
Abstraction of Clocks

in Synchronous Data-flow Systems ⋆

Albert Cohen1, Louis Mandel2, Florence Plateau2, and Marc Pouzet23

1 INRIA Saclay - Ile-de-France, Orsay, France
2 LRI, Univ. Paris-Sud 11, Orsay, France and INRIA Saclay

3 Institut Universitaire de France

Abstract. Synchronous data-flow languages such as Lustre manage in-
finite sequences or streams as basic values. Each stream is associated to
a clock which defines the instants where the current value of the stream
is present. This clock is a type information and a dedicated type sys-
tem — the so-called clock-calculus — statically rejects programs which
cannot be executed synchronously. In existing synchronous languages, it
amounts at asking whether two streams have the same clocks and thus
relies on clock equality only. Recent works have shown the interest of
introducing some relaxed notion of synchrony, where two streams can
be composed as soon as they can be synchronized through the intro-
duction of a finite buffer (as done in the SDF model of Edward Lee).
This technically consists in replacing typing by subtyping. The present
paper introduces a simple way to achieve this relaxed model through the
use of clock envelopes. These clock envelopes are sets of concrete clocks
which are not necessarily periodic. This allows to model various features
in real-time embedded software such as bounded jitter as found in video-
systems, execution time of real-time processes and scheduling resources
or the communication through buffers. We present the algebra of clock
envelopes and its main theoretical properties.
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Compilation; Semantics; Type-systems.

1 Introduction

Synchronous data-flow languages such as Lustre [1] have been introduced in the
80’s for the implementation of real-time critical software. Since then, they have
been used in various industrial applications such as the fly-by-wire commands
in Airbus planes. They were based on the objective to build a programming lan-
guage close to the mathematical models used in embedded systems such as data-
flow equations or the composition of finite-state machines. In these languages,
synchrony finds a very practical justification: at a certain level of observation,
time is considered logically as a sequence of instantaneous steps (or atomic re-
actions) of the system to external events and when processes are composed in
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parallel, they agree on those steps [2]. This also coincides with Milner’s interpre-
tation of synchrony in SCCS [3] or the synchronized product of automata [4]. In
a data-flow language such as Lustre, synchrony is essentially the one of control-
theory and can be interpreted as a typing constraint on the domain of sequences:
when combining two sequences (xi)i∈D1

and (yi)i∈D2
as in (xi)i∈D1

+ (yi)i∈D2
,

their time-domain D1 and D2 must be compatible in some ways. This static
checking is done by a specific type system, the so-called clock-calculus [5, 6]
which imposes D1 and D2 to be equal. Such analysis appears not to be bound
to synchronous languages and are of a much wider interest. For example, clock
analysis is done in modeling tools such as Simulink [7] or Scicos [8].

The clock-calculus essentially consists in asking whether two streams have the
same clock. For that, those clock information are abstracted by types. Consider
the following type language (taken from [5]):

σ ::= ∀α.∀X1, ..., Xm.ct
ct ::= ct → ct | ct ∗ ct | ck | (X : ck)
ck ::= ck on c | ck on not c | α
c ::= X |n where n is a numerable set of names

As in the Hindley-Milner type system [9], types are separated into clock
schemes (σ) and clock types (ct). A clock scheme is quantified over clock variables
(α) or boolean variables (X). Then, the clock type of (+) is ∀α.α×α → α stating
that if x and y are two integer streams with the same clock α then x + y have
also the clock α. Said differently, the addition expects its two arguments to be
synchronous and produces a third stream with the same clock. An other example
of a synchronous primitive is the unitary delay which shifts its input. If x and y
are two sequences x0 x1 x2 ... and y0 y1 y2 ... then x fby y stands for x0 y0 y1 y2 ....
x and y must have the same clock as well as x fby y and we can give to fby the
clock signature: ∀α.α × α → α.

Things become more interesting when sampling occurs. Two typical program-
ming constructs are the sampler and the merge operator:

when : ∀α.∀X.α → (X : α) → α on X
merge : ∀α.∀X.(X : α) → α on X → α on not X → α

x when y is well clocked when x and y have the same clock α. In that case,
the result has a slower clock corresponding to the instant where y is true and
we write it α on y (the meta-variable X is substituted with the actual one
y). For example, if half is an alternating boolean sequence 10101010101... and
x is a sequence x0 x1 x2 ... then x whenhalf is a half frequency sampling of x,
that is, x0 x2 x4 .... If x has some clock type ck, then x whenhalf has clock type
ck on half . Then, the expression x + (x when half ) which would compute the
sequence (xi + x2i)i∈N is not well clocked since ck is not equal to ck on half
and is statically rejected by the compiler. The merge operator is symmetric: it
expects two streams with complementary clocks and combines them to build a
longer stream.

When comparing clocks, most implementations restrict the comparison to
the equality of names: ck on n1 and ck on n2 can be unified only when n1 = n2.
This strong restriction is justified by the graphical aspect of these languages.



