.1.) The key is that the prototype feels interactive to the user.

Prototypes can support different levels of interaction. Fixed prototypes, such as
video clips or pre-computed animations, are non-interactive: the user cannot
interact, or pretend to interact, with it. Fixed prototypes are often used to illustrate
or test scenarios (see chapter 53). Fixed-path prototypes support limited
interaction. The extreme case is a fixed prototype in which each step is triggered
by a pre-specified user action. For example, the person controlling the prototype
might present the user with a screen containing a menu. When the user points to
the desired item, she presents the corresponding screen showing a dialog box.
When the user points to the word "OK", she presents the screen that shows the
effect of the command. Even though the position of the click is irrelevant (it is
used as a trigger), the person in the role of the user can get a feel for the
interaction. Of course, this type of prototype can be much more sophisticated,
with multiple options at each step. Fixed-path prototypes are very effective with
scenarios and can also be used for horizontal and task-based prototypes (see
section 3.1).

Open prototypes support large sets of interactions. Such prototypes work like the
real system, with some limitations. They usually only cover part of the system
(see vertical prototypes, section 3.1), and often have limited error-handling or
reduced performance relative to that of the final system.

Prototypes may thus illustrate or test different levels of interactivity. Fixed
prototypes simply illustrate what the interaction might look like. Fixed-path
prototypes provide designers and users with the experience of what the interaction
might be like, but only in pre-specified situations. Open prototypes allow
designers to test a wide range of examples of how users will interact with the
system.

2.4 Evolution

Prototypes have different life spans: rapid prototypes are created for a specific
purpose and then thrown away, iterative prototypes evolve, either to work out
some details (increasing their precision) or to explore various alternatives, and
evolutionary prototypes are designed to become part of the final system.

Rapid prototypes are especially important in the early stages of design. They must
be inexpensive and easy to produce, since the goal is to quickly explore a wide
variety of possible types of interaction and then throw them away. Note that rapid
prototypes may be off-line or on-line. Creating precise software prototypes, even
if they must be re-implemented in the final version of the system, is important for
detecting and fixing interaction problems. Section 4 presents specific prototyping
techniques, both off-line and on-line.

Iterative prototypes are developed as a reflection of a design in progress, with the
explicit goal of evolving through several design iterations. Designing prototypes
that support evolution is sometimes difficult. There is a tension between evolving

Beaudouin-Lafon & Mackay Draft 1 - 6 Prototype Development and Tools

toward the final solution and exploring an unexpected design direction, which
may be adopted or thrown away completely. Each iteration should inform some
aspect of the design. Some iterations explore different variations of the same
theme. Others may systematically increase precision, working out the finer details
of the interaction. Section 5 describes tools and techniques for creating iterative
prototypes.

Figure 1: Evolutionary prototypes of the Apple Lisa:
July 1979 (left), October 1980 (right) (Perkins et al., 1997) [[need permission]]

Evolutionary prototypes are a special case of iterative prototypes in which the
prototype evolves into part or all of the final system (Fig.1). Obviously this only
applies to software prototypes. Extreme Programming (Beck, 2000), advocates
this approach, tightly coupling design and implementation and building the system
through constant evolution of its components. Evolutionary prototypes require
more planning and practice than the approaches above because the prototypes are
both representations of the final system and the final system itself, making it more
difficult to explore alternative designs. We advocate a combined approach,
beginning with rapid prototypes and then using iterative or evolutionary
prototypes according to the needs of the project. Section 6 describes how to create
evolutionary prototypes, by building upon software architectures specifically
designed to support interactive systems.

3. Prototypes and the design process

In the previous section, we looked at prototypes as artifacts, i.e. the results of a
design process. Prototypes can also be seen as artifacts for design, i.e. as an
integral part of the design process. Prototyping helps designers think: prototypes
are the tools they use to solve design problems. In this section we focus on
prototyping as a process and its relationship to the overall design process.

User-centered design

The field of Human-Computer Interaction is both user-centered (Norman &
Draper, 1986) and iterative. User-centered design places the user at the center of
the design process, from the initial analysis of user requirements (see chapters 48-
50 in this volume) to testing and evaluation (see chapters 56-59 in this volume).
Prototypes support this goal by allowing users see and experience the final system
long before it is built. Designers can identify functional requirements, usability
problems and performance issues early and improve the design accordingly.

Beaudouin-Lafon & Mackay Draft 1 - 7 Prototype Development and Tools

Iterative design involves multiple design-implement-test loops2, enabling the
designer to generate different ideas and successively improve upon them.
Prototypes support this goal by allowing designers to evaluate concrete
representations of design ideas and select the best.

Prototypes reveal the strengths as well as the weaknesses of a design. Unlike pure
ideas, abstract models or other representations, they can be contextualized to help
understand how the real system would be used in a real setting. Because
prototypes are concrete and detailed, designers can explore different real-world
scenarios and users can evaluate them with respect to their current needs.
Prototypes can be compared directly with other, existing systems, and designers
can learn about the context of use and the work practices of the end users.
Prototypes can help designers (re)analyze the user's needs during the design
process, not abstractly as with traditional requirements analysis, but in the context
of the system being built.

Participatory design

Participatory (also called Cooperative) Design is a form of user-centered design
that actively involves the user in all phases the design process (see Greenbaum
and Kyng, 1991, and chapter 54 in this volume.) Users are not simply consulted
at the beginning and called in to evaluate the system at the end; they are treated as
partners throughout. This early and active involvement of users helps designers
avoid unpromising design paths and develop a deeper understanding of the actual
design problem. Obtaining user feedback at each phase of the process also
changes the nature of the final evaluation, which is used to fine-tune the interface
rather than discover major usability problems.

A common misconception about participatory design is that designers are expected
to abdicate their responsibilities as designers, leaving the design to the end user.
In fact, the goal is for designers and users to work together, each contributing
their strengths to clarify the design problem as well as explore design solutions.
Designers must understand what users can and cannot contribute. Usually, users
are best at understanding the context in which the system will be used and subtle
aspects of the problems that must be solved. Innovative ideas can come from both
users and designers, but the designer is responsible for considering a wide range
of options that might not be known to the user and balancing the trade-offs among
them.

Because prototypes are shared, concrete artifacts, they serve as an effective
medium for communication within the design team. We have found that
collaborating on prototype design is an effective way to involve users in
participatory design. Prototypes help users articulate their needs and reflect on the
efficacy of design solutions proposed by designers.

3.1 Exploring the design space

Design is not a natural science: the goal is not to describe and understand existing
phenomena but to create something new. Designers do, of course, benefit from
scientific research findings and they may use scientific methods to evaluate
interactive systems. But designers also require specific techniques for generating
new ideas and balancing complex sets of trade-offs, to help them develop and
refine design ideas.

2 Software engineers refer to this as the Spiral model (Boehm, 1988).

Beaudouin-Lafon & Mackay Draft 1 - 8 Prototype Development and Tools

Designers from fields such as architecture and graphic design have developed the
concept of a design space, which constrains design possibilities along some
dimensions, while leaving others open for creative exploration. Ideas for the
design space come from many sources: existing systems, other designs, other
designers, external inspiration and accidents that prompt new ideas. Designers are
responsible for creating a design space specific to a particular design problem.
They explore this design space, expanding and contracting it as they add and
eliminate ideas. The process is iterative: more cyclic, than reductionist. That is,
the designer does not begin with a rough idea and successively add more precise
details until the final solution is reached. Instead, she begins with a design
problem, which imposes set of constraints, and generates a set of ideas to form
the initial design space. She then explores this design space, preferably with the
user, and selects a particular design direction to pursue. This closes off part of the
design space, but opens up new dimensions that can be explored. The designer
generates additional ideas along these dimensions, explores the expanded design
space, and then makes new design choices. Design principles (e.g., Beaudouin-
Lafon and Mackay, 2000) help this process by guiding it both in the exploration
and choice phases. The process continues, in a cyclic expansion and contraction
of the design space, until a satisfying solution is reached.

All designers work with constraints: not just limited budgets and programming
resources, but also design constraints. These are not necessarily bad: one cannot
be creative along all dimensions at once. However, some constraints are
unnecessary, derived from poor framing of the original design problem. If we
consider a design space as a set of ideas and a set of constraints, the designer has
two options. She can modify ideas within the specified constraints or modify the
constraints to enable new sets of ideas. Unlike traditional engineering, which
treats the design problem as a given, designers are encouraged to challenge, and if
necessary, change the initial design problem. If she reaches an impasse, the
designer can either generate new ideas or redefine the problem (and thus change
the constraints). Some of the most effective design solutions derive from a more
careful understanding and reframing of the design brief.

Note that all members of the design team, including users, may contribute ideas to
the design space and help select design directions from within it. However, it is
essential that these two activities are kept separate. Expanding the design space
requires creativity and openness to new ideas. During this phase, everyone should
avoid criticizing ideas and concentrate on generating as many as possible. Clever
ideas, half-finished ideas, silly ideas, impractical ideas: all contribute to the
richness of the design space and improve the quality of the final solution. In
contrast, contracting the design space requires critical evaluation of ideas. During
this phase, everyone should consider the constraints and weigh the trade-offs.
Each major design decision must eliminate part of the design space: rejecting ideas
is necessary in order to experiment and refine others and make progress in the
design process. Choosing a particular design direction should spark new sets of
ideas, and those new ideas are likely to pose new design problems. In summary,
exploring a design space is the process of moving back and forth between
creativity and choice.

Prototypes aid designers in both aspects of working with a design space:
generating concrete representations of new ideas and clarifying specific design
directions. The next two sections describe techniques that have proven most
useful in our own prototyping work, both for research and product development.

Expanding the design space: Generating ideas

The most well-known idea generation technique is brainstorming, introduced by
Osborn (1957). His goal was to create synergy within the members of a group:

Beaudouin-Lafon & Mackay Draft 1 - 9 Prototype Development and Tools

ideas suggested by one participant would spark ideas in other participants.
Subsequent studies (Collaros and Anderson, 1969, Diehl and Stroebe, 1987)
challenged the effectiveness of group brainstorming, finding that aggregates of
individuals could produce the same number of ideas as groups. They found
certain effects, such as production blocking, free-riding and evaluation
apprehension, were sufficient to outweigh the benefits of synergy in
brainstorming groups. Since then, many researchers have explored different
strategies for addressing these limitations. For our purposes, the quantity of ideas
is not the only important measure: the relationships among members of the group
are also important. As de Vreede et al. (2000) point out, one should also consider
elaboration of ideas, as group members react to each other's ideas.

We have found that brainstorming, including a variety of variants, is an important
group-building exercise and participatory design. Designers may, of course,
brainstorm ideas by themselves. But brainstorming in a group is more enjoyable
and, if it is a recurring part of the design process, plays an important role in
helping group members share and develop ideas together.

