
Clock Typing of n-Synchronous Programs

Louis Mandel Florence Plateau Marc Pouzet
Université Paris-Sud 11 and INRIA Saclay

Synchronous functional languages such as Lustre or Lucid Synchrone define a restricted class of Kahn
Process Networks which can be executed without buffers. This condition is ensured by a dedicated type
system, the clock calculus. Every stream is associated to a clock defining the instants where the stream is
present. Every expression must in turn verify a type constraint such as:

H ` e1 : ck1 | C1 H ` e2 : ck2 | C2

H ` e1 + e2 : ck3 | {ck1 === ck2 === ck3} ∪ C1 ∪ C2

which states that under the typing environment H, e1 + e2 has clock ck3 if e1 has clock ck1, e2 has clock ck2

and ck1 === ck2 === ck3. Constraints C1 and C2 are gathered during typing. Synchronous languages only
consider equality constraints. An expression is well typed if its actual clock equals its expected clock and
this means that no buffer will be necessary to store or delay it. n-Synchrony [1] relaxes these constraints by
allowing to compose streams whose clocks are not equal but can be synchronized through the introduction
of bounded buffers. It is obtained by extending the clock calculus with a subtyping rule which defines points
where a buffer should be inserted. If a stream x with clock ck can be consumed later on a clock ck′ using a
bounded buffer, we shall say that ck is a subtype of ck′ and we shall write ck <:<:<: ck′.

H ` e : ck | C

H ` buffer(e) : ck′ | {ck <:<:<: ck′} ∪ C

In term of sequence of values, buffer(e) is equivalent to e but it may delay its input using a bounded buffer.
The purpose of the extended clock calculus is to compute this bound. The designer can write buffer(e)
everywhere in the program as potential places where a buffer can be inserted. Then, the clock calculus
automatically computes bounds for these buffers.

n-Synchrony can be defined for any language of clocks provided we are able to test equality (ck1 === ck2),
subtyping (ck1 <:<:<: ck2) and size(ck1, ck2) to compute the buffer to synchronize ck1 and ck2. An interesting
case is the one where clocks are restricted to be ultimately periodic binary sequences for which all the above
properties are decidable.

Last year, we presented how to abstract clocks in order to check the subtyping relation in an efficient
manner [2]. This year, we shall present Lucy-n, the first implementation of a n-synchronous programming
language. In this talk, we will describe the language as an extension of Lustre. Then, we will explain its clock
calculus and the constraints resolution algorithm. Finally, we will illustrate it on a multimedia application.

References

[1] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N -Synchronous Kahn
Networks: a Relaxed Model of Synchrony for Real-Time Systems. In ACM International Conference on
Principles of Programming Languages, January 2006.

[2] A. Cohen, L. Mandel, F. Plateau, and M. Pouzet. Relaxing synchronous composition with clock abstrac-
tion. In Hardware Design using Functional languages, pages 35–52, York, UK, 2009.