Two streams can be composed when they are sampled by the same condition
coming from the very same source block, that is, the same wire. This restric-
tion is reasonable when n1 is the result of a complex computation (for which
equality is non-decidable). This is nonetheless overly restrictive for an impor-
tant variety of applications where clocks are periodic and it forbids to take their
properties into account. In particular, recent works have shown the interest of a
more relaxed model of synchrony allowing to compose streams as soon as they
can be synchronized through the introduction of bounded buffers. This model is
called the N-synchronous Kahn model [10] and pursues the foundational work of
Edward Lee on Synchronous Data-Flow graphs (SDF) [11, 12]. Data-flow equa-
tions in SDF are not statically constrained with any notion of synchronous clock,
yet the existence of a static synchronous schedule is guaranteed by periodicity
constraints on production/consumption rates. From the typing point of view,
N-synchrony amounts at turning the clock calculus into a type-system with a
subtyping rule:

(SUB)

H ⊢ e : ck ck <: ck′

H ⊢ e : ck′

Intuitively, ck <: ck′ means that the 1s of ck arrive before the 1s of ck′ and
that ck and ck′ have in average the same proportion of 1s. In the particular case
of ultimately periodic clocks [13], subtyping is decidable. For example, the clock
half is written (10) whereas 0000(10) is the same clock with a prefix of four false
values. Thus, α on (10) <: α on 0000(10). Algebraic properties allow to compare
more clocks, e.g., α on (10) on (10) equals α on (1000). Note that those clocks
correspond to simple linear circuits (and automata). The technical details shall
be reminded in Section 2.

In the present paper, we adopt a slightly different and simpler point of view
than in [10]. Instead of focusing on periodic clocks, we give the ability to rea-
son on sets of clocks or clock envelopes as abstractions of concrete clocks. In-
deed, in various applications, exact synchrony with precise periodic clocks is
not mandatory and it is sufficient to reason on clock intervals where bounds
are nonetheless periodic. This is typically the case in three kind of applica-
tions, (1) video applications with bounded jitter, (2) the description of ex-
ecution times when modeling physical resources, and (3) the communication
through buffers (or cyclic arrays). For example, a stream x which is present
in average 3 times over 7 according to a base clock ck and with a possible
jitter of 4 will be given a clock type ck on∼ [−2, 2](7/3) as a shortcut for
∃n ∈ [−2, 2](7/3). ck on n. The existential quantifier hides the exact instant
where the element is present but gives a bound on it. The intuition behind
the notation [−2, 2](7/3) is to account for all clocks whose (j + 1)

th
1 is between

positions (7/3)× j − 2 and (7/3)× j + 2. Said differently, we consider all clocks
ck′ such that ck on 1(1010100) <: ck′ <: ck on (0010101). If f is of the form
λx.x when e for some complex boolean expression e but for which it can be proved
that its value belongs to the envelope [−2, 2](7/3) then a valid abstraction for f
is ∀α.α → α on∼ [−2, 2](7/3).

Another example appears when modeling the execution time of processes [14–
16]. To state that a function f must be executed every ten cycles and that



its computation takes between two and four cycles, we can give it the clock
signature: ∀α.α on∼ [0, 0](10/1) → α on∼ [2, 4](10/1). When composed twice,
we get: f o f : ∀α.(α on∼ [0, 0](10/1)) → α on∼ [4, 8](10/1).

Another typical example can be taken from elastic circuits [17]. For example,
an elastic adder is a stream function which takes two streams which are not
synchronous but are in the same envelope up to one delay, that is, they belong
to some envelope (ck on c) on∼ [0, 1](1/1) for some unknown boolean sequence
c (not necessarily periodic).

Finally, it is also possible to mimic a common feature found in a video ap-
plication: to read several inputs (or write several output) at once. Consider, for
example a stream function f whose input has clock type α on∼ [0, 4](1/1) con-
nected to a stream x with clock type ck on∼ [0, 0](1/1). Then, at each instant, x
produces a value whereas f can wait four instants before to start consuming the
values. At the fifth instant, f can consume the first five values and then continue
to read arrays by slides of five elements every five instants.

The main contribution of this paper is thus to introduce those clock envelopes
and to study their algebraic properties. The paper is organized as follows. In
Section 2, we remind the basic properties of infinite binary words. In Section 3,
we introduce the clock envelopes as sets of clocks. Section 4 presents related
work and we conclude in Section 5.

For lack of space, proofs are not given or only sketched. Proofs and comple-
ments are available at www.lri.fr/∼plateau/aplas08.

2 Clocks as Infinite Binary Words

A subtyping relation can be checked only if clock types are expressed with re-
spect to the same clock variable. Intuitively, this is because sampling is always
relative to a clock (ck on c is relative to ck). In that case the subtyping relation
corresponds to a relation on boolean sequences: α on c <: α on c′ ⇔ c <: c′.

In this section, we present infinite binary words and a boolean operation on

for them such that (ck on c1) on c2 = ck on (c1 on c2). We then present the
subtyping relation on these words. As we mainly manipulate the boolean stream
part c of a clock type we will also call it clock.

2.1 Definitions

A clock can be an infinite binary word or a composition of those. Identifying
names to their values, clocks have the following grammar:

c ::= w | not w | c on c
w ::= 0.w | 1.w

not w is the negation of w, c1 on c2 is the sampled clock and w an infinite
binary word. In infinite binary words, a 1 denotes the presence of a value on the
flow, and a 0 the absence of value.

Remark 1. We will consider that in the clocks we manipulate, the maximal dis-
tance between two successive 1s is bounded (in particular, every word contains
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.

Fig. 1. Chronograms representing words w1 = (11010), w2 = 0(00111), w3 = (00100).

an infinity of 1s). So, the not operator cannot be applied on a clock that does
not contain an infinity of 0s.

