
Scheduling and Buffer Sizing of
n-Synchronous Systems

Typing of Ultimately Periodic Clocks in Lucy-n

Louis Mandel Florence Plateau ?

Laboratoire de Recherche en Informatique, Université Paris-Sud 11
Laboratoire d’Informatique de l’École Normale Supérieure, INRIA

Abstract. Lucy-n is a language for programming networks of processes
communicating through bounded buffers. A dedicated type system, termed
a clock calculus, automatically computes static schedules of the processes
and the sizes of the buffers between them.

In this article, we present a new algorithm which solves the subtyping
constraints generated by the clock calculus. The advantage of this algo-
rithm is that it finds schedules for tightly coupled systems. Moreover, it
does not overestimate the buffer sizes needed and it provides a way to
favor either system throughput or buffer size minimization.

1 Introduction

The n-synchronous model [8] is a data-flow programming model. It describes
networks of processes that are executed concurrently and communicate through
buffers of bounded size. It combines concurrency, determinism and flexible com-
munications. These properties are especially useful for programming multimedia
applications.

A language called Lucy-n [17] has been proposed for programming in the
n-synchronous model. It is essentially Lustre [5] extended with a buffer oper-
ator. Lucy-n provides a static analysis that infers the activation conditions of
computation nodes and the related sizes of buffers. This analysis is in the tra-
dition of the clock calculus of the synchronous data-flow languages [10]. A clock
calculus is a dedicated type system that ensures that a network of processes can
be executed in bounded memory. The original clock calculus ensures that a net-
work can be executed without buffering [6]. In the synchronous languages, each
flow is associated with a clock that defines the instants where data is present.
The clocks are infinite binary words where the occurrence of a 1 indicates the
presence of a value on the flow and the occurrence of a 0 indicates the absence
of a value. Here is an example of a flow x and its clock:

x 2 5 3 7 9 4 6 . . .
clock(x) 1 1 0 1 0 1 1 1 0 0 1 . . .

? Presently at Prove & Run.



The clock calculus forces each expression to satisfy a typing constraint similar
to the following (e1 +e2 is the pointwise application of the addition operator +):

H ` e1 : ct1 | C1 H ` e2 : ct2 | C2

H ` e1 + e2 : ct3 | {ct1 === ct2 === ct3} ∪ C1 ∪ C2

This rule establishes that in the typing environment H, the expression e1 + e2

has a clock of type ct3 if e1 has a clock of type ct1, e2 a clock of type ct2 and if
the constraint ct1 === ct2 === ct3 is satisfied.1 Type equality ensures clock equality.
Thus two processes producing flows of the same type can be composed without
buffers.

The traditional clock calculus of synchronous languages only considers equal-
ity constraints on types; adapting the clock calculus to the n-synchronous model
requires the introduction of a subtyping rule for the buffer primitive. If a flow
whose clock is of type ct can be stored in a buffer of bounded size to be consumed
on a clock of type ct′, we say that ct is a subtype of ct′, denoted ct <:<:<: ct′:

H ` e : ct | C

H ` buffer(e) : ct′ | {ct <:<:<: ct′} ∪ C

The clock calculus of Lucy-n considers both equality and subtyping constraints.
To solve such constraints, we have to be able to unify types (ct1 === ct2)

and to verify the subtyping relation (ct1 <:<:<: ct2). These two operations depend
very much on the clock language. One especially interesting and useful clock
language can be built from ultimately periodic binary words which comprise a
finite prefix followed by an infinite repetition of a finite pattern. An algorithm to
solve constraints on the types of ultimately periodic clocks is proposed in [17].
The algorithm exploits clock abstraction [9] where the exact “shape” of clocks is
forgotten in favor of simpler specifications of the presence instants of the flows:
their asymptotic rate and two offsets bounding the potential delay with respect
to this rate.

Type constraints on abstract clocks can be solved efficiently. But, the loss of
precise information leads to over-approximations of buffer sizes. Moreover, even
if a constraint system has a solution, the resolution algorithm can fail to find it
because of the abstraction. Therefore, when clocks are simple, we prefer to find
buffer sizes precisely, rather than quickly.

In this article, we present an algorithm to solve the constraints without clock
abstraction. This problem is difficult for two reasons. First, such an algorithm
must consider all the information present in the clocks. If the prefixes and peri-
odic patterns of the words that describe the clocks are long, there may be com-
binatorial explosions. Second, the handling of the initial behaviors (described
by the prefixes of the words) is always delicate [2] and not always addressed [1].
Dealing with the initial and periodic behaviors simultaneously is a source of com-
plexity but, to the best of our knowledge, there is no approach that manages to
treat them in separate phases.
1 The sets C1 and C2 contain the constraints collected during the typing of the ex-

pressions e1 and e2.



A program (d) is a sequence of node and clock definitions.
d ::= let node f(pat)= e node definition

| let clock c = ce clock definition
| d d sequence of definitions

A pattern (pat) can be a variable or a tuple.
pat ::= x | (pat,...,pat) pattern

The body of a node is defined by an expression (e).
e ::= i constant flow

| x flow variable
| (e,...,e) tuple
| e op e imported operator
| if e then e else e mux operator
| f e node application
| e where rec eqs local definitions
| e fby e initialized delay
| e when ce | e whenot ce sampling
| merge ce e e merging
| buffer(e) buffering

eqs ::= pat = e | eqs and eqs mutually recursive equations

Clock expressions (ce) are either clock names or ultimately periodic words.
ce ::= c | u(v)
u ::= ε | 0.u | 1.u
v ::= 0 | 1 | 0.v | 1.v

Fig. 1. The Lucy-n kernel.

Section 2 and 3 we present the Lucy-n language and its clock calculus by way
of an extended example. Section 4 introduces the properties used in Section 5,
which presents an algorithm for resolving constraints. Section 6 discusses results
obtained on examples and compares them with previous resolution algorithms.
Finally, Section 7 concludes the article.

An extended version of the article [16] with additional details and proofs,
the code of the examples, a commented implementation of the algorithm and
the Lucy-n compiler are available at http://www.lri.fr/∼mandel/mpc12.2

2 The Lucy-n Language

The kernel of the Lucy-n language is summarized in Figure 1. In this section, we
present the language through the programming of a GSM voice encoder com-
ponent. This component is a cyclic encoder. It takes as input a flow of bits
2 While the present paper is based on [15], it presents some new results. In particular,

we generalize the first version of the algorithm, which allows us to define both a
semi-decidable and complete algorithm and a decidable algorithm which is complete
on a well defined class of systems. Finally, we also explain how to favor either system
throughput or buffer size minimization.



Fig. 2. Circuit for division [19] by X3 + X + 1. The input flow is the sequence of
fifty coefficients of the polynomial to divide. After consuming the fiftieth input bit, all
the coefficients of the quotient polynomial have been produced at the output and the
registers contain the coefficients of the remainder polynomial.

representing voice samples and produces an output flow that contains 3 new re-
dundancy bits after every 50 data bits. The redundancy bits are the coefficients
of the remainder of the division of the 50 bits to encode, considered as a poly-
nomial of degree 49, by a polynomial peculiar to the encoder, here X3 + X + 1.

The classical circuit to divide a polynomial is shown in Figure 2; the op-
erator ⊕ represents the exclusive-or and boxes represent registers initialized
to false.

The exclusive-or operator can be programmed as follows in Lucy-n (corre-
sponding block diagrams are shown to the right of code samples):

let node xor (a, b) = o where

rec o = (a && (not b)) || (b && (not a))

val xor : (bool * bool) -> bool

val xor :: forall ’a. (’a * ’a) -> ’a

xor

not

&&

not

&&

||

a

b

o

The node xor takes as input two flows a and b and computes the value of the
output flow o. The value of o is defined by the equation o = (a && (not b)) ||
(b && (not a)) where the scalar operators &&, || and not are applied point-
wise to their input flows. Hence, if we apply the node xor to two flows x and y,
we obtain a new flow xor(x,y):

x true false true false false . . .
y false false true true false . . .

xor(x,y) true false false true false . . .

The definition of the xor node is followed by two facts automatically inferred
by the Lucy-n compiler: the data type (val xor : (bool * bool) -> bool), and
the clock type (val xor :: forall ’a.(’a * ’a) -> ’a). In the clock type, the
variable ’a represents the activation condition of the node. The type ’a * ’a

-> ’a means that at each activation, the two inputs are consumed (thus, they
must be present) and the output is produced instantaneously. Since ’a is a
polymorphic variable, this type indicates that the node can be applied to any
input flows that have the same clock as each other, whatever that clock is, and
that it will have to be activated according to the instants defined by this clock.

