
Educating Multi-disciplinary Design Teams

WENDY E. MACKAY

INRIA FUTURS1

LRI - BATIMENT 490, UNIVERSITE PARIS-SUD

91405 ORSAY CEDEX - FRANCE

Abstract

Designing interactive systems requires diverse expertise, which is why most successful

design teams are multi-disciplinary. Unfortunately, managing such teams can be

difficult, because team members often do not communicate effectively with each

another. When we teach interaction design, we address this problem explicitly, with a

two-fold approach: First, we explain the value systems and some of the key assumptions

from the component disciplines, including social sciences, engineering and design.

Second, we teach hands-on techniques, often with video, that place team members (and

users) on an equal footing when expressing design ideas. We want our students to

understand and respect the contributions of others outside their discipline and to be able

to use design techniques that allow all team members to actively participate, whether

observing users, generating new ideas, prototyping systems or evaluating them.

Keywords: Multidisciplinary Design, Science, Engineering, Design

1 Projet In Situ, Pôle Commun de Recherche en Informatique du Plateau du Saclay, CNRS, Ecole

Polytechnique, INRIA, Université de Paris-Sud.

Introduction

Designing interactive software is complex, requiring an understanding of human beings,

software systems and the interaction between the two. Understanding people involves

input from at least three social sciences. Psychology explores how the human sensory

motor, perceptual and memory systems work, Sociology explores how people interact

with each other, and Anthropology explores how people operate in the context of their

daily activities. Developing interactive software also requires input from software

engineering, including system architecture, programming languages, interaction

techniques, as well as distributed computing and the use of a wide variety of hardware

input and output devices. Creating innovative and aesthetically-pleasing designs

requires input from trained designers, including graphic or interaction design and

increasingly architecture and industrial design.

No single discipline provides all the necessary expertise: designing interactive software

requires a multi-disciplinary approach. However, forming and managing multi-

disciplinary teams has its own problems. Someone trained exclusively in one of the

necessary disciplines is likely to interpret the design problem from within the

framework of that discipline. This causes problems when people from different

disciplines use the same words to mean different things or use different words to mean

the same thing. As Djkstra-Erikson et al. [5] point out, "design" itself is a particularly

troublesome word. Designers can only effectively communicate what they mean when

they talk about the design of something: whether it is of the user experience, the screen

layout, or the software architecture.

Another problem is that different disciplines place different values on different aspects

of design. Scientists are trained to seek explanations of existing phenomena, engineers

are trained to provide technical solutions to well-defined problems, and designers are

trained to explore a design space and find solutions that "work". When people from

these different backgrounds come together, they often run into conflicts due to their lack

of a shared definition the problem.

Of course communication problems are not restricted to cross-disciplinary teams. For

example, although research scientists share some common characteristics when

compared to engineers or designers, when compared to each other, we also see different

priorities research methods. An experimental Psychologist who runs laboratory

experiments values reliability and precision in the data. An anthropologist who studies

people in field settings values context and the validity of the data.

Designers too operate with different priorities. For example, if you ask a book designer,

a video producer and a photographer to design the layout of a screen, they will choose

different focal points of attention. A book designer is trained to emphasize text

organised in a grid and "knows" that a reader will look for the most important

information in the upper left-hand corner. A video producer understands the aspect ratio

and visual quality of video and "knows" that the center of the screen is the hot spot. A

photographer used to the flexible aspect ratio of film and the fine gradations in visual

quality will consciously avoid the center and will placement of key items along diagonal

across the screen. Of course, any individual designer will deviate from these design

principles for any particular design. What is important to understand for us to

understand is that these designers are starting from different underlying principles:

when they break rules, they are breaking different rules. When these rules are not stated

explicitly, other team members are likely to other designers processes and solutions.

Component Interaction Design Disciplines

If we are to teach people to successfully participate in multi-disciplinary design teams,

we must go beyond the explicit content of each discipline. Students need to learn about

the diverse underlying value systems of relevant disciplines and reflect upon how they

interact at a meta level.

