
Scheduling and Buffer Sizing of n-Synchronous Systems
Typing of Ultimately Periodic Clocks in Lucy-n

Extended Version

Louis Mandel Florence Plateau ∗

Université Paris-Sud 11
INRIA Paris-Rocquencourt
{mandel,plateau}@lri.fr

Abstract
Lucy-n is a language for programming networks of processes com-
municating through bounded buffers. A dedicated type system,
termed a clock calculus, automatically computes static schedules
of the processes and the sizes of the buffers between them.

In this article, we present a new algorithm which solves the sub-
typing constraints generated by the clock calculus. The advantage
of this algorithm is that it does not overestimate the buffer sizes
needed. Moreover, it provides a way to favor either system through-
put or buffer sizes minimization.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Data-flow languages; D.3.4
[Programming Languages]: Processors—Compilers

General Terms Languages, Algorithms

Keywords Synchronous Languages, Typing, Constraints Solving

1. Introduction
The n-synchronous model [8] is a data-flow programming model. It
describes networks of processes that are executed concurrently and
that communicate through buffers of bounded size. It combines
concurrency, determinism and flexible communications. These
properties are especially useful for programming multimedia ap-
plications.

A language called Lucy-n [16] has been proposed to program in
the n-synchronous model. It is essentially Lustre [6] extended with
a buffer operator. Lucy-n provides a static analysis that infers the
activation conditions of computation nodes and the related sizes
of buffers. This analysis is in the tradition of the clock calculus
of the synchronous data-flow languages. A clock calculus is a
dedicated type system that ensures that a network of processes
can be executed in bounded memory. The original clock calculus
ensures that a network can be executed without buffering [5]. In
the synchronous languages, each flow is associated to a clock that

∗ Presently at Prove & Run.

[Copyright notice will appear here once ’preprint’ option is removed.]

defines the instants where data is present. The clocks are infinite
binary words where the occurrence of a 1 indicates the presence of
a value on the flow and the occurrence of a 0 indicates the absence
of value. Here is an example of a flow x and its clock:

x 2 5 3 7 9 4 6 . . .
clock(x) 1 1 0 1 0 1 1 1 0 0 1 . . .

The clock calculus forces each expression to satisfy a typing con-
straint similar to the following:

H ` e1 : ct1 | C1 H ` e2 : ct2 | C2

H ` e1 + e2 : ct3 | {ct1 === ct2 === ct3} ∪ C1 ∪ C2

This rule establishes that in the typing environment H , the expres-
sion e1 + e2 has a clock of type ct3 if e1 has a clock of type ct1,
e2 a clock of type ct2 and if the constraint ct1 === ct2 === ct3 is
satisfied.1 Type equality ensures clock equality. Thus two processes
producing flows of the same type can be composed without buffers.

The traditional clock calculus of synchronous languages only
considers equality constraints on types, but adapting the clock
calculus to the n-synchronous model requires the introduction of
a subtyping rule for the buffer primitive. If a flow whose clock is
of type ct can be used later on a clock of type ct′ after having been
stored in a buffer of bounded size, we say that ct is a subtype of ct′,
noted ct <:<:<: ct′:

H ` e : ct | C
H ` buffer(e) : ct′ | {ct <:<:<: ct′} ∪ C

The clock calculus of Lucy-n considers both equality constraints
and subtyping constraints.

To solve such constraints, we have to be able to unify types
(ct1 === ct2) and to verify the subtyping relation (ct1 <:<:<: ct2).
These two operations depend very much on the clock language.
Ultimately periodic binary words, i.e., words that are composed
of a finite prefix followed by an infinite repetition of a finite pat-
tern, is an especially interesting and useful clock language. In this
case, equality and subtyping are decidable. An algorithm to solve
constraints on the types of ultimately periodic clocks is proposed
in [16]. The algorithm exploits clock abstraction [9] where the ex-
act “shape” of clocks are forgotten in favor of simpler specifications
of the presence instants of the flows.

Type constraints on abstract clocks can be solved simply and
efficiently. But, the loss of precise information leads to over ap-
proximations of buffer sizes. Moreover, even if a constraint system
has a solution, the resolution algorithm can fail to find it because of

1 The sets C1 and C2 contain the constraints collected during the typing of
the expressions e1 and e2.

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 1 2011/7/13

Figure 1. Circuit for division [18] by X3+X+1. The input flow is
the sequence of fifty coefficients of the polynomial to divide. After
consuming the fiftieth input bit, all the coefficients of the quotient
polynomial have been produced at the output and the registers
contain the coefficients of the reminder polynomial.

the abstraction. Therefore, when the clocks are simple, we prefer to
find buffer sizes precisely, rather than quickly.

In this article, we present an algorithm to solve the constraints
without clock abstraction. This problem is difficult for two reasons.
First, such an algorithm must consider all the information present
in the clocks. If the prefixes and periodic patterns of the words that
describe the clocks are long, there may be combinatorial explo-
sions. Second, the handling of the initial behaviors (described by
the prefixes of the words) is always delicate [2] and not always ad-
dressed [1]. Dealing with the initial and periodic behaviors simulta-
neously is a source of complexity but, to the best of our knowledge,
there is no approach that manages to treat them in separate phases.

We present the Lucy-n language in Section 2 and its clock
calculus in Section 3 through an example. Section 4 introduces
the properties used in Section 5. Section 5 presents an algorithm
for resolving constraints. Section 6 presents two variants of the
resolution algorithm. The first one is a semi-decidable algorithm
which is proved to find a solution if it exists. The second variant
is an algorithm which has a polynomial time complexity but that
can handle only a subset of systems. Section 7 discusses results
obtained on examples and compares them with previous resolution
algorithms. Finally, Section 8 concludes the article.

2. The Lucy-n Language
In this section, we present the Lucy-n language through the pro-
gramming of a GSM voice encoder component.2 This component
is a cyclic encoder that takes as input a flow of bits representing
voice samples and that produces an output flow that contains 3 new
redundancy bits after every 50 data bits.

The principle of the cyclic encoder is to consider the 50 bits
to encode as the coefficients of a polynomial p of degree 49. The
redundancy bits are the coefficients of the reminder of the division
of p by a polynomial peculiar to the encoder, here X3 + X + 1.
The classical circuit to divide a polynomial is shown in Figure 1;
the operator ⊕ represents the exclusive-or and boxes represent
registers initialized to false.

The exclusive-or operator can be programmed as follows in
Lucy-n (we depict the block diagram above the corresponding
code):

b

not

&&

not

&&

||
o

a xor

let node xor (a, b) = o where
rec o = (a && (not b)) || (b && (not a))

val xor : (bool * bool) -> bool
val xor :: forall ’a. (’a * ’a) -> ’a

2 The code of the example and the compiler are available at http://www.
lri.fr/∼mandel/popl12

The node xor takes as input two flows a and b and computes
the value of the output flow o. The value of o is defined by the
equation o = (a && (not b)) || (b && (not a)) where the
scalar operators &&, || and not are applied point wise to their input
flows. Hence, if we apply the node xor to two flows x and y, we
obtain a new flow xor(x,y):

x true false true false false . . .
y false false true true false . . .
xor(x,y) true false false true false . . .

The definition of the xor node is followed by two facts auto-
matically inferred by the Lucy-n compiler:

• the data type (val xor : (bool * bool) -> bool)
• and the clock type (val xor :: forall ’a.(’a * ’a) -> ’a).

In the clock type, the variable ’a represents the activation condition
of the node. The type ’a * ’a -> ’a means that at each activa-
tion, the two inputs are consumed (thus, they must be present) and
the output is produced instantaneously. Since ’a is a polymorphic
variable, this type indicates that the node can be applied to any input
flows that have the same clock as each other, whatever that clock
is, and that it will have to be activated according instants defined
by this clock.

Using this new node and the initialized register primitive of
Lucy-n, fby (followed by), we can program the circuit of Figure 1.

reg2xor fby xor fbyfby

back

false false false

div X3 X 1

i

reg0

reg1

let node div_X3_X_1 i = (reg0,reg1,reg2) where
rec reg0 = false fby (xor(i, back))
and reg1 = false fby (xor(reg0, back))
and reg2 = false fby reg1
and back = reg2

val div_X3_X_1 : bool -> (bool * bool * bool)
val div_X3_X_1 :: forall ’a. ’a -> (’a * ’a * ’a)

The equation reg2 = false fby reg1 means that reg2 is equal
to false at the first instant and to the preceding value of reg1
at the following instants. Note that the definitions of flows reg0,
reg1, reg2 and back are mutually recursive.

In order to divide a flow of polynomials, the div_X3_X_1 node
must be modified. After the arrival of the coefficients of each
polynomial, that is after every 50 input bits, the three registers must
be reset to false. Since, the content of the registers is the result of
an exclusive-or between the feedback edge back and the preceding
register (or the input flow for the first register), to reset the registers
to false, we have to introduce three false values as input and
three false values on the feedback wire, every 50 input bits.3

The clock type of the node div_X3_X_1 modified accord-
ingly is:4

val div_X3_X_1 ::
forall ’a. ’a on (1^50 0^3) -> (’a * ’a * ’a)

The notation (1^50 0^3) represents the infinite repetition of the
binary word 15003 where 150 is the concatenation of fifty 1s
and 03 the concatenation of three 0s. To understand the type
of div_X3_X_1, notice that ’a (the activation rhythm of the node)

3 In the following, it will be implicit that all the behaviors described are
repeated periodically.
4 The source code of the modified node is available at http://www.lri.
fr/∼mandel/popl12/gsm.ls.html

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 2 2011/7/13

defines the notion of instants for the equations of the node. The
clock type of the input flow is ’a on (1^50 0^3). It means that
the input flow has to be present during the first 50 instants, then
absent for 3 instants (during which the registers are reset). There-
fore, this node can compute one division every 53 instants of the
rhythm ’a. The values of the registers are produced at each instant.

Now, to define a node redundancy which computes only the
redundancy bits corresponding to a flow of polynomials, we sample
the output of the node div_X3_X_1. In our implementation of
the node div_X3_X_1, the reminder of the division is contained
in the registers after the 50th input bit and output at the 51st
instant. Thus, the redundancy node has to sample the output
of div_X3_X_1 at the 51st instant. For this, we use the when
operator. It is parameterized by a flow and a sampling condition,
and it samples the value of the flow only when the condition is
equal to 1. To keep only the 51st element of a sequence of 53 bits,
we use the sampling condition (050100):

i

when

(050100)

when

(050100)

when

(050100)

reg0

reg1

reg2

bit0

bit2

bit1
div X3 X 1

redundancy

let node redundancy i = (bit0,bit1,bit2) where
rec (reg0,reg1,reg2) = div_X3_X_1 i
and bit0 = reg0 when (0^50 100)
and bit1 = reg1 when (0^50 100)
and bit2 = reg2 when (0^50 100)

val redundancy : bool -> (bool * bool * bool)
val redundancy ::
forall ’a. ’a on (1^50 0^3) ->
(’a on (0^50 100) * ’a on (0^50 100) * ’a on (0^50 100))

To append 3 redundancy bits after 50 data bits, we use the merge
operator. Its parameters are a merging condition and two flows;
merge ce e1 e2 outputs the value of e1 when ce is equal to 1
and the value of e2 when ce is equal to 0. The flows e1 and e2

must be present on disjoint instants of the clock of ce: when ce is
equal to 1, e1 must be present and e2 absent and vice versa when ce
is equal to 0. Thus, to incorporate the first redundancy bit (bit0)
after 50 input bits, we use the merging condition (1500). We obtain
a flow of 51 bits. Then, we use the condition (1510) to incorporate
the second redundancy bit, and finally the condition (1520) for the
third redundancy bit.

join 50 3

m
e
r
g
e m
e
r
g
e m
e
r
g
e

o3

o2

o1

bit2

i

bit0

bit1

(1500)

(1510)

(1520)

let node join_50_3 (i, bit0, bit1, bit2) = o3 where
rec o1 = merge (1^50 0) i bit0
and o2 = merge (1^51 0) o1 bit1
and o3 = merge (1^52 0) o2 bit2

val join_50_3 : forall ’x. (’x * ’x * ’x * ’x) -> ’x
val join_50_3 ::
forall ’a. (’a on (1^52 0) on (1^51 0) on (1^50 0) *

’a on (1^52 0) on (1^51 0) on not (1^50 0) *
’a on (1^52 0) on not (1^51 0) *
’a on not (1^52 0)) -> ’a

We will see in section 4 that the clock type of join_50_3 is
equivalent to: join_50_3 :: ∀α. (α on (150000)∗

α on (050100)∗
α on (050010)∗
α on (050001))→ α

This type expresses that the flow containing data must be present
for the first 50 instants, and then absent for the following 3 instants.
The flows containing the first, second and third redundancy bit must
arrive at the 51st, 52nd, and 53rd instants respectively.