Using this new node and the initialized register primitive of Lucy-n, fby (fol-
lowed by), we can program the circuit of Figure 2.



div X3 X 1

xor fby xor fbyfby

back

false false falsei

reg0

reg1

reg2

let node div_X3_X_1 i = (reg0,reg1,reg2) where

rec reg0 = false fby (xor(i, back))

and reg1 = false fby reg0

and reg2 = false fby (xor(reg1, back))

and back = reg2

val div_X3_X_1 : bool -> (bool * bool * bool)

val div_X3_X_1 :: forall ’a. ’a -> (’a * ’a * ’a)

The equation reg1 = false fby reg0 means that reg1 is equal to false at
the first instant and equal to the preceding value of reg0 at the following in-
stants. Note that the definitions of flows reg0, reg1, reg2 and back are mutually
recursive.

In order to divide a flow of polynomials, the div_X3_X_1 node must be mod-
ified. After the arrival of the coefficients of each polynomial, that is after every
50 input bits, the three registers must be reset to false. Since the content of
some registers is the result of an exclusive-or between the feedback edge back and
the preceding register (or the input flow for the first register), to reset the regis-
ters to false, we have to introduce three false values as input and three false
values on the feedback wire, every 50 input bits.3

The clock type of the node div_X3_X_1 modified accordingly is:4

val div_X3_X_1 :: forall ’a. ’a on (1^50 0^3) -> (’a * ’a * ’a)

The notation (1^50 0^3) represents the infinite repetition of the binary word
15003 where 150 is the concatenation of fifty 1s and 03 the concatenation of
three 0s. To understand the type of div_X3_X_1, notice that ’a (the activation
rhythm of the node) defines the notion of instants for the equations of the node.
The clock type of the input flow is ’a on (1^50 0^3). It means that the input
flow has to be present during the first 50 instants, then absent for 3 instants (dur-
ing which the registers are reset). Therefore, this node can compute one division
every 53 instants of the rhythm ’a. Finally, the clock type of the three outputs
is ’a, it means that the values of the registers are produced at each instant.

Now, to define a node redundancy which computes only the redundancy
bits corresponding to a flow of polynomials, we sample the output of the node
div_X3_X_1. In our implementation of the node div_X3_X_1, the remainder of
the division is contained in the registers after the 50th input bit and output at the
51st instant. Thus, the redundancy node has to sample the output of div_X3_X_1
at the 51st instant. For this, we use the when operator. It is parameterized by a
flow and a sampling condition, and it filters the values of the flow following the
pattern defined by the sampler: if the flow is absent, the output of the when is
absent; if the input flow is present and the next element of the sampler is 1, the
3 It is implicit, here and in the following, that such behaviors iterate repeatedly.
4 The source code of the modified node is available at http://www.lri.fr/∼mandel/
mpc12/gsm.ls.html.



value of the flow is output; if the input flow is present and the next element of
the sampler is 0, the output of the when is absent. To keep only the 51st element
of a sequence of 53 bits, we use the sampling condition (050100):

let node redundancy i = (bit0,bit1,bit2) where

rec (reg0,reg1,reg2) = div_X3_X_1 i

and bit0 = reg0 when (0^50 100)

and bit1 = reg1 when (0^50 100)

and bit2 = reg2 when (0^50 100)

val redundancy : bool -> (bool * bool * bool)

val redundancy ::

forall ’a. ’a on (1^50 0^3) ->

(’a on (0^50 100) * ’a on (0^50 100) * ’a on (0^50 100))

redundancy

when

(050100)

when

(050100)

when

(050100)

reg0

reg1

reg2

div X3 X 1
i

bit2

bit1

bit0

To append 3 redundancy bits after 50 data bits, we use the merge operator.
Its parameters are a merging condition and two flows; merge ce e1 e2 outputs
the value of e1 when ce is equal to 1 and the value of e2 when ce is equal to 0.
The flows e1 and e2 must be present on disjoint instants of the clock of ce: when
ce is equal to 1, e1 must be present and e2 absent and vice versa when ce is
equal to 0. Thus, to incorporate the first redundancy bit (bit0) after 50 input
bits, we use the merging condition (1500) and obtain a flow of 51 bits. Then, we
use the condition (1510) to incorporate the second redundancy bit, and finally
the condition (1520) for the third redundancy bit.

let node join_50_3 (i, bit0, bit1, bit2) = o3 where

rec o1 = merge (1^50 0) i bit0

and o2 = merge (1^51 0) o1 bit1

and o3 = merge (1^52 0) o2 bit2

val join_50_3 : forall ’x.

(’x * ’x * ’x * ’x) -> ’x

val join_50_3 :: forall ’a.

(’a on (1^52 0) on (1^51 0) on (1^50 0) *

’a on (1^52 0) on (1^51 0) on not (1^50 0) *

’a on (1^52 0) on not (1^51 0) * ’a on not (1^52 0)) -> ’a

join 50 3

m
e
r
g
e

(1500)

m
e
r
g
e

(1510)

m
e
r
g
e

(1520)

o1

o2

o3

i

bit0

bit1

bit2

We will see in Section 4 that the clock type of join_50_3 is equivalent to:
∀α. (α on (150000)× α on (050100)× α on (050010)× α on (050001))→ α

This type expresses that the flow containing data must be present for the first
50 instants, and then absent for the following 3 instants. The flows containing
the first, second and third redundancy bits must arrive at the 51st, 52nd, and
53rd instants respectively.

To complete the cyclic encoder, we must use the node redundancy to compute
the three redundancy bits and the node join_50_3 to incorporate them into the
input flow. But the redundancy bits are produced at instant 51 which is too
early for the join_50_3 node which expects them successively at instants 51, 52
and 53. They must thus be stored using the buffer operator:



39 let node cyclic_encoding i = o where

40 rec (bit0, bit1, bit2) = redundancy i

41 and o = join_50_3 (i, buffer bit0,

42 buffer bit1,

43 buffer bit2)

val cyclic_encoding : bool -> bool

val cyclic_encoding ::

forall ’a. ’a on (1^50 0^3) -> ’a

Buffer line 41, characters 24-35: size = 0

Buffer line 42, characters 24-35: size = 1

Buffer line 43, characters 24-35: size = 1

o

i

cyclic encoding

bit0

bit1

bit2

redundancy

j
o
i
n
5
0
3

The compiler automatically computes the buffer sizes required. We can see
that the buffer at line 41 is not really needed, the inferred size is 0. This buffer
is used for the communication of the first redundancy bit (bit0) between the
redundancy node and the join_50_3 node. This bit is produced at the 51st
instant and consumed immediately. The two other redundancy bits (bit1 and
bit2) are also produced at the 51st instant, but they are consumed later. Thus
the second bit has to be stored in a buffer of size 1 for 1 instant and the third
bit has to be stored in a buffer of size 1 for 2 instants.

Notice that before calculating the buffer sizes, the compiler must infer the
activation rhythm of each node. When the output of one node is consumed
directly by another, i.e., when there is no buffer between them, the nodes must
be activated such that the outputs of the first node are produced at the very
same instants that they are to be consumed as inputs by the second node. When
the output of one node is consumed by another through a buffer, the nodes must
be activated such that the buffer is not read when it is empty and such that there
is no infinite accumulation of data in the buffer.

3 Clock Calculus

We have seen in Section 1 that each expression in a program must satisfy a type
constraint (the rules of the clock calculus are detailed in annex A). To illustrate
the typing inference algorithm which collects the constraints, we return to the
cyclic_encoding node of the previous section.

bit0

bit1

bit2

αj on (150000)

αj on (050100)

αj on (050010)

αj on (050001)

j
o
i
n
5
0
3

i

αi αr on (15003)

cyclic encoding

redundancy
αj

o

αr on (050100)

αr on (050100)

αr on (050100)

If we associate with the input i the clock type variable αi, the expression
redundancy i generates the equality constraint αi === αr on (15003). Indeed,



once instantiated with a fresh variable αr, the clock type of the node redundancy
is αr on (15003)→ (αr on (050100)×αr on (050100)×αr on (050100)). Hence,
the type of its input must be equal to αr on (15003). Consequently, the equa-
tion (bit0, bit1, bit2) = redundancy i adds to the typing environment
that bit0, bit1 and bit2 are of type αr on (050100).

Similarly, the application of join_50_3 adds some constraints on the types
of its inputs. Once instantiated with a fresh type variable αj , the clock type of
the node join_50_3 is (αj on (150000) × αj on (050100) × αj on (050010) ×
αj on (050001))→ αj . This type imposes the constraint that the type of the first
input (here αi, the type of the data input i) has to be equal to αj on (150000)
and the types of the other inputs (here αr on (050100)) must be, respectively,
subtypes of αj on (050100), αj on (050010) and αj on (050001). For these last
inputs, we do not impose type equality but rather only subtyping (<:<:<:) since they
are consumed through buffers. The subtyping relation ensures that there are
neither reads in an empty buffer nor writes in a full buffer. Finally, the equation
o = join_50_3 (...) augments the typing environment with the information
that the type of o is αj , the return type of join_50_3.