Notations: The concatenation of a finite binary word u and a binary word w
is written u.w. We will sometimes note 0

n the concatenation of n values 0 and
1

n of n values 1. w[i] is the element at index i of w, w[0..i] is the prefix of
w of length i + 1, and [w]j the position of the jth

1 in w. It is defined by:
[1.w]1 = 0, [1.w]j+1 = 1 + [w]j , [0d.w]j = d + [w]j , with d ∈ N, j ∈ N∗.4 5 Note
that ∀j ≥ 1, [w]j < [w]j+1. Finally, the number of 1s contained in a finite binary
word v is denoted by |v|1.

We will call periodic binary words and we will write u(v), the words consisting
of a finite prefix u, followed by the infinite repetition of a finite binary word v.

Fig. 1 shows some examples of infinite binary words, represented by chrono-
grams. The discrete function fw(i) = |w[0..i]|1 associates to each instant i the
number of 1 seen in w since the beginning. A rising edge at instant i means
that w[i] = 1. If a flow is produced (resp. consumed) at clock w, then a token is
produced (resp. consumed) at each rising edge of the chronogram.

Formally, the on operator is defined by:

1.w1 on 1.w2 = 1.(w1 on w2)
1.w1 on 0.w2 = 0.(w1 on w2)
0.w1 on w2 = 0.(w1 on w2)

The elements of w1 on w2 correspond to the elements of w2, when w2 is
traversed at the rhythm of the 1s of w1. So if the jth

1 of w2 is the ith element
of w2, we know that the jth

1 of w1 on w2 is at the index of the ith 1 in w1.

Proposition 1. [w1 on w2]j = [w1][w2]j+1

Corollary 1 (on associativity). (w1 on w2) on w3 = w1 on (w2 on w3)

4 N is the set of natural numbers and N∗ is the set of positive natural numbers.
5 Note that for readability reasons and contrary to previous works, indexes of elements

of w begin at 0. It involves a shift in some formulas, w.r.t those of [10].



2.2 Buffer Size

The minimal buffer size needed to communicate from an output with clock type
α on w to an input with clock type α on w′ is the maximum amount of data
produced and not yet consumed in the course of the execution:

size(w, w′) = maxi∈N(|w[0..i]|1 − |w′[0..i]|1)

Note that if the minimum of this difference is negative, then there will be
at least one read in an empty buffer. Indeed, when a negative value is reached,
more data have been consumed than produced.

In chronograms, the buffer size to communicate from α on w to α on w′

is equal to the maximal difference fw(i) − fw′(i). For example, in Fig. 1, the
maximal amount of data produced and not yet consumed during the communi-
cation from α on w1 to α on w2 is 2, reached for the first time at instant 1. The
amount of data to store during the communication from α on w1 to α on w3

grows infinitely.

2.3 Subtyping Relation

The subtyping relation is verified if the tokens are always produced before they
are expected (precedence relation), and at a bounded distance of the instant
they are consumed (synchronizability relation).

Definition 1 (precedence).
We say that w1 precedes w2 and we write w1 � w2 iff ∀j ≥ 1, [w1]j ≤ [w2]j.

A word w1 precedes a word w2 if the jth
1 of w1 always comes before (or at

the same time as) the jth
1 of w2. It permits to verify that the causality relation

between flows is preserved, i.e. that the producer writes its outputs in the buffer
before the consumer needs it.

In Fig. 1, the edges of the chronogram of w1 occur earlier than the corre-
sponding ones of w2 and w3, so w1 � w2 and w1 � w3 but chronograms of w2

and w3 are interleaved, so w2 � w3 and w3 � w2.
We can define the supremum ⊔ and the infimum ⊓ of a set of infinite binary

words W = {w1, ..., wn} for the � relation:
∀j ≥ 1, [⊔W ]j = max([w1]j , ..., [wn]j) and [⊓W ]j = min([w1]j , ..., [wn]j).
For instance, in Fig. 1, w2 ⊔ w3 is equal to w2 until instant 3 and then equal
to w3.
For all w ∈ W , ⊓W � w � ⊔W .

Definition 2 (synchronizability). We say that two words w1 and w2 are
synchronizable and we write w1 ⊲⊳ w2 iff there exists d1, d2 ∈ N such that
w1 � 0

d2 .w2 and w2 � 0
d1 .w1.

By definition of �, it ensures that the jth
1 of w1 is at a bounded distance

of the jth
1 of w2:

Proposition 2. w1 ⊲⊳ w2 ⇔ ∃d1, d2 ∈ N, ∀j ≥ 1,−d1 ≤ [w1]j − [w2]j ≤ d2



For instance, in Fig. 1, w1 ⊲⊳ w2, but w1 6⊲⊳ w3 and w2 6⊲⊳ w3. When the producer
of a flow communicates with the consumer through a buffer, it allows to verify
that there exists a correct size for this buffer such that there will never be an
overflow. Indeed, if −d1 ≤ [w1]j − [w2]j ≤ d2, the jth

1 of w2 occurs at worst d1

instants after the jth
1 of w1. So when it occurs in w2, at worst d1 supplementary

1s have occurred in w1, and the size maxi |w1[0..i]|1−|w2[0..i]|1 is lower or equal
to d1.

Definition 3 (subtyping). The subtyping relation, written <: is the conjunc-

tion of precedence and synchronizability: w1 <: w2
def
= w1 � w2 ∧ w1 ⊲⊳ w2.

In fact, if the tokens are always produced before they are needed, and at a
bounded distance of the time they are consumed, then the communication can
be made synchronous by the insertion of a bounded size buffer. For instance, in
Fig. 1, w1 <: w2.