The simplest form of brainstorming involves a small group of people. The goal is
to generate as many ideas as possible on a pre-specified topic: quantity not
quality, is important. Brainstorming sessions have two phases: the first for
generating ideas and the second for reflecting upon them. The initial phase should
last no more than an hour. One person should moderate the session, keeping time,
ensuring that everyone participates and preventing people from critiquing each
other's ideas. Discussion should be limited to clarifying the meaning of a
particular idea. A second person records every idea, usually on a flipchart or
transparency on an overhead projector. After a short break, participants are asked
to reread all the ideas and each person marks their three favorite ideas.

One variation is designed to ensure that everyone contributes, not just those who
are verbally dominant. Participants write their ideas on individual cards or post-it
notes for a pre-specified period of time. The moderator then reads each idea
aloud. Authors are encouraged to elaborate (but not justify) their ideas, which are
then posted on a whiteboard or flipchart. Group members may continue to
generate new ideas, inspired by the others they hear.

We use a variant of brainstorming that involves prototypes called video
brainstorming (Mackay, 2000): participants not only write or draw their ideas,
they act them out in front of a video camera (Fig. 2). The goal is the same as
other brainstorming exercises, i.e. to create as many new ideas as possible,
without critiquing them. The use of video, combined with paper or cardboard
mock-ups, encourages participants to actively experience the details of the
interaction and to understand each idea from the perspective of the user.

Each video brainstorming idea takes 2-5 minutes to generate and capture, allowing
participants to simulate a wide variety of ideas very quickly. The resulting video
clips provide illustrations of each idea that are easier to understand (and
remember) than hand-written notes. (We find that raw notes from brainstorming
sessions are not very useful after a few weeks because the participants no longer
remember the context in which the ideas were created.)

Beaudouin-Lafon & Mackay Draft 1 - 10 Prototype Development and Tools

Figure 2: Video Brainstorming: One person moves the transparency, projected
onto the wall, in response to the actions of the user, who explores how he might
interact with an on-line animated character. Each interaction idea is recorded and

videotaped.

Video brainstorming requires thinking more deeply about each idea. It is easier to
stay abstract when describing an interaction in words or even with a sketch, but
acting out the interaction in front of the camera forces the author of the idea (and
the other participants) to seriously consider how a user would interact with the
idea. It also encourages designers and users to think about new ideas in the
context in which they will be used. Video clips from a video brainstorming
session, even though rough, are much easier for the design team, including
developers, to interpret than ideas from a standard brainstorming session.

We generally run a standard brainstorming session, either oral or with cards, prior
to a video brainstorming session, to maximize the number of ideas to be explored.
Participants then take their favorite ideas from the previous session and develop
them further as video brainstorms. Each person is asked to "direct" at least two
ideas, incorporating the hands or voices of other members of the group. We find
that, unlike standard brainstorming, video brainstorming encourages even the
quietest team members to participate.

Contracting the design space: Selecting alternatives

After expanding the design space by creating new ideas, designers must stop and
reflect on the choices available to them. After exploring the design space,
designers must evaluate their options and make concrete design decisions:
choosing some ideas, specifically rejecting others, and leaving other aspects of the
design open to further idea generation activities. Rejecting good, potentially
effective ideas is difficult, but necessary to make progress.

Prototypes often make it easier to evaluate design ideas from the user's
perspective. They provide concrete representations that can be compared. Many of
the evaluation techniques described elsewhere in this handbook can be applied to
prototypes, to help focus the design space. The simplest situation is when the
designer must choose among several discrete, independent options. Running a
simple experiment, using techniques borrowed from Psychology (see chapter 56)
allows the designer to compare how users respond to each of the alternatives. The
designer builds a prototype, with either fully-implemented or simulated versions
of each option. The next step is to construct tasks or activities that are typical of
how the system would be used, and ask people from the user population to try
each of the options under controlled conditions. It is important to keep everything
the same, except for the options being tested.

Beaudouin-Lafon & Mackay Draft 1 - 11 Prototype Development and Tools

Designers should base their evaluations on both quantitative measures, such as
speed or error rate, and qualitative measures, such as the user's subjective
impressions of each option. Ideally, of course, one design alternative will be
clearly faster, prone to fewer errors and preferred by the majority of users. More
often, the results are ambiguous, and the designer must take other factors into
account when making the design choice. (Interestingly, running small
experiments often highlights other design problems and may help the designer
reformulate the design problem or change the design space.)

The more difficult (and common) situation, is when the designer faces a complex,
interacting set of design alternatives, in which each design decision affects a
number of others. Designers can use heuristic evaluation techniques, which rely
on our understanding of human cognition, memory and sensory-perception (see
chapters 1-6). They can also evaluate their designs with respect to ergonomic
criteria (see chapter 51) or design principles (Beaudouin-Lafon and Mackay,
2000). See chapters 56-60 for a more thorough discussion of testing and
evaluation methods.

Another strategy is to create one or more scenarios (see chapter 53) that illustrate
how the combined set of features will be used in a realistic setting. The scenario
must identify who is involved, where the activities take place, and what the user
does over a specified period of time. Good scenarios involve more than a string of
independent tasks; they should incorporate real-world activities, including
common or repeated tasks, successful activities and break-downs and errors, with
both typical and unusual events. The designer then creates a prototype that
simulates or implements the aspects of the system necessary to illustrate each set
of design alternatives. Such prototypes can be tested by asking users to "walk
through" the same scenario several times, once for each design alternative. As
with experiments and usability studies, designers can record both quantitative and
qualitative data, depending on the level of the prototypes being tested.

The previous section described an idea-generation technique called video
brainstorming, which allows designers to generate a variety of ideas about how to
interact with the future system. We call the corresponding technique for focusing
in on a design video prototyping. Video prototyping can incorporate any of the
rapid-prototyping techniques (off-line or on-line) described in section 4.1. They
are quick to build, force designers to consider the details of how users will react
to the design in the context in which it will be used, and provide an inexpensive
method of comparing complex sets of design decisions. See section 4.1 for more
information on how to develop scenarios, storyboard and then videotape them.

To an outsider, video brainstorming and video prototyping techniques look very
similar: both involve small design groups working together, creating rapid
prototypes and interacting with them in front of a video camera. Both result in
video illustrations that make abstract ideas concrete and help team members
communicate with each other. The critical difference is that video brainstorming
expands the design space, by creating a number of unconnected collections of
individual ideas, whereas video prototyping contracts the design space, by
showing how a specific collection of design choices work together.

3.2 Prototyping strategies

Designers must decide what role prototypes should play with respect to the final
system and in which order to create different aspects of the prototype. The next
section presents four strategies: horizontal, vertical , task-oriented and scenario-
based, which focus on different design concerns. These strategies can use any of
the prototyping techniques covered in sections 4, 5 and 6.

Beaudouin-Lafon & Mackay Draft 1 - 12 Prototype Development and Tools

Horizontal prototypes

The purpose of a horizontal prototype is to develop one entire layer of the design
at the same time. This type of prototyping is most common with large software
development teams, where designers with different skill sets address different
layers of the software architecture. Horizontal prototypes of the user interface are
useful to get an overall picture of the system from the user’s perspective and
address issues such as consistency (similar functions are accessible through
similar user commands), coverage (all required functions are supported) and
redundancy (the same function is/is not accessible through different user
commands).

User interface horizontal prototypes can begin with rapid prototypes and progress
through to working code. Software prototypes can be built with an interface
builder (see section 5.1), without creating any of the underlying functionality
making it possible to test how the user will interact with the user interface without
worrying about how the rest of the architecture works. However some level of
scaffolding or simulation of the rest of the application is often necessary,
otherwise the prototype cannot be evaluated properly. As a consequence, software
horizontal prototypes tend to be evolutionary, i.e. they are progressively
transformed into the final system.

Vertical prototypes

The purpose of a vertical prototype is to ensure that the designer can implement
the full, working system, from the user interface layer down to the underlying
system layer. Vertical prototypes are often built to assess the feasibility of a
feature described in a horizontal, task-oriented or scenario-based prototype. For
example, when we developed the notion of magnetic guidelines in the CPN2000
system to facilitate the alignment of graphical objects (Beaudouin-Lafon and
Mackay, 2000), we implemented a vertical prototype to test not only the
interaction technique but also the layout algorithm and the performance. We knew
that we could only include the particular interaction technique if the we could
implement a sufficiently fast response.

Vertical prototypes are generally high precision, software prototypes because their
goal is to validate an idea at the system level. They are often thrown away because
they are generally created early in the project, before the overall architecture has
been decided, and they focus on only one design question. For example, a vertical
prototype of a spelling checker for a text editor does not require text editing
functions to be implemented and tested. However, the final version will need to
be integrated into the rest of the system, which may involve considerable
architectural or interface changes.

Task-oriented prototypes

Many user interface designers begin with a task analysis (see chapter 48), to
identify the individual tasks that the user must accomplish with the system. Each
task requires a corresponding set of functionality from the system. Task-based
prototypes are organized as a series of tasks, which allows both designers and
users to test each task independently, systematically working through the entire
system.

Task-oriented prototypes include only the functions necessary to implement the
specified set of tasks. They combine the breadth of horizontal prototypes, to cover
the functions required by those tasks, with the depth of vertical prototypes,
enabling detailed analysis of how the tasks can be supported. Depending on the

Beaudouin-Lafon & Mackay Draft 1 - 13 Prototype Development and Tools

goal of the prototype, both off-line and on-line representations can be used for
task-oriented prototypes.

Scenario-based prototypes

Scenario-based prototypes are similar to task-oriented ones, except that they do
not stress individual, independent tasks, but rather follow a more realistic scenario
of how the system would be used in a real-world setting. Scenarios are stories
that describe a sequence of events and how the user reacts (see chapter 53). A
good scenario includes both common and unusual situations, and should explore
patterns of activity over time. Bødker (1995) has developed a checklist to ensure
that no important issues have been left out.

We find it useful to begin with use scenarios based on observations of or
interviews with real users. Ideally, some of those users should participate in the
creation of the specific scenarios, and other users should critique them based on
how realistic they are. Use scenarios are then turned into design scenarios, in
which the same situations are described but with the functionality of the new
system. Design scenarios are used, among other things, to create scenario-based
video prototypes or software prototypes. Like task-based prototypes, the
developer needs to write only the software necessary to illustrate the components
of the design scenario. The goal is to create a situation in which the user can
experience what the system would be like in a realistic situation, even if it
addresses only a subset of the planned functionality.

Section 4 describes a variety of rapid prototyping techniques which can be used
in any of these four prototyping strategies. We begin with off-line rapid
prototyping techniques, followed by on-line prototyping techniques.

4. Rapid prototypes

The goal of rapid prototyping is to develop prototypes very quickly, in a fraction
of the time it would take to develop a working system. By shortening the
prototype-evaluation cycle, the design team can evaluate more alternatives and
iterate the design several times, improving the likelihood of finding a solution that
successfully meets the user's needs.