The cyclic_encoding node thus has the clock type αi → αj , with the fol-
lowing constraints:

C =


αi === αr on (15003)

αi === αj on (15003)

αr on (050100) <:<:<: αj on (050100)

αr on (050100) <:<:<: αj on (050010)

αr on (050100) <:<:<: αj on (050001)


To finish the typing of this node and to be able to compute the buffer sizes,
we have to find a solution to this constraint system, that is we must find in-
stantiations of the variables αi, αr and αj such that the constraints are always
satisfied. These instantiations have to be Lucy-n clock types, i.e., of the shape:
ct ::= α | (ct on p) where p is an ultimately periodic binary word (formally de-
fined in Section 4.1).

To solve the constraint system of the example, we start with the equality con-
straints and choose the following substitution: θ = {αi ← α on (15003) ;αr ← α ;
αj ← α}. Applying this substitution to C gives:

θ(C)=


α on (15003) === α on (15003)

α on (15003) === α on (15003)

α on (050100) <:<:<: α on (050100)

α on (050100) <:<:<: α on (050010)

α on (050100) <:<:<: α on (050001)

⇔
{

α on (050100) <:<:<: α on (050100)

α on (050100) <:<:<: α on (050010)

α on (050100) <:<:<: α on (050001)

}

Remark 1. Notice that there is no complete greedy unification algorithm because
there is no most general unifier for clock types [21]. Therefore, to be complete,
a resolution algorithm must take into account all the constraints globally. As
in this example greedy structural unification leads to a solution, we used it
for the sake of conciseness. In the general case, a simple way to handle equal-
ity constraints is to consider them as two subtyping constraints (ct1 === ct2 ⇔
(ct1 <:<:<: ct2) ∧ (ct2 <:<:<: ct1)).



+

when

(01)

when

(10)

aux1

α2 on (01) on (01)

α2 on (01) on (10)

α3

i1

α1

i2

α2

α3

oα3

f

+

α1 on 10(1)

10(1)

α2 on (01)α2 on (1100)

when

(1100)

α2 on (01)

aux2

α2 on (01)

α2 on (01)
α2 on (01)

when

when

(01)
+

let node f (i1, i2) = o where

rec aux1 = buffer (i1 when 10(1)) + aux2

and aux2 = buffer (i2 when (1100)) + i2 when (01)

and o = buffer (aux1 when (10)) + buffer (aux1 when (01))

Fig. 3. The node f and its block diagram representation. The diagram is annotated
with the types obtained after the resolution of equality constraints.

After transforming our constraint system to a system that contains only
subtyping constraints, we notice that all the constraints depend on the same
type variable. So, we apply a result from [17] to simplify the on operators:

θ(C)⇔

{
(050100) <: (050100)

(050100) <: (050010)

(050100) <: (050001)

}
We will see in Section 5.1 that these constraints on words can be checked.

Sometimes however, subtyping constraints are not expressed with respect to the
same type variable. For example, the program of Figure 3 generates the following
set of subtyping constraints where only the second constraint can be simplified:

C ′=


α1 on 10(1) <:<:<: α2 on (01)

α2 on (1100) <:<:<: α2 on (01)

α2 on (01) on (10) <:<:<: α3 on (1)

α2 on (01) on (01) <:<:<: α3 on (1)

⇔


α1 on 10(1) <:<:<: α2 on (01)

(1100) <: (01)

α2 on (01) on (10) <:<:<: α3 on (1)

α2 on (01) on (01) <:<:<: α3 on (1)


But, in fact, such systems can always be reduced to ones where all the constraints
are expressed with respect to a single type variable. To do so, we introduce word
variables denoted cn and we replace each type variable αn with α on cn. Here, the
application of the substitution θ={α1 ← α on c1; α2 ← α on c2; α3 ← α on c3}
to system C ′ gives:

θ(C′) =

8>><>>:
α on c1 on 10(1) <:<:<: α on c2 on (01)

(1100) <: (01)

α on c2 on (01) on (10) <:<:<: α on c3 on (1)

α on c2 on (01) on (01) <:<:<: α on c3 on (1)

9>>=>>;
⇔

8>><>>:
c1 on 10(1) <: c2 on (01)

(1100) <: (01)
c2 on (01) on (10) <: c3 on (1)

c2 on (01) on (01) <: c3 on (1)

9>>=>>;
This succession of operations transforms a system where the unknowns are

types into a system where the unknowns are ultimately periodic binary words.
The operator on and the relation <: on binary words are defined in the following
section. The algorithm that infers ultimately periodic binary words cn to satisfy
the <: relation is presented in Section 5.



4 Algebra of Ultimately Periodic Words

In this section, we present the definitions and properties of ultimately periodic
binary words that underlie the constraint resolution algorithm presented in Sec-
tion 5. Proofs are provided in the extended version of the article [16].

4.1 Ultimately Periodic Binary Words

We write w for an infinite binary word (w ::= 0w | 1w), u or v for finite binary
words (u, v ::= 0u | 1u | ε), |u| for the size of u and |u|1 for the number of 1s
it contains. The buffer analysis relies on the instants of presence of data on the
flows. Therefore, it mainly manipulates indexes of 1s in the words:

Definition 1 (index of the jth 1 in w: Iw(j)).
Let w be a binary word that contains infinitely many 1s.

Iw(0)
def
= 0

Iw(1)
def
= 1 if w = 1w′

∀j > 1, Iw(j)
def
= 1 + Iw′(j − 1) if w = 1w′

∀j > 0, Iw(j)
def
= 1 + Iw′(j) if w = 0w′

For example, the index of the third 1 in w1 = 11010 11010 . . . is 4, i.e., Iw1(3) = 4.

Remark 2 (increasing indexes). Iw is increasing: ∀j ≥ 1, Iw(j) < Iw(j + 1).

Remark 3 (sufficient indexes). As a direct consequence of Remark 2, the index
of the jth 1 is greater than or equal to j: ∀j ≥ 1, Iw(j) ≥ j.

A word w can also be characterized by its cumulative function which counts
the number of 1s since the beginning of w.

Definition 2 (cumulative function of w: Ow).5

Ow(0)
def
= 0 ∀i ≥ 1, Ow(i)

def
=

∑
0≤i′≤i

w[i′]

In this article, we consider ultimately periodic clocks u(v) which comprise a
finite word u as prefix followed by the infinite repetition of a non-empty finite
word v:
Definition 3 (ultimately periodic word). p = u(v)

def⇔ p = uw with w = vw

For example, p = 1101(110) = 1101 110 110 110 . . . We use the notation p.u
for the prefix of a word p (e.g. (1101(110)).u = 1101) and p.v for its periodic
pattern (e.g. (1101(110)).v = 110).

An ultimately periodic binary word has an infinite number of different rep-
resentations. For example, (10) = (1010) = 1(01) = . . .. But, there exists
a normal form which is the representation where the prefix and the periodic
5 The notation w[i] represents the ith element of a word w.



pattern have the shortest size. For some binary operations, however, it is more
convenient to put the two words in a form which is longer than the normal form.
For example, for some operations we would prefer that the operands have the
same size, or the same number of 1s, or even that the number of 1s in the first
word is equal to the size of the second word.

Remark 4. We can change the shape of an ultimately periodic binary word with
the following manipulations:
– Increase prefix size: u(vv′) = uv(v′v). For example, we can add two elements

to the prefix of the word p = 1101(110) to obtain the form 1101 11(0 11).
Increasing the size of the prefix can be used to increase the number of 1s it
contains.

– Repeat periodic pattern: u(v) = u(vk) with k > 0. For example, we can
triple the size of the periodic pattern of p = 1101(110) (and thus triple its
number of 1s) to obtain 1101(110 110 110).

The following two properties ensure that a periodic word is well formed.

Remark 5 (periodicity). Two successive occurrences of the same 1 of a periodic
pattern are separated by a distance equal to the size of the pattern:

∀j > |p.u|1, Ip(j + |p.v|1) = Ip(j) + |p.v|
As a direct consequence of this property, the distance between any 1 in a rep-
etition of a periodic pattern and the corresponding 1 in the first occurrence of
the pattern is a multiple of the size of the pattern.

∀j, |p.u|1 < j ≤ |p.u|1 + |p.v|1, Ip(j + l × |p.v|1) = Ip(j) + l × |p.v|
For example, if p = 101(10010), Ip(3 + 2) = Ip(3) + 5 and Ip(4 + 2× 2) =
Ip(3) + 2× 5.