Figure 1 shows some of the different disciplines that contribute to effective interactive

system design. The three primary contributors derive from the social sciences, computer

engineering, and design. From the natural sciences, we commonly find contributions

from experimental Psychology (usually Cognitive Psychology, but increasingly

Ecological Psychology and Activity Theory), as well as Sociology, Anthropology

(particularly Ethnomethodology) and Human Factors or Ergonomics. From these social

sciences, we borrow research findings, such as how people perceive information or how

human memory works, as well as research techniques, such as how to run controlled

experiments or conduct observational studies in the field.

Designers who use research techniques from any of these scientific disciplines must

distinguish between their use in a purely scientific context and as a resource to support

design. The underlying assumptions surrounding how these techniques are used, and the

goals of the research, may differ greatly.

design

psychology

 sociology

 anthropology

 industrial design

 typography

 graphic design

 social sciences

 interactive
 systems

engineering

 architecture
 computer science

electronics

 mechanical
 engineering optics

physiology

Figure 1: Interaction Design requires input from science, engineering and design disciplines.

For example, a usabilty study is not the same as a Psychology experiment. In

experimental Psychology, the goal is to learn about fundamental characteristics of

human beings, which exist independently of the experimenter. Controlled experiments

are performed to test theories of human behavior, with the idea that they can be

replicated by other researchers, who will then challenge or support the theory with

further experiments. In contrast, usability studies are designed to evaluate particular

software systems. Sometimes, the system is compared to another system, but the studies

are rarely fully controlled in the scientific sense. The purpose is not to test theories of

human behavior but rather to find problems with the system that was built and to test the

adequacy of a particular design solution. Usability studies are rarely performed with the

idea that they will be replicated and extended, but usually stand alone. A usability study

is considered successful if it offers concrete information about the success of the

particular system design for a particular set of users, but need not contribute the our

general understanding of human beings.

Similarly, HCI professionals are careful to distinguish between ethnography and

ethnomethodology [2]. The former consists of long-term observational studies of people

in different contexts, ranging from anthropologists observing indigenous peoples in the

bush to observing white collar professionals at work. Researchers attempt to describe

behavior, seeking to identify general characteristics of human behavior as well as

specific incidents of unique behavior. One of the roots of the word "ethnography" is

"graph", which means "to write". Ethnographers, as scientists, are expected to contribute

to a constantly-growing body of research literature, in which they compare and contrast

their findings with those of other researchers.

Interactive system designers may profitably borrow observational techniques from

ethnography, because they provide useful ways of observing and interpreting behavior

in real-world contexts. However, the purpose is quite different. The designer uses

ethnomethodology, i.e. methods from ethnography, to contribute understanding that is

specific to the development of a particular software system. As with Psychology

experiments, the particular techniques may be very similar but the context and

underlying assumptions are quite different.

Engineering poses a different set of problems. One concern is that engineers are usually

trained to solve problems that have been given to them and are evaluated on the

technical validity of their solution, not the relevance of the problem. Yet designing a

system by strictly following a set of design requirements does not guarantee a

successful product. Human users add complexity and unpredictability to the situation

and solutions that appear correct on paper may not be valid in practice. Software

engineers are not taught strategies for questioning the design problem, so they often find

themselves solving the wrong problems and ultimately failing to meet the needs of their

users. Creating formal models of users and simulations of their activities provides a

comforting feeling of having considered user's needs, until the software is actually used.

Technical expertise is essential to the development of quality interactive software, but

that technical expertise must be used to software the "right" problems.

The design disciplines, such as graphic design and architecture, represent the third

critical component of interactive system design. Unlike engineers, designers are trained

to question the 'design brief" and come up with alternative solutions. They have a very

hands-on, apprentice-based learning process, in which they create designs for their

portfolios, which are critiqued by faculty and fellow students. However, in many design

schools, the needs of the user are not reflected in the design brief, or if they are,

designers are given few tools to actually determine those needs. Designers must develop

their own methods for finding out about users and are not taught strategies for

objectively comparing design decisions.