To program the node that corresponds to the cyclic encoder,
we must now use the node redundancy to compute the three
redundancy bits and the node join_50_3 to incorporate them into
the input flow. But the redundancy bits are produced too early (at
the instant 51) compared to when they are expected by the node
join_50_3 (instants 51, 52 and 53, successively). They must thus
be stored using the buffer operator:

cyclic encoding

i
redundancy

j
o
i
n
5
0
3

o

bit0

bit1

bit2

39 let node cyclic_encoding i = o where
40 rec (bit0, bit1, bit2) = redundancy i
41 and o = join_50_3 (i, buffer bit0,
42 buffer bit1,
43 buffer bit2)

val cyclic_encoding : bool -> bool
val cyclic_encoding ::
forall ’a. ’a on (1^50 0^3) -> ’a

Buffer line 41, characters 24-35: size = 0
Buffer line 42, characters 24-35: size = 1
Buffer line 43, characters 24-35: size = 1

The compiler automatically computes the buffer sizes required.
We can see that the buffer at line 41 is useless, the inferred size is 0.
This buffer is used for the communication of the first redundancy
bit (bit0) between the redundancy node and the join_50_3
node. This bit is produced at the 51st instant and consumed im-
mediately. The two other redundancy bits (bit1 and bit2) are also
produced at the 51st instant, but they are consumed later. Thus the
second bit has to be stored in a buffer of size 1 for 1 instant and the
third bit has to be stored in a buffer of size 1 for 2 instants.

Notice that before calculating the buffer sizes, the compiler
must infer the activation rhythm of each node. When the output
of one node is consumed directly by another, i.e., when there is no
buffer between them, the nodes must be activated such that outputs
of the first node are produced at the same instants as inputs of
the second node are consumed. When the output of one node is
consumed by another through a buffer, the nodes must be activated
such that the buffer is not read when it is empty and such that there
is no infinite accumulation of data in the buffer.

3. Clock Calculus
We have seen in Section 1 that each expression in a program
must satisfy a type constraint.5 To illustrate the typing infer-
ence algorithm which collects the constraints, we return to the
cyclic_encoding node of the previous section.

5 Rules of the clock calculus are detailed in [19].

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 3 2011/7/13

bit0

bit1

bit2

αj on (150000)

αj on (050100)

αj on (050010)

αj on (050001)

j
o
i
n
5
0
3

cyclic encoding

i

αi αr on (15003)
redundancy

αj

o

αr on (050100)

αr on (050100)

αr on (050100)

If we associate with the input i the clock type variable αi,
the expression redundancy i generates the equality constraint
αi === αr on (15003). Indeed, once instantiated with a fresh vari-
able αr , the clock type of the node redundancy is αr on (15003)→
(αr on (050100)×αr on (050100)×αr on (050100)). Hence,
the type of its input must be equal to αr on (15003). Conse-
quently, the equation (bit0, bit1, bit2) = redundancy i
adds to the typing environment that bit0, bit1 and bit2 are of
type αr on (050100).

Similarly, the application of join_50_3 adds some constraints
on the types of its inputs. Once instantiated with a fresh type vari-
able αj , the clock type of the node join_50_3 is (αj on (150000)×
αj on (050100) × αj on (050010) × αj on (050001)) → αj .
This type imposes the constraint that the type of the first in-
put (here αi, the type of the data input i) has to be equal to
αj on (150000) and the types of the other inputs (here αr on (050100))
must be, respectively, subtypes of αj on (050100), αj on (050010)
and αj on (050001). For these last inputs, we do not impose type
equality but rather only subtyping since they are consumed through
buffers. Finally, the equation o = join_50_3 (...) augments
the typing environment with the information that the type of o
is αj , the return type of join_50_3.

The cyclic_encoding node thus has the clock type αi → αj ,
with the following constraints:

C =

8>>><>>>:
αi === αr on (15003)

αi === αj on (15003)

αr on (050100) <:<:<: αj on (050100)

αr on (050100) <:<:<: αj on (050010)

αr on (050100) <:<:<: αj on (050001)

9>>>=>>>;
To finish the typing of this node and to be able to compute the buffer
sizes, we have to find a solution to this constraint system, that is we
must find instantiations of the variables αi, αr and αj such that
the constraints are always satisfied. These instantiations have to be
Lucy-n clock types, i.e., of the shape: ct ::= α | ct on p where p is
an ultimately periodic binary word.

To solve the constraint system of the example, we start with
the equality constraints and choose the following substitution: θ =˘
αi ← α on (15003) ; αr ← α ; αj ← α ;

¯
. Applying this

substitution to C gives:

θ(C) =

8>>><>>>:
α on (15003) === α on (15003)

α on (15003) === α on (15003)

α on (050100) <:<:<: α on (050100)

α on (050100) <:<:<: α on (050010)

α on (050100) <:<:<: α on (050001)

9>>>=>>>;
⇔

8<: α on (050100) <:<:<: α on (050100)

α on (050100) <:<:<: α on (050010)

α on (050100) <:<:<: α on (050001)

9=;
Remark 1. Notice that there is no complete greedy unification
algorithm because there is no most general unifier for clock types.
Therefore, to be complete, a resolution algorithm must take into
account all the constraints globally. Since the subtyping relation
is antisymmetric, a simple way to handle equality constraints is
to consider them as two subtyping constraints (ct1 === ct2 ⇔
(ct1 <:<:<: ct2) ∧ (ct2 <:<:<: ct1)). In this example, greedy structural

unification leads to a solution. So for the sake of conciseness, we
used it.

After transforming our constraint system to a system that con-
tains only subtyping constraints, we notice that all the constraints
depend on the same type variable. So, we apply a result from [16]
to simplify the on operators:

θ(C)⇔

8<: (050100) <: (050100)

(050100) <: (050010)

(050100) <: (050001)

9=;
Sometimes however, subtyping constraints are not expressed

with respect to the same type variable. For example, the program of
Figure 2 generates the following set of subtyping constraints where
only the second constraint can be simplified:

C′ =

8><>:
α1 on 10(1) <:<:<: α2 on (01)

α2 on (1100) <:<:<: α2 on (01)
α2 on (01) on (10) <:<:<: α3 on (1)
α2 on (01) on (01) <:<:<: α3 on (1)

9>=>;
⇔

8><>:
α1 on 10(1) <:<:<: α2 on (01)

(1100) <: (01)
α2 on (01) on (10) <:<:<: α3 on (1)
α2 on (01) on (01) <:<:<: α3 on (1)

9>=>;
But, in fact, such systems can always be reduced to ones where all
the constraints are expressed with respect to a single type variable.
To do so, we introduce word variables noted cn and we replace
each type variable αn with α on cn. Here, the application of the
substitution θ = {α1 ← α on c1; α2 ← α on c2; α3 ← α on c3; }
to system C′ gives:

θ(C′) =

8><>:
α on c1 on 10(1) <:<:<: α on c2 on (01)

(1100) <: (01)
α on c2 on (01) on (10) <:<:<: α on c3 on (1)
α on c2 on (01) on (01) <:<:<: α on c3 on (1)

9>=>;
⇔

8><>:
c1 on 10(1) <: c2 on (01)

(1100) <: (01)
c2 on (01) on (10) <: c3 on (1)
c2 on (01) on (01) <: c3 on (1)

9>=>;
This succession of transformations reduces a system where the

unknowns are types into a system where the unknowns are ulti-
mately periodic binary words. The operator on and the relation <:
on binary words are defined in the following section. The algorithm
that infers ultimately periodic binary words cn to satisfy the <: re-
lation is presented in Section 5.

4. Algebra of Ultimately Periodic Words
In this section, we present the definitions and properties of ulti-
mately periodic binary words that underlie the constraint resolu-
tion algorithm presented Section 5. Some details of the proofs are
omitted. They can be fond chapter 4 of [19].

4.1 Ultimately Periodic Binary Words
We write w for an infinite binary word (w ::= 0w | 1w), u or v for
finite binary words (u, v ::= 0u | 1u | ε), |u| for the size of u and
|u|1 for the number of 1s it contains. The buffer analysis relies on
the instants of presence of data on the flows. Therefore, it mainly
manipulates indexes of 1s in the words:

Definition 1 (index of the jth 1 in w: Iw(j)).
Let w be a word that contains infinitely many 1s.

Iw(1)
def
= 1 if w = 1w′

∀j > 1, Iw(j)
def
= 1 + Iw′(j − 1) if w = 1w′

∀j > 0, Iw(j)
def
= 1 + Iw′(j) if w = 0w′

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 4 2011/7/13

let node f (i1, i2) = o where
rec aux1 = buffer (i1 when 10(1))

+ aux2
and aux2 = buffer (i2 when (1100))

+ i2 when (01)
and o = buffer (aux1 when (10))

+ buffer (aux1 when (01))

+

when

(01)

when

(10)

aux1

α2 on (01) on (01)

α2 on (01) on (10)

α3

f

i1

α1

i2

α2

α3

oα3 +

α1 on 10(1)

10(1)

α2 on (01)α2 on (1100)

when

(1100)

α2 on (01)

aux2

α2 on (01)

α2 on (01)
α2 on (01)

when

when

(01)
+

Figure 2. The node f and its block diagram representation. The diagram is annotated with the types obtained after the resolution of equality
constraints.

For example, the index of the third 1 in w1 = 11010 11010 . . .
is 4, i.e., Iw1(3) = 4.

Remark 2 (increasing indexes).
The function Iw is increasing: ∀j ≥ 1, Iw(j) < Iw(j + 1).

Remark 3 (sufficient indexes).
As a direct consequence of Remark 2, the index of the jth 1 is
greater than or equal to j: ∀j ≥ 1, Iw(j) ≥ j.

A word w can also be characterized by its cumulative function
which count the number of 1 since the beginning of w.

Definition 2 (cumulative function of w: Ow).6

Ow(0)
def
= 0 ∀i ≥ 1, Ow(i)

def
=


Ow(i− 1) if w[i] = 0
Ow(i− 1) + 1 if w[i] = 1

In this article, we consider ultimately periodic clocks u(v)
which comprise a finite word u as prefix followed by the infinite
repetition of a non-empty finite word v:

Definition 3 (ultimately periodic binary word p).

p = u(v)
def⇔ p = uw with w = vw

For example, p = 1101(110) = 1101 110 110 110 . . . We
use the notation p.u for the prefix of p (here 1101) and p.v for its
periodic pattern (here 110).

On ultimately periodic words, the index of the jth 1 can be
computed using the following formulas.

Lemma 1 (index of the jth 1 in p). Let p = u(v).

Ip(j) =

8<:Iu(j) if j ≤ |u|1
|u|+ x× |v|+ Iv(j′) if j = |u|1 + x× |v|1 + j′

with x ∈ N, 1 ≤ j′ ≤ |v|1

Moreover, if j > |u|1 and |v|1 > 0,
Ip(j) = |u|+

j
j−|u|1−1
|v|1

k
×|v|+Iv(1 + (j − |u|1 − 1)mod |v|1)

Proof. The first equality is obtained by the application of the defi-
nition 1 and 3.
To prove the second equality, we apply the first equality until
j > |u|1 and |v|1 > 0.
Then, if j = |u|1 + x × |v|1 + j′ with x ∈ N and 1 ≤ j′ ≤ |v|1,
we have Ip(j) = |u|+ x× |v|+ Iv(j′).
Let j′ = 1 + j′′ with 0 ≤ j′′ < |v|1.
Then j = |u|1+x×|v|1+1+j′′, that is j−|u|1−1 = x×|v|1+j′′.
Therefore, j′′ = (j − |u|1 − 1) mod |v|1 and x =

j
j−|u|1−1
|v|1

k
and

we can conclude that
Ip(j) = |u|+

j
j−|u|1−1
|v|1

k
×|v|+Iv(1 + (j − |u|1 − 1)mod |v|1).

6 The notation w[i] represents the ith element of a word w.

Similarly, the index of 1s in an ultimately periodic word can be
computed as follows:

Lemma 2 (cumulative function of p). Let p = u(v).