How rapid is rapid depends on the context of the particular project and the stage in
the design process. Early prototypes, e.g. sketches, can be created in a few
minutes. Later in the design cycle, a prototype produced in less than a week may
still be considered “rapid” if the final system is expected to take months or years
to build. Precision, interactivity and evolution all affect the time it takes to create a
prototype. Not surprisingly, a precise and interactive prototype takes more time to
build than an imprecise or fixed one.

The techniques presented in this section are organized from most rapid to least
rapid, according to the representation dimension introduced in section 2. Off-line
techniques are generally more rapid than on-line one. However, creating
successive iterations of an on-line prototype may end up being faster than creating
new off-line prototypes.

4.1 Off-line rapid prototyping techniques

Off-line prototyping techniques range from simple to very elaborate. Because they
do not involve software, they are usually considered a tool for thinking through
the design issues, to be thrown away when they are no longer needed. This

Beaudouin-Lafon & Mackay Draft 1 - 14 Prototype Development and Tools

section describes simple paper and pencil sketches, three-dimensional mock-ups,
wizard-of-oz simulations and video prototypes.

Paper & pencil

The fastest form of prototyping involves paper, transparencies and post-it notes to
represent aspects of an interactive system (for an example, see Muller, 1991). By
playing the roles of both the user and the system, designers can get a quick idea of
a wide variety of different layout and interaction alternatives, in a very short
period of time.

Designers can create a variety of low-cost "special effects". For example, a tiny
triangle drawn at the end of a long strip cut from an overhead transparency makes
a handy mouse pointer, which can be moved by a colleague in response to the
user's actions. Post-it notes™, with prepared lists, can provide "pop-up menus".
An overhead projector pointed at a whiteboard, makes it easy to project
transparencies (hand-drawn or pre-printed, overlaid on each other as necessary) to
create an interactive display on the wall. The user can interact by pointing (Fig. 3)
or drawing on the whiteboard. One or more people can watch the user and move
the transparencies in response to her actions. Everyone in the room gets an
immediate impression of how the eventual interface might look and feel.

Figure 3: Hand-drawn transparencies can be projected onto a wall, creating an
interface a user can respond to.

Note that most paper prototypes begin with quick sketches on paper, then
progress to more carefully-drawn screen images made with a computer (Fig. 4).
In the early stages, the goal is to generate a wide range of ideas and expand the
design space, not determine the final solution. Paper and pencil prototypes are an
excellent starting point for horizontal, task-based and scenario-based prototyping
strategies.

Beaudouin-Lafon & Mackay Draft 1 - 15 Prototype Development and Tools

Figure 4: Several people work together to simulate interacting with this paper
prototype. One person moves a transparency with a mouse pointer while another

moves the diagram accordingly.

Mock-ups

Architects use mock-ups or scaled prototypes to provide three-dimensional
illustrations of future buildings. Mock-ups are also useful for interactive system
designers, helping them move beyond two-dimensional images drawn on paper or
transparencies (see Bødker et al., 1988). Generally made of cardboard, foamcore
or other found materials, mock-ups are physical prototypes of the new system.
Fig. 5 shows an example of a hand-held mockup showing the interface to a new
hand-held device. The mock-up provides a deeper understanding of how the
interaction will work in real-world situations than possible with sets of screen
images.

Figure 5: Mock-up of a hand-held display with carrying handle.

Mock-ups allow the designer to concentrate on the physical design of the device,
such as the position of buttons or the screen. The designer can also create several
mock-ups and compare input or output options, such as buttons vs. trackballs.
Designers and users should run through different scenarios, identifying potential
problems with the interface or generating ideas for new functionality. Mock-ups
can also help the designer envision how an interactive system will be incorporated
into a physical space (Fig. 6).

Beaudouin-Lafon & Mackay Draft 1 - 16 Prototype Development and Tools

Figure 6: Scaled mock-up of an air traffic control table, connected to a wall
display.

Wizard of Oz

Sometimes it is useful to give users the impression that they are working with a
real system, even before it exists. Kelley (1993) dubbed this technique the Wizard
of Oz , based on the scene in the 1939 movie of the same name. The heroine,
Dorothy, and her companions ask the mysterious Wizard of Oz for help. When
they enter the room, they see an enormous green human head, breathing smoke
and speaking with a deep, impressive voice. When they return later, they again
see the Wizard. This time, Dorothy's small dog pulls back a curtain, revealing a
frail old man pulling levers and making the mechanical Wizard of Oz speak. They
realize that the impressive being before them is not a wizard at all, but simply an
interactive illusion created by the old man.

The software version of the Wizard of Oz operates on the same principle. A user
sits a terminal and interacts with a program. Hidden elsewhere, the software
designer (the wizard) watches what the user does and, by responding in different
ways, creates the illusion of a working software program. In some cases, the user
is unaware that a person, rather than a computer, is operating the system.

The Wizard-of-Oz technique lets users interact with partially-functional computer
systems. Whenever they encounter something that has not been implemented (or
there is a bug), a human developer who is watching the interaction overrides the
prototype system and plays the role destined to eventually be played by the
computer. A combination of video and software can work well, depending upon
what needs to be simulated.

The Wizard of Oz was initially used to develop natural language interfaces (e.g.
Chapanis, 1982, Wixon, Whiteside, Good and Jones, 1993). Since then, the
technique has been used in a wide variety of situations, particularly those in which
rapid responses from users are not critical. Wizard of Oz simulations may consist
of paper prototypes, fully-implemented systems and everything in between.

Video prototyping

Video prototypes (Mackay, 1988) use video to illustrate how users will interact
with the new system. As explained in section 3.1, they differ from video
brainstorming in that the goal is to refine a single design, not generate new ideas.

Beaudouin-Lafon & Mackay Draft 1 - 17 Prototype Development and Tools

Video prototypes may build on paper & pencil prototypes and cardboard mock-
ups and can also use existing software and images of real-world settings.

We begin our video prototyping exercises by reviewing relevant data about users
and their work practices, and then review ideas we video brainstormed. The next
step is to create a use scenario, describing the user at work. Once the scenario is
described in words, the designer develops a storyboard. Similar to a comic book,
the storyboard shows a sequence of rough sketches of each action or event, with
accompanying actions and/or dialog (or subtitles), with related annotations that
explain what is happening in the scene or the type of shot (Fig. 7). A paragraph of
text in a scenario corresponds to about a page of a storyboard.

<Insert image in file: figure.7.eps >

Figure 7: Storyboard. This storyboard is based on observations of real Coloured
Petri Net users in a small company and illustrates how the CPN developer

modifies a particular element of a net, the "Simple Protocol".

Storyboards help designers refine their ideas, generate 'what if' scenarios for
different approaches to a story, and communicate with the other people who are
involved in creating the production. Storyboards may be informal "sketches" of
ideas, with only partial information. Others follow a pre-defined format and are
used to direct the production and editing of a video prototype. Designers should
jot down notes on storyboards as they think through the details of the interaction.

Storyboards can be used like comic books to communicate with other members of
the design team. Designers and users can discuss the proposed system and
alternative ideas for interacting with it (figure 8). Simple videos of each
successive frame, with a voice over to explain what happens, can also be
effective. However, we usually use storyboards to help us shoot video
prototypes, which illustrate how a new system will look to a user in a real-world
setting. We find that placing the elements of a storyboard on separate cards and
arranging them (Mackay and Pagani, 1994) helps the designer experiment with
different linear sequences and insert or delete video clips. However, the process
of creating a video prototype, based on the storyboard, provides an even deeper
understanding of the design.

Figure 8: Video Prototyping: The CPN design team reviews their observations of
CPN developers and then discuss several design alternatives. They work out a

scenario and storyboard it, then shoot a video prototype that reflects their design.

The storyboard guides the shooting of the video. We often use a technique called
"editing-in-the-camera" (see Mackay, 2000) which allows us the create the video

Beaudouin-Lafon & Mackay Draft 1 - 18 Prototype Development and Tools

directly, without editing later. We use title cards, as in a silent movie, to separate
the clips and to make it easier to shoot. A narrator explains each event and several
people may be necessary to illustrate the interaction. Team members enjoy playing
with special effects, such as "time-lapse photography". For example, we can
record a user pressing a button, stop the camera, add a new dialog box, and then
restart the camera, to create the illusion of immediate system feedback.

Video is not simply a way to capture events in the real world or to capture design
ideas, but can be a tool for sketching and visualizing interactions. We use a
second live video camera as a Wizard-of-Oz tool. The wizard should have access
to a set of prototyping materials representing screen objects. Other team members
stand by, ready to help move objects as needed. The live camera is pointed at the
wizard’s work area, with either a paper prototype or a partially-working software
simulation. The resulting image is projected onto a screen or monitor in front of
the user. One or more people should be situated so that they can observe the
actions of the user and manipulate the projected video image accordingly. This is
most effective if the wizard is well prepared for a variety of events and can present
semi-automated information. The user interacts with the objects on the screen as
wizard moves the relevant materials in direct response to each user action. The
other camera records the interaction between the user and the simulated software
system on the screen or monitor, to create either a video brainstorm (for a quick
idea) or a fully-storyboarded video prototype).

Figure 9: Complex wizard-of-oz simulation, with projected image from a live
video camera and transparencies projected from an overhead projector.

Fig. 9 shows a Wizard-of-oz simulation with a live video camera, video projector,
whiteboard, overhead projector and transparencies. The setup allows two people
to experience how they would communicate via a new interactive communication
system. One video camera films the blond woman, who can see and talk to the
brunette. Her image is projected live onto the left-side of the wall. An overhead
projector displays hand-drawn transparencies, manipulated by two other people,
in response to gestures made by the brunette. The entire interaction is videotaped
by a second video camera.

Combining wizard-of-oz and video is a particularly powerful prototyping
technique because it gives the person playing the user a real sense of what it might
actually feel like to interact with the proposed tool, long before it has been
implemented. Seeing a video clip of someone else interacting with a simulated
tool is more effective than simply hearing about it; but interacting with it directly is

Beaudouin-Lafon & Mackay Draft 1 - 19 Prototype Development and Tools

more powerful still. Video prototyping may act as a form of specification for
developers, enabling them to build the precise interface, both visually and
interactively, created by the design team.

4.2 On-line rapid prototyping techniques

The goal of on-line rapid prototyping is to create higher-precision prototypes than
can be achieved with off-line techniques. Such prototypes may prove useful to
better communicate ideas to clients, managers, developers and end users. They
are also useful for the design team to fine tune the details of a layout or an
interaction. They may exhibit problems in the design that were not apparent in less
precise prototypes. Finally they may be used early on in the design process for
low precision prototypes that would be difficult to create off-line, such as when
very dynamic interactions or visualizations are needed.

The techniques presented in this section are sorted by interactivity. We start with
non-interactive simulations, i.e. animations, followed by interactive simulations
that provide fixed or multiple-paths interactions. We finish with scripting
languages which support open interactions.

Non-interactive simulations

A non-interactive simulation is a computer-generated animation that represents
what a person would see of the system if he or she were watching over the user’s
shoulder. Non-interactive simulations are usually created when off-line
prototypes, including video, fail to capture a particular aspect of the interaction
and it is important to have a quick prototype to evaluate the idea. It's usually best
to start by creating a storyboard to describe the animation, especially if the
developer of the prototype is not a member of the design team.

