GLONEMO: Global and Accurate Formal Models
for the Analysis of Ad-Hoc Sensor Networks

Ludovic Samper Florence Maraninchi, Louis Mandel
France Telecom R&D Laurent Mounier VERIMAG
Email: Ludovic.Samper@francetelecom.com VERIMAG Email: Louis.Mandel@imag.fr

2, av. de Vignate, F38610
Email: Florence.Maraninchi@imag.fr,
Laurent.Mounier@imag.fr

Abstract—We describe an approach for the formal modeling obtain an accurate and efficient simulator while preserving
and analysis of ad-hoc sensor networks, at various levels ab- the faithfulness of the model. Moreover, those simulators do
straction It is global because it takes into account all the following not help in modeling thenvironmenbf the network, i.e., the

aspects: a precise modeling of the hardware that implements a hvsical ph that h infl th
single node; the protocol layers; the application code; an abstract physical phenomena that have some Inliuénce on the sensors.

model of the physical environment as viewed by the sensors. The Finally, as soon as the power analysis needs an accurate
global model is executable to enable validation by simulations, simulation of the hardware of a node, the problem becomes
but we also aim at analyzing the global model with various formal the same as simulating efficiently a large piece of hardware.
validation tools (automatic test, runtime verification techniques, Simulating 1000 nodes at the Register-Transfer-Level (RTL)
model-checking and abstract interpretations). Each technique or . . - .
tool may need particular abstractions of the model. In this paper, 'S probably hOPe'GSS- People n t_he hardware design domaln
we illustrate the whole approach with a simple model, and show have tackled this problem by defining new levels of abstraction
what formal analysis can be performed on the model. (like the so-called transaction-level modelirig[2]) that are
both accurate enough for a first approximate timing or power
analysis, and fast to simulate. Developing such an approach
A. Ad-hoc Sensor Networks for ad-hoc sensor networks requires a clear understanding of
Ad-hoc sensor networks have emerged recently, for a withe abstractions than can be made on their behavior, while
variety of application domains. A sensor network is a quitetaining their main power characteristics.
complex computer system. Ensuring a correct behavior of su&h
a network is hard, and the better way to tackle the problefri
is to build modelsthat can be simulated. Moreover, the power We comment on the fact that there is no hope in obtaining
consumption is crucial. All the elements of a network hav@odels of sensor networks that are accurate, efficient, and
some influence on power consumption: the hardware of tHeat take into account all the aspects mentioned above, unless
nodes, the method used to access the radio functionaliti®€ are able to describe the elements of the model at various
the communication protoc0|s, the app|ication, and even tl’f@/6|5 of abstraction. Moreover, such an Understanding of the
environment of the network, that stimulates the sensors a@@Propriate abstractions is hard to reach unless we develop
is often the source of the main activity in the network. Onc@rmal models. For instance, having two formal models of a
again, power consumption has to be estimated in advance, 8age at different levels of abstraction means we can try and

I. INTRODUCTION

Contributions

this can be done by simulating a model. prove that one is indeed an abstraction of the other, i.e., that
. _ the power estimations computed with the abstract model are
B. Models and Simulation always over-approximations of the accurate behavior.

There seems to be a wide agreement on the fact thaWWe present an approach for thermal modeling of ad hoc
traditional network simulators like NS [1] are not sufficiensensor networks, with the following aims: 1) the modeling
for ad-hoc sensor networks. In particular, they cannot llermalism has a clear operational semantics, independently of
used to describe the hardware in an accurate way, whighy execution engine; 2) we take all aspects into account in
seems compulsory for power analyzes. A lot of approach#t® same formalism: the hardware that implements a single
have been proposed for simulating ad-hoc sensor networiale; the protocol layers; the application code; the physical
in a both accurate and efficient way. We compare thesavironment as viewed by the sensors; 3) we show how a
simulators to our proposal in Section VI below. None of thessomplete model can be build modularly, possibly with different
approaches is formalized; modeling a network is similar tevels of details; 4) we list existing analyzes and tools that can
a quite complex programming task, with a lot of threadfe applied to the formal model.