Each discipline offers valuable skills and perspectives; each has the potential to miss

important aspects of the design problem. Multi-disciplinary design teams offer a

solution, covering the full spectrum of design approaches, taking advantage of the

strengths offered by each discipline while mitigating potential blind spots. However

such teams pose another problem: participants must be able to communicate effectively

with each other. The next section describes some of the issues designers face when

attempting to work in a multi-disciplinary design team.

Working in Multi-disciplinary Design Teams

In the previous section, I identified some of the characteristics of the disciplines that

provide fundamental contributions to interactive system design. Each have long-

standing academic and professional traditions, with different values and specific

research or development techniques. When someone trained in one of these "traditional"

disciplines begins to work on the design of interactive software, he or she is faced with

a problem: how to reconcile the differences between what was learned and how it is

applied in the new design context. Most social scientists aren't taught the differences

between research studies in a scientific and a software design context: they must

discover this on their own. Similarly, engineers often discover that the design

requirements are a moving target and they have not been given strategies for

successfully developing code in such a dynamic environment. Designers may also be

frustrated, since their work is suddenly subject to different kinds of critiques and

evaluation than they faced in design school.

As educators, we face the question of how to train people to become successful

interaction designers. One strategy might be to try to develop expertise in all of the

component disciplines, teaching scientific, engineering and design principles. However,

it is unlikely that many individuals will become expert in everything: it is far more

likely that individuals will show talent in one area. A gifted artist may be enjoy drawing

and design but may find systematic observation of users or programming software to be

difficult or uninteresting. Similarly, a trained observer of people may be able to

contribute greatly to the understanding of the user's work, but may not be able to

program or create elegant interface designs. A talented programmer may find talking to

users or brainstorming interface design ideas equally difficult. So, while a few talented

people may be able to contribute effectively in all areas, it is far more likely that they

will find themselves contributing their expertise as part of a multi-disciplinary design

team.

We have a different strategy, which is to continue training people from within their

chosen major disciplines, whether scientific, engineering or design, but to increase their

understanding and appreciation for the other disciplines. Students are exposed to

different value systems and discuss how they may interact with each other.

Although ensuring that each person understands the perspectives of the others is

important, it is rarely sufficient. We have found it necessary to create design activities in

which all members of the design team, including users, can participate equally. These

design techniques are borrowed from the full range of sub-disciplines and we discuss

with students the implications of using them in a design, rather than their original,

context. We choose techniques that increase communication among participants and we

encourage students to develop new techniques that cross disciplinary boundaries. The

next section describes some of these techniques, borrowed or inspired from various

component disciplines described above.

Hands-on Interactive Design Techniques

Interaction design is an iterative process, as illustrated in figure 2. Students, whether at

the University level or professionals in the field, are expected to participate in all of the

design activities, throughout the design process. Although the process is presented as

circular, it is important to recognise that, once begun, the design team can and should

revert to any of the earlier stages as necessary.

We begin by "finding out about users", using techniques drawn from the social sciences

and design. We then work on generating a design space and expanding it by creating

new ideas. Once we have a suitably rich design space, we begin to select particular

design directions and begin prototyping a design. At any point, we may decide that we

need additional information about users or new ideas to help make design choices. At

various points through the development, we evaluate our the design, beginning with

early prototypes and continuing through to the final working system.

 Prototype
 design

 Generate
ideas

Observe
 use

 Evaluate
 system

Figure2: The interaction design process is highly iterative and requires techniques for finding out about

users, generating new ideas, developing design prototypes and evaluating aspects of the system.

Table 1 summarizes a set of observation and design techniques that we have adapted

from various disciplines or have developed explicitly. We believe in the concept of

"triangulation" [10, 12], in which we use multiple design methods to help us avoid

particular design biases. We use these techniques in our own research and development

work, as well as for teaching: these are the techniques that have stood the test of time.

They are simple to use, speed rather than hinder the design process, and all serve to

increase communication within the design team and among designers, users and various

other stakeholders.

(Note: The video-based techniques in table 1 are illustrated in a DVD tutorial by

Mackay [13], available through ACM/SIGCHI.)

Table 1: Design techniques derive from a variety of disciplines.

