
WiP. A Co-Iterative Synchronous Interpreter
Guillaume Baudart,∗ Jean-Louis Colaço,† Louis Mandel,∗ Michael Mendler,‡ Marc Pouzet§

∗IBM Research, USA, †ANSYS SBU, France, ‡Otto-Friedrich-Universität Bamberg, Germany
§École normale supérieure, PSL Research University, France

Abstract—Synchronous languages are routinely used to pro-
gram industrial embedded controllers. These domain specific
languages offer a mathematically precise semantics close to the
block diagram formalism used by engineers, and reliable code
generation. The semantics of these languages is typically defined
on a kernel language. High-level constructs are then compiled
into this kernel via a series of analyses and source-to-source
transformations.

In this paper, we describe a direct executable co-iterative
semantics for dataflow synchronous programs that is the basis
of an interpreter for a language that mixes data-flow equations
and hierarchical automata à la Scade 6. This semantics can be
used as a reference to prove properties of a program, test the
compiled code, or experiment with language extensions at the
specification level.

I. INTRODUCTION

Synchronous dataflow languages were introduced to ease the
design of embedded systems. In these languages, computations
are paced on a discrete global clock. A programmer writes high
level specifications in the form of stream functions specifying
variable values at each step.

Synchronous languages offer a mathematically precise se-
mantics reminiscent of block diagrams, a popular formalism
to describe control systems; specialized test and verification
tools [1]; and optimized code generation [2]. Industrial syn-
chronous languages such as Scade [3] are now routinely used
to program safety critical embedded controllers, e.g., train
braking system, or aircraft fly-by-wire.

Starting with the seminal Lustre paper [4] numerous formal
semantics for synchronous dataflow languages have been
proposed. However, these semantics either focus on a small
language kernel and define high-level constructs, e.g., automata
by compilation to the kernel [5], [6]; or the semantics of the full
language is defined by predicates that are not executable [7],
[8]. Can we define a direct and executable semantics for a full
language that also gives a reference interpreter?

In this paper we consider a synchronous data-flow language
where, as in Scade, data-flow equations and hierarchical au-
tomata can be arbitrarily mixed (Section II). We propose a direct
denotational semantics based on a co-iteration interpretation
of streams [9], [10]: a stream is characterized by an initial
state and a transition function (Section III). We then discuss
the future directions and potential benefits (Section IV).

Our work is closely related to [10]. However, we propose a
deep embedding of the language that does not rely on the host
language semantics. The semantics is thus simpler, and closer to
the specifications. Compared to [11], the semantics includes for
the first time the treatment of Scade like hierarchical automata.

1 let node count_mod (n) returns (cpt)
2 cpt = 0 -> (pre cpt + 1) mod n
3

4 let node edge (b) returns (o)
5 o = b && (true -> not pre b)
6

7 let node chrono (stst, rst)
8 returns (s init 0, m init 0)
9 reset

10 automaton
11 | START -> local d
12 do d = count_mod 100
13 and if edge (d = 0) then s = count_mod 60
14 and if edge (s = 0) then m = count_mod 60
15 unless stst continue STOP
16 | STOP ->
17 do
18 unless stst continue START
19 end
20 every rst

Fig. 1. A simple chronometer.

II. LANGUAGE: EXAMPLE

Figure 1 illustrates the language with a simple chronome-
ter (using Zelus syntax). The node chrono is a stream function
from the boolean input streams stst (start/stop) and rst (reset)
to the output streams s (seconds) and m (minutes). The outer
reset construct (line 9-20) resets its body when the rst button
is pressed (line 20). The inner automaton (line 10-19) alternates
between the states START and STOP when the stst button is
pressed (line 13 and 18).

In state START three mutually recursive equations increment
the minutes and seconds counters (line 12-14) using a local
variable d. In state STOP, the controller does nothing: s and m

implicitly keep their last values because they are declared as
initialized memories (init keyword line 8).

The node counter implements a counter modulo n using
the unit delay operator pre and the initialization operator->
(line 2). The node edge implements a boolean edge detector.

III. CO-ITERATIVE SEMANTICS

We now give the intuition of the co-iterative semantics. A
stream of type T is defined by an initial state of type S and a
transition function of type S → T × S. Repeatedly executing
the transition function from the initial state yields a stream of
values of type T . Nodes are length preserving stream processors,
i.e., at each instant a node only requires the current value of
its input to produce an output.

CoStream(T, S) = (S → T × S)× S
CoNode(T, T ′, S) = (S → T → T ′ × S)× S

https://www.ansys.com/products/embedded-software/ansys-scade-suite
http://zelus.di.ens.fr/


[[pre e]]Initρ = (nil , [[e]]Initρ )
[[pre e]]Stateρ = λ(m, s).m, [[e]]Stateρ (s)

[[reset e1 every e2]]
Init
ρ = ([[e1]]

Init
ρ , [[e1]]

Init
ρ , [[e2]]

Init
ρ )

[[reset e1 every e2]]
State
ρ = λ(si, s1, s2).

let v2, s
′
2 = [[e2]]

State
ρ (s2) in

let v1, s
′
1 = [[e1]]

State
ρ (if v2 then si else s1) in v1, (si, s

′
1, s

′
2)

[[present e -> e1 else e2]]
Init
ρ = ([[e]]Initρ , [[e1]]

Init
ρ , [[e2]]

Init
ρ )

[[present e -> e1 else e2]]
State
ρ = λ(s, s1, s2).

let v, s′ = [[e]]Stateρ (s) in
if v then let v1, s

′
1 = [[e1]]

State
ρ (s1) in v1, (s, s

′
1, s2)

else let v2, s
′
2 = [[e2]]

State
ρ (s2) in v2, (s, s1, s

′
2)

[[do x1 = e1 and x2 = e2 done]]Initρ = ([[e1]]
Init
ρ , [[e2]]

Init
ρ )

[[do x1 = e1 and x2 = e2 done]]Stateρ = λ(s1, s2).
let fs = λ(v1, v2). [[(e1, e2)]]

State
ρ+[v1/x1,v2/x2]

(s1, s2) in
let (v1, v2), (s

′
1, s

′
2) = fix (fs) in [v1/x1, v2/x2], (s

′
1, s

′
2)

Fig. 2. Excerpt of the co-iterative semantics.