Remark 6 (sufficient size). The size of the periodic pattern of a word p (i.e., |p.v|)
is greater than or equal to the number of elements between the indexes of the
first and last 1 of the periodic pattern of p (for words with at least one 1 in the
periodic pattern):

|p.v| ≥ 1 + Ip(|p.u|1 + |p.v|1)− Ip(|p.u|1 + 1)

For example, if p = 101(10010), |p.v| ≥ 1 + 7− 4.

The rate of a word w is the proportion of 1s in the word w:

Definition 4 (rate of p). rate(w) = lim
i→+∞

Ow(i)
i

For an ultimately periodic binary word p, the rate is the ratio between the
number of 1s and the size of its periodic pattern:

Proposition 1 (rate of p). rate(p) =
|p.v|1
|p.v|

In the following, we only consider words of non-null rate, i.e., such that the
periodic pattern contains at least one 1 (these words have an infinite number
of 1s and are the clocks of flows that produce values infinitely often).



4.2 Adaptability Relation

We now define the relation <: on binary words, called the adaptability relation.
The relation w1 <: w2 holds if and only if a flow of clock w1 can be stored in a
buffer of bounded size and consumed at the rhythm of the clock w2. It means
that data does not accumulate without finite bound in the buffer, and that reads
are not attempted when the buffer is empty. The adaptability relation is the
conjunction of precedence and synchronizability relations. The synchronizability
relation between two words w1 and w2 (written w1 ./ w2) asserts that there is
a finite upper bound on the number of values present in the buffer during an
execution. It states that the asymptotic numbers of reads and writes from and
to the buffer are equal. The precedence relation between the words w1 and w2

(written w1 � w2) asserts the absence of reads from an empty buffer. It states
that the jth write to the buffer always occurs before the jth read.

Two words w1 and w2 are synchronizable if the difference between the number
of occurrences of 1s in w1 and the number of occurrences of 1s in w2 is bounded.

Definition 5 (synchronizability ./).

w1 ./ w2
def⇔ ∃b1, b2, ∀i ≥ 0, b1 ≤ Ow1(i)−Ow2(i) ≤ b2

To test this synchronizability relation on ultimately periodic binary words, we
have only to check that the periodic patterns of the two words have the same
proportion of 1s. For example, 1(1100) ./ (101001) because 2

4 = 3
6 .

Proposition 2 (synchronizability test). p1 ./ p2 ⇔ rate(p1) = rate(p2)

A word w1 precedes a word w2 if the jth 1 of w1 always occurs before or at
the same time as the jth 1 of w2.

Definition 6 (precedence �). w1 � w2
def⇔ ∀j ≥ 1, Iw1(j) ≤ Iw2(j)

To check this relation on ultimately periodic words, we only have to consider
this relation until a “common” periodic behavior is reached.6 For example,
1(1100) � (110100) because I

1(1100)(j) ≤ I(110100)(j) for all j such that
1 ≤ j ≤ 7 and the relative behavior between the two words from the 8th 1 is
exactly the same as the one from the 2nd 1. It can be seen if we rewrite 1(1100)
as 1(110011001100) and (110100) as 1(101001101001), the periodic patterns
within these two words recommence simultaneously.

Proposition 3 (precedence test). Consider p1 and p2 such that p1 ./ p2.
Let h = max(|p1.u|1, |p2.u|1) + lcm(|p1.v|1, |p2.v|1). Then:

p1 � p2 ⇔ ∀j, 1 ≤ j ≤ h, Ip1(j) ≤ Ip2(j)

The intuition for the value of the bound h is the following. By Remark 4, we
can adjust the respective components of p1 and p2 to have the same number
of 1s. We obtain two words p′1 and p′2 (equivalent to p1 and p2) such that the

6 A common periodic behavior of two ultimately periodic words p1 and p2 is defined by
an index h and a size k such that ∀j > h, Ip2(j)−Ip1(j) = Ip2(j − k)−Ip1(j − k).



number of 1s in their prefixes is max(|p1.u|1, |p2.u|1) and the number of 1s in
their periodic pattern is lcm(|p1.v|1, |p2.v|1). Hence, after the traversal of h 1s
in p′1 and p′2 (with h = |p′1.u|1 + |p′1.v|1 = |p′2.u|1 + |p′2.v|1), the periodic patterns
of both words restart simultaneously. And since the two words have the same
rate, we are in exactly the same situation as we were at the beginning of the
first traversal of the periodic patterns. So, if the condition holds until the hth 1,
it always holds.

The adaptability relation is the conjunction of the synchronizability and
precedence relations.
Definition 7 (adaptability test). p1 <: p2 ⇔ p1 ./ p2 ∧ p1 � p2

4.3 Buffer Size

To compute the size of a buffer, we must know the number of values that are
written and read during an execution.

Consider a buffer that takes as input a flow with clock w1, and gives as
output the same flow but with clock w2. The number of elements present at
each instant i in the buffer is the difference between the number of values that
have been written into it (Ow1(i)) and the number of values that have been
read from it (Ow2(i)). The necessary and sufficient buffer size is the maximum
number of values present in the buffer during any execution.
Definition 8 (buffer size). size(w1, w2) = maxi∈IN(Ow1(i)−Ow2(i))

To compute this size on adaptable ultimately periodic binary words, we need
only to consider the initial patterns of the two words before their “common”
periodic behavior is reached.
Proposition 4 (buffer size).
Consider p1 and p2 such that p1 <: p2.
Let H = max(|p1.u|, |p2.u|) + lcm(|p1.v|, |p2.v|). Then:

size(p1, p2) = max1≤i≤H(Op1(i)−Op2(i))

Note that the bound H is not the same as the one of Proposition 3, because here
we iterate over indexes (not over 1s).

4.4 Sampled Clocks

The on operator computes the rhythm of a sampled flow. It can express the
output clock of the when operator that keeps or suppresses values of a flow of
clock w1 depending on a condition w2:

w2

when w1 on w2

x when w2x
w1

Fig. 4. If x has clock w1, x when w2 has clock w1 on w2.



Definition 9 (on operator). 0w1 on w2
def
= 0(w1 on w2)

1w1 on 1w2
def
= 1(w1 on w2)

1w1 on 0w2
def
= 0(w1 on w2)

For example, if w1 = 11010111... and w2 = 101100..., then w1 on w2 = 10010100...
Consider the sampling of a flow x with clock w1 by a condition w2:

x 2 5 3 7 9 4 . . .
w2 1 0 1 1 0 0 . . .
x when w2 2 3 7 . . .

w1 1 1 0 1 0 1 1 1 . . .
w2 1 0 1 1 0 0 . . .
w1 on w2 1 0 0 1 0 1 0 0 . . .

At each instant, if x is present, that is, the corresponding element of w1 is equal
to 1, the next element of the sampling condition w2 is considered. If this element
is 1, then the value of x is sampled and the flow x when w2 is present (w1 on w2

equals 1). If the element is 0, the value of x is not sampled and the flow x when w2
is absent (w1 on w2 equals 0). If x is absent (w1 equals 0), the sampling con-
dition w2 is not considered, and the flow x when w2 will be absent (w1 on w2

equals 0).
To compute the on operator on two ultimately periodic binary words p1

and p2, we first compute the size of the expected result, i.e., |(p1 on p2).u|, the
size of the prefix, and |(p1 on p2).v|, the size of the periodic part. Then, we
compute the value of the elements of the prefix and the periodic part by applying
Definition 9.

Proposition 5 (computation of p1 on p2). Let p1 = u1(v1) and p2 = u2(v2).
Then p1 on p2 = u3(v3) with: |u3| = max (|u1|, Ip1(|u2|))

|v3| = lcm(|v1|1,|v2|)
|v1|1 × |v1|

and ∀i, 1 ≤ i ≤ |u3|, u3[i] = (p1 on p2)[i]
∀i, 1 ≤ i ≤ |v3|, v3[i] = (p1 on p2)[|u3|+ i]

Intuitively, the prefix of p1 on p2 is obtained after completely processing the
prefixes of p1 and p2. One element of p1 is processed to produce one element
of p1 on p2. Thus, the processing of the elements of p1.u for the computation of
the on terminates at the index |p1.u|. An element of p2 is processed only when
there is a 1 in p1. Thus the processing of the elements of p2.u terminates at the
index Ip1(|p2.u|). Therefore, the size of the prefix of p1 on p2 is the maximum
of |p1.u| and Ip1(|p2.u|). The size of the periodic pattern is obtained by the
computation of the common period of p1 and p2 when p2 is processed at the
rhythm of the 1s of p1.