One of the most widely-used tools for non-interactive simulations is Macromedia
Director™. The designer defines graphical objects called sprites, and defines
paths along which to animate them. The succession of events, such as when
sprites appear and disappear, is determined with a time-line. Sprites are usually
created with drawing tools, such as Adobe Illustrator or Deneba Canvas, painting
tools, such as Adobe Photoshop, or even scanned images. Director is a very
powerful tool; experienced developer can create sophisticated interactive
simulations. However, non-interactive simulations are much faster to create.
Other similar tools exist on the market, including Abvent Katabounga, Adobe
AfterEffects and Macromedia Flash (Fig. 10).

Beaudouin-Lafon & Mackay Draft 1 - 20 Prototype Development and Tools

Figure 10: A non-interactive simulation of a desktop interface created with
Macromedia Flash. The time-line (top) displays the active sprites while the main

window (bottom) shows the animation. (O. Beaudoux, with permission)

Figure 11 shows a set of animation movies created by Dave Curbow to explore
the notion of accountability in computer systems (Dourish, 1997). These
prototypes explore new ways to inform the user of the progress of a file copy
operation. They were created with Macromind Director by combining custom-
made sprites with sprites extracted from snapshots of the Macintosh Finder. The
simulation features cursor motion, icons being dragged, windows opening and
closing, etc. The result is a realistic prototype that shows how the interface looks
and behaves, that was created in just a few hours. Note that the simulation also
features text annotations to explain each step, which helps document the
prototype.

Figure 11: Frames from an animated simulation created with Macromind Director
(D. Curbow, with permission)

Non-interactive animations can be created with any tool that generates images. For
example, many Web designers use Adobe Photoshop to create simulations of their
web sites. Photoshop images are composed of various layers that overlap like
transparencies. The visibility and relative position of each layer can be controlled
independently. Designers can quickly add or delete visual elements, simply by
changing the characteristics of the relevant layer. This permits quick comparisons
of alternative designs and helps visualize multiple pages that share a common
layout or banner. Skilled Photoshop users find this approach much faster than
most web authoring tools.

We used this technique in the CPN2000 project (Mackay et al., 2000) to
prototype the use of transparency. After several prototyping sessions with
transparencies and overhead projectors, we moved to the computer to understand
the differences between the physical transparencies and the transparent effect as it
would be rendered on a computer screen. We later developed an interactive
prototype with OpenGL, which required an order of magnitude more time to
implement than the Photoshop mock-up.

Beaudouin-Lafon & Mackay Draft 1 - 21 Prototype Development and Tools

Interactive simulations

Designers can also use tools such as Adobe Photoshop to create Wizard-of-Oz
simulations. For example, the effect of dragging an icon with the mouse can be
obtained by placing the icon of a file in one layer and the icon of the cursor in
another layer, and by moving either or both layers. The visibility of layers, as
well as other attributes, can also create more complex effects. Like Wizard-of-Oz
and other paper prototyping techniques, the behavior of the interface is generated
by the user who is operating the Photoshop interface.

More specialized tools, such as Hypercard and Macromedia Director, can be used
to create simulations that the user can directly interact with. Hypercard
(Goodman, 1987) is one of the most successful early prototyping tools. It is an
authoring environment based on a stack metaphor: a stack contains a set of cards
that share a background, including fields and buttons. Each card can also have its
own unique contents, including fields and buttons (Fig. 12). Stacks, cards, fields
and buttons react to user events, e.g. clicking a button, as well as system events,
e.g. when a new card is displayed or about to disappear (Fig. 13). Hypercard
reacts according to events programmed with a scripting language called
Hypertalk. For example, the following script is assigned to a button, which
switches to the next card in the stack whenever the button is clicked. If this button
is included in the stack background, the user will be able to browse through the
entire stack:

on click

goto next card

end click

Figure 12: A Hypercard card (right) is the combination of a background (left) and
the card's content (middle). (Apple Computer, permission requested)

Figure 13: The hierarchy of objects in Hypercard determines the order (from left
to right) in which a handler is looked up for an event (Apple Computer,

permission requested)

Interfaces can be prototyped quickly with this approach, by drawing different
states in successive cards and using buttons to switch from one card to the next.
Multiple-path interactions can be programmed by using several buttons on each

Beaudouin-Lafon & Mackay Draft 1 - 22 Prototype Development and Tools

card. More open interactions require more advanced use of the scripting language,
but are fairly easy to master with a little practice.

Director uses a different metaphor, attaching behaviors to sprites and to frames of
the animation. For example, a button can be defined by attaching a behavior to the
sprite representing that button. When the sprite is clicked, the animation jumps to
a different sequence. This is usually coupled with a behavior attached to the frame
containing the button that loops the animation on the same frame. As a result,
nothing happens until the user clicks the button, at which point the animation
skips to a sequence where, for example, a dialog box opens. The same technique
can be used to make the OK and Cancel buttons of the dialog box interactive.
Typically, the Cancel button would skip to the original frame while the OK button
would skip to a third sequence. Director comes with a large library of behaviors to
describe such interactions, so that prototypes can be created completely
interactively. New behaviors can also be defined with a scripting language called
Lingo.

Many educational and cultural CD-ROMs are created exclusively with Director.
They often feature original visual displays and interaction techniques that would
be almost impossible to create with the traditional user interface development tools
described in section 5. Designers should consider tools like Hypercard and
Director as user interface builders or user interface development environments. In
some situations, they can even be used for evolutionary prototypes (see section
6).

Scripting languages

Scripting languages are the most advanced rapid prototyping tools. As with the
interactive-simulation tools described above, the distinction between rapid
prototyping tools and development tools is not always clear. Scripting languages
make it easy to quickly develop throw-away quickly (a few hours to a few days),
which may or may not be used in the final system, for performance or other
technical reasons.

A scripting language is a programming language that is both lightweight and easy
to learn. Most scripting languages are interpreted or semi-compiled, i.e. the user
does not need to go through a compile-link-run cycle each time the script
(program) is changed. Scripting languages can be forbidding: they are not
strongly typed and non fatal errors are ignored unless explicitly trapped by the
programmer. Scripting languages are often used to write small applications for
specific purposes and can serve as glue between pre-existing applications or
software components. Tcl (Ousterhout, 1993) was inspired by the syntax of the
Unix shell, it makes it very easy to interface existing applications by turning the
application programming interface (API) into a set of commands that can be called
directly from a Tcl script.

Tcl is particularly suitable to develop user interface prototypes (or small to
medium-size applications) because of its Tk user interface toolkit. Tk features all
the traditional interactive objects (called “widgets”) of a UI toolkit: buttons,
menus, scrollbars, lists, dialog boxes, etc. A widget is typically only one line.
For example:

button .dialogbox.ok -text OK -command {destroy .dialogbox}

This command creates a button, called “.dialogbox.ok”, whose label is “OK”. It
deletes its parent window “.dialogbox” when the button pressed. A traditional
programming language and toolkit would take 5-20 lines to create the same
button.

Beaudouin-Lafon & Mackay Draft 1 - 23 Prototype Development and Tools

Tcl also has two advanced, heavily-parameterized widgets: the text widget and the
canvas widget. The text widget can be used to prototype text-based interfaces.
Any character in the text can react to user input through the use of tags. For
example, it is possible to turn a string of characters into a hypertext link. In
Beaudouin-Lafon (2000), the text widget was used to prototype a new method for
finding and replacing text. When entering the search string, all occurrences of the
string are highlighted in the text (Fig. 14). Once a replace string has been entered,
clicking an occurrence replaces it (the highlighting changes from yellow to red).
Clicking a replaced occurrence returns it to its original value. This example also
uses the canvas widget to create a custom scrollbar that displays the positions and
status of the occurrences.

Figure 14: using the Tk text and canvas widgets to prototype a novel search and
replace interaction technique (Beaudouin-Lafon, 2000).

The Tk canvas widget is a drawing surface that can contain arbitrary objects:
lines, rectangles, ovals, polygons, text strings, and widgets. Tags allow
behaviors (i.e. scripts) that are called when the user acts on these objects. For
example, an object that can be dragged will be assigned a tag with three behaviors:
button-press, mouse-move and button-up. Because of the flexibility of the
canvas, advanced visualization and interaction techniques can be implemented
more quickly and easily than with other tools. For example, Fig. 15 shows a
prototype exploring new ideas to manage overlapping windows on the screen
(Beaudouin-Lafon, 2001). Windows can be stacked and slightly rotated so that it
is easier to recognize them, and they can be folded so it is possible to see what is
underneath without having to move the window. Even though the prototype is not
perfect (for example, folding a window that contains text is not properly
supported), it was instrumental in identifying a number of problems with the
interaction techniques and finding appropriate solutions through iterative design.

Figure 15: using the Tk canvas widget to prototype a novel window manager
(Beaudouin-Lafon, 2001).

Beaudouin-Lafon & Mackay Draft 1 - 24 Prototype Development and Tools

Tcl and Tk can also be used with other programming languages. For example,
Pad++ (Bederson & Meyer, 1998) is implemented as an extension to Tcl/Tk: the
zoomable interface is implemented in C for performance, and accessible from Tk
as a new widget. This makes it easy to prototype interfaces that use zooming. It is
also a way to develop evolutionary prototypes: a first prototype is implemented
completely in Tcl, then parts of are re-implemented in a compiled language to
performance. Ultimately, the complete system may be implemented in another
language, although it is more likely that some parts will remain in Tcl.

Software prototypes can also be used in conjunction with hardware prototypes.
Figure 16 shows an example of a hardware prototype that captures hand-written
text from a paper flight strip (using a combination of a graphics tablet and a
custom-designed system for detecting the position of the paper strip holder). We
used Tk/TCL, in conjunction with C++, to present information on a RADAR
screen (tied to an existing air traffic control simulator) and to provide feedback on
a touch-sensitive display next to the paper flight strips (Caméléon, Mackay et al.,
1998). The user can write in the ordinary way on the paper flight strip, and the
system interprets the gestures according to the location of the writing on the strip.
For example, a change in flight level is automatically sent to another controller for
confirmation and a physical tap on the strip's ID lights up the corresponding
aircraft on the RADAR screen.

Fig. 16: Caméléon's augmented stripboard (left) is a working hardware prototype
that identifies and captures hand-writing from paper flight strips. Members of the
design team test the system (right), which combines both hardware and software

prototypes into a single interactive simulation.

5. Iterative prototypes

Prototypes may also be developed with traditional software development tools. In
particular, high-precision prototypes usually require a level of performance that
cannot be achieved with the rapid on-line prototyping techniques described above.
Similarly, evolutionary prototypes intended to evolve into the final product require
more traditional software development tools. Finally, even shipped products are
not "final", since subsequent releases can be viewed as initial designs for
prototyping the next release.