Op(i) =

8<:Ou(i) if i ≤ |u|
|u|1 + x× |v|1 +Ov(i′) if i = |u|+ x× |v|+ i′

with x ∈ N and 0 ≤ i′ < |v|

Moreover, of i ≥ |u|,
Op(i) = |u|1 +

j
i−|u|
|v|

k
× |v|1 +Ov((i− |u|)mod |v|)

Proof. The first equality is obtained by the application of the defi-
nition 2 and 3.
To prove the second equality, we apply the first equality in the case
where i ≥ |u| with x =

j
i−|u|
|v|

k
and i′ = (i− |u|)mod |v|.

Thus we have:
Op(i) = |u|1 +

j
i−|u|
|v|

k
× |v|1 +Ov((i− |u|)mod |v|).

The rate of p is the ratio between the number of 1s and the size
of its periodic pattern:

Definition 4 (rate of p). rate(p) =
|p.v|1
|p.v|

In the following, we only consider words of non-null rate, i.e., such
that the periodic pattern contains at least one 1 (these words have
an infinite number of 1s and are the clocks of flows that produce
values infinitely).

The following two properties ensure that a periodic word is well
formed.

Remark 4 (periodicity). Two successive occurrences of the same 1
of a periodic pattern are separated by a distance equal to the size
of the pattern:

∀j > |p.u|1, Ip(j + |p.v|1) = Ip(j) + |p.v|
For example, if p = 101(10010), Ip(3 + 2) = Ip(3) + 5.

Remark 5 (sufficient size). The size of the periodic pattern of a
word p (|p.v|) is greater than or equal to the number of elements
included between the indexes of the first and last 1 of the periodic
pattern of p:

|p.v| ≥ 1 + Ip(|p.u|1 + |p.v|1)− Ip(|p.u|1 + 1)

For example, if p = 101(10010), |p.v| ≥ 1 + 7− 4.

An ultimately periodic binary word has an infinite number
of different representations. For example, (10) = (1010) =
1(01) = But, there exists a normal form which is the repre-
sentation where the prefix and the periodic pattern have the shortest
size. However, for some binary operations, it is more convenient
to put the two words in a form which is longer than the normal
form. For example, for some operations we would prefer that the
operands have the same size, or the same number of 1s, or even

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 5 2011/7/13

that the number of 1s in the first word is equal to the size of the
second word.

Remark 6. We can change the shape of an ultimately periodic
binary word with the following manipulations:

• Increase prefix size: for example, we can add two elements to
the prefix of the word p = 1101(110) to obtain the form
1101 11(0 11). Increasing the size of the prefix can be used
to increase the number of 1s it contains.

• Repeat periodic pattern: for example, we can triple the size
of the periodic pattern of p = 1101(110) (and thus triple its
number of 1s) to obtain 1101(110 110 110).

4.2 Adaptability Relation
We now define the relation <: on binary words, called the adapt-
ability relation. The relation w1 <: w2 holds if and only if a flow
of clock w1 can be stored in a buffer of bounded size and con-
sumed at the rhythm of the clock w2. It means that data does not
accumulate without bound in the buffer, and that reads are not at-
tempted when the buffer is empty. The adaptability relation is the
conjunction of the precedence and synchronizability relations. The
synchronizability relation between two words w1 and w2 (written
w1 ./ w2) ensures that there is an upper bound on the number of
values present in the buffer during an execution. It asserts that the
asymptotic numbers of reads and writes from and to the buffer are
equal. The precedence relation between the words w1 and w2 (writ-
ten w1 � w2) ensures the absence of reads from the buffer when
it is empty. It asserts that the jth write to the buffer always occurs
before the jth read.

Two words w1 and w2 are synchronizable if the difference
between the number of occurrences of 1s in w1 and the number
of occurrences of 1s in w2 is bounded.

Definition 5 (synchronizability ./).

w1 ./ w2
def⇔ ∃b1, b2, ∀i ≥ 0, b1 ≤ Ow1(i)−Ow2(i) ≤ b2

To test this synchronizability relation on ultimately periodic
binary words, we only have to check that the periodic patterns
of the two words have the same proportion of 1s. For example,
1(1100) ./ (101001) because 2

4
= 3

6
.

Proposition 1 (synchronizability test).

p1 ./ p2 ⇔ rate(p1) = rate(p2)

Proof. Let p1 = u1(v1) and p2 = u2(v2).
Thanks to Remark 6, we can always rewrite p1 as u′1(v

′
1) and p2

as u′2(v
′
2) such that |u′1| = |u′2| = max(|u1|, |u2|) and |v′1| =

|v′2| = lcm(|v1|, |v2|). Since, |v1|1
|v1|

=
|v′1|1
|v′1|

and |v2|1
|v2|

=
|v′2|1
|v′2|

, we
can suppose in the following that |u1| = |u2| and |v1| = |v2|.
Thanks to the lemma 2,
for all ix = |u1|+ x× |v1| (= |u2|+ x× |v2|) with x ∈ N,
we have: Op1(ix) = |u1|1 + x× |v1|1

Op2(ix) = |u2|1 + x× |v2|1

Let prove that |v1|1
|v1|

6= |v2|1
|v2|

⇒ p1 6./ p2

We have:
Op2(ix)−Op1(ix) = |u2|1 − |u1|1 + x× (|v2|1 − |v1|1).
If |v1|1
|v1|

< |v2|1
|v2|

then |v1|1 < |v2|1 and limx→+∞(Op2(ix)−Op1(ix)) = +∞.
Therefore @b2, ∀i ≥ 0, Op2(i)−Op1(i) ≤ b2.
If |v1|1
|v1|

> |v2|1
|v2|

then |v1|1 > |v2|1 and limx→+∞(Op2(ix)−Op1(ix)) = −∞.
Therefore @b1, ∀i ≥ 0, b1 ≤ Op2(i)−Op1(i).

Let prove that |v1|1
|v1|

= |v2|1
|v2|
⇒ p1 ./ p2

SinceO est increasing, ∀i such that ix ≤ i ≤ ix+1 with x ∈ N,
Op1(ix) ≤ Op1(i) ≤ Op1(ix+1) and
Op2(ix) ≤ Op2(i) ≤ Op2(ix+1).
Hence ∀i, ix ≤ i ≤ ix+1,
Op2(ix)−Op1(ix+1) ≤ Op2(i)−Op1(i)

≤ Op2(ix+1)−Op1(ix).
That is ∀i, ix ≤ i ≤ ix+1,
|u2|1+x×|v2|1−(|u1|1+(x+1)×|v1|1) ≤ Op2(i)−Op1(i)

≤ |u2|1 + (x + 1)× |v2|1 − (|u1|1 + x× |v1|1).
Therefore ∀i, ix ≤ i ≤ ix+1,
|u2|1− |u1|1− |v1|1 +x× (|v2|1− |v1|1) ≤ Op2(i)−Op1(i)

≤ |u2|1 − |u1|1 + |v2|1 + x× (|v2|1 − |v1|1).
If |v1|1
|v1|

= |v2|1
|v2|

then |v1|1 = |v2|1 and ∀i, ix ≤ i ≤ ix+1,
|u2|1−|u1|1−|v1|1 ≤ Op2(i)−Op1(i) ≤ |u2|1−|u1|1+|v2|1.
Therefore, ∃b1, b2, ∀i ≥ |u1|, b1 ≤ Op2(i)−Op1(i) ≤ b2.
In addition ∀i ≤ |u1|, −|u1|1 ≤ Op2(i) − Op1(i) ≤ |u2|1.
So, we can conclude that ∃b1, b2, ∀i ≥ 1, b1 ≤ Op2(i) −
Op1(i) ≤ b2 and thus that p1 ./ p2.

A word w1 precedes a word w2 if the jth 1 of w1 always occurs
before or at the same time as the jth 1 of w2.

Definition 6 (precedence �).

w1 � w2
def⇔ ∀j ≥ 1, Iw1(j) ≤ Iw2(j)

To check this relation on ultimately periodic words, we only
have to consider this relation until the “common” periodic behav-
ior is reached. For example, 1(1100) � (110100) because the
relation I

1(1100)(j) � I(110100)(j) for all j such that 1 ≤ j ≤ 7
and the relative behavior between the two words from the 8th 1
is exactly the same as the one from the 2nd 1. It can be seen
if we rewrite 1(1100) as 1(110011001100) and (110100)
as 1(101001101001), the two words restart their periodic pattern
simultaneously.

Proposition 2 (precedence test).
Gives p1 and p2 such that p1 ./ p2.
Let h = max(|p1.u|1, |p2.u|1) + lcm(|p1.v|1, |p2.v|1).

p1 � p2 ⇔ ∀j, 1 ≤ j ≤ h, Ip1(j) ≤ Ip2(j)

The intuition for the value of the bound h is the following. By Re-
mark 6, we can adjust the respective components of p1 and p2 to
have the same number of 1s. We obtain two words p′1 and p′2 (equiv-
alent to p1 and p2) such that the number of 1s in their prefixes
is max(|p1.u|1, |p2.u|1) and the number of 1s in their periodic
pattern is lcm(|p1.v|1, |p2.v|1). Hence, after the traversal of h =
|p′1.u|1 + |p′1.v|1 = |p′2.u|1 + |p′2.v|1 1s in p′1 and p′2, the peri-
odic patterns of both words restart simultaneously. And since the
two words have the same rate, we are in exactly the same situation
as we were at the beginning of the first traversal of the periodic
patterns. So, if the condition holds until the hth 1, it always hold.

Proof. Let p1 = u1(v1) and p2 = u2(v2).
⇒) Trivial by the definition of �.
⇐) Let prove that
(∀j, 1 ≤ j ≤ h, Ip1(j) ≤ Ip2(j))⇒ (∀j ≥ 1, Ip1(j) ≤ Ip2(j))
with h = max(|u1|1, |u2|1) + lcm(|v1|1, |v2|1).

The case where |v1|1 = |v2|1 = 0 is trivial. In this case, the
word has a finite number of 1s, and thus the test is executed on all
the 1s of the word.

The last case to treat is the one where |v1|1 6= 0 and |v2|1 6= 0
(since p1 ./ p2). Let n = max(|u1|1, |u2|1). By Remark 6, and
since |v1|1 > 0, we can rewrite p1 as u′1(v

′
1) with |u′1|1 = n,

|v′1| = |v1| and |v′1|1 = |v1|1.
Let j > n + lcm(|v1|1, |v2|1). By Lemma 1, we have:

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 6 2011/7/13

Ip1 (j) = |u′1|+
j

j−n−1
|v1|1

k
× |v1|+ Iv′1

(1 + (j − n− 1) mod |v1|1)

= |u′1|+

6666664
j

j−n−1
lcm(|v1|1,|v2|1)

k
× lcm(|v1|1, |v2|1)

+(j − n− 1) mod lcm(|v1|1, |v2|1)
|v1|1

7777775 × |v1|

+ Iv′1
(1 + (j − n− 1) mod |v1|1)

= |u′1|+

0@ j
j−n−1

lcm(|v1|1,|v2|1)

k
× lcm(|v1|1,|v2|1)

|v1|1

+
j

(j−n−1) mod lcm(|v1|1,|v2|1)
|v1|1

k 1A × |v1|

+ Iv′1
(1 + (j − n− 1) mod |v1|1 + 1)

= |u′1|+
j

(j−n−1) mod lcm(|v1|1,|v2|1)
|v1|1

k
× |v1|

+ Iv′1
(1 + (j − n− 1) mod |v1|1)

+
j

j−n−1
lcm(|v1|1,|v2|1)

k
× lcm(|v1|1,|v2|1)

|v1|1
× |v1|

= Ip1 (((j − n− 1) mod lcm(|v1|1, |v2|1)) + n + 1)

+
j

j−n−1
lcm(|v1|1,|v2|1)

k
× lcm(|v1|1,|v2|1)

|v1|1
× |v1|

In the same way, we rewrite p2 as u′2(v
′
2) with |u′2|1 = n,

|v′2| = |v2| and |v′2|1 = |v2|1.
Let j > n + lcm(|v1|1, |v2|1).
Ip2(j) = Ip2(((j − n− 1)mod lcm(|v1|1, |v2|1)) + n + 1)

+
j

j−n−1
lcm(|v1|1,|v2|1)

k
× lcm(|v1|1,|v2|1)

|v2|1
× |v2|

Since ((j − n− 1)mod lcm(|v1|1, |v2|1)) + n + 1
≤ n + lcm(|v1|1, |v2|1),

by hypothesis we have:
Ip1(((j − n− 1)mod lcm(|v1|1, |v2|1)) + n + 1)

≤ Ip2(((j − n− 1)mod lcm(|v1|1, |v2|1)) + n + 1).