Remark 2. By Def. of � and ⊲⊳, w1 <: w2 ⇔ ∃d ∈ N, ∀j ≥ 1, 0 ≤ [w2]j−[w1]j ≤ d

The on operator is monotonous with respect to the <: relation:

Proposition 3 (on monotonicity).
w1 <: w2 ∧ w′

1 <: w′
2 ⇒ w1 on w′

1 <: w2 on w′
2

All definitions of this section can be lifted to clocks (c) by computation of
not and on operators.

3 Abstraction of Clocks

Abstracting an infinite binary word w consists in keeping only (1) the average
distance T between two 1s in w (the asymptotic rate of 1s of w is 1

T
) and

(2) two phases d and D that bound indexes of 1s in w, with respect to the
perfect repartition of one 1 every T instants. We note this abstraction [d, D] (T )
and we call it envelope.

Abstract clocks can be envelopes or compositions of those. They are defined
by the following grammar:6

ac ::= a | not∼ a | ac on∼ ac
a ::= [d, D] (T ) with d, D, T ∈ Q, D ≥ 0 and T ≥ 1

In this section, we explain what set of words is represented by an envelope
and we show that this language is recognizable by a finite automaton. Then we
define on

∼ and not
∼ operators that can be computed efficiently, allowing to

always reduce an abstract clock to an envelope. Finally, we show that relations
presented in Sec. 2 can be easily checked, and that buffer size can be efficiently
computed.

6 Q is the set of rational numbers.
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.
For instance, 5

3
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3
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3
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is empty: there is no valid
discrete index for the third 1.

3.1 Abstraction of Infinite Binary Words

An envelope [d, D] (T ), with d, D, T ∈ Q, D ≥ 0, T ≥ 1, represents the following
set of infinite binary words:

Definition 4 (concretization).

concr ([d, D] (T ))
def
= {w, ∀j ≥ 0, T × j + d ≤ [w]j+1 ≤ T × j + D}

D will always be positive or null, otherwise we would have [w]1 < 0. A T < 1
would represent words that have in average more that one 1 per instant, which
are not considered (as mentioned in Sec. 2.1 ∀j ≥ 1, [w]j < [w]j+1).

In 2D-chronograms, the envelope [d, D] (T ) can be represented by two lines
that bound the rising edges starting points of the words it contains. The equa-
tions of these lines are i−d

T
and i−D

T
. For instance, in Fig. 2 we can see the word

w2 = 0(00111) and a2 =
[

5
3 , 9

3

] (

5
3

)

, which is an abstraction of w2.
The lines can be interpreted as “ideal clocks” such that from instant 5

3 (resp.
9
3 ), a tick occurs every 5

3 of instant (i.e. each time the line crosses a y-axis
discrete value). The word w2 is bounded by these two ideal clocks (see the 1D-
chronograms of Fig. 2).

Notice that every word staying at a bounded distance of its asymptotic rate
can be abstracted by an envelope.



An envelope can always be normalized into the form
[

k
n
, K

n

] (

l
n

)

with gcd(l, n) =
1 without changing the concretization set:

Proposition 4 (normal form).

∀a = [d, D]
(

l′

n′

)

, ∃k ∈ Z, K ∈ N, l ∈ N, n ∈ N∗ with gcd(l, n) = 1

such that concr
([

k
n
, K

n

] (

l
n

))

= concr(a).

l = l′

gcd(l′,n′) , n = n′

gcd(l′,n′) , k = ⌈d × n⌉ and K = ⌊D × n⌋.7

The concretization set is empty if there exists a j ≥ 0 such that there is no
natural number between the bounds of the (j + 1)

th
1. Actually, in this case,

there is no valid index for the (j + 1)
th

1.

Proposition 5 (empty concretization set).
Let a = [d, D] (T ) be an envelope.
concr(a) = ∅ ⇔ ∃j ≥ 0, {m ∈ N, T × j + d ≤ m ≤ T × j + D} = ∅

⇔ ∃j ≥ 0, ⌈T × j + d⌉ > ⌊T × j + D⌋

For instance, the concretization set of
[

0, 1
3

] (

5
3

)

is empty. Indeed, we can see
in Fig. 3 that there is no valid index for the third 1, that must occur between
the instants 5

3 × 2 + 0 and 5
3 × 2 + 1

3 .
The following proposition gives a sufficient condition on an envelope a, to

ensure that its concretization set is not empty. If a is in normal form, this
condition is necessary.

Proposition 6 (non-emptiness test).
Let a =

[

k
n
, K

n

] (

l
n

)

be an envelope. K
n
− k

n
≥ 1 − 1

n
⇒ concr(a) 6= ∅

Additionally, if a is in normal form (i.e. gcd(l, n) = 1), then the converse holds.

A length 1− 1
n

for the interval [ k
n
, K

n
] ensures that for all i, there is a natural

number between the bounds of the jth
1 index. If furthermore the envelope is in

normal form, then this length is the minimal length such that the concretization
set is not empty.

The concretization set contains one and only one element iff for all j there is
exactly one natural number between the lower bound and the upper bound, i.e.
iff ∀j, ⌈T × j + d⌉ = ⌊T × j + D⌋. Indeed, in that case there is only one choice
for the index of each 1 of the binary word. This occurs when D − d = 1 − 1

n
,

and only when this condition is verified in the case of abstract clocks in normal
form. For instance, in Fig. 2, w1 is the unique element in the concretization set
of a1. Indeed, a1 =

[

− 2
3 , 0

] (

5
3

)

and 0 − (− 2
3 ) = 1 − 1

3 . We can check on the
2D-chronogram that for each j on the y-axis, there is exactly one valid index i
in the envelope.