Development tools for interactive systems have been in use for over twenty years
and are constantly being refined. Several studies have shown that the part of the
development cost of an application spent on the user interface is 50% - 80% of the
total cost of the project (Myers & Rosson, 1992). The goal of development tools
is to shift this balance by reducing production and maintenance costs. Another
goal of development tools is to anticipate the evolution of the system over
successive releases and support iterative design.

Beaudouin-Lafon & Mackay Draft 1 - 25 Prototype Development and Tools

Interactive systems are inherently more powerful than non interactive ones (see
Wegner, 1997, for a theoretical argument). They do not match the traditional,
purely algorithmic, type of programming: an interactive system must handle user
input and generate output at almost any time, whereas an algorithmic system reads
input at the beginning, processes it, and displays results at the end. In addition,
interactive systems must process input and output at rates that are compatible with
the human perception-action loop, i.e. in time frames of 20ms to 200ms. In
practice, interactive systems are both reactive and real-time systems, two active
areas in computer science research.

The need to develop interactive systems more efficiently has led to two inter-
related streams of work. The first involves creation of software tools, from low-
level user-interface libraries and toolkits to high-level user interface development
environments (UIDE). The second addresses software architectures for interactive
systems: how system functions are mapped onto software modules. The rest of
this section presents the most salient contributions of these two streams of work.

5.1 Software tools

Since the advent of graphical user interfaces in the eighties, a large number of
tools have been developed to help with the creation of interactive software, most
aimed at visual interfaces. This section presents a collection of tools, from low-
level, i.e. requiring a lot of programming, to high-level.

The lowest-level tools are graphical libraries ,that provide hardware-independence
for painting pixels on a screen and handling user input, and window systems that
provide an abstraction (the window) to structure the screen into several “virtual
terminals”. User interface toolkits structure an interface as a tree of interactive
objects called widgets, while user interface builders provide an interactive
application to create and edit those widget trees. Application frameworks build on
toolkits and UI builders to facilitate creation of typical functions such as
cut/copy/paste, undo, help and interfaces based on editing multiple documents in
separate windows. Model-based tools semi-automatically derive an interface from
a specification of the domain objects and functions to be supported. Finally, user
interface development environments or UIDEs provide an integrated collection of
tools for the development of interactive software.

Before we describe each of these categories in more detail, it is important to
understand how they can be used for prototyping. It is not always best to use the
highest-level available tool for prototyping. High-level tools are most valuable in
the long term because they make it easier to maintain the system, port it to various
platforms or localize it to different languages. These issues are irrelevant for
vertical and throw-away prototypes, so a high-level tool may prove less effective
than a lower-level one.

The main disadvantage of higher-level tools is that they constrain or stereotype the
types of interfaces they can implement. User interface toolkits usually contain a
limited set of “widgets” and it is expensive to create new ones. If the design must
incorporate new interaction techniques, such as bimanual interaction (Kurtenbach
et al., 1997) or zoomable interfaces (Bederson & Hollan, 1994), a user interface
toolkit will hinder rather than help prototype development. Similarly, application
frameworks assume a stereotyped application with a menu bar, several toolbars, a
set of windows holding documents, etc. Such a framework would be
inappropriate for developing a game or a multimedia educational CD-ROM that
requires a fluid, dynamic and original user interface.

Beaudouin-Lafon & Mackay Draft 1 - 26 Prototype Development and Tools

Finally, developers need to truly master these tools, especially when prototyping
in support of a design team. Success depends on the programmer's ability to
quickly change the details as well as the overall structure of the prototype. A
developer will be more productive when using a familiar tool than if forced to use
a more powerful but unknown tool.

Graphical libraries and Window systems

Graphical libraries underlie all the other tools presented in this section. Their main
purpose is to provide the developer with a hardware-independent, and sometimes
cross-platform application programming interface (API) for drawing on the
screen. They can be separated into two categories: direct drawing and scene-graph
based. Direct drawing libraries provide functions to draw shapes on the screen,
once specified their geometry and their graphical attributes. This means that every
time something is to be changed on the display, the programmer has to either
redraw the whole screen or figure out exactly which parts have changed. Xlib on
Unix systems, Quickdraw on MacOS, Win32 GDI on Windows and OpenGL
(Woo et al., 1997) on all three platforms are all direct drawing libraries. They
offer the best compromise between performance and flexibility, but are difficult to
program.

Scene-graph based libraries explicitly represent the contents of the display by a
structure called a scene graph. It can be a simple list (called display list), a tree (as
used by many user interface toolkits – see next subsection), or a direct acyclic
graph (DAG). Rather than painting on the screen the developer creates and
updates the scene graph, and the library is responsible for updating the screen to
reflect the scene graph. Scene graphs are mostly used for 3D graphics, e.g.,
OpenInventor (Strass, 1993), but in recent years they have been used for 2D as
well (Bederson et al., 2000, Beaudouin-Lafon & Lassen, 2000). With the advent
of hardware-accelerated graphics card, scene-graph based graphics libraries can
offer outstanding performance while easing the task of the developer.

Window systems provide an abstraction to allow multiple client applications to
share the same screen. Applications create windows and draw into them. From
the application perspective, windows are independent and behave as separate
screens. All graphical libraries include or interface with a window system.
Window systems also offer a user interface to manipulate windows (move, resize,
close, change stacking order, etc.), called the window manager. The window
manager may be a separate application (as in X-Windows), or it may be built into
the window system (as in Windows), or it may be controlled of each application
(as in MacOS). Each solution offers a different trade-off between flexibility and
programming cost.

Graphical libraries include or are complemented by an input subsystem. The input
subsystem is event driven: each time the user interacts with an input device, an
event recording the interaction is added to an input event queue. The input
subsystem API lets the programmer query the input queue and remove events
from it. This technique is much more flexible than polling the input devices
repeatedly or waiting until an input device is activated. In order to ensure that
input event are handled in a timely fashion, the application has to execute an event
loop that retrieves the first event in the queue and handles it as fast as possible.
Every time an event sits in the queue, there is a delay between the user action and
the system reaction. As a consequence, the event loop sits at the heart of almost
every interactive system.

Window systems complement the input subsystem by routing events to the
appropriate client application based on its focus. The focus may be specified
explicitly for a device (e.g. the keyboard) or implicitly through the cursor position

Beaudouin-Lafon & Mackay Draft 1 - 27 Prototype Development and Tools

(the event goes to the window under the cursor). Scene-graph based libraries
usually provide a picking service to identify which objects in the scene graph are
under or in the vicinity of the cursor.

Although graphical libraries and window systems are fairly low-level, they must
often be used when prototyping novel interaction and/or visualization techniques.
Usually, these prototypes are developed when performance is key to the success
of a design. For example, a zoomable interface that cannot provide continuous
zooming at interactive frame rates is unlikely to be usable. The goal of the
prototype is then to measure performance in order to validate the feasibility of the
design.

User interface toolkits

User interface toolkits are probably the most widely used tool nowadays to
implement applications. All three major platforms (Unix/Linux, MacOS and
Windows) come with at least one standard UI toolkit. The main abstraction
provided by a UI toolkit is the widget. A widget is a software object that has three
facets that closely match the MVC model: a presentation, a behavior and an
application interface.

The presentation defines the graphical aspect of the widget. Usually, the
presentation can be controlled by the application, but also externally. For
example, under X-Windows, it is possible to change the appearance of widgets in
any application by editing a text file specifying the colors, sizes and labels of
buttons, menu entries, etc. The overall presentation of an interface is created by
assembling widgets into a tree. Widgets such as buttons are the leaves of the tree.
Composite widgets constitute the nodes of the tree: a composite widgets contains
other widgets and controls their arrangement. For example menu widgets in a
menu bar are stacked horizontally, while command widgets in a menu are stacked
vertically. Widgets in a dialog box are laid out at fixed positions, or relative to
each other so that the layout may be recomputed when the window is resized.
Such constraint-based layout saves time because the interface does not need to be
re-laid out completely when a widget is added or when its size changes as a result
of, e.g., changing its label.

The behavior of a widget defines the interaction methods it supports: a button can
be pressed, a scrollbar can be scrolled, a text field can be edited. The behavior
also includes the various possible states of a widget. For example, most widgets
can be active or inactive, some can be highlighted, etc. The behavior of a widget
is usually hardwired and defines its class (menu, button, list, etc.). However it is
sometimes parameterized, e.g. a list widget may be set to support single or
multiple selection.

One limitation of widgets is that their behavior is limited to the widget itself.
Interaction techniques that involve multiple widgets, such as drag-and-drop,
cannot be supported by the widgets’ behavior alone and require a separate support
in the UI toolkit. Some interaction techniques, such as toolglasses or magic lenses
(Bier et al., 1993), break the widget model both with respect to the presentation
and the behavior and cannot be supported by traditional toolkits. In general,
prototyping new interaction techniques requires either implementing them within
new widget classes, which is not always possible, or not using a toolkit at all.
Implementing a new widget class is typically more complicated than implementing
the new technique outside the toolkit, e.g. with a graphical library, and is rarely
justified for prototyping. Many toolkits provide a “blank” widget (Canvas in Tk,
Drawing Area in Motif, JFrame in Java Swing) that can be used by the application
to implement its own presentation and behavior. This is usually a good alternative
to implementing a new widget class, even for production code.

Beaudouin-Lafon & Mackay Draft 1 - 28 Prototype Development and Tools

The application interface of a widget defines how it communicate the results of the
user interactions to the rest of the application. Three main techniques exist. The
first and most common one is called callback functions or callback for short: when
the widget is created, the application registers the name of a one or more functions
with it. When the widget is activated by the user, it calls the registered functions
(Fig. 17). The problem with this approach is that the logic of the application is
split among many callback functions (Myers, 1991).

OK DoPrint (...) {...}Define callback

DoPrint (...)OKUser action activates callback

Fig. 17: Callback functions

The second approach is called active variables and consists of associating a widget
with a variable of the application program (Fig. 18). A controller ensures that
when the widget state changes, the variable is updated with a new value and,
conversely, when the value of the variable changes, the widget state reflects the
new value. This allows the application to change the state of the interface without
accessing the widgets directly, therefore decoupling the functional core from the
presentation. In addition, the same active variable can be used with multiple
widgets, providing an easy way to support multiple views. Finally, it is easier to
change the mapping between widgets and active variables than it is to change the
assignment of callbacks. This is because active variables are more declarative and
callbacks more procedural. Active variables work only for widgets that represent
data, e.g. a list or a text field, but not for buttons or menus. Therefore they
complement, rather than replace, callbacks. Few user interface toolkits implement
active variables. Tcl/Tk (Ousterhout, 1994) is a notable exception.