The result of the on operation can be computed more simply for certain
shapes of arguments. The simplest case is the one where the number of 1s in the
prefix and in the periodic pattern of the first word are, respectively, equal to the
size of the prefix and the size of the periodic pattern of the second word as in
the following example:

p1 1 1 0 1 ( 1 1 1 0 0 1 1 0 )
p2 1 0 1 ( 1 0 0 1 0 )

p1 on p2 1 0 0 1 ( 1 0 0 0 0 1 0 0 )



Proposition 6. Consider p1 and p2 such that |p1.u|1 = |p2.u| and |p1.v|1 = |p2.v|.
Then: |(p1 on p2).u| = |p1.u| |(p1 on p2).u|1 = |p2.u|1

|(p1 on p2).v| = |p1.v| |(p1 on p2).v|1 = |p2.v|1

As explained in Remark 4, it is possible to increase the size and the number
of 1s in the prefixes and periodic patterns of words. Therefore, we can always
adjust the operands of the on such that they satisfy the assumptions of Propo-
sition 6. Proposition 6 can be generalized to the case where the number of 1s of
p1 is increased by any multiple of the size of p2.v.

Proposition 7. Consider p1 and p2 such that |p1.u|1 = |p2.u|+ k × |p2.v|
and |p1.v|1 = k′ × |p2.v| with k ∈ IN and k′ ∈ IN− {0}. Then:

|(p1 on p2).u| = |p1.u| |(p1 on p2).u|1 = |p2.u|1 + k × |p2.v|1
|(p1 on p2).v| = |p1.v| |(p1 on p2).v|1 = k′ × |p2.v|1

Finally, to compute the index of the jth 1 of w1 on w2 (Iw1 on w2(j)), there is
no need to compute the word w1 on w2 and then to apply the I function since
it can be computed directly from Iw1 and Iw2 .

Proposition 8 (index of the jth 1 of w1 on w2).
∀j ≥ 1, Iw1 on w2(j) = Iw1(Iw2(j))

Indeed, in the computation of w1 on w2, the elements of w2 are given when there
is a 1 in w1. Therefore the index of the ith element of w2 is at index Iw1(i).
Since the 1s of w1 on w2 are the 1s of w2, the jth 1 of w1 on w2 is the Iw2(j)th
element of w2 and thus at the index Iw1(Iw2(j)).

We now have all the algebraic tools needed to define an algorithm for the
resolution of adaptability constraints on ultimately periodic binary words.

5 Adaptability Constraints Resolution Algorithm

We saw in Section 3 that subtyping constraints can be reduced to adaptabil-
ity constraints where the unknowns are no longer types but rather ultimately
periodic binary words. This is the first step of the subtyping constraints res-
olution algorithm which is summarized in Figure 5.7 This section details the
remaining steps.

In Section 5.1, we explain how to simplify an adaptability constraint sys-
tem (S2) to obtain a system (S3) where all the adaptability constraints have
the form cx on px <: cy on py. In Section 5.2, we explain the transformation of
adaptability constraints (S3) into a system (S6) of linear inequalities where the
unknowns are the size and the indexes of 1s of the sought words. This last sys-
tem can be solved using standard techniques from Integer Linear Programming,
and the resulting solutions can be used to reconstruct the unknown words. In
Section 5.3, we discuss the choice of the objective function for the resolution
7 A detailed and commented implementation of the algorithm in OCaml is provided

at http://www.lri.fr/∼mandel/mpc12.



S1. Subtyping constraints: αx on p1 on ... <:<:<: αy on p2 on ...

⇔ { introduction of word variables cn ;
simplification of type variables }

S2. Adaptability constraints: p1 on ... <: p2 on ...
cx on p′1 on ... <: cy on p′2 on ...⇔ { computation of on ;

simplification of p1 <: p2 constraints }
S3. Simplified adaptability constraints: cx on px <: cy on py

⇔ { for each cn, equalization of the size of its samplers }
S4. Adjusted adaptability constraints: cx on px <: cy on py

⇐ { choice of the number of 1s of the cns ;
splitting of the adaptability constraints }

S5. Synchronizability cx on px ./ cy on py

and precedence constraints: cx on px � cy on py

⇔ { simplification of synchronizability
and precedence constraints ;
introduction of well formedness constraints }

S6. Indexes of 1s and size constraints:
synchronizability: |py.v|1 × |cx.v| = |px.v|1 × |cy.v|
precedence: Icx(Ipx(j)) ≤ Icy (Ipy (j))
periodicity: Icn(j + l × |cn.v|1)− Icn(j) = l × |cn.v|
sufficient size: 1 + Icn(|cn.u|1 + |cn.v|1)− Icn(|cn.u|1 + 1) ≤ |cn.v|
sufficient indexes: Icn(j) ≥ j
increasing indexes: Icn(j′)− Icn(j) ≥ j′ − j

Fig. 5. Summary of the subtyping constraints resolution algorithm. The form of the
constraints is given for each system.

of the linear inequalities. Finally, we discuss the correctness, completeness and
complexity of the algorithm.

Before the detailed explanation of the algorithm, we note that, as was the case
for the equality constraints, there is no greedy algorithm for solving adaptability
constraints. Indeed, if the words (c1, c2) satisfy a constraint c1 on p1 <: c2 on p2,
then (1dc1, 1dc2) and (0dc1, 0dc2) also satisfy it whatever d is. Hence, contrary
to a classical subtyping system, we cannot simply take the greatest word for
a variable on the left of an adaptability constraint, and the smallest one for a
variable on the right. In our case, the inference of values satisfying constraints
must necessarily be performed globally to choose words big enough, and/or small
enough to satisfy all constraints.

5.1 Constraint System Simplification

We begin by considering adaptability constraint systems. After the computa-
tion of on operators (Proposition 5), these systems comprise constraints of the
form px <: py and cx on px <: cy on py, where px and py are known words of
non-null rate and cx and cy are unknown words.



Since a constraint of the form px <: py contains no variables, its truth value
cannot be altered. We need only to check that each such constraint is satisfied,
which is done by applying Definition 7. If any are false, then the whole system
is unsatisfiable. The true constraints can be removed from the system.

Returning to the cyclic_encoding example, the adaptability constraint sys-
tem was: {

(050100) <: (050100)

(050100) <: (050010)

(050100) <: (050001)

}
Through the application of the adaptability test, we can check that each con-
straint is always satisfied. Here, after simplification, the system is empty and
thus the node cyclic_encoding is well typed.

In the general case, after simplification all the remaining constraints contain
variables. For example, the subtyping constraint system C ′ of Section 3 can be
rewritten to the adaptability constraint system A′:

θ(C ′)⇔


c1 on 10(1) <: c2 on (01)

(1100) <: (01)
c2 on (01) on (10) <: c3 on (1)

c2 on (01) on (01) <: c3 on (1)

⇔
{

c1 on 10(1) <: c2 on (01)

c2 on (0100) <: c3 on (1)

c2 on (0001) <: c3 on (1)

}
=A′

All the remaining constraints are of the form cx on px <: cy on py.

5.2 Constraint System Solving

The goal now is to solve adaptability constraint systems of the form:
{cxi on pxi <: cyi on pyi}i=1..number of constraints

The values pxi , pyi are some known ultimately periodic binary words of non-
null rate. The variables cxi , cyi are the unknowns of the system. Note that some
unknown variables can appear several times in a system like in A′ (we only know
that cxi

6= cyi
since simplification has been performed):8{

c1 on p1 <: c2 on p2

c2 on p′2 <: c3 on p3

c2 on p′′2 <: c3 on p′3

}
Solving the system means associating ultimately periodic words of non-null rate
to the unknowns (c1, c2, c3), such that the constraints are satisfied.

Remark 7. If solutions containing null rates are allowed, all systems have a so-
lution. For example, the instantiation ∀n. cn = (0) is a trivial solution of all
systems. A solution containing a null rate gives a system that will be executed
at only a finite number of instants. We are not interested in such solutions.

An adaptability constraint cx on px <: cy on py can be decomposed into a
synchronizability constraint and a precedence constraint:

cx on px <: cy on py ⇔ { by Definition 7 }
(cx on px ./ cy on py) ∧ (cx on px � cy on py)

8 We choose the same index for a variable cn and the words pn, p′n, . . . that sample cn.



The synchronizability constraint can itself be rewritten:
cx on px ./ cy on py ⇔ { by Proposition 2 and Proposition 1 }

|(cx on px).v|1
|(cx on px).v| =

|(cy on py).v|1
|(cy on py).v|

As can the precedence constraint:
cx on px � cy on py ⇔ { by Proposition 3 and Proposition 8 }

∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))

with h = max(|(cx on px).u|1, |(cy on py).u|1) + lcm(|(cx on px).v|1, |(cy on py).v|1)
We are thus interested in the size of, and the number of 1s in, the prefixes and
periodic patterns of cx on px and of cy on py forms.