Otherwise, the concretization set is infinite. In fact, in that case there are
several integers between the bounds of certain indexes, thus several choices for
them. Then, it is the case for an infinity of indexes. This occurs iff ∀j ≥ 0, ⌈T×j+
d⌉ ≤ ⌊T ×j+D⌋(non-emptiness condition) and ∃j ≥ 0, ⌈T ×j+d⌉ < ⌊T ×j+D⌋
(several choices for at most one index). This occurs when D − d > 1 − 1

n
, and

7 ⌈x⌉ (resp. ⌊x⌋) is the notation for the ceiling (resp. floor) function.



only when this condition is verified in the case of envelopes in normal form. For
instance in Fig. 2, if we consider the concretization set of a2, we note that the
fourth edge can occur at index 8 (as in w2) or 7.

Remark 3. The chronogram never passes on the right of the envelope. Indeed,
passing on the right of it leads to no more allow rising edges in the word, and
thus to have clocks with a finite number of presence instants, which are not
considered in this work.

Let us consider the concretization set of a simpler example: a4 = [2, 3] (2).
concr(a4) = {02(10), 02(1001), 02(0110), 02(01), 02(011001), 0010(01), . . .}
To simplify the presentation, we only give here some periodic elements of the
concretization set, but it contains an infinity of periodic and non-periodic infinite
binary words, all of the form 00(10 + 01)∗. We show in Sec. 3.2 a complete
representation of the concretization sets.

The infimum and supremum of the concretization set (with respect to the �
relation) are periodic binary words:

Proposition 7 (⊓, ⊔). Let a = [d, D] (T ) with concr(a) 6= ∅.
winf = ⊓(concr(a)) ⇔ ∀j ≥ 0, [winf ]j+1 = ⌈T × j + d⌉
wsup = ⊔(concr(a)) ⇔ ∀j ≥ 0, [wsup]j+1 = ⌊T × j + D⌋

If T = l
n
, then the periodic pattern will be of length l and will contain n ones.

Proof. The formulas come from the definitions of ⊓ and ⊔. Let T = l
n
. The

word winf is periodic because for all j ≥ 0, [winf ]j+n+1 = ⌈ l
n
× (j + n) + d⌉ =

⌈ l
n
× j + d⌉ + l, so ∀j ≥ n, [winf ]j+1 = [winf ]j+1−n + l. ⊓⊔

For instance in Fig. 2, w′
2 = 00(10110) is the infimum of the concretization

set of a2, the rising edges occur as soon as possible, and w′′
2 = 00(01101) is the

supremum, the rising edges occur as late as possible. As we illustrate in Sec. 3.2,
these two particular clocks can be efficiently computed with a synchronous circuit
with linear size (w.r.t max(d, D, T )) instead of the size of the period and they
are perfectly balanced.

We have a partial order relation on abstract clocks:

Definition 5 (order relation ⊑∼). ac1 ⊑∼ ac2
def
= concr(ac1) ⊆ concr(ac2)

It can be tested efficiently:

Proposition 8 (⊑∼ test). Let a1 = [d1, D1] (T1) and a2 = [d2, D2] (T2) be
envelopes such that concr(a1) 6= ∅ and concr(a2) 6= ∅. Then,

T1 = T2 and [d1, D1] ⊆ [d2, D2] ⇒ a1 ⊑∼ a2

Additionally, if a1 and a2 are in normal form, then the converse holds.

If we interpret this on the 2D-chronograms, a1 ⊑∼ a2 if the lines representing
the envelope of a1 are between the ones of a2.

Proof (Intuition). To stay between the lines of a2, the lines of a1 must have the
same slope as the ones of a2, thus 1

T2

= 1
T1

. Concerning the delays, the proof
that the converse holds relies on the fact that a1 and a2 are in normal form. ⊓⊔

We will write abs(w) any function such that abs(w) = a ⇒ w ∈ concr(a).



3.2 Abstract Clocks as Automata

We have seen that the concretization set of an abstract clock can be empty,
contain a unique element or an infinity of elements. It can be represented by a
deterministic finite automaton recognizing all binary words of the set, and only
them. We first define an infinite automaton such that the language recognized is
the concretization set, then we show that it is equivalent to a finite automaton.

Definition 6 (automaton associated to an envelope).
Let a = [d, D] (T ) be an envelope. The infinite automaton associated to a is
Ia = 〈Q, Σ, δ, qo〉 with:

– The set of states Q is a set of pairs (i, j) ∈ N2

– The initial state qo is (0, 0)
– The alphabet Σ is {0, 1}
– The transition function δ is defined by:

δ(1, (i, j)) = (i + 1, j + 1) if T × j + d ≤ i ≤ T × j + D
δ(0, (i, j)) = (i + 1, j) if i + 1 ≤ T × j + D
It is undefined otherwise.

Proposition 9. Let a = [d, D] (T ) be an envelope, and Ia its associated infinite
automaton. The language recognized by Ia is concr(a).