Since p1 ./ p2, by the proposition 1, we havej
j−n−1

lcm(|v1|1,|v2|1)

k
× lcm(|v1|1,|v2|1)

|v1|1
× |v1|

=
j

j−n−1
lcm(|v1|1,|v2|1)

k
× lcm(|v1|1,|v2|1)

|v2|1
× |v2|.

Therefore, we can conclude that ∀j > n + lcm(|v1|1, |v2|1),
Ip1(j) ≤ Ip2(j).

The adaptability relation is the conjunction of the synchroniz-
ability and precedence relations.

Definition 7 (adaptability test). p1 <: p2 ⇔ p1 ./ p2 ∧ p1 � p2

4.3 Buffer Size
To compute the size of a buffer, we must know the number of values
that are written and read during an execution. More precisely,
to compute the number of values in a buffer, we consider the
cumulative functions of its input and output clocks.

Consider a buffer that takes as input a flow with clock w1, and
gives as output the same flow but with clock w2. The number of
elements present at each instant i in the buffer is the difference be-
tween the number of values that have been written into it (Ow1(i))
and the number of values that have been read from it (Ow2(i)).
The necessary and sufficient buffer size is the maximum number of
values present in the buffer during the execution.

Definition 8 (buffer size).

sizei(w1, w2) = Ow1(i)−Ow2(i)

To compute this size on ultimately periodic binary words, we
need only to consider the initial patterns of the two words before
their “common” periodic behavior is reached.

Proposition 3 (buffer size on ultimately periodic words).
Gives p1 and p2 such that p1 <: p2.

Let H = max(|p1.u|, |p2.u|) + lcm(|p1.v|, |p2.v|).

size(p1, p2) = max1≤i≤H(Op1(i)−Op2(i))

The proof of this property is based on the fact that there is only
a finite number of values for the difference between Op1(i) and
Op2(i).

Lemma 3. Let p1 and p2 such that p1 ./ p2.
Let H = max(|p1.u|, |p2.u|) + lcm(|p1.v|, |p2.v|).
∀i ≥ H, ∃i′ < H, Op1(i)−Op2(i) = Op1(i

′)−Op2(i
′)

Proof. Let p1 = u1(v1) and p2 = u2(v2).
∀i ≥ |u1|, Op1(i + x× |v1|) = Op1(i) + x× |v1|1
and ∀i ≥ |u2|, Op2(i + x× |v2|) = Op2(i) + x× |v2|1.
Hence ∀i ≥ max(|u1|, |u2|),
Op1(i+x× lcm(|v1|, |v2|)) = Op1(i)+x× lcm(|v1|,|v2|)

|v1|
×|v1|1

and
Op2(i+x× lcm(|v1|, |v2|)) = Op2(i)+x× lcm(|v1|,|v2|)

|v2|
×|v2|1.

Since p1 ./ p2, we have |v1|1
|v1|

= |v2|1
|v2|

.
Therefore, ∀i ≥ max(|u1|, |u2|),
Op1(i + x× lcm(|v1|, |v2|))−Op2(i + x× lcm(|v1|, |v2|))

= Op1(i)−Op2(i).
Thus ∀i ≥ max(|u1|, |u2|) + lcm(|p1|, |p2|),
Op1(i)−Op2(i) = Op1(i

′)−Op2(i
′) with

i′ = max(|u1|, |u2|)+(i−max(|u1|, |u2|))mod(lcm(|p1|, |p2|)).
Hence i′ < max(|u1|, |u2|) + lcm(|p1|, |p2|).

Proof of proposition 3. Let p1 = u1(v1) and p2 = u2(v2).
Let t = max1≤i<max(|u1|,|u2|)+lcm(|v1|,|v2|)(Op1(i)−Op2(i)).
Let prove that maxi∈N∗(Op1(i)−Op2(i)) = t,
By Lemma 3, we have:
∀i ≥ 1, Op1(i)−Op2(i) = Op1(i

′)−Op2(i
′)

with i′ < max(|u1|, |u2|) + lcm(|v1|, |v2|).
By hypothesis, Op1(i

′)−Op2(i
′) ≤ t.

Thus ∀i ≥ 1, Op1(i)−Op2(i) ≤ t.

Note that the bound H is not the same as the one of Proposi-
tion 2, because here we iterate over indexes (not over 1s).

4.4 Sampled Clocks
The on operator computes the rhythm of a sampled flow. It can ex-
press the output clock of the when operator that keeps or suppresses
values of a flow of clock w1 depending on a condition w2:

w2

when w1 on w2

x when w2x
w1

Figure 3. If x has clock w1, x when w2 has clock w1 on w2.

Definition 9 (on operator). 0w1 on w2
def
= 0(w1 on w2)

1w1 on 1w2
def
= 1(w1 on w2)

1w1 on 0w2
def
= 0(w1 on w2)

For example, if w1 = 11010111 . . . and w2 = 101100 . . . , then
w1 on w2 = 10010100
Consider the sampling of a flow x with clock w1 by a condition w2:

x 2 5 3 7 9 4 . . .
w2 1 0 1 1 0 0 . . .
x when w2 2 3 7 . . .

w1 1 1 0 1 0 1 1 1 . . .
w2 1 0 1 1 0 0 . . .
w1 on w2 1 0 0 1 0 1 0 0 . . .

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 7 2011/7/13

We observe that if x is present (i.e., the corresponding element
of w1 is equal to 1), then we look at the next element of the sam-
pling condition (w2). If this element is 1, then the value of x is kept
by the sampling and the flow x when w2 is present (w1 on w2

equals 1). Otherwise, the value of x is suppressed by the sam-
pling and the flow x when w2 is absent (w1 on w2 equals 0). Fi-
nally, if x is absent (i.e., w1 equals 0), the flow x when w2 is ab-
sent (i.e., w1 on w2 equals 0) and the sampling condition (w2) is
not considered.

The elements of w1 on w2 can be seen as the elements of w2,
when w2 is traversed at the rhythm of the 1s in w1. Thus, it is
not necessary to explicitly compute the word w1 on w2 to have
its cumulative function: it can be computed from the cumulative
functions of w1 and w2.

Proposition 4 (cumulative function of w1 on w2).
∀i ≥ 0, Ow1 on w2(i) = Ow2(Ow1(i))

Proof. By induction on i.
By definition of O, Ow1 on w2(0) = 0 = Ow2(Ow1(0)).
Suppose that Ow1 on w2(i) = Ow2(Ow1(i)), then prove that
Ow1 on w2(i + 1) = Ow2(Ow1(i + 1)).

By definition of O,

Ow1 on w2(i+1) =


Ow1 on w2(i) if (w1 on w2)[i + 1] = 0
Ow1 on w2(i) + 1 if (w1 on w2)[i + 1] = 1

Case (w1 on w2)[i + 1] = 0: Ow1 on w2(i + 1) = Ow1 on w2(i).
By induction hypothesis, Ow1 on w2(i) = Ow2(Ow1(i)).
By Definition 9, we have:
(w1 on w2)[i + 1] = 0 ⇔ w1[i + 1] = 0 ∨

(w1[i + 1] = 1 ∧
w2[Ow1(i + 1)] = 0)

If w1[i + 1] = 0, we have Ow1(i + 1) = Ow1(i).
Hence, Ow2(Ow1(i + 1)) = Ow2(Ow1(i)) and the prop-
erty Ow1 on w2(i + 1) = Ow2(Ow1(i + 1)) is proved.

If w1[i + 1] = 1 ∧ w2[Ow1(i + 1)] = 0, we have
Ow1(i + 1) = Ow1(i) + 1 and
Ow2(Ow1(i + 1)) = Ow2(Ow1(i + 1)− 1).
Hence, Ow2(Ow1(i + 1)) = Ow2(Ow1(i)) and the prop-
erty Ow1 on w2(i + 1) = Ow2(Ow1(i + 1)) is proved.

Case (w1 on w2)[i + 1] = 1: Ow1 on w2(i + 1) = Ow1 on w2(i) +
1.
By induction hypothesis, Ow1 on w2(i) = Ow2(Ow1(i)).
By Definition 9, we have:
(w1 on w2)[i + 1] = 1 ⇔ (w1[i + 1] = 1 ∧

w2[Ow1(i + 1)] = 1)
Therefore Ow2(Ow1(i + 1)) = Ow2(Ow1(i + 1)− 1) + 1

= Ow2(Ow1(i)) + 1
and the property Ow1 on w2(i + 1) = Ow2(Ow1(i + 1)) is
proved.

To compute the on operator on two ultimately periodic binary
words p1 and p2, we first compute the size of the expected result,
i.e., |(p1 on p2).u| the size of the prefix and |(p1 on p2).v| the size
of the periodic part. Then, we compute the value of the elements of
the prefix and the periodic part by the application of Definition 9.

Proposition 5 (computation of p1 on p2).
Let p1 = u1(v1) and p2 = u2(v2).
Then p1 on p2 = u3(v3) with:

|u3| = max (|u1|, Ip1(|u2|))

|v3| = lcm(|v1|1,|v2|)
|v1|1

× |v1|

and ∀i, 1 ≤ i ≤ |u3|, u3[i] = (p1 on p2)[i]

∀i, 1 ≤ i ≤ |v3|, v3[i] = (p1 on p2)[|u3|+ i]

Intuitively, the prefix of p1 on p2 terminates when the process-
ing of the prefix of p1 and p2 in the computation of p1 on p2 termi-
nates. Since the elements of p2 are processed only when there is a 1
in p1, the processing of the elements of the prefix of p2 terminates
at the index Ip1(|u2|). The size of the periodic pattern is obtained
by the computation of the common period of p1 and p2 when p2 is
processed at the rhythm of the 1s of p1.

Proof. Let p1 = u1(v1), p2 = u2(v2)
and p3 = p1 on p2 = u3(v3).
We gives the proof of the general case where p1 and p2 and be of
null rate. Therefore, we will prove that

|u3| =

|u1| if |u2| = 0
max (|u1|, Ip1(|u2|)) otherwise

|v3| =


1 if |v1|1 = 0
lcm(|v1|1,|v2|)

|v1|1
× |v1| otherwise

But first, note that for all ultimately periodic word p = u(v),

p[i] =


u[i] if i ≤ |u|
v[1 + (i− |u| − 1)mod |v|] if i > |u|

We search the size of the prefix of p1 on p2. To this aim, we
compute p1 on p2 to determine when the periodic pattern starts.
By definition of on,

p3[i] =


0 if p1[i] = 0
p2[Op1(i)] if p1[i] = 1

We study the different cases depending on the value of i with
respect to |u1| and |u2|:

Case i ≤ |u1|:

p3[i] =


0 if u1[i] = 0
p2[Ou1(i)] if u1[i] = 1

Two subcases can occur if u1[i] = 1:
Case Ou1(i) ≤ |u2|:

p3[i] = u2[Ou1(i)]
Case Ou1(i) > |u2|:

p3[i] = v2[1 + (Ou1(i)− |u2| − 1)mod |v2|]
Case i > |u1|:

p3[i] =


0 if v1[1 + (i− |u1| − 1)mod |v1|] = 0
p2[Op1(i)] if v1[1 + (i− |u1| − 1)mod |v1|] = 1

Two subcases can occur if v1[1+(i−|u1|−1)mod |v1|] = 1:
Case Op1(i) ≤ |u2|:

p3[i] = u2[Op1(i)]
Case Op1(i) > |u2|:

p3[i] = v2[1 + (Op1(i)− |u2| − 1)mod |v2|]

Note that for all i > |u1| such that Op1(i) > |u2|, we have:

p3[i] =

8<: 0 if v1[1 + (i− |u1| − 1)mod |v1|] = 0
v2[1 + (Op1(i)− |u2| − 1)mod |v2|]

if v1[1 + (i− |u1| − 1)mod |v1|] = 1

Therefore, we can obtain the index from which the periodic behav-
ior starts:

Case |u2| = 0:
In this case, for all i, we have Op1(i) > |u2|. The previous
formula is thus verified for all i > |u1|. It means that, when
i ≤ |u1|, we are in the initialization phase.