2 caleDefine active variable

6 caleUser action changes value

9 cale
i := 19

Changed value updates widget

Fig. 18: Active variables

The third approach for the application interface is based on listeners. Rather than
registering a callback function with the widget, the application registers a listener
object (Fig. 19). When the widget is activated, it sends a message to its listener
describing the change in state. Typically, the listener of a widget would be its
model (using the MVC terminology) or Abstraction (using the PAC terminology).
The first advantage of this approach therefore is to better match the most common
architecture models. It is also more truthful to the object-oriented approach that
underlies most user interface toolkits. The second advantage is that it reduces the
“spaghetti of callbacks” described above: by attaching a single listener to several
widgets, the code is more centralized. A number of recent toolkits are based on
the listener model, including Java Swing (Eckstein et al., 1998).

OK PrintDialog pDefine listener object

p.HandleEvent(ev)OK
ev

User action activates listener

Fig. 19: Listener objects

Beaudouin-Lafon & Mackay Draft 1 - 29 Prototype Development and Tools

User interface toolkits have been an active area of research over the past 15 years.
InterViews (Linton et al., 1989) has inspired many modern toolkits and user
interface builders. A number of toolkits have also been developed for specific
applications such as groupware (Roseman and Greenberg, 1996, 1999) or
visualization (Schroeder et al., 1997).

Creating an application or a prototype with a UI toolkit requires a solid knowledge
of the toolkit and experience with programming interactive applications. In order
to control the complexity of the inter-relations between independent pieces of code
(creation of widgets, callbacks, global variables, etc.), it is important to use well-
known design patterns. Otherwise the code quickly becomes unmanageable and,
in the case of a prototype, unsuitable to design space exploration. Two categories
of tools have been designed to ease the task of developers: user interface builders
and application frameworks.

User-interface builders

A user interface builder allows the developer of an interactive system to create the
presentation of the user interface, i.e. the tree of widgets, interactively with a
graphical editor. The editor features a palette of widgets that the user can use to
“draw” the interface in the same way as a graphical editor is used to create
diagrams with lines, circles and rectangles. The presentation attributes of each
widget can be edited interactively as well as the overall layout. This saves a lot of
time that would otherwise be spent writing and fine-tuning rather dull code that
creates widgets and specifies their attributes. It also makes it extremely easy to
explore and test design alternatives.

User interface builders focus on the presentation of the interface. They also offer
some facilities to describe the behavior of the interface and to test the interaction.
Some systems allow the interactive specification of common behaviors such as a
menu command opening a dialog box, a button closing a dialog box, a scrollbar
controlling a list or text. The user interface builder can then be switched to a “test”
mode where widgets are not passive objects but work for real. This may be
enough to test prototypes for simple applications, even though there is no
functional core nor application data.

In order to create an actual application, the part of the interface generated by the
UI builder must be assembled with the missing parts, i.e. the functional core, the
application interface code that could not be described from within the builder, and
the run-time module of the generator. Most generators save the interface into a file
that can be loaded at run-time by the generator’s run-time (Fig. 20). With this
method, the application needs only be re-generated when the functional core
changes, not when the user interface changes. This makes it easy to test
alternative designs or to iteratively create the interface: each time a new version of
the interface is created, it can be readily tested by re-running the application.

Editor

interface

Interactive
application

functional
core

generator
run-time

load

link editor

load
save

Figure 20: iterative user interface builder.

Beaudouin-Lafon & Mackay Draft 1 - 30 Prototype Development and Tools

In order to make it even easier to modify the interface and test the effects with the
real functional core, the interface editor can be built into the target application
(Fig. 21). Changes to the interface can then be made from within the application
and tested without re-running it. This situation occurs most often with interface
builders based on an interpreted language (e.g. Tcl/Tk, Visual Basic).

Editor

interface

Interactive
application

functional
core

generator
run-time

load

link editor
save

Figure 21: interactive user interface builder.

In either case, a final application can be created by compiling the interface
generated by the user interface builder into actual code, linked with the functional
core and a minimal run-time module. In this situation, the interface is not loaded
from a file but directly created by the compiled code (Fig. 22). This is both faster
and eliminates the need for a separate interface description file.

interface

Interactive
application

functional
core

generator
run-time

link editor

compiled
interface

compiler

Figure 22: generation of the final application.

User interface builders are widely used to develop prototypes as well as final
applications. They are easy to use, they make it easy to change the look of the
interface and they hide a lot of the complexity of creating user interfaces with UI
toolkits. However, despite their name, they do not cover the whole user interface,
only the presentation. Therefore they still require a significant amount of
programming, namely some part of the behavior and all the application interface.
Systems such as NeXT’s Interface Builder (Next, 1991) ease this task by
supporting part of the specification of the application objects and their links with
the user interface. Still, user interface builders require knowledge of the
underlying toolkit and an understanding of their limits, especially when
prototyping novel visualization and interaction techniques.

Beaudouin-Lafon & Mackay Draft 1 - 31 Prototype Development and Tools

5.2 Software environments

Application frameworks

Application frameworks address a different problem than user interface builders
and are actually complementary. Many applications have a standard form where
windows represent documents that can be edited with menu commands and tools
from palettes; each document may be saved into a disk file; standard functions
such as copy/paste, undo, help are supported. Implementing such stereotyped
applications with a UI toolkit or UI builder requires replicating a significant
amount of code to implement the general logic of the application and the basics of
the standard functions.

Application frameworks address this issue by providing a shell that the developer
fills with the functional core and the actual presentation of the non-standard parts
of the interface. Most frameworks have been inspired by MacApp, a framework
developed in the eighties to develop applications for the Macintosh (Apple
Computer, 1996). Typical base classes of MacApp include Document, View,
Command and Application. MacApp supports multiple document windows,
multiple views of a document, cut/copy/paste, undo, saving documents to files,
scripting, and more.

With the advent of object-oriented technology, most application frameworks are
implemented as collections of classes. Some classes provide services such as help
or drag-and-drop and are used as client classes. Many classes are meant to be
derived in order to add the application functionality through inheritance rather than
by changing the actual code of the framework. This makes it easy to support
successive versions of the framework and limits the risks of breaking existing
code. Some frameworks are more specialized than MacApp. For example,
Unidraw (Vlissides and Linton, 1990) is a framework for creating graphical
editors in domains such as technical and artistic drawing, music composition, or
circuit design. By addressing a smaller set of applications, such a framework can
provide more support and significantly reduce implementation time.

Mastering an application framework takes time. It requires knowledge of the
underlying toolkit and the design patterns used in the framework, and a good
understanding of the design philosophy of the framework. A framework is useful
because it provides a number of functions “for free”, but at the same time it
constrains the design space that can be explored. Frameworks can prove effective
for prototyping if their limits are well understood by the design team.

Model-based tools

User interface builders and application frameworks approach the development of
interactive applications through the presentation side: first the presentation is built,
then behavior, i.e., interaction, is added, finally the interface is connected to the
functional core. Model-based tools take the other approach, starting with the
functional core and domain objects, and working their way towards the user
interface and the presentation (Szekely et al., 1992, 1993). The motivation for this
approach is that the raison d’être of a user interface is the application data and
functions that will be accessed by the user. Therefore it is important to start with
the domain objects and related functions and derive the interface from them. The
goal of these tools is to provide a semi-automatic generation of the user interface
from the high-level specifications, including specification of the domain objects
and functions, specification of user tasks, specification of presentation and
interaction styles.

Beaudouin-Lafon & Mackay Draft 1 - 32 Prototype Development and Tools

Despite significant efforts, the model-based approach is still in the realm of
research: no commercial tool exists yet. By attempting to define an interface
declaratively, model-based tools rely on a knowledge base of user interface design
to be used by the generation tools that transform the specifications into an actual
interface. In other words, they attempt to do what designers do when they
iteratively and painstakingly create an interactive system. This approach can
probably work for well-defined problems with well-known solutions, i.e.
families of interfaces that address similar problems. For example, it may be the
case that interfaces for Management Information Systems (MIS) could be created
with model-based tools because these interfaces are fairly similar and well
understood.

In their current form, model-based tools may be useful to create early horizontal
or task-based prototypes. In particular they can be used to generate a “default”
interface that can serve as a starting point for iterative design. Future systems may
be more flexible and therefore usable for other types of prototypes.

User interface development environments

Like model-based tools, user interface development environments (UIDE) attempt
to support the development of the whole interactive system. The approach is more
pragmatic than the model-based approach however. It consists in assembling a
number of tools into an environment where different aspects of an interactive
system can be specified and generated separately.

C32 spreadsheet

Jade dialog box creation system

Lapidary interface builder

Widget set

Interactors Opal graphics system

Constraint System

KR object system

X11 Window system CommonLisp

operating system

Garnet
tools

Garnet
toolkit

Fig. 23: The Garnet toolkit and tools (Myers et al., 1990)

Garnet (Fig. 23) and its successor Amulet (Myers et al, 1997) provide a
comprehensive set of tools, including a traditional user interface builder, a semi-
automatic tool for generating dialog boxes, a user interface builder based on a
demonstration approach, etc. One particular tool, Silk, is aimed explicitly at
prototyping user interfaces.

Beaudouin-Lafon & Mackay Draft 1 - 33 Prototype Development and Tools

Fig. 24: A sketch created with Silk (top left) and its automatic transformation into
a Motif user interface (top right). A storyboard (bottom) used to test sequences of

interactions, here a button that rotates an object. (J. Landay, with permission)

Silk (Landay & Myers, 2001) is a tool aimed at the early stages of design, when
interfaces are sketched rather than prototyped in software. Using Silk, a user can
sketch a user interface directly on the screen (Fig. 24). Using gesture recognition,
Silk interprets the marks as widgets, annotations, etc. Even in its sketched form,
the user interface is functional: buttons can be pressed, tools can be selected in a
toolbar, etc. The sketch can also be turned into an actual interface, e.g. using the
Motif toolkit. Finally, storyboards can be created to describe and test sequences of
interactions. Silk therefore combines some aspects of off-line and on-line
prototyping techniques, trying to get the best of both worlds. This illustrates a
current trend in research where on-line tools attempt to support not only the
development of the final system, but the whole design process.

6. Evolutionary Prototypes

Evolutionary prototypes are a special case of iterative prototypes, that are intended
to evolve into the final system. Methodologies such as Extreme Programming
(Beck, 2000) consist mostly in developing evolutionary prototypes.

Since prototypes are rarely robust nor complete, it is often impractical and
sometimes dangerous to evolve them into the final system. Designers must think
carefully about the underlying software architecture of the prototype, and
developers should use well-documented design patterns to implement them.

6.1 Software architectures

The definition of the software architecture is traditionally done after the functional
specification is written, but before coding starts. The designers design on the
structure of the application and how functions will be implemented by software

Beaudouin-Lafon & Mackay Draft 1 - 34 Prototype Development and Tools

modules. The software architecture is the assignment of functions to modules.
Ideally, each function should be implemented by a single module and modules
should have minimal dependencies among them. Poor architectures increase
development costs (coding, testing and integration), lower maintainability, and
reduce performance. An architecture designed to support prototyping and
evolution is crucial to ensure that design alternatives can be tested with maximum
flexibility and at a reasonable cost.