The labels of the states correspond to coordinates in 2D-chronograms. The
value i is the index of the current instant, and j is the number of 1s seen before
the current instant. A transition from (i, j) to (i+1, j+1) corresponds to a rising

edge starting at (i, j), i.e. to the occurrence of the (j + 1)
th

1 at index i. It can
be taken if (i, j) is between the bounding lines, i.e. if T × j + d ≤ i ≤ T × j + D.
A transition from (i, j) to (i+1, j) corresponds to a flat edge in the chronogram.
It can be taken if the destination state (i + 1, j) is not on the right-side of the
bounding lines (see Rem. 3), i.e. if i+1 ≤ T × j +D (it ensures that i is not the

last valid index for the (j + 1)
th

1).
Let us now define the set of reachable states. A state (i, j) is reachable if the

two following conditions are verified: (1) if j > 0, it is possible that the jth
1 has

occurred before i, i.e. the earliest possible index for the jth
1 (T × (j − 1)+ d) is

smaller or equal to i − 1, and (2) it is still possible for the (j + 1)
th

1 to occur,

i.e. i is less or equal to the latest possible index for the (j + 1)
th

1 (T × j + D).
So we can restrict the set of states to the set of reachable states which is
Q = {(i, j) ∈ N2, (j = 0 or d − T + 1 ≤ i − T × j) and (i − T × j ≤ D)}.
This infinite automaton can be transformed into a finite one, by noticing that
the transition function only depends on the value of i− T × j. We thus identify
all states (i, j), (i′, j′) such that i − T × j = i′ − T × j′. As states are such that
j = 0 and i ≤ D, or d − T + 1 ≤ i − T × j ≤ D, the set of states obtained
is finite. The transition function of the finite automaton Aa equivalent to the
infinite automaton Ia is:
δ(1, (i, j)) = nf (i + 1, j + 1) if T × j + d ≤ i ≤ T × j + D
δ(0, (i, j)) = nf (i + 1, j) if i + 1 ≤ T × j + D

with T = l
n
, nf (i, j) = (i−x×l, j−x×n), x = max{x ∈ N, (x×l ≤ i)∧(x×n ≤ j)}
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Fig. 4. Automata recognizing the clocks of concr(a2) and concr(a4).

We thus are able to represent infinite concretization sets by finite automata.
Fig. 4 shows the automaton associated to a2 =

[

5
3 , 9

3

] (

5
3

)

of Fig. 2, and to
a4 = [2, 3] (2).

The infimum of the concretization set (with respect to �) corresponds to
the path taking in priority the 1-transitions, and the supremum corresponds to
the path taking in priority the 0-transitions. All paths have the same asymp-
totic rate of 1s (e.g. choosing 1-transitions first only delays the corresponding
0-transitions).

It is interesting because it allows to check dynamically or statically (with
model checking) that a clock is in the envelope specified by the user, and throw
an error message if it’s not the case. Note that it is not necessary to build
explicitly the automaton. Here is a Lustre program that checks that a clock clk

is in an envelope
[

k
n
, K

n

] (

l
n

)

.

node norm(const l, n: int; i, j: int) returns (ni, nj: int);

let

(ni, nj) = if i >= l and j >= n then (i - l, j - n) else (i,j);

tel

node check(const k, K, l, n: int; clk: bool) returns (ok: bool);

var i, j, v: int;

let

(i,j) = (0,0) -> pre norm(l, n, i+1, if clk then j + 1 else j);

v = i * n - j * l;

ok = if clk then (k <= v and v <= K) else v <= K - n;

tel

The function norm incrementally computes the normal form of the state
(i,j) using l and n. The function check maintains the value of the current
state. It is initialized to (0,0), then at each instant, i is incremented, and j is
incremented if the clock clk was true at the preceding instant. The normaliza-
tion function is applied to the new state. Then, if the current value of clk is
true, we check that a 1-transition is allowed, and in the contrary case, we check
that a 0-transition is allowed.
The same principle allows to generate clocks within a certain abstraction, for
simulation purposes. To generate the earliest clock we take a 1-transition each
time it is allowed.



node early(const k, K, l, n: int) returns (clk: bool);

var i, j, v: int;

let

(i, j) = (0,0) -> pre norm(l, n, i+1, if clk then j + 1 else j);

v = i * n - j * l;

clk = (k <= v and v <= K);

tel

Similarly, to generate the latest clock we take a 1-transition each time a
0-transition is not allowed.

3.3 Abstract Operators

We define in this section operators on envelopes, corresponding to operators on
words defined in Sec. 2. Computing these operators in the abstract domain is
in constant time and memory. Moreover, they are correct, i.e. the result of the
operation in the abstract domain contains the result of the operation in the
concrete one.

Definition 7 (on∼ operator).
We define an abstract on operator, written on

∼:

[d1, D1] (T1) on
∼ [d2, D2] (T2) = [d12, D12] (T12)

with: T12 = T1 × T2, d12 = d1 + d2 × T1, D12 = D1 + D2 × T1.

We have seen in Sec. 2 that the elements of w1 on w2 are the elements of w2,
traversed at the pace of the 1s of w1. So if the distance between the 1s of w2

is on average equal to T2, and the distance between those of w1 is on average
equal to T1, then the distance between the 1s of w1 on w2 is on average equal
to T2 × T1. Sampling w1 with w2 keeps intact the delays of w1, and adds to it
the delay of w2 multiplied by T1, because w2 is traversed at the pace T1.
Thus, this abstract operator has the expected property: for all words of the
respective concretization sets, the result of the concrete on operation is in the
concretization set of the result of the abstract operation.

Proposition 10.
∀w1 ∈ concr(a1), ∀w2 ∈ concr(a2), w1 on w2 ∈ concr(a1 on

∼ a2)

Remark 4. The fact that a1 and a2 are in normal form does not necessary lead
to a result a3 = a1 on

∼ a2 in normal form.