Items with bold outlines are described in further detail in the text.

Finding out about users

The first phase of the development process involves finding out about the needs and

desires of the future users of the system being designed. Sometimes a system already

exists, sometimes not. In any case, it is important to find out about the context in which

the system will be use in order to begin to define the design problem.

From the social sciences, we use observation and interview techniques [15]. Video is a

useful tool, although it should be used judiciously: I tell my students to only videotape

what they are willing to later watch. With respect to interviews, we have borrowed a

technique introduced by Flanagan [7] from the human factors community, called

"critical incident technique". This and other related techniques are based on an

important observation about people: if you ask people specific questions they will give

you specific answers. You can then generalize or ask them to generalize for you. If you

instead begin with general questions (such as "How do you use your email?") you will

receive general answers that provide very little that is useful for designing a future

system. So, when interviewing people, the key is to find specific objects, events or times

that people can describe and elaborate on. This specific information that can then be

woven into design scenarios.

From design we have the notion of cultural probes [6] from Gaver and his colleagues.

Here, the emphasis is not on collecting data but rather on involving future users and

helping them generate inspiration for design. Cultural probes are specific objects, such

as a map to create or a camera to take photographs, that users use to comment on their

existing world and to generate ideas about future possibilities.

We have recently been experimenting with a new method that we call technology

probes[8] which attempt to incorporate both scientific data collection and design

inspiration. For example, for our interLiving Disappearing Computer project, which

studies technologies for distributed families, we have created simple, limited-

functionality prototypes that we have placed in family members' homes. These probes

provide direct, private links between households and enable sharing of video images or

hand-written messages. Technology probes designed to both collect information,

informing us about the communication patterns within the families, and to provoke new

ideas, inspiring both the family members and us as designers to create new technologies

to meet needs we had not previously observed.

Once we collect information about users, we need to analyse or interpret it, not for its

own sake but to inform design. It is important to preserve the context of the user's

activities: we do not try to abstract out a set of abstract tasks, but rather seek to present

each user's activities in context. The most effective strategy we have found is to develop

scenarios [3, 9], which combine the experiences, both typical and unusual, of different

real users. We begin by creating a "day-in-the-life" story, and then break the story up

into an illustrated storyboard. Sometimes, we create video scenarios, either with video

clips from actual observations or re-enactments of events we've observed. These

scenarios provide an effective communication tool for all members of the design team,

and give us a way to discuss what we've learned with the users [16], who can give us

feedback and enrich the scenarios.

Creating a design space

The second phase of the development process involves the creation of a design space

[1]. Here, the goal is to generate new ideas and to increase the set of design possibilities.

Brainstorming [4] is the most common technique: The classic procedure involves a

small number of people who are given a specific topic and a limited period of time.

Everyone participates in generating ideas, all of which are captured on a blackboard or

flip chart. Another variation asks everyone write down ideas individually and then share

them with the group. A moderator ensures that all comments are constructive, that the

time is spent generating ideas, not evaluating them, and that the session finishes on

time. The time limit is very important: brainstorming is very intense and, if done well,

will leave everyone energized and excited by the ideas, not tired and bored.

Brainstorming usually has two phases: the first for generating ideas and the second for

reflecting upon them.

We have discovered [14] that the quality of the ideas change according to the way they

are created. Verbally shouting out ideas, as recommended in classic brainstorming, is

effective for rapidly generating large quantities of ideas, but the ideas themselves are

poorly developed and often vague. People quickly lose the context in which the ideas

were created and flipcharts from month-old brainstorming sessions are mostly useless.

Drawing ideas rather than saying them requires more reflection and other participants

often have an easier time understanding them. We push this further, by asking

participants to show their ideas, via paper or more elaborate prototypes. This forces both

idea-generators and other participates to concentrate on what it will be like for users to

interact with the idea in question. Such ideas become more concrete and we find that

they are more likely to inspire further ideas.

For us, the most effective technique is video brainstorming [1] in which participants

demonstrate their ideas in front of a video camera, using rapid paper or other prototypes.