Seeheim and Arch

The first generic architecture for interactive systems was devised at a workshop in
Seeheim (Germany) in 1985 and is known as the Seeheim model (Pfaff, 1985). It
separates the interactive application into a user interface and a functional core (then
called “application”, because the user interface was seen as adding a “coat of
paint” on top of an existing application). The user interface is made of three
modules: the presentation, the dialogue controller, and the application interface
(Fig. 25). The presentation deals with capturing user’s input at a low level (often
called lexical level by comparison with the lexical, syntactic and semantic levels of
a compiler). The presentation is also responsible for generating output to the user,
usually as visual display. The dialogue controller assembles the user input into
commands (a.k.a. syntactic level), provides some immediate feedback for the
action being carried out, such as an elastic rubber line, and detects errors. Finally,
the application interface interprets the commands into calls to the functional core
(a.k.a. semantic level). It also interprets the results of these calls and turns them
into output to be presented to the user.

Presentation Dialogue
Controller

Application
Interface

Functional
CoreUser Interface

Figure 25: Seeheim model (Pfaff, 1985)

All architecture models for interactive systems are based on the Seeheim model.
They all recognize that there is a part of the system devoted to capturing user
actions and presenting output (the presentation) and another part devoted to the
functional core (the computational part of the application). In between are one or
more modules that transform user actions into functional calls, and application
data (including results from functional calls) into user output.

A modern version of the Seeheim model is the Arch model (The UIMS Workshop
Tool Developers, 1992). The Arch model is made of five components (Fig. 26).
The interface toolkit component is a pre-existing library that provides low-level
services such as buttons, menus, etc. The presentation component provides a
level of abstraction over the user interface toolkit. Typically, it implements
interaction and visualization techniques that are not already supported by the
interface toolkit. It may also provide platform independence by supporting
different toolkits. The functional core component implements the functionality of
the system. In some cases it is already existent and cannot be changed. The
domain adapter component provides additional services to the dialogue component
that are not in the functional core. For example, if the functional core is a Unix-
like file system and the user interface is a iconic interface similar to the Macintosh
Finder, the domain adapter may provide the dialogue controller with a notification
service so the presentation can be updated whenever a file is changed. Finally, the
dialogue component is the keystone of the arch; it handles the translation between
the user interface world and the domain world.

Beaudouin-Lafon & Mackay Draft 1 - 35 Prototype Development and Tools

Dialogue
Component

Presentation
Component

Interaction
Toolkit

Component

Domain-
Adpater

Component

Domain-
Specific

Component

Figure 26: The Arch Model (The UIMS Workshop Developers Tool, 1992)

The Arch model is also known as the Slinky model because the relative sizes of
the components may vary across applications as well as during the life of the
software. For example, the presentation component may be almost empty if the
interface toolkit provides all the necessary services, and be later expanded to
support specific interaction or visualization techniques, or multiple platforms.
Similarly, early prototypes may have a large domain adapter simulating the
functional core of the final system, or interfacing to an early version of the
functional core; the domain adapter may shrink to almost nothing when the final
system is put together.

The separation that Seeheim, Arch and most other architecture models make
between user interface and functional core is a good, pragmatic approach but it
may cause problems in some cases. A typical problem is a performance penalty
when the interface components (left leg) have to query the domain components
(right leg) during an interaction such as drag-and-drop. For example, when
dragging the icon of a file over the desktop, icons of folders and applications that
can receive the file should highlight. Determining which icons to highlight is a
semantic operation that depends on file types and other information and must
therefore be carried out by the functional core or domain adapter. If drag-and-drop
is implemented in the user interface toolkit, this means that each time the cursor
goes over a new icon, up to four modules have to be traversed once by the query
and once by the reply to find out whether or not to highlight the icon. This is both
complicated and slow. A solution to this problem, called semantic delegation,
involves shifting, in the architecture, some functions such as matching files for
drag-and-drop from the domain leg into the dialogue or presentation component.
This may solve the efficiency problem, but at the cost of an added complexity
especially when maintaining or evolving the system, because it creates
dependencies between modules that should otherwise be independent.

MVC and PAC

Architecture models such as Seeheim and Arch are abstract models and are thus
rather imprecise. They deal with categories of modules such as presentation or
dialogue, when in an actual architecture several modules will deal with
presentation and several others with dialogue.

The Model-View-Controller or MVC model (Krasner and Pope, 1988) is much
more concrete. MVC was created for the implementation of the Smalltalk-80
environment (Goldberg & Robson, 1983) and is implemented as a set of
Smalltalk classes. The model describes the interface of an application as a
collection of triplets of objects. Each triplet contains a model, a view and a
controller. A Model represents information that needs to be represented and
interacted with. It is controlled by applications objects. A View displays the
information in a model in a certain way. A Controller interprets user input on the

Beaudouin-Lafon & Mackay Draft 1 - 36 Prototype Development and Tools

view and transforms it into changes in the model. When a model changes it
notifies its view so the display can be updated.

Views and controllers are tightly coupled and sometimes implemented as a single
object. A model is abstract when it has no view and no controller. It is non-
interactive if it has a view but no controller. The MVC triplets are usually
composed into a tree, e.g. an abstract model represents the whole interface, it has
several components that are themselves models such as the menu bar, the
document windows, etc., all the way down to individual interface elements such
as buttons and scrollbars. MVC supports multiple views fairly easily: the views
share a single model; when a controller modifies the model, all the views are
notified and update their presentation.

The Presentation-Abstraction-Control model, or PAC (Coutaz, 1987) is close to
MVC. Like MVC, an architecture based on PAC is made of a set of objects, called
PAC agents, organized in a tree. A PAC agent has three facets: the Presentation
takes care of capturing user input and generating output; the Abstraction holds the
application data, like a Model in MVC; the Control facet manages the
communication between the abstraction and presentation facets of the agent, and
with sub-agents and super-agents in the tree. Like MVC, multiple views are easily
supported. Unlike MVC, PAC is an abstract model, i.e. there is no reference
implementation.

A variant of MVC, called MVP (Model-View-Presenter), is very close to PAC
and is used in ObjectArts' Dolphin Smalltalk. Other architecture models have been
created for specific purposes such as groupware (Dewan, 1999) or graphical
applications (Fekete and Beaudouin-Lafon, 1996).

6.2 Design patterns

Architecture models such as Arch or PAC only address the overall design of
interactive software. PAC is more fine-grained than Arch, and MVC is more
concrete since it is based on an implementation. Still, a user interface developer
has to address many issues in order to turn an architecture into a working system.

Design patterns have emerged in recent years as a way to capture effective
solutions to recurrent software design problems. In their book, Gamma et al.
(1995) present 23 patterns. It is interesting to note than many of these patterns
come from interactive software, and most of them can be applied to the design of
interactive systems. It is beyond the scope of this chapter to describe these
patterns in detail. However it is interesting that most patterns for interactive
systems are behavioral patterns, i.e. patterns that describe how to implement the
control structure of the system.

Indeed, there is a battle for control in interactive software. In traditional,
algorithmic software, the algorithm is in control and decides when to read input
and write output. In interactive software, the user interface needs to be in control
because user input should drive the system’s reactions. Unfortunately, more often
than not, the functional core also needs to be in control. This is especially
common when creating user interfaces for legacy applications. In the Seeheim and
Arch models, it is often believed that control is located in the dialog controller
when in fact these architecture models do not explicitly address the issue of
control. In MVC, the three basic classes Model, View and Controller implement a
sophisticated protocol to ensure that user input is taken into account in a timely
manner and that changes to a model are properly reflected in the view (or views).
Some authors actually describe MVC as a design pattern, not an architecture. In
fact it is both: the inner workings of the three basic classes is a pattern, but the

Beaudouin-Lafon & Mackay Draft 1 - 37 Prototype Development and Tools

decomposition of the application into a set of MVC triplets is an architectural
issue.

It is now widely accepted that interactive software is event-driven, i.e. the
execution is driven by the user’s actions, leading to a control localized in the user
interface components. Design patterns such as Command, Chain of
Responsibility, Mediator, and Observer (Gamma et al., 1995) are especially
useful to implement the transformation of low-level user event into higher-level
commands, to find out which object in the architecture responds to the command,
and to propagate the changes produced by a command from internal objects of the
functional core to user interface objects.

Using design patterns to implement an interactive systems not only saves time, it
also makes the system more open to changes and easier to maintain. Therefore
software prototypes should be implemented by experienced developers who know
their pattern language and who understand the need for flexibility and evolution.

7. Summary

Prototyping is an essential component of interactive system design. Prototypes
may take many forms, from rough sketches to detailed working prototypes. They
provide concrete representations of design ideas and give designers, users and
developers and managers an early glimpse into how the new system will look and
feel. Prototypes increase creativity, allow early evaluation of design ideas, help
designers think through and solve design problems, and support communication
within multi-disciplinary design teams.

Prototypes, because they are concrete and not abstract, provide a rich medium for
exploring a design space. They suggest alternate design paths and reveal
important details about particular design decisions. They force designers to be
creative and to articulate their design decisions. Prototypes embody design ideas
and encourage designers to confront their differences of opinion. The precise
aspects of a prototype offer specific design solutions: designers can then decide to
generate and compare alternatives. The imprecise or incomplete aspects of a
prototype highlight the areas that must be refined or require additional ideas.

We begin by defining prototypes and then discuss them as design artifacts. We
introduce four dimensions by which they can be analyzed: representation,
precision, interactivity and evolution. We then discuss the role of prototyping
within the design process and explain the concept of creating, exploring and
modifying a design space. We briefly describe techniques for generating new
ideas, to expand the design space, and techniques for choosing among design
alternatives, to contract the design space.

We describe a variety of rapid prototyping techniques for exploring ideas quickly
and inexpensively in the early stages of design, including off-line techniques
(from paper&pencil to video) and on-line techniques (from fixed to interactive
simulations). We then describe iterative prototyping techniques for working out
the details of the on-line interaction, including software development tools and
software environments We conclude with evolutionary prototyping techniques,
which are designed to evolve into the final software system, including a
discussion of the underlying software architectures, design patterns and extreme
programming.

This chapter has focused mostly on graphical user interfaces (GUIs) that run on
traditional workstations. Such applications are dominant today, but this is
changing as new devices are being introduced, from cell-phones and PDAs to

Beaudouin-Lafon & Mackay Draft 1 - 38 Prototype Development and Tools

wall-size displays. New interaction styles are emerging, such as augmented
reality, mixed reality and ubiquitous computing. Designing new interactive
devices and the interactive software that runs on them is becoming ever more
challenging: whether aimed at a wide audience or a small number of specialists,
the hardware and software systems must be adapted to their contexts of use. The
methods, tools and techniques presented in this chapter can easily be applied to
these new applications.

We view design as an active process of working with a design space, expanding it
by generating new ideas and contracting as design choices are made. Prototypes
are flexible tools that help designers envision this design space, reflect upon it,
and test their design decisions. Prototypes are diverse and can fit within any part
of the design process, from the earliest ideas to the final details of the design.
Perhaps most important, prototypes provide one of the most effective means for
designers to communicate with each other, as well as with users, developers and
managers, throughout the design process.