Libraries have been developed for some reusable element¥he formalism we choose is expressive enough so that we
of the models, like the protocols, but it is still hard tado not have to make a priori abstractions when modeling a

sensor network. It is based on a clean and simple parallel
construct, usable at two levels: the physical parallelism be-
tween the nodes of the network, and the physical or logical
parallelism inside a node. Physical parallelism inside a node |
may be due to the presence of several pieces of hardware
(sensors, CPU, dedicated piece of hardware for the MAC | ~
protocol, ...). Logical parallelism accounts for the presence=Z
of several processes, either executed on top of an operating
system, or statically scheduled. H Carrier Sense
Our formalism isexecutable Simulations are feasible for
several thousands of nodes. Formal analyzes are possibi@,1. Medium Access Control with back-off: B and C send messages. A
for two kinds of properties: 1) the consistency between tff@d C are not in the range of each other.

abstraction of a component used in the global model, afdignhors will receive duplicated messages. See section V-A
the precise description of the same component (for instangce observing this phenomenon by simulations.
the hardware); 2) global safety properties of the network

(safety[3] properties are the most interesting ones becau€e Medium Access Control
they are preserved by abstractions). To avoid energy waste, the MAC protocol is important. It
The rest of the paper is organized as follows: Section plays a role in collision avoidance and collisions increase the
describes a toy example; Section Il describes the form@hergy consumption by involving re-transmissions. We imple-
model we use, and a language that implements it; Section fent a back-off. Figure 1 gives a possible timing behavior
uses this formalism to model the toy example; Section ¥r three nodes A, B and C. The sender has to wait for a
lists the possible uses of the model; Section VI compares q@hdom time before emitting anything (when the routing is
approach to existing ones; Section VII concludes. flooding, after a transmission all the neighbors of a node have
immediately a packet to send, and the collision probability
is high). Before an emission there is also a carrier sense:
In a sensor network the nodes collaborate and exchange sender checks whether the channel is free. If there is a
information in order to achieve a given service. We descrilggnal on the channel, it delays the emission. One of the major
an example application, which protocols we choose, and WRyurces of energy waste is idle listening. Idle listening is when
The choices presented here are deliberately simple, but the radio is listening whereas there is no signal on the channel.
formalism can be used to model more realistic cases. Hence, we implement in our model a MAC with preamble
We assume aniformnetwork, where most of the nodes argampling. A preamble precedes each data packet for alerting
the same. However, to collect data, there can be one or sevefial receiving node and all nodes in the network sample the
more powerful nodes callesinksthat get the data and pilot medium with a common period.
the network. Sinks are not energy-constrained, hence we darhis MAC protocol is representative of the protocols used in
not consider them here, since our model is intended to allgnsor networks. Our modeling formalism allows to describe
power analyzes. such an algorithm, with random operations and timing.

Receive |

Preamble DATA

Receive |

Random Backoff

II. AN EXAMPLE

A. Application D. Hardware

The goal of the network is to detect the presence of aAn accurate model of a network, allowing power analyzes,
radioactive cloud. Nodes have sensors to detect the radiaticsi®uld include a model of the energy consumed by the hard-
and are scattered in a sensor field. When the cloud is detecteie. In this paper, we usgbstract model®f the hardware
by a node, it broadcasts alarm messages to the whole netwerkisumption, not complete descriptions of the real hardware

) of a node. Power consumption can be divided into three do-
B. Routing mains: sensing, communication, and data processing. Energy