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 8 2011/7/13

Case |u2| > 0:
Since Op1(i) > |u2| ⇔ i ≥ Ip1(|u2|+ 1) and moreover
since ∀i ≥ 1, Ip1(|u2|) < i < Ip1(|u2|+ 1), p1[i] = 0,
we obtain: ∀i > max(|u1|, Ip1(|u2|)),

p3[i] =

8<: 0 if v1[1 + (i− |u1| − 1)mod |v1|] = 0
v2[1 + (Op1(i)− |u2| − 1) mod |v2|]

if v1[1 + (i− |u1| − 1)mod |v1|] = 1

It means that, when i ≤ max(|u1|, Ip1(|u2|)), we are in the
initialization phase.

We search now the size of the periodic pattern of p1 on p2,
that is the smallest x ∈ N−{0} such that ∀i > |u3|, p3[i + x] = p3[i].
When ∀i > |u3|, by the previous formulas we have:

p3[i + x] = p3[i]⇔
v1[1 + (i + x− |u1| − 1) mod |v1|]

= v1[1 + (i− |u1| − 1)mod |v1|] (1)
∧
v2[1 + (Op1(i + x)− |u2| − 1) mod |v2|]

= v2[1 + (Op1(i)− |u2| − 1) mod |v2|] (2)

Since we do not interpret the elements of v1,
(1) ⇔ 1 + (i + x− |u1| − 1) mod |v1|

= 1 + (i− |u1| − 1)mod |v1|
⇔ x = x′ × |v1| avec x′ ∈ N− {0}

Since we do not interpret the elements of v2,
(2) ⇔ 1 + (Op1(i + x)− |u2| − 1) mod |v2|

= 1 + (Op1(i)− |u2| − 1) mod |v2|
⇔ ∀i > |u3|, Op1(i + x) mod |v2| = Op1(i)mod |v2|

Hence,

(1) ∧ (2) ⇔ Op1(i + x′ × |v1|)mod |v2|
= Op1(i) mod |v2|

⇔ (Op1(i) + x′ × |v1|1)mod |v2|
= Op1(i)mod |v2|

⇔ (x′ × |v1|1) mod |v2| = 0

The smallest x′ which satisfies the equation is lcm(|v1|1,|v2|)
|v1|1

.

Therefore |v3| = x = lcm(|v1|1,|v2|)
|v1|1

× |v1|.
Finally, we compute the elements of u3 and v3. Since we

know |u3| and |v3|, it is trivial that

∀i, 1 ≤ i ≤ |u3|, u3[i] = (p1 on p2)[i]

∀i, 1 ≤ i ≤ |v3|, v3[i] = (p1 on p2)[|u3|+ i]

We can notice that the 1s of p1 on p2 are the 1s coming from
p2. Therefore, we can compute |(p1 on p2).v|1:

Lemma 4 (number of 1s in the periodic pattern of a on).
Let p1 = u1(v1), p2 = u2(v2).

|(p1 on p2).v|1 =
lcm(|v1|1, |v2|)

|v2|
× |v2|1

Proof. Let p1 = u1(v1), p2 = u2(v2)
and p3 = p1 on p2 = u3(v3).
By definition, |v3|1 = Op3(|u3|+ |v3|)−Op3(|u3|).
By Proposition 4, |v3|1 = Op2(Op1(|u3|+|v3|))−Op2(Op1(|u3|)).
By Proposition 5, |v3| = lcm(|v1|1,|v2|)

|v1|1
× |v1|.

Therefore, Op1(|u3|+ |v3|) = Op1(|u3|+ lcm(|v1|1,|v2|)
|v1|1

× |v1|).
We can deduce that

Op1(|u3|+ |v3|) = Op1(|u3|) + lcm(|v1|1,|v2|)
|v1|1

× |v1|1
= Op1(|u3|) + lcm(|v1|1, |v2|)

Therefore,

Op2(Op1(|u3|+ |v3|)) = Op2(Op1(|u3|) + lcm(|v1|1, |v2|))
= Op2(Op1(|u3|) + lcm(|v1|1,|v2|)

|v2|
× |v2|)

We can deduce that

Op2(Op1(|u3|+|v3|)) = Op2(Op1(|u3|))+
lcm(|v1|1, |v2|)

|v2|
×|v2|1

Since |v3|1 = Op3(|u3|+ |v3|)−Op3(|u3|), we can conclude that

|v3|1 = Op2(Op1(|u3|+ |v3|))−Op2(Op1(|u3|))
= lcm(|v1|1,|v2|)

|v2|
× |v2|1

The result of the on operation can be simpler to compute for
certain shape of arguments. The simplest case is the one where the
number of 1s in the prefix and in the periodic pattern of the first
word are equal respectively to the size of the prefix and the size of
the periodic pattern of the second word as in the following example:

p1 1 1 0 1 (1 1 1 0 0 1 1 0)
p2 1 0 1 (1 0 0 1 0)
p1 on p2 1 0 0 1 (1 0 0 0 0 1 0 0)

Proposition 6.
Gives p1 and p2 such that |p1.u|1 = |p2.u| and |p1.v|1 = |p2.v|.
Then:
|(p1 on p2).u| = |p1.u| |(p1 on p2).u|1 = |p2.u|1
|(p1 on p2).v| = |p1.v| |(p1 on p2).v|1 = |p2.v|1

Proof. Let p1 = u1(v1), p2 = u2(v2),
and p1 on p2 = u3(v3).
First, we prove that |u3| = |u1| and |v3| = |v1|.
By Proposition 5,

|u3| = max (|u1|, Ip1(|u2|)) |v3| = lcm(|v1|1,|v2|)
|v1|1

× |v1|

By hypothesis, |u1|1 = |u2| and |v1|1 = |v2|.
Therefore, Ip1(|u2|) = Ip1(|u1|1) and Ip1(|u1|1) ≤ |u1|. We can
thus simplify the previous formula as follows:

|u3| = |u1| |v3| = |v1|

Then, we prove that |v3|1 = |v2|1.
By Lemma 4, |v3|1 = lcm(|v1|1,|v2|)

|v2|
×|v2|1 which can be simplified

as |v3|1 = |v2|1.
Finally, we prove that |u3|1 = |u2|1.
By definition, |u3|1 = Op3(|u3|).
By Property 4, |u3|1 = Op2(Op1(|u3|)).
By hypothesis, |u3|1 = Op2(Op1(|u1|)).
By definition, |u3|1 = Op2(|u1|1).
By hypothesis, |u3|1 = Op2(|u2|).
By definition, |u3|1 = |u2|1.

As explained in Remark 6, it is possible to increase the size and
the number of 1s in the prefixes and periodic patterns of words.
Therefore, we can always adjust the operands of the on such that
they satisfy the assumptions of proposition 6.

Remark 7. Explicitly increasing the size of the operands of the
on operator is not strictly necessary. We need only compute the
size they should have after the adjustment. So, if we want to
compute p1 on p2, we suppose that we rewrite p1 as p′1 and p2

as p′2 such that |p′1.u|1 = |p′2.u| and |p′1.v|1 = |p′2.v|. The size
of p1 on p2 is the size of p′1 and it has the same number of 1s as
does p′2.

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 9 2011/7/13

Finally, to compute the index of the jth 1 of w1 on w2

(Iw1 on w2(j)), it is not necessary to compute the word w1 on w2

and then to apply the I function. It can be computed directly from
Iw1 and Iw2 .

Proposition 7 (index of the jth 1 of w1 on w2).

∀j ≥ 1, Iw1 on w2(j) = Iw1(Iw2(j))

Indeed, in the computation of w1 on w2, the elements of w2

are given when there is a 1 in w1. Therefore the index of the ith
element of w2 is at index Iw1(i). Since the 1s of w1 on w2 are
the 1s of w2, the jth 1 of w1 on w2 is the Iw2(j)th element of w2

and thus at the index Iw1(Iw2(j)).

Proof. Iw1 on w2(j) is the smallest i such that Ow1 on w2(i) = j.
Therefore, by Proposition 4,

Iw1 on w2(j) = min
i∈N∗
{i, (Ow2(Ow1(i)) = j)}

Since O is increasing, we can deduce that

Iw1 on w2(j) = min
i∈N∗


i, (Ow1(i) = min

i′∈N∗

˘
i′, (Ow2(i

′) = j)
¯
)

ff
We can conclude that

Iw1 on w2(j) = mini∈N∗ {i, (Ow1(i) = Iw2(j))}
= Iw1(Iw2(j))

We now have all the algebraic tools needed to define an algo-
rithm for the resolution of adaptability constraints on ultimately
periodic binary words.

5. Adaptability Constraints Resolution
Algorithm

We saw in Section 3 that subtyping constraints can be reduced to
adaptability constraints where the unknowns are no longer types but
rather ultimately periodic binary words. This is the first step of the
subtyping constraints resolution algorithm which is summarized in
Figure 4. This section details the remaining steps.

In Section 5.1, we explain how to simplify an adaptability con-
straint system (S2) to obtain a system (S3) where all the constraints
have the form cx on px <: cy on py . In Section 5.2, we explain the
transformation of adaptability constraints (S3) into a system of lin-
ear inequalities (S6) where the unknowns are the size and the in-
dexes of 1s of the sought words. This last system can be solved us-
ing standard techniques from Integer Linear Programming, and the
resulting solutions can be used to reconstruct the unknown words.
In Section 5.3, we discuss the choice of the objective function for
the resolution of the linear inequalities. Finally, we discuss the cor-
rectness, completeness and complexity of the algorithm.

Before the detailed explanation of the algorithm, we note that,
as was the case for the equality constraints, there is no greedy
algorithm for solving adaptability constraints. Indeed, for a given
rate, there is no word which is smaller (or greater) than all the
other words in the relation � 7 and thus nor in the relation <:.
For example: . . . <: 1999(10) <: . . . <: 1(10) <: (10) <:
0(10) <: . . . <: 0999(10) <: . . . In fact, if given c1 and c2

which satisfy a constraint c1 on p1 <: c2 on p2, then the following
words also satisfy it:

• 1d1c1 and 0d2c2, whatever the d1 and d2,
• 1d1c1 and 1d2c2, whatever the d1 and d2 provided that d1 ≥ d2,

7 If the rate is not fixed, this property is not true for the words (1) and (0).
Indeed, for all p, (1) � p � (0)

S1. Subtyping constraints: αx on p on ... <:<:<: αy on p′ on ...

⇔ { introduction of word variables cn ;
simplification of type variables }

S2. Adaptability constraints: cx on p on ... <: cy on p on ...
p on ... <: p′ on ...

⇔ { computation of on ;
simplification of p <: p′ constraints }

S3. Simplified adaptability constraints: cx on px <: cy on py

⇔ { for each cn, equalization of the size of its samplers }
S4. Adjusted adaptability constraints: cx on px <: cy on py

⇐ { choice of the number of 1s of the cns ;
splitting of the adaptability constraints }

S5. Synchronizability cx on px ./ cy on py

and precedence constraints: cx on px � cy on py

⇔ { simplification of synchronizability
and precedence constraints ;
introduction of well formedness constraints }

S6. Indexes of 1s and size constraints:
synchronizability: |py.v|1 × |cx.v| = |px.v|1 × |cy.v|
precedence: Icx(Ipx(j)) ≤ Icy (Ipy (j))
periodicity: Icn(j + |cn.v|1)− Icn(j) = |cn.v|
sufficient size:

1 + Icn(|cn.u|1 + |cn.v|1)− Icn(|cn.u|1 + 1) ≤ |cn.v|
sufficient indexes: Icn(j) ≥ j
increasing indexes: Icn(j′)− Icn(j) ≥ j′ − j

Figure 4. Summary of the subtyping constraints resolution algo-
rithm. The form of the constraints is given for each system.

• 0d1c1 and 0d2c2, whatever the d1 and d2 provided that d1 ≤ d2.

Hence, contrary to a classical subtyping system, we cannot simply
take the greatest word for a variable on the left of an adaptability
constraint, and the smallest one for a variable on the right. In our
case, the inference of values satisfying constraints must necessarily
be performed globally to choose words big enough, and/or small
enough to satisfy all constraints.

5.1 Constraint System Simplification
The systems to be solved comprise constraints of the form px <: py

and cx on px <: cy on py , where px and py are known words of
non-null rate and cx and cy are unknown words. These constraints
are obtained after the computation of on operators (Proposition 5).

Since a constraint of the form px <: py contains no variables,
its truth value cannot be altered. We need only to check that each
such constraint is satisfied, which is done applying Definition 7.
If any are false, then the whole system is unsatisfiable. The true
constraints can be removed from the system.