Definition 8 (not∼ operator).
We define an abstract not operator, written not

∼:

not
∼ ([d, D] (T )) =

[

−D+1
T−1 , max

(

0, 1 − d
T−1

)] (

T
T−1

)

with T > 1.

The intuition behind this formula is the following. Let a = [d, D]
(

l
n

)

and w ∈
concr(a). It means that over l elements of the word, there are on average n 1s in
w. So over l instants, there are on average (l−n) 0s in w, thus (l−n) 1s in not w.



The average distance between two 1s in not w is l
l−n

, i.e. T
T−1 . Concerning the

delays, the maximal amount of 0s that appear before the first 1 in w is defined by
D, and the maximal amount of 1s that appear before the first 0 in w is function
of d. Thus it is not surprising that in the negation of w, the lower bound of the
interval is function of D, and the upper bound of the interval is function of d.

This abstract operator is correct:

Proposition 11. ∀w ∈ concr(a), not w ∈ concr(not∼ a)

Remark 5. If a is in normal form, then by definition of the not
∼ operator,

a′ = not
∼ a is also in normal form.

Remark 6. Applying the abstract negation looses some information about the
abstracted word: a ⊑∼

not
∼
not

∼ a. It is due to the fact that the abstraction can
represent words that will eventually begin with d 0s, by setting the minimum of
the interval to d, but cannot represent their negation without loss of information,
i.e. words that will eventually begin with d 1s (D cannot be negative).

In fact, only the first negation looses information: not∼ a = not
∼
not

∼
not

∼ a.
For example, if a = [2, 3]

(

5
3

)

then not
∼ a = [−3, 0]

(

5
2

)

, not∼ not
∼ a =

[

2
3 , 3

] (

5
3

)

and not
∼
not

∼
not

∼ a = [−3, 0]
(

5
2

)

= not
∼ a.

3.4 Abstraction of a Clock

Given an abstraction of words (abs(w)), we can compute the abstraction of clocks
composed by these words. It is recursively defined as follows:

Definition 9 (clocks abstraction function).

abs(not w)
def
= not

∼ abs(w)

abs(c1 on c2)
def
= abs(c1) on

∼ abs(c2)

This abstraction of clocks is correct:

Proposition 12. c ∈ concr(abs(c))

3.5 Abstract Relations

We now define the relations on envelopes, corresponding to the relations on words
defined in Sec. 2. A relation is verified in the abstract domain if it is verified for
all couple of words in the respective concretization sets.

Definition 10 (abstract synchronizability).

ac1 ⊲⊳∼ ac2
def
= ∀w1 ∈ concr(ac1), w2 ∈ concr(ac2), w1 ⊲⊳ w2

We are able to check the synchronizability on envelopes:

Proposition 13 (synchronizability test).
[d1, D1] (T1) ⊲⊳∼ [d2, D2] (T2) ⇔ T1 = T2

Indeed, if two clocks stay at a bounded distance of there asymptotic rate, then
the 1s of the first clock stay at a bounded distance of the 1s of the second clock
iff their rates are equal.



Remark 7. A corollary of this proposition is that ⊲⊳∼ is reflexive, so every ab-
stract clock is synchronizable with itself. That means that in a concretization
set, all couple of words are synchronizable.

The abstraction contains all necessary information to exactly check the synchro-
nizability of two clocks on their abstraction:

Proposition 14. abs(c1) ⊲⊳∼ abs(c2) ⇔ c1 ⊲⊳ c2

Proof. From Rem. 7 and by transitivity of ⊲⊳. ⊓⊔

Definition 11 (abstract precedence).

ac1 �∼ ac2
def
= ∀w1 ∈ concr(ac1), w2 ∈ concr(ac2), w1 � w2

The precedence on abstract clocks is verified iff the 1s of the latest concrete
clock in the first envelope arrive before or at the same instant as the 1s of the
earliest concrete clock in the second envelope:

Proposition 15.
Let a1 = [d1, D1] (T1) and a2 = [d2, D2] (T2).

a1 �∼ a2 ⇔ ⊔(concr(a1)) � ⊓(concr(a2))
⇔ ∀j ≥ 0, [⊔(concr(a1))]j+1 ≤ [⊓(concr(a2))]j+1

⇔ ∀j ≥ 0, ⌊T1 × j + D1⌋ ≤ ⌈T2 × j + d2⌉

When abstract clocks are synchronizable, Prop. 15 can be checked by a suf-
ficient condition. If abstract clocks are in normal form, this condition is also
necessary.

Proposition 16 (precedence test).
Let a1 =

[

k1

n
, K1

n

] (

l
n

)

and a2 =
[

k2

n
, K2

n

] (

l
n

)

be two envelopes. Then:
K1

n
− k2

n
≤ 1 − 1

n
⇒ a1 �∼ a2

Additionally, the converse holds if a1 and a2 are in normal form (i.e. here
gcd(l, n) = 1).