In sensor networks communication patterns are specific, agxpenditure in data processing and sensing is quite small com-
the routing protocol depends directly on the application. Unpared to data communication [5]. Hence the first consumption
cast is not a sensor network communication model, wheregasdel to include is the one of the radio. Furthermore, the
flooding or broadcast can be useful. In this paper, we uswitching times and thus the switching consumptions between
the simplest routing mechanism, whichfisoding each data the different power states cannot always be neglected. Hence,
packet is sent to the whole network. We could have chostar a significant evaluation of the consumption, they must be
a sink oriented pattern, and modeled a protocol like directéttluded in the model.
diffusion [4] where the communication pattern is a kind of
converge-cast. Flooding is not an optimal routing mechanism o
for our application. Since a sensor network is quite dense, tflo COmMMunicating Input/Output Interpreted Automata
nodes may sense the same stimulus at the same time, hen€ur modeling formalism is made of communicating parallel
they will send the same messages. With flooding their commaunterpreted automata. Such an automaton has a finite number

IIl. A M ODELING FORMALISM

of explicit states, and its transitions are labeled by conditiomsthe same model: a piece of hardware that has to be observed
on somevariables conditions on the presence or absence efch millisecond for the energy count to be accurate, and also
somesignals assignements to theariables and emissions of a protocol that may be observed each second only; the basic
signals The conditions may be combined freely with Booleanlock would be 1 ms. See comments on simulation speed in
formulas. The signals whose presence is tested (resp. thatsaetion V-A.
emitted) are callethputs(resp.outputg of the automata. See, One could implement an event-driven execution, to allow
for instance, Figure 5. for better performances without changing the semantics of
Signals are used to synchronize automata, according to the model. However, as mentioned in the introduction, the
synchronous broadcasbmmunication mechanisrBroadcast bad performances of an accurate hardware simulation are not
means that if an automaton emits a signal, any number arly due to the execution engine, but are often intrinsic to the
other automata may be listening and reacting tsyitichronous level of details of the description. This is well known in the
means that the automaton thats sends a signal, and all the ottz@dware design domain, and the only solution is to change
automata that react to it do so “at the same time”. the level of abstraction of the model itself.
An interpreted automaton may have the expressive power of
Turing machines, if the type of the variables is not constrainé@, Connection to Lucky

making ij[pqssible to inglude algorithms in our models. The gjnce we do not have a complete knowledge of the physical
communication mechanism can be used to model pure SYjjenomena involved in the environment, it is convenient to
chronous systems, as well as asynchronous ones. If we ngggie| the environment using a language basedamstraints
to include the VHDL description of the hardware of a nod@ye may express constraints between values of type real, at one
into our global model, it is possible; if we need to describgoment in time, or relating successive instants of the behavior.
the asynchronous behavior of a communication protocol, gy instance, we may express that the value of an input signal
is also possible. All the automata are deterministic (althougd within a given interval, and also that it increases, with a
we may describe finite non-deterministic in the behaviogope in a given interval. By expressing constraints that relate
by introducing additional inputs callearacleg. The parallel several values, we may describe quite complex behaviors.
composition is also deterministic. The Lucky [8] execution engine is based on a constraint
solver, for Boolean and numerical constraints. Executing a
o) Lucky program produces a sequence of random values that
In order to model quantitative properties of our systems, Wegpect the constraints. Lucky is connected to ReactiveML: a
allow the states of the automata to be labeled by quantitatiyg, ~tiveMmL program may include a process that corresponds to

properties (energy consumed while in this state, time SPAL execution of the Lucky engine for a given Lucky program.

in this state, ...). These state labels do not interfere with thePutting the model of the environment in our global model
communication between the automata, because we cannotrlﬁ%%es it closed There is no need for inputs during the

their values in conditions. In the parallel composition of WQimulation. This methods allows mogramrealistic scenarios
automata, for each glob_al stagl, 42), we gather the Iz_abel_s for the communications of our network. In particular, it allows
from ¢1 and¢2. Depending on the quantity, the combination, yefine correlated scenarios for all the inputs sensed by the

of the labels may be a sum, a max, etc. __ nodes, and not only independent ones.
If we want to attach a quantitative information to a transition

between stategl and g2, we simply add a transient state IV. GLOBAL MODELING
between the two, and attach the information to this state.