Returning to the cyclic_encoding example, the adaptability
constraint system was:8<: (050100) <: (050100)

(050100) <: (050010)

(050100) <: (050001)

9=;
Through the application of the adaptability test, we can check that
each constraint is always satisfied. Here, after simplification, the
system is empty.

In the general case, after simplification all the remaining con-
straints contain variables. For example, the subtyping constraint
system C′ of Section 3 can be rewritten to the adaptability con-

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 10 2011/7/13

straint system A′:

θ(C′) ⇔

8><>:
c1 on 10(1) <: c2 on (01)

(1100) <: (01)
c2 on (01) on (10) <: c3 on (1)
c2 on (01) on (01) <: c3 on (1)

9>=>;
⇔

8<: c1 on 10(1) <: c2 on (01)
c2 on (0100) <: c3 on (1)
c2 on (0001) <: c3 on (1)

9=; = A′

All the remaining constraints are of the form cx on px <: cy on py .

5.2 Constraint System Solving
The goal now is to solve adaptability constraint systems like A′:8<: c1 on p1 <: c2 on p2

c2 on p′2 <: c3 on p3

c2 on p′′2 <: c3 on p′3

9=;
The values p1, p2, p′2, p′′2 , p3, p′3 are some known ultimately
periodic binary words of non-null rate. The variables c1, c2, c3 are
the unknowns of the system. Solving the system means associating
ultimately periodic words of non-null rate to the unknowns, such
that the constraints are satisfied.

Remark 8. If solutions containing null rates are allowed, all sys-
tems have a solution. For example, the instantiation ∀n. cn = (0)
is a trivial solution of all systems. A solution containing a null rate
gives a system that will be executed at only a finite number of in-
stants. We are not interested in such solutions.

An adaptability constraint cx on px <: cy on py can be decom-
posed into a synchronizability constraint and a precedence con-
straint:

cx on px <: cy on py ⇔ { by Definition 7 }
(cx on px ./ cy on py) ∧
(cx on px � cy on py)

The synchronizability constraint can be itself rewritten:

cx on px ./ cy on py

⇔ { by Proposition 1 }
rate(cx on px) = rate(cy on py)

⇔ { by Definition 4 }
|(cx on px).v|1
|(cx on px).v| =

|(cy on py).v|1
|(cy on py).v|

As can the precedence constraint:

cx on px � cy on py

⇔ { by Proposition 2 }
∀j, 1 ≤ j ≤ h, Icx on px(j) ≤ Icy on py (j)

⇔ { by Proposition 7 }
∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))

with h = max(|(cx on px).u|1, |(cy on py).u|1)
+ lcm(|(cx on px).v|1, |(cy on py).v|1)

We are thus interested in the size of, and the number of 1s in, the
prefixes and periodic patterns of cx on px and of cy on py forms.

We have seen in Section 4 (Proposition 6) that the size and
number of 1s in the prefix and in the periodic pattern of cn on pn

can easily be expressed as a function of the size and number of 1s
in the prefixes and periodic patterns of cn and pn in the following
case:
− if |cn.u|1 = |pn.u|, then |(cn on pn).u|1 = |pn.u|1

and |(cn on pn).u| = |cn.u|.
− if |cn.v|1 = |pn.v|, then |(cn on pn).v|1 = |pn.v|1

and |(cn on pn).v| = |cn.v|.

To put the system into this “simple” form, we adjust the known
words of the system such that the following property is satis-
fied: for any unknown cn, all the words pn, p′n, . . . such that
cn on pn, cn on p′n, . . . that appear in the system have the same
prefix size (|pn.u| = |p′n.u| = . . .) and the same periodic pat-
tern size (|pn.v| = |p′n.v| = . . .). This operation is always possi-
ble (thanks to Remark 6) and does not change the semantics of the
system.

We can then make the following choice for the number of 1s in
the unknown cn.

Choice 1 (number of 1s in the cn).

|cn.u|1 = |pn.u| = |p′n.u| = . . .

|cn.v|1 = |pn.v| = |p′n.v| = . . .

where pn, p′n, . . . are the samplers of cn (i.e., the words such that
cn on pn, cn on p′n, . . . appear in the constraint system)

Remark 9. We will discuss this choice in Sections 5.4 and 6.1.

This choice allows us to express the size and the number of 1s in
the prefixes and periodic patterns of the cn on pn in terms of those
of cn and pn. Hence, a synchronizability constraint becomes:

cx on px ./ cy on py

⇔ { by Proposition 6 }
|px.v|1
|cx.v| =

|py.v|1
|cy.v|

⇔ |py.v|1 × |cx.v| = |px.v|1 × |cy.v| (1)

And a precedence constraint becomes:

cx on px � cy on py

⇔ { by Proposition 6 }
∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))

with h = max(|px.u|1, |py.u|1)
+ lcm(|px.v|1, |py.v|1)

(2)

For example, we can adjust the system A′ such that all the
samplers of a particular variable have the same size:

A′ =

8<: c1 on 10(1) <: c2 on (01)
c2 on (0100) <: c3 on (1)
c2 on (0001) <: c3 on (1)

9=;
⇔

8<: c1 on 10(1) <: c2 on (0101)
c2 on (0100) <: c3 on (1)
c2 on (0001) <: c3 on (1)

9=;
Then, we choose the number of 1s for the cns to be equal to the

size of the respective samplers:

|c1.u|1 = 2 |c2.u|1 = 0 |c3.u|1 = 0
|c1.v|1 = 1 |c2.v|1 = 4 |c3.v|1 = 1

By Formula (1), the synchronizability constraints become a
system of linear equations on the size of the periodic patterns of
the cns:8<: |(0101).v|1 × |c1.v| = |(10(1)).v|1 × |c2.v|

|(1).v|1 × |c2.v| = |(0100).v|1 × |c3.v|
|(1).v|1 × |c2.v| = |(0001).v|1 × |c3.v|

9=;
⇔

8<: 2× |c1.v| = |c2.v|
|c2.v| = |c3.v|
|c2.v| = |c3.v|

9=; (Sync)

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 11 2011/7/13

By Formula (2), the precedence constraints become a system of
linear inequalities on the indexes of 1s in the cns:8<:

∀j, 1 ≤ j ≤ 3, Ic1(I10(1)(j)) ≤ Ic2(I(0101)(j))
∀j, 1 ≤ j ≤ 1, Ic2(I(0100)(j)) ≤ Ic3(I(1)(j))
∀j, 1 ≤ j ≤ 1, Ic2(I(0001)(j)) ≤ Ic3(I(1)(j))

9=;

⇔

8>>><>>>:
Ic1(1) ≤ Ic2(2)
Ic1(3) ≤ Ic2(4)
Ic1(4) ≤ Ic2(6)
Ic2(2) ≤ Ic3(1)
Ic2(4) ≤ Ic3(1)

9>>>=>>>; (Prec)

Now, to give a value to each unknown cn, we must find its
size and the positions of its 1s. Hence, the sizes |cn.v| and the
indexes Icn(j) will no longer be considered as function applica-
tions, but rather as the new unknowns of the problem. These new
unknowns must also satisfy the constraints of Remarks 2 to 5 which
ensure that the solution will be a well formed ultimately periodic
binary word. So, we have to augment the synchronizability con-
straints Sync and the precedence constraints Prec with the follow-
ing four sets of constraints:8

Periodicity:
Per = {Icn (j + |cn.v|1)− Icn (j) = |cn.v|}Icn (j+|cn.v|1)∈Prec

∧ j>|cn.u|1

Sufficient size:
Size = {1 + Icn (|cn.u|1 + |cn.v|1)− Icn (|cn.u|1 + 1) ≤ |cn.v|}

Sufficient indexes:
Init = {Icn (j) ≥ j}Icn (j)∈Prec ∪Per ∪ Size

Increasing indexes:
Incr = {Icn (j′)− Icn (j) ≥ j′ − j}(Icn (j),Icn (j′))∈Prec ∪Per ∪ Size

Finally, we can use a generic solver for Integer Linear Program-
ming (ILP) problems to solve the system:

S = Sync ∪ Prec ∪ Per ∪ Size ∪ Init ∪ Incr

Applying a solver to the system associated with A′ produces the
results:

|c1.v| = 2 |c2.v| = 4 |c3.v| = 4

Ic1(1) = 1 Ic1(3) = 3 Ic1(4) = 5
Ic2(1) = 1 Ic2(2) = 2 Ic2(4) = 4 Ic2(6) = 6

Ic3(1) = 4

Thanks to this information and the number of 1s in the prefixes
and periodic patterns of the cns chosen previously, we can build the
following solution to the A′ system:

c1 = 11(10) c2 = (1111) = (1) c3 = 000(1000) = (0
3
1)

We now know all the clock types of the system of Figure 2. The
result gives us the clock type of the node f which is ∀α, α on c1×
α on c2 → α on c3, that is:

f :: ∀α, α on 11(10)× α on (1)→ α on (0
3
1)

And since we have the types of the buffers, we can compute their
sizes. For example, we know that the writing clock of the first buffer
is of type α on c1 on 10(1) = α on 11(10) on 10(1) and that
the reading clock is of type α on c2 on (01) = α on (1) on (01).
By Proposition 3, the size of this buffer is:

size(11(10) on 10(1), (1) on (01)) = 1

5.3 Guiding the Resolution Algorithm
The resolution algorithm requires the solution of linear inequali-
ties on the indexes of 1s and on the size of the unknown words.

8 We will use the notation Icn (j) ∈ S to designate the presence of the
unknown Icn (j) in S.

Tools for solving such inequalities are parameterized by an objec-
tive function determining the criterion to optimize. In the previous
example, we choose to optimize the sum of the indexes of 1s to pro-
duce a kind of As-Soon-As-Possible schedule. But we can also use
the objective function to favor either system throughput or buffer
sizes minimization. We illustrate this trade-off on an example:

aux2

aux1i1

i2

g

when

(0110)

when

(1001)

+
o

let node g (i1, i2) = o where
rec aux1 = i1 when (1001)
and aux2 = i2 when (0110)
and o = buffer aux1 + buffer aux2

If we give the type ∀α. (α× α)→ α on (01) to the node g, the
buffers will be of size 1. But, this node can be executed without
buffers if we give to it the type:

g :: ∀α.(α on (011110)×
α on (110011))→ α on (010010)

The first solution can be obtained by an objective function that
minimizes the size of the solution. Indeed, since the number of 1s
in the solution is fixed, minimizing the size increases the rate.

The second solution is obtained by an objective function that
minimizes the precedence constraints. That is, for all precedence
constraints Icx(j1) ≤ Icy (j2), we minimize the value Icy (j2) −
Icx(j1). It means that we minimize the number of instants between
the writing and the reading of a value in a buffer which has the
consequence of reducing the buffer sizes.

5.4 Correctness, Completeness and Complexity
The resolution algorithm shown in Figure 4 relies on the step-by-
step transformation of the adaptability constraint system (S2) into
linear inequalities (S6), for which there exist algorithms that find
a solution if it exists [20]. Each step, except the one between S4
and S5, is a rewriting of a constraint system into an equivalent
one (thanks to equivalence properties stated in Section 4). The
step from S4 to S5 is the choice of the number of 1s in the cns.
It is correct to seek a solution in a subset of all possible words.
Nevertheless, it may lead to incompleteness, since it is possible that
a system has no solution in the subset of words considered.

Therefore, the solution computed by the resolution algorithm
is correct and there is only one step which is a possible source of
incompleteness.

We note that for optimization reasons, the indexes of 1s that are
not constrained by the adaptability constraints do not appear in the
system of linear inequalities. When the words corresponding to the
solution are built, these indexes are chosen such that they respect
well formedness constraints.

The complexity of the resolution algorithm is dominated by
the resolution of the constraint system on the indexes of 1s and
the sizes. This is an Integer Linear Programming (ILP) problem
which is known to be NP-complete [20]. Even if there is only
one adaptability constraint per buffer, the size of the complete ILP
problem can be big: it depends on the size of the samplers in the
adaptability constraint system.

6. Variants of the Resolution Algorithm
In this section, we present two variants of the resolution algorithm.
The first one is complete but is only semi-decidable. The second
one is complete and can be solved with polynomial complexity but
it handles only a subset of systems.

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 12 2011/7/13

6.1 Variant 1: Semi-Decidable Complete Algorithm
The resolution algorithm presented Section 5 is correct and its
only source of incompleteness is the choice of the number of 1s
in the cns. We think this is a good choice; we have not yet come
across any examples where if fails. However, it is also possible to
build a semi-decidable algorithm which is complete.