Not only does this produce a more valuable record of each idea, which can be reviewed

and expanded upon later, but it is very effective for encouraging participants to think

concretely about how users will actually interact with the proposed idea. Video

brainstorming also forces active participation from everyone. Each idea has an author,

who directs other members of the group to play the role of the user or the system to

illustrate the interaction. Video brainstormed ideas allow participants to "sketch"

interaction ideas and share them, even if they are not expert programmers or graphic

artists. We have handed video brainstormed ideas to programmers, who can rapidly

prototype code and allow everyone to explore the ideas further. We also find this an

excellent technique for working with users, who can contribute directly to the design

process without any particular technical skills. Once the team is used to it, video

brainstorming is only slightly more time-intensive than other forms of brainstorming,

but we find it much more useful, since the resulting video record of design ideas

continues to serve as a source of inspiration throughout the design process.

Prototyping a design

The third phase of involves making choices: deciding to pursue some directions and

omit others [1]. Unlike the idea generation phase, which values quantity not quality of

ideas, the purpose of this phase is to explicitly narrow the range of possibilities and

choose a particular path. The goal is to explore a more restricted design space,

considering the details of each design decision and creating a grounded design that is

both innovative and still makes sense to real users in real-world contexts.

We use a variety of prototyping techniques, ranging from very rapid, paper prototypes

to intermediate software prototypes, from "Wizard of Oz" [11] techniques to working

systems. When we develop video prototypes, we revise the use scenarios that we

created in the first phase of the design process and explore how a new design would be

used in that context. We develop the system design and the scenario together, changing

each to meet the needs of the other. Once we have several scenarios that illustrate the

use of the new design, we create storyboards and prototyping materials, and illustrate

the design ideas with a video prototype.

This process is very effective for giving all participants in the design team, especially

users, a voice in the process. Everyone can see what the design implications are for

particular design decisions, and everyone can suggest and show alternatives. If people

disagree, they can return to techniques from the earlier design phases to gather more

information or generate alternative design ideas.

Evaluating a system

The final phase involves evaluating the design: is it a successful solution? Are there

specific problems that need to be fixed? Do the users like it? We run various kinds of

studies to answer such questions. Sometimes, it is important to run controlled

experiments. However, usually, it is more important to simply find a number of users

and watch them use the new system. We usually ask pairs of users to sit together and

comment on the system out loud, which makes it easier for them to express their

opinions to us. Normally, we ask them to try a set of tasks or run through several

scenarios, and simply watch how well they are able to use the system. In addition to

videotaping them, we use the computer to log their interaction with the software, so we

can obtain quantitative data about errors and efficiency of different user actions.

Another useful strategy is a design walkthrough, based on Yourdan's [17] work with

structured walkthroughs. A "walkthrough" is a peer group review of a product: people at

roughly the same level in the organization meet to systematically review and discuss a

segment of software. One can review code, architecture or any aspect of the software,

including video prototypes. The rules are simple, but important: Groups should be small

(3-7 people), members of the group should be at the same level, the presenter should

prepare in advance, everyone must be on time and the review should be limited to at

most one hour. The goal of the walkthrough is to identify as many problems as possible,

not to discuss solutions. Criticisms should be as positive as possible and should be

restricted to the design at hand. Walkthroughs are similar in format to brainstorming

sessions, but opposite in their goals: walkthroughs seek to find problems, brainstorming

sessions seek to maximize the number of ideas.

Conclusion

This paper has described our strategy for teaching interaction design. We begin with the

recognition that design is multi-disciplinary and that few individuals can be expert in all

of the necessary fields. We teach our students how to think about the design

perspectives of their colleagues: what are the most important contributions of each

design field and what are the potential sources of misunderstanding? We also teach

specific, hands-on design techniques that draw from all of the component disciplines of

human-computer interaction. The techniques described in this paper are explicitly

intended to equalize the level of the participants, enabling everyone to actively

contribute, including users. Using these strategies not only improves communication

among members of the design team (and users!) but also improves the efficiency and

effectiveness of the design process. People can explore a wider range of ideas, and

select promising design solutions earlier, with greater relevance to users, using these

design techniques. Of course, team members with specific skills in specific domains,

such as interviewing, programming or graphic design, will not only be able to contribute

their expertise, but will also benefit from knowing that others will recognize the value

of their contributions. Finally, these techniques are fun; participants of multi-

disciplinary design teams should enjoy designing interactive systems!