We have seen in Section 4 (Proposition 7) that the size and number of 1s in
the prefix and in the periodic pattern of cn on pn can easily be expressed as a
function of the size and number of 1s in the prefixes and periodic patterns of cn

and pn in the following case: |cn.u|1 = |pn.u|+k×|pn.v| and |cn.v|1 = k′×|pn.v|.
To put the system into this “simple” form, we adjust the known words of

the system to satisfy the property: for any unknown cn, all its samplers9 pn,
p′n, . . . have the same prefix size (|pn.u| = |p′n.u| = . . .) and the same periodic
pattern size (|pn.v| = |p′n.v| = . . .). This operation is always possible (thanks to
Remark 4) and does not change the semantics of the system.

We can then choose the number of 1s in the unknown cn.

Choice 1 (number of 1s in the cn) Let k ∈ IN and k′ ∈ IN− {0}.
|cn.u|1 = |pn.u|+ k × |pn.v| ( = |p′n.u|+ k × |p′n.v| = . . .)
|cn.v|1 = k′ × |pn.v| ( = k′ × |p′n.v| = . . .)

where pn, p′n, . . . are the samplers of cn.

Remark 8. The algorithm is parameterized by constants k and k′, which restrict
the number of 1s in any solution and may thus lead to failures in the resolution
of constraints. We will discuss this choice in Section 5.4.

This choice allows us to express the size and the number of 1s in the prefixes
and periodic patterns of the cn on pn in terms of those of cn and pn. Hence, a
synchronizability constraint becomes:

cx on px ./ cy on py ⇔ { by Proposition 7 }
k′ × |px.v|1
|cx.v| =

k′ × |py.v|1
|cy.v|

⇔ |py.v|1 × |cx.v| = |px.v|1 × |cy.v| (1)

And a precedence constraint becomes:
cx on px � cy on py ⇔ { by Proposition 7 }

∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))

with h = max(|px.u|1 + k × |px.v|1, |py.u|1 + k × |py.v|1) +
lcm(k′ × |px.v|1, k′ × |py.v|1)

(2)

9 A word pn is a sampler of cn if cn on pn is in the constraint system.



For example, we can adjust the system A′ such that all the samplers of a
particular variable have the same size:

A′ =

{
c1 on 10(1) <: c2 on (01)

c2 on (0100) <: c3 on (1)

c2 on (0001) <: c3 on (1)

}
⇔

{
c1 on 10(1) <: c2 on (0101)

c2 on (0100) <: c3 on (1)

c2 on (0001) <: c3 on (1)

}
Then, we choose the number of 1s for the cns to be equal to the size of the

respective samplers:
|c1.u|1 = 2 + k × 1 |c2.u|1 = 0 + k × 4 |c3.u|1 = 0 + k × 1
|c1.v|1 = k′ × 1 |c2.v|1 = k′ × 4 |c3.v|1 = k′ × 1

By Formula (1), the synchronizability constraints become a system of linear
equations on the size of the periodic patterns of the cns:8<:

|(0101).v|1 × |c1.v| = |(10(1)).v|1 × |c2.v|
|(1).v|1 × |c2.v| = |(0100).v|1 × |c3.v|
|(1).v|1 × |c2.v| = |(0001).v|1 × |c3.v|

9=; ⇔

8<:
2× |c1.v| = |c2.v|

|c2.v| = |c3.v|
|c2.v| = |c3.v|

9=; (Sync)

By Formula (2), if we choose the constants k and k′ to be equal to 0 and 1,
the precedence constraints become a system of linear inequalities on the indexes
of 1s in the cns:

∀j, 1 ≤ j ≤ 3, Ic1(I10(1)(j)) ≤ Ic2(I(0101)(j))

∀j, 1 ≤ j ≤ 1, Ic2(I(0100)(j)) ≤ Ic3(I(1)(j))

∀j, 1 ≤ j ≤ 1, Ic2(I(0001)(j)) ≤ Ic3(I(1)(j))


which is equivalent to the following system after the computation of the Ipn(j):

Ic1(1) ≤ Ic2(2)
Ic1(3) ≤ Ic2(4)
Ic1(4) ≤ Ic2(6)
Ic2(2) ≤ Ic3(1)
Ic2(4) ≤ Ic3(1)

 (Prec)

Now, to give a value to each unknown cn, we must find its size (satisfying
Sync) and the positions of its 1s (satisfying Prec). Hence, the sizes |cn.v| and the
indexes Icn(j) will no longer be considered as function applications, but rather
as the new unknowns of the problem. These new unknowns must also satisfy the
constraints of Remarks 2, 3, 5 and 6 which ensure that the solution will be a well
formed ultimately periodic binary word. So, we have to augment Sync and Prec
with the following four sets of constraints:10

Periodicity: Per = {Icn(j + l × |cn.v|1)− Icn(j) = l × |cn.v|}Icn (j+l×|cn.v|1)∈Prec
∧ |p.u|1<j≤|p.u|1+|p.v|1

Sufficient size: Size = {1 + Icn(|cn.u|1 + |cn.v|1)− Icn(|cn.u|1 + 1) ≤ |cn.v|}
Sufficient indexes: Init = {Icn(j) ≥ j}Icn (j)∈Prec ∪Per ∪ Size

Increasing indexes:Incr = {Icn(j′)− Icn(j) ≥ j′ − j}(Icn (j),Icn (j′))∈Prec ∪Per ∪ Size

Finally, we can use a generic solver for Integer Linear Programming (ILP)
problems to solve the system: S = Sync ∪ Prec ∪ Per ∪ Size ∪ Init ∪ Incr .

10 The notation Icn(j) ∈ S designates the presence of the unknown Icn(j) in S.



Applying a solver to the system associated with A′ produces the results:
|c1.v| = 2 Ic1(1) = 1 Ic1(3) = 3 Ic1(4) = 5
|c2.v| = 4 Ic2(1) = 1 Ic2(2) = 2 Ic2(4) = 4 Ic2(6) = 6
|c3.v| = 4 Ic3(1) = 4

Thanks to this information and the number of 1s in the prefixes and periodic
patterns of the cns chosen previously, we can build the following solution to
the A′ system: c1 = 11(10) c2 = (1111) = (1) c3 = 000(1000) = (031).

We now know all the clock types of the system of Figure 3. The result gives
us the clock type of the node f which is ∀α, α on c1 × α on c2 → α on c3, that
is: f :: ∀α, α on 11(10)× α on (1)→ α on (031).

And since we have the types of the buffers, we can compute their sizes.
For example, we know that the writing clock of the first buffer is of type
α on c1 on 10(1) = α on 11(10) on 10(1) and that the reading clock is of type
α on c2 on (01) = α on (1) on (01). By Proposition 4, the size of this buffer is:
size(11(10) on 10(1), (1) on (01)) = 1.

5.3 Guiding the Resolution Algorithm

The resolution algorithm requires the solution of linear inequalities on the in-
dexes of 1s and on the size of the unknown words. Tools for solving such in-
equalities are parameterized by an objective function determining the criterion
to optimize. In the previous example, we choose to optimize the sum of the
indexes of 1s to produce a kind of As-Soon-As-Possible schedule. But we can
also use the objective function to favor either system throughput or buffer sizes
minimization. We illustrate this trade-off on an example:

let node g (i1, i2) = o where

rec aux1 = i1 when (1001)

and aux2 = i2 when (0110)

and o = buffer aux1 + buffer aux2 aux2

aux1i1

i2

g

when

(0110)

when

(1001)

+
o

If we assign the type ∀α. (α× α)→ α on (01) to the node g, the buffers will be
of size 1. But, this node can be executed without buffers if we give it the type:
g :: ∀α.(α on (011110)× α on (110011))→ α on (010010) .

The first solution can be obtained by an objective function that minimizes
the size of the solution. Indeed, since the number of 1s in the solution is fixed,
minimizing the size increases the rate.

The second solution is obtained by an objective function that, for all prece-
dence constraints Icx(j1) ≤ Icy (j2), minimizes the value Icy (j2) − Icx(j1). It
means that we minimize the number of instants between the writing and the
reading of a value in a buffer which has the consequence of reducing the buffer sizes.

5.4 Correctness, Completeness and Complexity

The resolution algorithm shown in Figure 5 relies on the step-by-step transfor-
mation of the adaptability constraint system (S2) into linear inequalities (S6),
for which there exist algorithms that find a solution if it exists [20]. Each step,



except the one between S4 and S5, is a rewriting of a constraint system into an
equivalent one (thanks to the equivalence properties stated in Section 4). The
step from S4 to S5 is the choice of the number of 1s in the cns. It is correct to
seek a solution in a subset of all possible words. Nevertheless, it may lead to
incompleteness, since it is possible that a system has no solution in the subset
of words considered.