B. Quantitative Data

We describe a global model of the example explained in
C. An implementation in the functional style: ReactiveML Section I, using the modeling formalisms of Section III.

ReactiveML [6] is a functional-style language that extends
ML [7] with reactive primitives. It can be used to program théA'
automata of our modeling formalism, their compositions, and Our global model is a set of communicating processes
the state quantitative labels. Parallel composition is an easyrtten in ReactiveML or Lucky. Figure 2 shows the processes
to-use primitive construct. Algorithms can be described knd the information they exchange. The model is made of:
ML-like code. The synchronization between parallel processess a model of a node, expressing functional behavior and
is an implementation of the semantics described above. Any consumption properties; this model has one instance for
number of processes can write a value on the same signal, and each node, and all these instances are parallel processes;
all the processes that are listening to it see the set of values a model of the medium, i.e. the air in which the radio
posted, and may combine them as they need. The value carried signals are propagated; this model “knows” the topology
by a signal can be of any ML type. of the network, and includes the hypothesis we make on

The most natural way to execute a ReactiveML program is the radio link; we could include perturbations here; it
to exhibit thebasic clockon which all the processes evolve. receives signals from the MAC part of all nodes, and
It is sometimes slow, for instance when we model multi-rate sends signals to the MAC parts of the appropriate nodes,
systems with very different rates. This is the case if we include w.r.t. the topology.

Principles

\
|
|
I

inputs {}
outputs {

other

Environment

A node | == iq_g'l X_cloud: float !n!t 350.0 max 700.0 m!n 0.0;
Application 10%1 y_cloud: float init 350.0 max 700.0 min 0.0;}
= Appl A node 5> locals {
_| Routing Application %E; Wind_x : float min -0.5 max 0.5 init 0.0;
- P e Wind_y : float min -0.5 max 0.5 init 0.0;}
MAC <> Routing 7 ;8%1 nodes { init :stable;
(MAC ! O’j s_on : stable;}
_ — = start_node { init }
transitions {
Fig. 2. Processes and Communications init -> init cond
if (pre Wind_y - Wind_y) >= 0.0
let process send_alarm self cloud_pos = then (pre Wind_y - Wind_y) < 0.05
if (present_cloud self cloud_pos) then else (pre Wind_y - Wind_y) > -0.05
if (not self.node_pre_present_cloud) then and
let new_packet = make_packet() in abs (pre Wind_x - Wind_x) < 0.05
emit self.application_to_routing and
(new_packet); (if Wind_y >= 0.0
self.node_pre_present_cloud <- then ((y_cloud-pre y_cloud) <= Wind_y
present_cloud self cloud_pos; and (y_cloud-pre y_cloud) >= 0.0)

else ((y_cloud-pre y_cloud) <= 0.0

Fig. 3. Part of the application code and (y_cloud-pre y_cloud) >= Wind_y))

. . and

« a set ofobserversi.e., processes that do not interfere (f Wind x >= 0.0
with the others, but look at their current states in order then ((x_cloud-pre x_cloud) <= Wind_x
to compute a global consumption from all their labels. and (x_cloud-pre x_cloud) >= 0.0)

. the model of the environment, written in Lucky and else ((x_cloud-pre x_cloud) <= 0.0
included as a particular process; it sends signals to tpe and (x_cloud-pre x_cloud) >= Wind_x))
application part of each node. Fig. 4.