References:

1. Beaudouin-Lafon, M. and Mackay, W.E. Prototyping Development and Tools. In

J.A. Jacko and A. Sears (Eds), Handbook of Human-Computer Interaction. New

York: Lawrence Erlbaum Associates (60 pages), 2002

2 . Button, G. and Dourish, P. Technomethodology: Paradoxes and Possibilities.

Proceedings of the CHI '96 conference companion on Human factors in computing

systems, pp. 19 - 26 1996

3. Carroll, J. Scenario-Based Design: Envisioning Work and Technology in System

Development. NY: Wiley, 1995

4. Clark, C. Brainstorming : How to Create Successful Ideas. CA: Wilshire Book

Company, 1989

5 . Djkstra-Erikson, E., Mackay, W.E. and Arnowitz, J. Trialogue on Design of.

ACM/Interactions, pp. 109-117, March, 2001

6. Gaver, W. and Dunne, A. Projected Realities, Conceptual Design for Cultural effect.

Proceedings of ACM Conference on Human Factors in Computing Systems CHI '99,

p. 600-607, 1999

7. Flanagan, J. The Critical Incident Technique. Psychological Bulletin. 51(4). pp. 327-

358, 1954

8. H. Hutchinson, W. Mackay, B. Westerlund, B.B. Bederson, A. Druin, C. Plaisant,

M. Beaudouin-Lafon, S. Conversy, H. Evans, H. Hansen, N., Roussel, B. Eiderbäck,

S. Lindquist, Y. Sundblad Technology Probes: Inspiring Design for and with

Families, Proceedings of ACM Conference on Human Factors in Computing

Systems, CHI 2003, Fort Lauderdale (USA), April 2003, CHI Letters 5(1), ACM

Press, 2003

9 . Mackay, W. & Bødker, S. Workshop on Scenario-Based Design. In CHI'94

Conference Companion., Boston, MA: ACM Press, 1994.

10. Mackay, W.E. and Fayard, A-L. HCI, Natural Science and Design: A Framework

for Triangulation Across Disciplines. Proceedings of ACM DIS '97, Designing

Interactive Systems. Amsterdam, Pays-Bas: ACM/SIGCHI, pp.223-234, 1997

11. Mackay, W.E. Beyond the Wizard of Oz. CHI '86 Conference on Human Factors in

Computing Systems. Boston, MA: ACM/SIGCHI, 1986

12. Mackay, W.E. Triangulation within and across HCI disciplines. Human-Computer

Interaction. Hillsdale, New Jersey:Lawrence Erlbaum Associates. Invited

Commentary on the article: "Damaged Merchandise? A Review of Experiments that

Compare Usability Evaluation Methods", W.D Gray and M.C. Salzman. Vol. 13, #3,

pp. 310-315, 1998

13. Mackay, W.E. Using Video to Support Interaction Design. DVD Tutorial, CHI'02

Conference on Human Factors in Computing Systems, Minneapolis, MN

ACM/SIGCHI. 2002

14. Mackay, W.E., Ratzer, A., and Janecek, P. Video artifacts for design: Bridging the

gap between abstraction and detail. Proceedings of ACM DIS 2000, Conference on

Designing Interactive Systems. Brooklyn, New York. ACM Press. pp. 72-82, 2000

15. Patton, M.Q. Qualitative Interviewing. In Qualitative Evaluation and Research

Methods, Sage Publications, pp. 227-359, 1990

16. Westerlund, B., Lindqvist, S., Mackay, W., and Sundblad, Y. Co-design methods

for designing with and for families. Proceedings of EAD'03, the fifth European

Academy of Design conference, Barcelona, Spain, 2003

17. Yourdan, E. Structured Walkthroughs. NY: Prentice-Hall, 1979