We have parameterized our resolution algorithm by two constants k and k′

which modify the number of 1s in the sought solution. A semi-decidable al-
gorithm to solve adaptability constraints iterates the previous algorithm with
k = 0, 1, 2, . . . and k′ = k + 1 until it finds a solution. We can prove that this
algorithm is complete because if a system of adaptability constraints has a so-
lution S, then there exists a solution S′ such that ∀c′n ∈ S′,

|c′n.u|1 = |pn.u|+ k × |pn.v| ( = |p′n.u|+ k × |p′n.v| = . . .)
|c′n.v|1 = (k + 1)× |pn.v| ( = (k + 1)× |p′n.v| = . . .)

where k can be computed from the original solution S. The idea of the proof
is to use Remark 4 to rewrite S into S′ (the detailed proof is in the extended
version of the paper).

Moreover, note that the step that equalizes of the size of the samplers (from S3
to S4, Figure 5) can be adapted such that the choice k = 0 and k = 1 always
leads to a solution, if it exists, for (1) systems that do not have prefixes, (2) sys-
tems where the prefixes of the samplers of a variable are made of 0s and have
the same size, and (3) systems with only one constraint. The algorithm is given
in the extended version of the paper.

Remark that we can sometimes find solutions that allow faster execution of
a system if we choose a number of 1s different than the one proposed by k = 0
and k′ = 1. For example, consider the following adaptability constraints:{

c1 on (1) <: c2 on (110)
}

If we are seeking a solution with one 1 for c1, we compute the solution {c1 = (10);
c2 = (1011)} where rate(c1) = 1

2 and rate(c2) = 3
4 . Whereas, if we are seeking

a solution with two 1s for c1, we compute the solution {c1 = (110); c2 = (16)}
where rate(c1) = 2

3 and rate(c2) = 1. The guarantee provided by the resolution
algorithm is that for a given number of 1s, the result is optimal with respect
to the objective function given to the ILP solver. It follows the fact that each
transformation of the adaptability constraint system, except Choice 1, maintains
equivalence. Therefore, there is no loss of information.

The complexity of the resolution algorithm is dominated by the resolution of
the constraint system on the indexes of 1s and the sizes. This is an ILP problem
which is known to be NP-complete [20]. Even if there is only one adaptability
constraint per buffer, the size of the complete ILP problem can be big (e.g.,
millions of variables): it depends on the size of the samplers in the adaptability
constraint system.



gsm encoding

m
e
r
g
e

(1530132)

m
e
r
g
e

(1378078)Ia

Ib

II

encoding
convolutional

cyclic
encoding

s
p
l
i
t
s
p
e
e
c
h

(a) GSM speech encoder.

Ib

Ia

II

decoding
convolutional

cyclic
decoding

s
p
l
i
t
I
a
I
b

s
p
l
i
t
I
I
I

j
o
i
n
s
p
e
e
c
h

gsm decoding

(b) GSM speech decoder.

In the GSM protocol [13], speech is divided into samples of 20ms, each of which is encoded
as a frame of 260 bits. These frames are then encoded, such that it is possible to detect and
sometimes to correct errors introduced by radio transmission.
The 260 bits are divided into three classes: Ia, Ib, II. Class Ia contains the first 50 and most
important bits, class Ib contains the following 132 moderately important bits and class II contains
the last and least important 78 bits. The 50 bits of class Ia go through the cyclic encoder that
is presented in Section 2. Then the 132 bits of class Ib are appended to the 50 bits of class Ia
followed by the 3 cyclic redundancy bits. The 185 bits thus obtained are encoded by a convolution
encoder which builds packets of 378 bits, to which the 78 bits of class II are appended.
The decoder has the reverse behavior. It starts by separating the bits of class I from the bits
of class II that have not been encoded. The bits of class I are then processed by a convolution
decoder that detects and corrects some errors. Finally, a cyclic decoder is applied to the bits of
class Ia to check that there are no errors (if errors remain, the bits of the preceding frame are
transmitted).

Fig. 6. Excerpt of the GSM speech encoder/decoder.

6 Comparison with Previous Resolution Algorithms

Three algorithms for the resolution of adaptability constraints have been pro-
posed. The first one [8] is based on the successive application of local simplifi-
cation rules. This algorithm does not always succeed because some systems can
only be simplified globally, that is, by resolving all of their constraints simulta-
neously (one such example is given in the long version of this article).

A second algorithm [17], the abstract resolution algorithm, is based on the
abstraction of clocks by sets of clocks defined by an asymptotic rate and two
offsets bounding the potential delay with respect to this rate [9]. Thanks to this
abstraction, the adaptability relation can be tested by some simple operations
on rational numbers.

Section 5 of this article presents the third resolution algorithm, the concrete
resolution algorithm. Technically, the first steps of the algorithm (from S1 to S3,
Figure 5) are similar to the ones of the abstract resolution algorithm. The subse-
quent steps that solve the adaptability constraints (from S3 to S6) differ. In the
rest of the section, we will focus on the comparison of the concrete resolution
algorithm and the abstract resolution algorithm via some specific examples.

The concrete resolution algorithm allows us to type an excerpt of a GSM
speech encoder/decoder. The principle of the encoder/decoder is described in
Figure 6 and the source code is available at http://www.lri.fr/∼mandel/
mpc12. This example illustrates the advantages of concrete resolution.

The encoder is depicted in Figure 6(a). The different nodes contain buffers,
but they are connected without buffers. The global unification mentioned in



Remark 1 is essential to type this node. It can find a rhythm for consuming the
input flow such that all the constraints imposed by the processing of the three
branches are satisfied.

The abstract resolution algorithm cannot type this node because it cannot
treat a unification constraint as a pair of inverse subtyping constraints as pro-
posed in Remark 1. Indeed, when clocks are abstracted, we do not have suffi-
ciently precise information about them to guarantee equality. So, to type the
gsm_encoding node with the abstract resolution algorithm, we would have to
add buffers to communicate the values of the flows Ia, Ib and II, which would
transform the unification constraints into subtyping constraints which could be
solved. With this new version of the gsm_encoding node, the buffer sizes esti-
mated by abstract resolution are 50, 132 and 78, whereas the concrete resolution
showed that, for the same throughput, such buffers are not necessary.

The GSM encoder example shows that the concrete resolution algorithm
can handle programs that need subtle node scheduling. This advantage is also
evident in programs that contain cycles with few initialization values such as the
following one:

let node tight_cycle (init, i1, i2) = o where

rec x = i1 when (100001) + buffer y

and y = merge 1(0) init o

and o = i2 when 0(100001) + buffer x

when

0(100001)

oxy
init

i2

i1

tight cycle

++

when

(100001)

m
e
r
g
e

1(0)

Here, since there is only one initial value in the cycle, the activations of the
two + operators are tightly coupled: they must alternate. The abstract resolution
algorithm cannot find such a schedule because, in this case, due to the lost
information, it cannot guarantee safe communication through the buffers. The
concrete resolution algorithm, on the other hand, finds a correct schedule.

Let us now consider the GSM speech decoder depicted in Figure 6(b). Notice
that the flows Ia, Ib are II are buffered. The concrete resolution algorithm infers
buffer sizes of, respectively, 1, 132 and 156, while the abstract resolution algo-
rithm gives 51, 264 and 234. The buffer sizes estimated by the abstract resolution
algorithm are almost twice as large as those found by the concrete algorithm.

This example shows that when buffers are necessary, the concrete resolution
algorithm can give better estimates of buffer sizes.

Notice, however, that the abstract resolution algorithm is still interesting
for cases like the video application Picture in Picture [17]. Running the concrete
resolution algorithm on this example takes several days of computer time! Indeed,
because the size of the clock words involved in the system are on the order of two
million bits, our algorithm generates a system of linear inequalities containing
numbers of variables and constraints of the same order of magnitude. Constraint
systems of this size cannot be handled efficiently with tools like GLPK [12] that
solve systems of linear inequalities. Finally, the algorithm with abstraction can
handle systems where some words are not exactly periodic [9], that is, those with
some jitters.



For a given program, one algorithm may be more appropriate than the
other. When the periodic words are well balanced, i.e., when the 1s are reg-
ularly spread (as is the case for the nodes of the Picture in Picture application),
the algorithm with abstraction gives good results quickly. However, it fails when
there are some constraints that are difficult to satisfy: e.g. those requiring global
unification or those containing cycles. When words are not well balanced, i.e.,
when the 1s come in bursts (as in the GSM example) and they are not too
long (only hundreds of elements), then the concrete algorithm is better: there is
less risk of rejecting a system that has a solution, and the buffer size estimates
are better. Finally, unlike the abstract algorithm, the concrete algorithm is not
limited to optimizing system throughput. For example, it can find a schedule for
Picture in Picture that reduces throughput in order to avoid buffering.

7 Conclusion

In this article, we have presented an algorithm that computes schedules and
buffer sizes for networks of ultimately periodic processes described as Lucy-n
programs.