The model of a node is further detailed. It is described

as the parallel composition of: a process for the functiongtevious value of thex_cloud variable. This allows to
behavior of the application (the algorithm implemented on th&press constraints on sequences. The effect of the wind on
node); a process for the functional behavior of the routing;tRe cloud is described by constraints of the foifmWind _x
process for the functional behavior of the MAC protocol. Alb= 0.0 then ((x _cloud-pre x _cloud) <=

these models have quantitative properties attached, expressingd x and (x _cloud-pre x _cloud) >= 0.0).

the power consumed by the hardware in each state. TBenerating a sequence of values for the tuplecloud,

application process sends signals to the routing process, whicBloud) could give:(395.49, 385.98), (395 86,
sends signals to the MAC process, for emission. The MAgB6.15), (396.22, 386.33),

process can also sends signals to the routing process, in case
of reception. D. The Protocol Layers

B. The Application 1) Medium Access Control.The MAC protocol imple-
The application part of each node sends an alarm signalngnted in our global model is a preamble sampling MAC
the routing part when it receives a signal from the environmepftotocol (an example behavior was given on Figure 1). Fig-
and determines that it is under the cloud (it compares #$€ 5 is the algorithm, described by an automaton. We give
position with the cloud position). This alarm packet is ser simplified version, because the complete one would be

only once for each detection of the cloud (the edge betwe®#0 much detailed. In our model, the MAC protocol is a
“no cloud” and “cloud”). If the cloud does not move, then thdreactiveML process that encodes the automaton, with all the

nodes under the cloud will send only one alarm packet. — details of the algorithm and the data structures exchanged.
The application is included in the model as a detailebhis process receives inputs from the routing part of the model
algorithm written as a ReactiveML process. The style of tH@acket to serjdand from the model of the mediunsiannel

Lucky program for the environment

code is illustrated by Figure 3. busy channel fredor instance). Additional signals (not shown
) here) are used to synchronize this automaton with the power
C. The Environment consumption model (see IV-E below).

We model the moves of a cloud under the influence of the The effect of the MAC protocol can be observed by re-
wind. Figure 4 is the Lucky program. The variabM8nd x placing the above protocol by another one (for instance the
and Wind_y represent a two-dimensional wind, which doegViseMAC proposed by El Hoiydi et al [9], which adapts the
not vary a lot. The cloud is a disk whose center has thength of the preamble to avoid sending a too long preamble
coordinatesx cloud and y_cloud . The constraints may before the data; or the MFP proposed by Bachir et al [10]; or
involve expressions likgpre x _cloud , to talk about the a synchronized MAC protocol like S-MAC [11]).

4

Packet to send the consumption of a transition between those main modes

T
rE:nddg:m:r:Seacko" (See paragraph I“'B)
End pf the i \/

In sleep mode, the radio is switched off and consumes
nearly zero. Inidle mode, the radio consumes as much

(timebut) ' channel Free as when it is receiving but there is nothing on the channel.
~ Emission In this mode, the radio is performing a carrier sense or is
s o Preamble waiting for a signal on the channel. This state corresponds to

preamble detected Packet /" end of the preamble Idle Listening. Intransmit mode, the node is transmitting

a signal on the channel. The corresponding consumption
depends on the transmit power but we assume that the power
of the transmission is constant for each node and that it
is static. It would be very easy to describe different nodes

Reception Emission

CCA : Clear Channel Assessment

Fig. 5. Functional model of the MAC protocol each transmitting at a fix power. We could also imagine
that a node can change dynamically its transmission range

P by increasing the transmit power which would consequently
‘\\1351:{@//—\ increase the consumption. To integer the power control in our
tool we would have to admit several but a finite humber of