8. References

Apple Computer (1996). Programmer's Guide to MacApp.

Beaudouin-Lafon, M. (2000). Instrumental Interaction: An Interaction Model for
Designing Post-WIMP User Interfaces. Proceedings ACM Human Factors in
Computing Systems, CHI'2000, pp.446-453, ACM Press.

Beaudouin-Lafon, M. (2001). Novel Interaction Techniques for Overlapping
Windows. Proceedings of ACM Symposium on User Interface Software and
Technology, UIST 2001, CHI Letters 3(2), ACM Press. In Press.

Beaudouin-Lafon, M. and Lassen, M. (2000) The Architecture and
Implementation of a Post-WIMP Graphical Application. Proceedings of ACM
Symposium on User Interface Software and Technology, UIST 2000, CHI
Letters 2(2):191-190, ACM Press.

Beaudouin-Lafon, M. and Mackay, W. (2000) Reification, Polymorphism and
Reuse: Three Principles for Designing Visual Interfaces. In Proc. Conference on
Advanced Visual Interfaces, AVI 2000, Palermo, Italy, May 2000, p.102-109.

Beck, K. (2000). Extreme Programming Explained. New York: Addison-
Wesley.

Bederson, B. and Hollan, J. (1994). Pad++: A Zooming Graphical Interface for
Exploring Alternate Interface Physics. Proceedings of ACM Symposium on User
Interface Software and Technology, UIST’94, pp.17-26, ACM Press.

Bederson, B. and Meyer, J. (1998). Implementing a Zooming Interface:
Experience Building Pad++. Software Practice and Experience, 28(10):1101-
1135.

Bederson, B.B., Meyer, J., Good, L. (2000) Jazz: An Extensible Zoomable User
Interface Graphics ToolKit in Java. Proceedings of ACM Symposium on User
Interface Software and Technology, UIST 2000, CHI Letters 2(2):171-180,
ACM Press.

Bier, E., Stone, M., Pier, K., Buxton, W., De Rose, T. (1993) Toolglass and
Magic Lenses : the See-Through Interface. Proceedings ACM SIGGRAPH,
pp.73-80, ACM Press.

Beaudouin-Lafon & Mackay Draft 1 - 39 Prototype Development and Tools

Boehm, B. (1988). A Spiral Model of Software Development and Enhancement.
IEEE Computer, 21(5):61-72.

Bødker, S., Ehn, P., Knudsen, J., Kyng, M. and Madsen, K. (1988) Computer
support for cooperative design. In Proceedings of the CSCW'88 ACM
Conference on Computer-Supported Cooperative Work. Portland, OR: ACM
Press, pp. 377-393.

Chapanis, A. (1982) Man/Computer Research at Johns Hopkins, Information
Technology and Psychology: Prospects for the Future. Kasschau, Lachman &
Laughery (Eds.) Praeger Publishers, Third Houston Symposium, NY, NY.

Collaros, P.A., Anderson, L.R. (1969), Effect of perceived expertness upon
creativity of members of brainstorming groups. Journal of Applied Psychology,
53, 159-163.

Coutaz, J. (1987). PAC, an Object Oriented Model for Dialog Design. In
Proceedings of INTERACT’87, Bullinger, H.-J. and Shackel, B. (eds.),
pp.431-436, Elsevier Science Publishers.

Dewan, P. (1999). Architectures for Collaborative Applications. In Beaudouin-
Lafon, M. (ed.), Computer-Supported Co-operative Work, Trends in Software
Series, Wiley, pp.169-193.

Djkstra-Erikson, E., Mackay, W.E. and Arnowitz, J. (March, 2001) Trialogue on
Design of. ACM/Interactions, pp. 109-117.

Dourish, P. (1997). Accounting for System Behaviour: Representation,
Reflection and Resourceful Action. In Kyng and Mathiassen (eds), Computers
and Design in Context. Cambridge: MIT Press, pp.145-170.

Eckstein, R., Loy, M. and Wood, D. (1998). Java Swing. Cambridge MA:
O’Reilly.

Fekete, J-D. and Beaudouin-Lafon, M. (1996). Using the Multi-layer Model for
Building Interactive Graphical Applications. In Proc. ACM Symposium on User
Interface Software and Technology, UIST'96, ACM Press, p. 109-118.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns,
Elements of Reusable Object-Oriented Software. Reading MA: Addison Wesley.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston:
Houghton Mifflin.

Goldberg, A. and Robson, D. (1983). Smalltalk--80: The language and its
implementation. Reading MA: Addison Wesley.

Goodman, D. (1987). The Complete HyperCard Handbook. New York: Bantam
Books.

Greenbaum, J. and Kyng, M., eds (1991). Design at Work: Cooperative Design
of Computer Systems. Hillsdale NJ: Lawrence Erlbaum Associates.

Houde, S. and Hill, C. (1997). What do Prototypes Prototype? In Handbook of
Human Computer Interaction 2ed complety revised. North-Holland, pp.367-381.

Beaudouin-Lafon & Mackay Draft 1 - 40 Prototype Development and Tools

Kelley, J.F. (1983) An empirical methodology for writing user-friendly natural
language computer applications. In Proceedings of CHI '83 Conference on
Human Factors in Computing Systems. Boston, Massachusetts.

Krasner, E.G. and Pope, S.T. (1988). A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, August/September 1988, pp.27-49.

Kurtenbach, G., Fitzmaurice, G., Baudel, T., Buxton. W. (1997). The Design of
a GUI Paradigm based on Tablets, Two-hands, and Transparency. Proceedings
of ACM Human Factors in Computing Systems, CHI'97, pp.35-42, ACM Press.

Landay, J. and Myers, B.A. (2001). Sketching Interfaces: Toward More Human
Interface Design. IEEE Computer, 34(3):56-64.

Linton, M.A., Vlissides, J.M., Calder, P.R. (1989). Composing user interfaces
with InterViews, IEEE Computer, 22(2):8-22.

Mackay, W.E. (1988) Video Prototyping: A technique for developing hypermedia
systems. Demonstration in Proceedings of CHI'88, Conference on Human
Factors in Computing, Washington, D.C.

Mackay, W.E. and Pagani, D. (1994) Video Mosaic: Laying out time in a
physical space. Proceedings of ACM Multimedia '94. San Francisco, CA: ACM,
pp.165-172.

Mackay, W.E. and Fayard, A-L. (1997) HCI, Natural Science and Design: A
Framework for Triangulation Across Disciplines. Proceedings of ACM DIS '97,
Designing Interactive Systems. Amsterdam, Pays-Bas: ACM/SIGCHI, pp.223-
234.

Mackay, W.E. (2000) Video Techniques for Participatory Design: Observation,
Brainstorming & Prototyping. Tutorial Notes, CHI 2000, Human Factors in
Computing Systems. The Hague, the Netherlands. (148 pages) URL:
www.lri.fr/~mackay/publications

Mackay, W., Ratzer, A. and Janecek, P. (2000) Video Artifacts for Design:
Bridging the Gap between Abstraction and Detail. Proceedings ACM Conference
on Designing Interactive Systems, DIS 2000, pp.72-82, ACM Press.

Myers, B.A., Giuse, D.A., Dannenberg, R.B., Vander Zander, B., Kosbie,
D.S., Pervin, E., Mickish, A., Marchal, P. (1990). Garnet: Comprehensive
Support for Graphical, Highly-Interactive User Interfaces. IEEE Computer,
23(11):71-85.

Myers, B.A. (1991). Separating application code from toolkits: Eliminating the
spaghetti of call-backs. Proceedings of ACM SIGGRAPH Symposium on User
Interface Software and Technology, UIST '91, pp.211-220.

Myers, B.A. and Rosson, M.B. (1992). Survey on user interface programming.
In ACM Conference on Human Factors in Computing Systems, CHI’92, pp.195-
202, ACM Press.

Myers, B.A., McDaniel, R.G., Miller, R.C., Ferrency, A.S., Faulring, A.,
Kyle, B.D., Mickish, A., Klimotivtski, A., Doane, P. (1997). The Amulet
environment. IEEE Transactions on Software Engineering, 23(6):347 - 365.

Beaudouin-Lafon & Mackay Draft 1 - 41 Prototype Development and Tools

NeXT Corporation (1991). NeXT Interface Builder Reference Manual. Redwood
City, California.

Norman, D.A. and Draper S.W., eds (1986). User Centered System Design.
Hillsdale NJ: Lawrence Erlbaum Associates.

Osborn, A. (1957), Applied imagination: Principles and procedures of creative
thinking (rev. ed.), New York: Scribner's.

Ousterhout, J.K. (1994). Tcl and the Tk Toolkit. Reading MA: Addison Wesley.

Perkins, R., Keller, D.S. and Ludolph, F (1997). Inventing the Lisa User
Interface. ACM Interactions, 4(1):40-53.

Pfaff, G.P. and P. J. W. ten Hagen, P.J.W., eds (1985). User Interface
Management Systems. Berlin: Springer.

Raskin, J. (2000). The Humane Interface. New York: Addison-Wesley.

Roseman, M. and Greenberg, S. (1999). Groupware Toolkits for Synchronous
Work. In Beaudouin-Lafon, M. (ed.), Computer-Supported Co-operative Work,
Trends in Software Series, Wiley, pp.135-168.

Roseman, M. and Greenberg, S. (1996). Building real-time groupware with
GroupKit, a groupware toolkit. ACM Transactions on Computer-Human
Interaction, 3(1):66-106.

Schroeder, W., Martin, K., Lorensen, B. (1997). The Visualization Toolkit.
Prentice Hall.

Strass, P. (1993) IRIS Inventor, a 3D Graphics Toolkit. Proceedings ACM
Conference on Object-Oriented Programming, Systems, Languages and
Applications, OOPSLA '93, pp.192-200.

Szekely, P., Luo, P. and Neches, R. (1992). Facilitating the Exploration of
Interface Design Alternatives: The HUMANOID. Proceedings of ACM
Conference on Human Factors in Computing Systems, CHI’92, pp.507-515.

Szekely, P., Luo, P. and Neches, R. (1993). Beyond Interface Builders: Model-
based Interface Tools. Proceedings of ACM/IFIP Conference on Human Factors
in Computing Systems, INTERCHI’93, pp.383-390.

The UIMS Workshop Tool Developers (1992). A Metamodel for the Runtime
Architecture of an Interactive System. SIGCHI Bulletin, 24(1):32-37.

Vlissides, J.M. and Linton, M.A. (1990). Unidraw: a framework for building
domain-specific graphical editors. ACM Transactions on Information Systems,
8(3):237 - 268.

Wegner, P. (1997). Why Interaction is More Powerful Than Algorithms.
Communications of the ACM, 40(5):80-91.

Woo, M., Neider, J. and Davis, T. (1997) OpenGL Programming Guide,
Reading MA: Addison-Wesley