The choice of the number of 1s in the cns is directed by Proposi-
tion 6 which simplifies the computation of the size of, and number
of 1s in the result of an on operation. This proposition can be gen-
eralized as follows:

Proposition 8.
Given p1 and p2 such that |p1.u|1 = |p2.u|+ k × |p2.v|
and |p1.v|1 = (k + 1)× |p2.v| with k ∈ N, then:

|(p1 on p2).u| = |p1.u| |(p1 on p2).u|1 = |p2.u|1 + k × |p2.v|1
|(p1 on p2).v| = |p1.v| |(p1 on p2).v|1 = (k + 1)× |p2.v|1

Proof. Let p1 = u1(v1), p2 = u2(v2),
and p1 on p2 = u3(v3).
First, we prove that |u3| = |u1| and |v3| = |v1|.
By Proposition 5,

|u3| = max (|u1|, Ip1(|u2|)) |v3| = lcm(|v1|1,|v2|)
|v1|1

× |v1|

By hypothesis, |u2| ≤ |u1|1.
Since Ip1 is increasing, Ip1(|u2|) ≤ Ip1(|u1|1).
Since Ip1(|u1|1) ≤ |u1|, by transitivity, Ip1(|u2|) ≤ |u1|.
Therefore |u3| = |u1|.

By hypothesis, |v3| = lcm((k+1)×|v2|,|v2|)
|v1|1

× |v1|
= (k+1)×|v2|

|v1|1
× |v1|

= |v1|1
|v1|1

× |v1|
Therefore |v3| = |v1|.
Then, we prove that |v3|1 = (k + 1)× |v2|1.
By Lemma 4, |v3|1 = lcm(|v1|1,|v2|)

|v2|
× |v2|1.

By hypothesis, |v3|1 = lcm((k+1)×|v2|,|v2|)
|v2|

× |v2|1
= (k+1)×|v2|

|v2|
× |v2|1

Therefore, |v3|1 = (k + 1)× |v2|1.
Finally, we prove that |u3|1 = |u2|1 + k × |v2|1.
By definition, |u3|1 = Op3(|u3|).
By Property 4, |u3|1 = Op2(Op1(|u3|)).
By hypothesis, |u3|1 = Op2(Op1(|u1|)).
By definition, |u3|1 = Op2(|u1|1).
By hypothesis, |u3|1 = Op2(|u2|+ k × |v2|).
By definition, |u3|1 = |u2|1 + k × |v2|1.

Therefore, in the resolution algorithm, instead of choosing the
number of 1s in the prefix and in the periodic pattern of the cn to be
equal to the size of their samplers, we can parameterize our choice
by a constant k:

Choice 2 (number of 1s in the cn). Let k ∈ N.

|cn.u|1 = |pn.u|+ k × |pn.v| = |p′n.u|+ k × |p′n.v| = . . .

|cn.v|1 = (k + 1)× |pn.v| = (k + 1)× |p′n.v| = . . .

This modification effects the simplification of the synchroniz-
ability and precedence constraints.

Equation (1) becomes:

cx on px ./ cy on py

⇔ { by Proposition 8 }
(k + 1)× |px.v|1

|cx.v| =
(k + 1)× |py.v|1

|cy.v|
⇔ |py.v|1 × |cx.v| = |px.v|1 × |cy.v| (3)

In fact, the value k does not influence the synchronizability of a
system (the equation (3) is the same as the equation (1)).

Equation (2) becomes:

cx on px � cy on py

⇔ { by Proposition 8 }
∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))

with h = max(|px.u|1 + k × |px.v|1,
|py.u|1 + k × |py.v|1) +

lcm((k + 1)× |px.v|1,
(k + 1)× |py.v|1)

(4)

This new version constrains more 1s that the equation (2).
Finally, since the number of 1s in the sought words and the in-

dexes of 1s involved in the precedence constraints have changed,
the well formedness constraints (periodicity, sufficient size, suffi-
cient indexes, and increasing indexes sets of constraints) must be
modified accordingly.

Hence, we have parameterized our resolution algorithm by a
constant k which modified the number of 1s in the sought solution.

A semi-decidable algorithm to solve adaptability constraints
iterates the previous algorithm with k = 0, 1, 2, . . . until it finds
a solution. We can prove that this algorithm is complete because
if a system of adaptability constraints has a solution S, then there
exists a solution S′ such that ∀c′n ∈ S′,

|c′n.u|1 = |pn.u|+ k × |pn.v| = |p′n.u|+ k × |p′n.v| = . . .

|c′n.v|1 = (k + 1)× |pn.v| = (k + 1)× |p′n.v| = . . .

where k can be computed from the original solution S. The idea of
the proof is to use Remark 6 to rewrite S into S′.

Proof. Let A be an adjusted adaptability constraint system (all the
samplers of a variable have the same size) of the following shape:8<: . . .

cx on px <: cy on py

. . .

9=;
Let S be a solution of non-null rate of A.

We first prove that there exists a solution S′ of A such that
∀c′n ∈ S′

|c′n.u|1 = |pn.u|+ ku
n × |pn.v| = |p′n.u|+ ku

n × |p′n.v| = . . .

|c′n.v|1 = kv
n × |pn.v| = kv

n × |p′n.v| = . . .

where pn, p′n, . . . are the samplers of cn in A and where ku
n and

kv
n are integer constants.

First we can notice that ∀cn ∈ S, rate(cn) > 0. Therefore, we
can increase the number of 1s in the prefix of the solution by an
arbitrary number and we can multiply the number of 1s in the
periodic pattern an arbitrary number of times.

Prefix case:
For all cn ∈ S, we will increase the number of 1s in the prefix
until it has the shape |pn.u|+ ku

n × |pn.v|.
if |cn.u|1 ≤ |pn.u|:

we add |pn.u| − |cn.u|1 1s in the prefix.
Therefore, |c′n.u|1 = |pn.u|+ ku

n × |pn.v| with ku
n = 0.

if |cn.u|1 > |pn.u|:
we add (|pn.u| − |cn.u|1)mod |pn.v| 1s in the prefix.
Therefore, |c′n.u|1 = |pn.u|+ ku

n × |pn.v|
with ku

n =
l
|pn.u|−|cn.u|1

|pn.v|

m
.

Periodic pattern case:
For all cn ∈ S, we can construct a solution which has k′ ×
|cn.v|1 1s. If we choose k′ = |pn.v|, we have a solution
|c′n.v|1 = kv

n × |pn.v| with kv
n = |cn.v|1.

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 13 2011/7/13

Now, we prove that form the previous solutions S and S′, we
can build a solution S′′ such that ∀c′′n ∈ S′′

|c′′n.u|1 = |pn.u|+ k × |pn.v| = |p′n.u|+ k × |p′n.v| = . . .

|c′n.v|1 = (k + 1)× |pn.v| = (k + 1)× |p′n.v| = . . .

where pn, p′n, . . . are the samplers of cn in A and where k is as
integer constant.
Let ku = max {ku

n | c′n ∈ S′ and |c′n.u|1 = |pn.u|+ ku
n × |pn.v|}.

Let kv = lcm {(kv
n + 1) | c′n ∈ S′ and |c′n.v|1 = kv

n × |pn.v|}.
Let k = lcm(ku, kv).

Prefix case:
For all cn ∈ S, since |cn.u|1 ≤ |pn.u| + k × |pn.v|, we
can increase the number of 1s of cn.u such that |c′′n.u|1 =
|pn.u|+ k × |pn.v|.

Periodic pattern case:
For all cn ∈ S, since (k + 1) is a multiple of |cn.v|1, we
can multiply the number of 1s of cn.v such that |c′n.v|1 =
(k + 1)× |pn.v|.

Finally, note that sometimes we can find solutions that allow
faster execution of a system if we choose of a number of 1s different
that the one proposed by Choice 1. For example, consider the
following adaptability constraints:˘

c1 on (1) <: c2 on (110)
¯

If we are seeking a solution with one 1 for c1, we compute the
solution {c1 = (10); c2 = (1011)} and execute the system one
instant over two. Whereas, if we are seeking a solution with two 1s
for c1, we computes the solution

˘
c1 = (110); c2 = (16)

¯
and

executes the system two instants over three. The parameterization
of our algorithm by a constant k allows to search the best rate
whereas the algorithm of Section 5 can only find the best rate
for k = 0.

6.2 Variant 2: Polynomial Resolution Algorithm
The idea of this variant of the resolution algorithm is to modify
the original algorithm such that the system of linear inequalities on
the sizes and the indexes of 1s can be expressed as a Difference
Bound Matrix [11] (i.e., with constraints of the form x− y ≤ n)
and thus which can be solved by the Bellman-Ford algorithm [10].
In contrast to the previous NP-complete algorithm, this approach
has only polynomial complexity.

The modification of the original algorithm consists in reinforc-
ing the adjustment conditions of the adaptability constraint system.
We add the property that both sides of an adaptability constraint
must have the same number of 1s in their prefixes and periodic
parts. Adjusted adaptability constraint systems will be such that:

1. All the samplers of a variable have the same size.

2. For each constraint cx on px <: cy on py , |px.u|1 = |py.u|1
and |px.v|1 = |py.v|1.

This new property of the adjusted constraints allows us to sim-
plify the synchronizability and precedence constraints.

Equation (1) becomes:

cx on px ./ cy on py

⇔ |py.v|1 × |cx.v| = |px.v|1 × |cy.v|
⇔ |cx.v| = |cy.v| (5)

And equation (2) becomes:

cx on px � cy on py

⇔ ∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))

with h = max(|px.u|1, |py.u|1)
+ lcm(|px.v|1, |py.v|1)

⇔ ∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))

with h = |px.u|1 + |px.v|1 (6)

First, we note that to satisfy the synchronizability constraints, we
have only to choose the same size for all the cns. Second, thanks to
the new bound h, there will be no periodicity constraints. Indeed,
the set of periodicity constraints,

Per = {Icn(j + |cn.v|1)− Icn(j) = |cn.v|}Icn (j+|cn.v|1)∈Prec
∧ j>|cn.u|1

is empty because it constrains the indexes of 1s of the cns which
are greater than |cn.u|1 + |cn.v|1, and which are in the set of
precedence constraints. There are no such elements because,
since the last 1 constrained by the precedence constraints is,
for each word cn, its (Ipn(|pn.u|1 + |pn.v|1))th 1, and since
(Ipn(|pn.u|1 + |pn.v|1)) ≤ |pn.u|+ |pn.v|, then, thanks to the
choice of the number of 1s in cn, (Ipn(|pn.u|1 + |pn.v|1)) is less
than or equal to |cn.u|1 + |cn.v|1.

Now, if we consider the precedence constraints, the sufficient
indexes constraints and the increasing indexes constraints, we ob-
serve that they all have the form x− y ≤ n. Thus, the indexes of 1s
of the cns can be computed by the Bellman-Ford algorithm.

We still have to solve the synchronizability constraints and the
sufficient size constraints to find the size of the cns. It is always
possible to find a solution for these constraints since we need only
have choose the same size for all words and this size is the minimal
value which satisfies all the sufficient size constraints.

We have presented a resolution algorithm where the part which
was computationally expensive is replaced by a more efficient
algorithm. This modification is possible due to some additional
hypotheses on the adjusted systems (S4 in Figure 4).

A problem incurred by the new hypotheses is that to satisfy
them (step from S3 to S4), we may have to increase the size of
the words involved in the constraint system and thus to increase the
number of linear constraints to solve. A worse problem is that the
new hypotheses cannot always be satisfied. For example, we cannot
adjust the following constraint system:

c1 on (1) <: c2 on 0(1)
c2 on 1(1) <: c1 on (1)

ff
Here, if we satisfy the constraint on the number of 1s on both sides,
the constraint on the size of the samplers of a same variable will be
violated.

An advantage of the new hypotheses is that, if we can satisfy
them, the algorithm is complete. The idea of the proof is the follow-
ing. Thanks to Variant 1 (Section 6.1) of the algorithm, we know
that if a system has a solution, it also has a solution corresponding
to the set of constraints produced by our algorithm where the num-
ber of 1s has been increased. Then, we prove that increasing the
number of 1s cannot turn an unsatisfiable system a satisfiable one.
Therefore, if a system has a solution, it also has a solution with the
number of 1s given by Choice 1.

Proof. To detail to poof stated above, we have to prove that if a
system does not have a solution, increasing in number of 1s will
not lead to a solution. Therefore, we have to consider the two
cases for which a system may not have a solution: (1) the system
has a synchronizability problem, (2) the system has a precedence
problem.