An excerpt of the semantics is given in Figure 2.
Expressions: The semantics of an expression e is defined

using two auxiliary functions. If ρ is an environment mapping
values to variable name, [[e]]Initρ denotes the initial state, and
[[e]]Stateρ denotes the transition function. For instance, the state
of the unit delay operator pre e contains the state of the sub-
expression e and the value at the previous step initialized with
nil (any value of the correct type). At each step, the output is
the previous value stored in the state.

Control structures: reset e1 every e2, is equivalent to
a single-state automaton. In addition to the state of the two
sub-expressions of reset e1 every e2, the state also stores the
initial state of e1. When the reset condition e2 evaluates to
true, we reinitialize the state of e1 with the copy of the initial
state. present e -> e1 else e2 executes one of its branch
depending on the activation condition.

Equations: Following denotational semantics of functional
languages, sets of mutually recursive equations are interpreted
using a fix-point operator. To define this fix-point operator, we
assume that all functions are total on the CPO T⊥ = T +⊥,
where ⊥ is the bottom absorbing value: ∀v : T⊥, v > ⊥.
We then write fix (fs) : T⊥ × S the smallest fix-point of a
transition function with a fixed input state fs : T⊥ → T⊥ × S,
i.e, the smallest solution of Xs = (let v, s′ = Xs in fs(v)):

fix (fs) = let rec v, s′ = fs(v) in v, s′

Using this fix-point operator, as an example, Figure 2
gives the semantics of two mutually recursive equations
do x1 = e1 and x2 = e2 done which returns a environment
defining x1 and x2 and the updated state for e1 and e2.

IV. RESEARCH PLAN

The semantics described in Section III is the basis of an
interpreter written in OCaml. This interpreter: 1) gives a
reference semantics for the language, 2) can be used as a
debugging tool, and 3) can be extended to prototype new
language features.

Reference Semantics: A program is causal if it produces
streams without ⊥. The fix-point based semantics is by
construction modular: we do not lose causality by node
abstraction. In practice, the causality analysis of the compiler
relies on a conservative syntactic criterion: all dependency
cycles must be broken by a unit delay, which may require
inlining node applications. The semantics can thus be used
as a reference to precisely characterize the subset of causal
programs that are accepted by the compiler.

For instance, for the following program [12], the Scade
compiler returns Causality error: the definition of flow

x2 depends on flow y1; the definition of flow y1 depends

on flow x1; the definition of flow x1 depends on flow y2;

the definition of flow y2 depends on flow x2;.

1 let node mux(c, x, y) returns (o)
2 if c then o = x else o = y
3

4 let node fog_gof(c, x) returns (y)
5 local x1, x2, y1, y2
6 do x1 = mux(c, x, y2) and y1 = f(x1)
7 and x2 = mux(c, y1, x) and y2 = g(x2)
8 and y = mux(c, y2, y1) done

But this program can be safely executed with our interpreter
since the mux operator prevents cycles at runtime.

Dynamic Debugging: Static analysis errors returned by the
compiler can be difficult to understand, especially for programs
comprising many hierarchical automata running in parallel. The
interpreter can be used as a debugging tool to execute failing
programs to understand precisely when the program failed, or
identify problematic variable values and mode transitions.

Language features: Finally, the core of the interpreter
is about 1, 000 LoC and can be extended to prototype new
language features. For instance adding support for arrays and
arrays iterators, static arguments (evaluated only once during
instantiation), or external functions with side-effects.

REFERENCES

[1] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. The kind 2 model
checker. In CAV. Springer, 2016.

[2] N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code
from data-flow programs. In PLILP. Springer, 1991.

[3] J.-L. Colaço, B. Pagano, and M. Pouzet. SCADE 6: A formal language
for embedded critical software development (invited paper). In TASE.
IEEE, 2017.

[4] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative
language for programming synchronous systems. In POPL. ACM, 1987.

[5] J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of
synchronous data-flow with state machines. In EMSOFT. ACM, 2005.

[6] G. Baudart, L. Mandel, E. Atkinson, B. Sherman, M. Pouzet, and
M. Carbin. Reactive probabilistic programming. In PLDI. ACM, 2020.

[7] T. Bourke, L. Brun, P.-É. Dagand, X. Leroy, M. Pouzet, and L. Rieg. A
formally verified compiler for lustre. In PLDI. ACM, 2017.

[8] T. Bourke, L. Brun, and M. Pouzet. Mechanized semantics and verified
compilation for a dataflow synchronous language with reset. In POPL.
ACM, 2020.

[9] C. Paulin-Mohring. Circuits as streams in coq: Verification of a sequential
multiplier. In TYPES. Springer, 1995.

[10] P. Caspi and M. Pouzet. A co-iterative characterization of synchronous
stream functions. In CMCS. Elsevier, 1998.

[11] G. Hamon. A denotational semantics for stateflow. In EMSOFT. ACM,
2005.

[12] S. Malik. Analysis of cyclic combinational circuits. IEEE Trans. on
CAD of Integrated Circuits and Systems, 13(7), 1994.


	Introduction
	Language: Example
	Co-Iterative Semantics
	Research Plan
	References