/ different transmission powers, each of which having a specific
Crap i consumption. Inreceive mode, the node is receiving and

idie—_~ jow. cdwmw . decrypting a signal. The corresponding consumption is not
\7,;5‘;;;\ S v far from thetransmitting consumption. We assume that
' 140.4 mW .)
n‘f‘!’:‘{t",w/\\ sending a preamble or a data packet is equivalent regarding
the radio state and hence the consumption.
1404 mi Our model uses additional signals that are not shown on the
' _ _ picture to ensure that this automaton is strongly synchronized
Fig. 6. Energy consumption of the radio with the automaton of the MAC algorithm (Figure 5). For
2) Routing: The routing we model is flooding: each nodénstance, when the MAC automaton is in st&@&€A the
retransmits all the packets it receives except the ones it @nsumption model automaton is in stédiée
already forwarded, hence preventing packets from doing loops2) Extension: CPU and memory consumptiokven if
in the network. The model is quite simple: the applicatiopommunicating consumes the most energy, the consumption
part of the model of a node sends a packet to the MAC pa®f, the microprocessor cannot be neglected. Yuan et al [13]
which sends it to the model of the air. The air then sends tagsume it can take up to 30% of the total energy consumption.
packet to the appropriate set of nodes. The MAC part of thelf we want to model the energy consumption of the CPU,
nodes receives the corresponding signal, and transmits it to @ighat of the memory, we can do that with additional parallel
routing part of the model. This is where the check for loops Butomata, in the style of Figure 6, which means: 1) identifying
implemented. If the packet has not been seen yet, the routlgdgvant states for the consumption; 2) finding values to
part of the model sends a signal to the MAC part, which aga@ssociate with these states, for instance with real measures; 3)
sends it to the air. The routing is included in the model asralating such a consumption automaton to the other automata

detailed algorithm written as a ReactiveML process. that describe the application and the protocols.
The difficult part is point 3. In the model above, it was easy
E. The Hardware of a Node to determine how the radio consumption is influenced by the

The application and the protocols are included in our globbEhavior of the network, and we included this in the model:
model as simple but precisdgorithms The hardware could the radio consumption automaton (Figure 6) is driven by the
also be included as a precise description (e.g., in VHDLYAC algorithm (Figure 5). But for the consumption of the
but this would make the model quite complex, and this lev€lPU and the memory, it is intrinsically more complex.
of detail is not always needed. In this paper, we show howConcerning the CPU, the consumption model could be
to define an abstract view of the hardware, concerning tBynamic Voltage Scaling (DVSThe model is an automaton
energy consumption. This abstract model could be compatbdt has one state per voltage level, and transitions that reflect
to a precise one (see section V). what voltage level changes are possible in the hardware.

1) The model: The consumption of the hardware is in-The conditions on this automaton have to be related to the
cluded in our model in the form of an automaton that describbehavior of the software that runs on the CPU. A solution
the relevant states of the radio (see Figure 6). The actimlto analyze the code first, statically, in order to insert
numbers correspond to some consumptions that have b&i#5 commands. In this case, the model is quite easy to
measured on a Freescale MC13192 [12]. The main states arée: a special instruction in the code itself determines the
sleep , idle , transmit andreceive . The dashed-line transitions in the consumption automaton. Other solutions may
states are transient states included in the model to repredemtbased on dynamic measures of the CPU activity. In all