Scheduling and finding buffer sizes for networks of processes is an old problem.
Our particularity is to work in the context of a programming language. In that
respect, the most related approaches are those of Ptolemy [11] and StreamIt [22]
which are implementations of the Synchronous Data-Flow model [14]. In Ptolemy,
the computation nodes are programmed in a host language and the production
and consumption rates of nodes are declared by the user. If the values declared
by the user are not correct, a program will fail at run-time. The approach of
Lucy-n is different: the whole program is written in a single language and the
production and consumption rates are inferred automatically from the source
code. StreamIt follows the same approach as Lucy-n, but provides only a small
number of combinators which restricts the set of networks that can be described.

The main contribution of this paper is to define a resolution algorithm of sub-
typing constraints that uses all the information contained in the types. Therefore,
it can accept more programs than previous algorithms and it does not overesti-
mate buffer sizes.

Even if the algorithm presented in this paper is computationally more com-
plex than the abstract algorithm presented in [17], our new algorithm can type
some programs that would be impossible to type with the other one. In particu-
lar, the concrete resolution algorithm has been used [18] to type programs that
model latency insensitive design [3]. The types that are obtained for the different
nodes of such programs define static schedules for the modeled circuit [7, 2, 4].
Because of their shape, all these programs make the abstract algorithm fail.

Finally, a great advantage of the concrete resolution algorithm presented
in this article is that it does not restrict the trade-off between buffering and
throughput. A direction for future work is to provide new language constructs
to declare resource constraints and to use them to guide the resolution algorithm.



Acknowledgments. First we would like to thank Timothy Bourke for his numer-
ous and useful comments on the article. It has been a great pleasure to interact
with him. We are grateful to Gwenaël Delaval for providing the GSM example
which is ideal for motivating and illustrating our approach. Marc Pouzet has
been very supportive and always has good advice. Last but not least, we would
like to thank the reviewers and the MPC program committee for the quality and
the benevolence of their remarks.

References

1. G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static dataflow.
IEEE Trans. on Signal Processing, 44(2):397–408, 1996.

2. J. Boucaron, R. de Simone, and J.-V. Millo. Formal methods for scheduling of
latency-insensitive designs. EURASIP Journal on Embedded Systems, Issue 1, Jan-
uary 2007.

3. L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory of latency-
insensitive design. IEEE Trans. on CAD of Integrated Circuits ans Systems,
20(9):1059–1076, September 2001.

4. J. Carmona, J. Júlvez, J. Cortadella, and M. Kishinevsky. Scheduling synchronous
elastic designs. In Application of Concurrency to System Design, 2009.

5. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declarative language
for real-time programming. In Principles of Programming Languages, 1987.

6. P. Caspi and M. Pouzet. Synchronous Kahn networks. In International Conference
on Functional Programming, May 1996.

7. M. Casu and L. Macchiarulo. A new approach to latency insensitive design. In
Design Automation Conference, 2004.

8. A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N -
synchronous Kahn networks: a relaxed model of synchrony for real-time systems.
In Principles of Programming Languages, 2006.

9. A. Cohen, L. Mandel, F. Plateau, and M. Pouzet. Abstraction of clocks in syn-
chronous data-flow systems. In ASIAN Symposium on Programming Languages
and Systems, 2008.

10. J.-L. Colaço and M. Pouzet. Clocks as first class abstract types. In International
Conference on Embedded Software, 2003.

11. J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorf-
fer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the Ptolemy approach.
Proceedings of the IEEE, 91(1):127 – 144, jan 2003.

12. GLPK. GNU linear programming kit. http://www.gnu.org/software/glpk/.
13. X. Lagrange, P. Godlewski, and S. Tabbane. Réseaux GSM : des principes à la

norme. Hermès Science, Paris, 2000.
14. Ed. Lee and D. Messerschmitt. Synchronous data flow. IEEE Transactions on

Computers, 75(9), September 1987.
15. L. Mandel and F. Plateau. Typage des horloges périodiques en Lucy-n. In Journées

Francophones des Langages Applicatifs, La Bresse, France, January 2011.
16. L. Mandel and F. Plateau. Scheduling and buffer sizing of n-synchronous systems

— extended version. Available at http://www.lri.fr/∼mandel/mpc12, 2012.
17. L. Mandel, F. Plateau, and M. Pouzet. Lucy-n: a n-synchronous extension of

Lustre. In Mathematics of Program Construction, 2010.



18. L. Mandel, F. Plateau, and M. Pouzet. Static scheduling of latency insensitive
designs with Lucy-n. In Formal Methods in Computer Aided Design, 2011.

19. W. Wesley Peterson. Error-Correcting Codes. The M.I.T. Press, 1961.
20. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.
21. T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete and

decidable type inference for GADTs. In International Conference on Functional
Programming, pages 341–352, 2009.

22. W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for stream-
ing applications. In International Conference on Compiler Construction, 2002.

A Clock constraints collection

Clock types are separated into three categories: type schemes (σ) which represent
the types of nodes, types of expressions (t) and types of streams (ct).

σ ::= ∀β1, . . . , βm.∀α1, . . . , αn. ct→ ct
t ::= β | t× t | ct
ct ::= α | ct on ce | ct on not ce

The typing environment H is a triple which contains the types of the flow
variables, the types of the nodes and the type of the clocks:

H ::= ([ x1 : ct1, . . . , xp : ctp ],
[ f1 : σ1, . . . , fm : σm ],
[ c1 : ce1, . . . , cn : cen ])

We use the notation H + [z : t] to add the association z : t to the appropriate
part of the triple. We define the notation [pat : t] as follows:

[pat : t] =
{

[x : t] if pat = x

[pat1 : t1] + · · ·+ [patn : tn] if pat = (pat1,...,patn) and t = t1 × · · · × tn

Types can be instantiated and generalized using the following rules:

inst(∀β1, ... , βm.∀α1, ... , αn. t) =
{ t′ | t′ = t[β1 ← t1, ... , βm ← tm, α1 ← ct1, ... , αn ← ctn] }

gen(t, C) = ∀β1, ... , βm.∀α1, ... , αn. t′

where t′ = θ(t) such that θ(C) is satisfied
and {β1, ..., βm, α1, ..., αn} = FV(t′)

The typing rules which collect the clocking constraints are given in Figure 7.
The typing rules have the shape H ` e : t |C which means that in the typing
environment H, the expression e has type t and must satisfy the set of con-
straints C.

Finally, notice that ct× ct ≡ ct. Therefore, constraints such as t1 × t2 === ct
can be split into t1 === ct and t2 === ct.



H ` i : α | ∅

H ` ce

H ` ce : α | ∅ H ` x : H(x) | ∅

H ` e1 : t1 |C1 . . . H ` en : tn |Cn

H ` (e1,...,en) : t1 × · · · × tn |C1 ∪ · · · ∪ Cn

H ` e1 : t1 |C1 H ` e2 : t2 |C2

H ` e1 op e2 : ct | {t1 === t2 === ct} ∪ C1 ∪ C2

H ` e : t |C H ` e1 : t1 |C1 H ` e2 : t2 |C2

H ` if e then e1 else e2 : ct | {t === t1 === t2 === ct} ∪ C ∪ C1 ∪ C2

t1 → t2 ∈ inst(H(f)) H ` e : t3 |C

H ` fe : t2 | {t1 === t3} ∪ C

H ` eqs : H ′ |C1 H + H ′ ` e : ct |C2

H ` e where rec eqs : ct |C1 ∪ C2

H ` e1 : t1 |C1 H ` e2 : t2 |C2

H ` e1 fby e2 : ct | {t1 === t2 === ct} ∪ C1 ∪ C2

H ` e : t |C H ` ce : ct | ∅

H ` e when ce : ct on ce | {t === ct} ∪ C

H ` e : t |C H ` ce : ct | ∅

H ` e whenot ce : ct on not ce | {t === ct} ∪ C

H ` ce : ct | ∅ H ` e1 : t1 |C1 H ` e2 : t2 |C2

H ` merge ce e1 e2 : ct | {ct on ce === t1, ct on not ce === t2, } ∪ C1 ∪ C2

H ` e : t |C

H ` buffer(e) : α |C ∪ {t <:<:<: α}

H + [pat : β] ` e : t |C

H ` pat = e : [pat : t] | {β === t} ∪ C

H + H2 ` eqs1 : H1 |C1 H + H1 ` eqs2 : H2 |C2

H ` eqs1 and eqs2 : H1 + H2 |C1 ∪ C2

H + [x : β] ` e : t |C

H ` let node f(x)= e : [f : gen(β → t, C)]

H ` ce

H ` let clock c = ce : [c : ce]

H ` d1 : H1 H + H1 ` d2 : H2

H ` d1; d2 : H1 + H2

Fig. 7. Clock type constraints collection.