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 14 2011/7/13

Synchronizability problem: We proved in Section 6.1 that mod-
ifying the number of 1s in the sought words do not affect the
synchronizability of a system. There, if a system has a synchro-
nizability problem, increasing its number of 1s cannot solve it.

Precedence problem: The algorithm presented in this section
treats separately the precedence and synchronizability con-
straints and do not have periodicity constraints. Therefore,
increasing the number of 1s in the sought words only adds
new precedence constraints (none of the existing constraints
are suppressed). Hence, if a system has a precedence problem,
increasing its number of 1s cannot solve it.

We have proved that increasing the number of 1s in a sought
solution do not allows to find one if the system do not already have
a solution.

A direct consequence of this proof is that the algorithm given
Section 5 is also complete if the same hypotheses on the adjusted
system hold.

Hypotheses of this variant of the algorithm can always be satis-
fied in particular on three kind of systems: (1) systems that do not
have prefixes, (2) systems where the prefixes of the samplers of a
variable are made of 0s and have the same size, and (3) systems
with only one constraint.

7. Comparison with other Resolution Algorithms
Three algorithms for the resolution of adaptability constraints have
been proposed. The first one was proposed in [8]. It is based on the
successive application of local simplification rules. The problem
with this algorithm is that some systems cannot be simplified with
these rules because finding a solution needs to reason globally. For
example, the following system cannot be solved:8<: α1 <:<:<: α2; α2 <:<:<: α1;

α1 <:<:<: α3; α3 <:<:<: α1;
α2 <:<:<: α3; α3 <:<:<: α2;

9=;
The second resolution algorithm was proposed in [16]. It is

based on the abstraction of clocks by sets of clocks defined by an
asymptotic rate and two shifts bounding the potential delay with
respect to this rate [9]. Thanks to this abstraction, the adaptability
relation can be tested by some simple operations on rational num-
bers. We will call this algorithm abstract resolution algorithm.

The third resolution algorithm is the one presented in Section 5
of this article. We will call it concrete resolution algorithm. In the
rest of the section, we will focus on the comparison of the concrete
resolution algorithm and the abstract resolution algorithm via some
specific examples.

The concrete resolution algorithm allows us to type an excerpt
of a GSM speech encoder/decoder. The principle of the encoder/de-
coder is described in Figure 5 and the source code is available at
the address http://www.lri.fr/∼mandel/popl12. This exam-
ple illustrates the advantages of concrete resolution.

The encoder is depicted in Figure 5(a). The different nodes
contain buffers, but they are connected without buffers. The global
unification mentioned in Remark 1 is essential to type this node. It
can find a rhythm for consuming the input flow such that all the
constraints imposed by the processing of the three branches are
satisfied.

The abstract resolution algorithm cannot type this node because
it cannot treat a unification constraint as a pair of inverse subtyping
constraints as proposed in Remark 1. Indeed, in this case clocks are
abstracted and we thus do have not enough precise information on
them to guarantee their equality. So, to type the gsm_encoding
node with the abstract resolution algorithm, we would have to
add buffers to communicate the values of the flows Ia, Ib and

s
p
l
i
t
s
p
e
e
c
h

m
e
r
g
e

(1530132)

m
e
r
g
e

(1378078)Ia

Ib

II

gsm encoding

encoding
convolutional

cyclic
encoding

(a) GSM speech encoder.

Ib

Ia

gsm decoding

II

decoding
convolutional

cyclic
decoding

s
p
l
i
t
I
a
I
b

s
p
l
i
t
I
I
I

j
o
i
n
s
p
e
e
c
h

(b) GSM speech decoder.

In the GSM protocol [14], speech is divided into samples of 20ms, each of
which is encoded as a frame of 260 bits. These frames are then encoded,
such that it is possible to detect and sometimes to correct errors introduced
by radio transmission.
The 260 bits are divided into three classes: Ia, Ib, II. Class Ia contains
the first 50 and most important bits, class Ib contains the following 132,
moderately important bits and class II contains the last and least important
78 bits. The 50 bits of class Ia go through the cyclic encoder that presented
in Section 2. Then the 132 bits of class Ib are appended to the 50 bits of
class Ia followed by the 3 cyclic redundancy bits. The 185 bits thus obtained
are encoded by a convolution encoder which builds packets of 378 bits, to
which the 78 bits of class II are appended.
The decoder has the reverse behavior. It starts by separating the bits of
class I from the bits of class II that have not been encoded. The bits of class I
are then processed by a convolution decoder that detects and corrects some
errors. Finally, a cyclic decoder is applied to the bits of class Ia to check
that there are no errors (if errors remain, the bits of the preceding frame are
transmitted).

Figure 5. Excerpt of the GSM speech encoder/decoder.

II. It transforms the unification constraints into subtyping con-
straints which can now be solved. With this new version of the
gsm_encoding node, the buffer sizes estimated by abstract reso-
lution are 50, 132 and 78, whereas the concrete resolution showed
that these buffers are not necessary.

The GSM encoder example shows that the concrete resolution
algorithm can handle programs that need subtle node scheduling.
This advantage is also evident in programs that contain cycles with
few initialization values such as the following one:

(100001)

m
e
r
g
e

1(0)

i2 tight cycle

o
init

x

i1

y

when

0(100001)

++

when

let node tight_cycle (init, i1, i2) = o where
rec x = i1 when (100001) + buffer y
and y = merge 1(0) init o
and o = i2 when 0(100001) + buffer x

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 15 2011/7/13

Here, since there is only one initial value in the cycle, the activa-
tions of the two + operators are tightly coupled: they must alternate.
The abstract resolution algorithm cannot find such a schedule be-
cause, in this case, due to the lost information, it cannot guarantee
safe communication through the buffers. The concrete resolution
algorithm, on the other hand, finds a correct schedule.

The GSM speech decoder is depicted in Figure 5(b). Notice that
the flows Ia, Ib are II are kept in buffers. The necessary sizes
inferred for these buffers by the concrete resolution algorithm are
respectively 1, 132 and 156. With the abstract resolution algorithm,
the sizes are 51, 264 and 234. The estimation found by the abstract
resolution algorithm gives buffers that are almost two times bigger
than those found using the concrete algorithm.

This example shows that when buffers are necessary, the con-
crete resolution algorithm gives better estimates of buffer sizes.

Notice, however, that the abstract resolution algorithm is still
interesting for some cases like, for instance, the video application
Picture in Picture [16]. Running the concrete resolution algorithm
on this example takes several days of computer time! Indeed, be-
cause the size of the clock words involved in the system are on the
order of two million bits, our algorithm generates a system of linear
inequalities containing numbers of variables and constraints of the
same order of magnitude. Constraint systems of this size cannot be
handled efficiently with tools like Glpk [13] that solve systems of
linear inequalities. Finally, the algorithm with abstraction can han-
dle systems where some words are not exactly periodic [9], i.e with
some jitters.

One algorithm may be more appropriate than the other for a
particular program. When the periodic words are well-balanced,
i.e., when the 1s are regularly spread (as is the case for the nodes of
the Picture in Picture application), the algorithm with abstraction
gives good results in a short time. However, it fails when there are
some constraints that are difficult to satisfy: e.g. those requiring
global unification or those containing cycles. When words are not
well balanced, i.e., when the 1s come in bursts (as in the GSM
example) and they are not too long (only hundreds of elements),
then the concrete algorithm is better: there is less risk of rejecting a
system that has a solution, and the buffer size estimates are better.

8. Conclusion
In this article, we have presented an algorithm that computes sched-
ules and buffer sizes for networks of ultimately periodic processes
described as Lucy-n programs.

The question of scheduling and buffer sizing networks of pro-
cesses is an old problem. Our particularity is to work in the con-
text of a programming language. In that respect, the most related
approaches are those of Ptolemy [12] and StreamIt [21] which
are implementations of the Synchronous Data-Flow model [15].
In Ptolemy, the computation nodes are programmed in a host lan-
guage and the production and consumption rate of these nodes are
declared by the user. If the values declared by the user are not cor-
rect, a program will fail at run-time. The approach of Lucy-n is
different, the whole program is written in a single language and the
production and consumption rates are inferred automatically from
the source code. StreamIt follows the same approach as Lucy-n, but
provides only a small number of combinators which restricts the set
of networks that can be described.

The main contribution of this paper is to define a resolution
algorithm of subtyping constraints that uses all the information
contained in the types. Therefore, it does not overestimate the
buffer sizes.

Even if the algorithm presented in this paper is computationally
more complex than the one presented in [16], our new algorithm
can type some programs that would be impossible to type with the

algorithm that uses abstraction. In particular, the concrete resolu-
tion algorithm has been used [17] to type programs that model la-
tency insensitive design [3]. The types that are obtained for the dif-
ferent nodes of such programs define static schedules for the mod-
eled circuit [2, 4, 7]. Our continuing work in this domain has two
aspects. First, we take advantage of the results obtained for such
designs (for example, to find well-balanced schedules). Second, we
try to provide a method which is more compositional than those of
existing approaches.

Finally, a great advantage of the concrete resolution algorithm
presented in this article is that it does not restrict the trade-off
between buffering and throughput. A direction for future work is
to provide new language constructs to declare resource constraints
and to use them to guide the resolution algorithm.

References
[1] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-Static

Dataflow. IEEE Trans. on Signal Processing, 44(2):397–408, 1996.
[2] J. Boucaron, R. de Simone, and J.-V. Millo. Formal Methods for

Scheduling of Latency-Insensitive Designs. EURASIP Journal on
Embedded Systems, Issue 1, Jan. 2007.

[3] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of Latency-Insensitive Design. IEEE Trans. on CAD of In-
tegrated Circuits ans Systems, 20(9):1059–1076, Sept. 2001.

[4] J. Carmona, J. Júlvez, J. Cortadella, and M. Kishinevsky. Scheduling
synchronous elastic designs. In Int. Conf. on Application of Concur-
rency to System Design, June 2009.

[5] P. Caspi and M. Pouzet. Synchronous Kahn Networks. In Interna-
tional Conference on Functional Programming, May 1996.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declar-
ative language for real-time programming. In Proceedings of the 14th
symposium on Principles of programming languages, 1987.

[7] M. R. Casu and L. Macchiarulo. A new approach to latency insensitive
design. In Proc. of the Design Automation Conference, 2004.

[8] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and
M. Pouzet. N -Synchronous Kahn Networks: a Relaxed Model of
Synchrony for Real-Time Systems. In International Conference on
Principles of Programming Languages, 2006.

[9] A. Cohen, L. Mandel, F. Plateau, and M. Pouzet. Abstraction of Clocks
in Synchronous Data-flow Systems. In The Sixth ASIAN Symposium
on Programming Languages and Systems, 2008.

[10] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
The MIT Press, 1990.

[11] D. Dill. Timing Assumptions and Verification of Finite-State Con-
current Systems. In Proceedings of the international workshop on
Automatic verification methods for finite state systems, 1990.

[12] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy approach.
Proceedings of the IEEE, 91(1):127 – 144, jan 2003.

[13] Glpk. Gnu linear programming kit. http://www.gnu.org/
software/glpk/.

[14] X. Lagrange, P. Godlewski, and S. Tabbane. Réseaux GSM : des
principes à la norme. Hermès Science, Paris, 2000.

[15] E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow. IEEE
Transactions on Computers, 75(9), Sept. 1987.

[16] L. Mandel, F. Plateau, and M. Pouzet. Lucy-n: a n-synchronous exten-
sion of Lustre. In Tenth International Conference on Mathematics of
Program Construction, 2010.

[17] L. Mandel, F. Plateau, and M. Pouzet. Static scheduling of latency
insensitive designs with Lucy-n. Submitted to FMCAD. http://
www.lri.fr/∼mandel/fmcad11, 2011.

[18] W. W. Peterson. Error-Correcting Codes. The M.I.T. Press, 1961.
[19] F. Plateau. Modèle n-synchrone pour la programmation de réseaux

de Kahn à mémoire bornée. PhD thesis, Université Paris-Sud 11, Jan.
2010.

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 16 2011/7/13

[20] A. Schrijver. Theory of linear and integer programming. John Wiley
& Sons, Inc., 1986.

[21] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A Lan-
guage for Streaming Applications. In Proceedings of the 11th Interna-
tional Conference on Compiler Construction, pages 179–196, 2002.

Scheduling and Buffer Sizing of n-Synchronous Systems (extended version) 17 2011/7/13