Proof (Intuition). An overlap of less than 1 − 1
n

between [k1

n
, K1

n
] and [k2

n
, K2

n
]

ensures that ∀j ≥ 0, ⌊ l
n
× j + K1

n
⌋ ≤ ⌈ l

n
× j + k2

n
⌉. If furthermore a1 and a2 are

in normal form, then this length is the maximal overlap such that this property
is verified. ⊓⊔

To check the precedence relation between clocks on their abstraction, the lack
of information about the positions of the 1s enforces us to consider the worst
case of concretization. This verification on the abstraction is thus correct, but
not complete with respect to the verification on the concrete clocks:

Proposition 17. abs(c1) �
∼ abs(c2) ⇒ c1 � c2

We now define the subtyping relation on envelopes:

Definition 12 (abstract subtyping relation).

ac1 <:∼ ac2
def
= ∀w1 ∈ concr(ac1), w2 ∈ concr(ac2), w1 <: w2

Proposition 18. a1 <:∼ a2 ⇔ a1 ⊲⊳∼ a2 ∧ a1 �∼ a2



3.6 Computing Buffers Size

To synchronize producers and consumers, buffers are inserted. The question
addressed here is the buffer size needed to store a flow produced on a clock of
abstraction ac1, and consumed on a clock of abstraction ac2, with ac1 <:∼ ac2.

Proposition 19. Let a1 =
[

k1

n
, K1

n

] (

l
n

)

and a2 =
[

k2

n
, K2

n

] (

l
n

)

be two envelopes
such that a1 <:∼ a2. The minimal buffer needed to be able to communicate from
any clock of abstraction a1 to any clock of abstraction a2 is of size:

size(a1, a2) =
⌈

K2−(n−1)−k1

l

⌉

Proof (Intuition). The size of buffer needed to communicate from any clock of
a1 to any clock of a2 is the size needed to communicate from the earliest clock
of a1 (⊓(concr(a1))) to the latest clock of a2 (⊔(concr(a2))). The formula comes
from the definition of the calculus of size on concrete clocks and the formulas
of |w[0..i]|1 for the infimum and supremum of the concretization sets. ⊓⊔

4 Discussion and Related Work

Back to Periodic Clocks. To be able to check the subtyping relation and compute
buffer sizes, the exclusive use of periodic binary words has been proposed in [10].8

The periodic behavior of those words allows to statically compute the on

and not operators (definitions become algorithms). In the same way, it allows
to check the precedence relation (if it is verified until a certain rank, it will be
verified forever) and the synchronizability relation which is equivalent to the
equality of rates of 1s in the periodic behavior. Finally, the definition of the
minimal buffers size also becomes an algorithm.

However, it can be interesting to avoid exact computations on periodic words
because of their cost: for instance, the on operation needs a complete traversal
of elements of the periods we compose. Moreover if operands have not a com-
patible size, the result is much longer that the operands. In contexts like video
applications, this cost is a problem because the periods length can be huge: in
the example cited in [10], a classical downscaler, the output clock has a periodic
behavior of length 17280. Adding vertical blanking periods leads to a periodic
behavior of size 2073600 (the size of a high definition frame). Computing on
abstract values gives a solution to this drawback.

Notice that when periodic clocks are used, the abstraction of words can be
automatically computed:

Proposition 20 (periodic binary words abstraction function).

Let w = u(v) be an infinite binary word. abs(w) = [d, D] (T ) with T = |v|
|v|1

,

d = minj=0..(|u|1+|v|1−1)([w]j+1−T×j), D = maxj=0..(|u|1+|v|1−1)([w]j+1−T×j).

For example, the abstraction of the downscaler’s output clock is:
abs((10100100) on 0

3600(1) on (1720
0
720

1
720

0
720

0
720

1
720

0
720

0
720

1
720))

=
[

− 2
3 , 0

] (

8
3

)

on
∼ [3600, 3600] (1) on∼

[

−4315
4 , 3600

4

] (

9
4

)

= [6723, 12000] (6)

8 Those periodic binary words have been used since then to specify statically computed
periodic schedules for Latency Insensitive Design [18].



A Particular Case of Periodic Clocks. Affine clocks, presented in [19, 20], are a
subset of periodic clocks of the form 0

φ(10
l−1). They have been used to extend

the clock calculus of the synchronous data-flow language Signal [21], in the con-
text of hardware/software co-design. Thanks to the simple regular form of those
clocks, the extended clock calculus of Signal has a more powerful unification
algorithm.

In the case of affine clocks, the abstraction mechanism presented in Sec. 3
is correct and complete. Abstracting a word is trivial: abs(0φ(10

l−1)) = [φ, φ] (l)
and doesn’t loose any information. Indeed, the concretization set contains only
one element (as specified in Sec. 3, φ−φ = 1− 1

1 ). Moreover, abs(c) on∼ abs(c′)
has a singleton concretization set: c on c′, and is in normal form. Clocks being
in normal form and concretization sets being singletons, testing precedence re-
lations on the abstraction is equivalent to testing them on the concrete clocks.
As it is also the case for the synchronizability relation, we have
abs(c) <:∼ abs(c′) ⇔ c <: c′.

5 Conclusion

This paper generalizes the classical notion of clocks in synchronous data-flow
languages by allowing to deal with sets of clocks. This is based on the introduc-
tion of clock envelopes which define intervals of clocks up to bounded buffering.
We have focused on the algebraic properties of those clocks and illustrated their
expressive power. The motivation behind them is essentially pragmatic and gives
some answer to the need to model jittering phenomena, execution time and more
generally communication through bounded buffering. The real novelty is to deal
with quantitative properties during the clock calculus instead of simply strict
synchrony as done usually. We have experimented the use of these clocks on
several examples (e.g., video picture-and-picture or filters in software defined
radio). The extension of the existing clock calculus of Lucid Synchrone [22]
compiler is under way.

Acknowledgements. Pascal Raymond showed us an unexpected (and very ele-
gant) use of the Lustre compiler to generate clocks within an envelope. We also
thank the anonymous reviewers for their helpful comments. The figures have
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