cases, the intrinsic difficulty is in finding a DVS solution, not The second use is the verificationgibbal properties. There
in modeling. are three difficulties: the global properties related to the life
For the memory, the problem is roughly the same. span of the network amguantitativeproperties, for which there
3) Extension: including an OSIHf we want to include an exist very few efficient verification tools; the global model
operating system into the model, we will not include it amcludes software pieces, for which most interesting properties
detailed algorithms. Instead, we will build an abstract modate undecidable; and a global model with 1000 nodes is likely
of it, identifying the relevant states that have some influence tmcause state explosion in any automatic verification tool. Our
the consumption. For instance, we could model the schedudgproach is based on abstractions. First, we need to abstract the
just to know whether a process is running. When there is ngoantitative properties into logical ones, by discretizing things:
process running, the activity of the CPU is reduced, and soifsis sufficient to define a small humber of discrete energy
its consumption. states for each node, including the zero-energy one, and to talk
about the global state in which a given proportion of the nodes
have reached this zero-energy state. For the undecidability
A. Simulations and size problems, the only solution is to find appropriate
First of all, since the model is executable, we can simulate @bstractions of the models, and to sséetyproperties that are
We can observe the behavior in a graphical window: the cloiiieserved by abstractions (i.e., if an automatic tool declares a
moves, triggers the activity of the nodes, we can observe th@perty true on the abstract model, it is true on the concrete
energy spent and the way messages travel. With 500 nod#gg; the tool implements an approximate analysis, meaning it
and a basic clock representing s, the simulation runs at a may also answer “don’t know”).
sufficient speed for the observations. 5000 nodes with a basidVe are now studying the safety properties of the foafter
clock of 10~%s is also feasible. Since the graphical displafime T, the system still has more than x % of the nodes.alive
takes a large portion of the computation time, we can obtal@ be able to prove such a property automatically, we need to
even more efficient simulations by removing it. We should thegefine abstractions of the software parts of the model.
includeobservemprocesses in parallel of the model, to compute
relevant quantities and produce output files for drawing curves.
An observation that can be made on the model, thanks to thdNAB [14] is a network simulator written in ML, aimed at:
mode”ng of the environment, is that f|00ding is not a goog:alablllty, visualization, and a clean, flexible architecture. The
choice for our application: two nodes may sense the saf@uments for using ML instead of C are the same as ours, but
stimulus at the same time, and send the same messages. TR@activeML is even better because parallelism is a primitive
common neighbors then receive duplicated messages. If eanstruct. NAB is not particularly well suited for an accurate
had modeled the environment with Poisson laws to simuldiodeling of the energy.
the packet arrival at each node, two neighboring nodes wouldThe nesC [15] language is a programming language, and
have been very unlikely to send the same message at the sé#fs not help in modeling the hardware or the environment.
time. Our environment model generates correlated signals fd@wever, it would be interesting to study the integration of

the sensors that are under the cloud, and is therefore realigigsC code into our model. The semantics of parallelism in
nesC is not too far from the semantics of ReactiveML.

B. Formal validation Avrora [16] is written in Java and is cycle-accurate. It is able
Now, since the model is formal, we can apply formal valto execute the binary code of an application. The efficiency
idation techniques and tools. Technically, it means extractiog the simulation relies on a quite complex synchronization
models in a form usable by the validation tools, from thpattern which in fact constitutes the model of the radio. For
ReactiveML code. This is not done yet, but since ReactiveMbe environment, models are still needed, and the interaction
and Lucky have a formal semantics and a simple paralleétween a model of some component and the exact description
construct, it is only a technical problem. of another component is not formalized. It would be hard to
The first use we have in mind is the validation of theise this framework to play with various abstractions.
abstractionghat are needed for the model to be of a reasonableAtemu [17] executes binary code and synchronizes the
complexity. For instance, we think that we should nevearodes on the clock cycle of the processor. Fine grain properties
include in the model a full description of the hardware, at thean be obtained up to 120 nodes. To our opinion, simulating
abstraction level that is needed for precise energy evaluatiotihe hardware at this level of detail is probably hopeless.
i.e., the RTL level. But if we include an abstraction of it, we PowerTOSSIM [18] makes interesting abstractions on the
should prove that: 1) it is indeed an abstraction of the regbower used by a node, by relating it to the number of packets
hardware, and 2) the composition with the rest of the modehnsmitted, the number of instructions executed, etc. This
preserves this abstraction. Point 1) should be tackled witbuld be the basic of some abstract models of the hardware
automatic formal verification techniques like model-checkingn our framework.
to compare our abstract model with an RTL description of the AEON [19] proposes to build an energy model by running
CPU. Point 2) has to be proved manually on the semanticsafeal network, and then to include this model in a simulator
parallel composition (easy). like AVRORA, to do some profiling. In section IV we used

V. USING THE MODEL

VI. RELATED WORK

a similar approach for the radio consumption model. AEONs]
allows to observe the impact of the energy management
primitives of TinyOS [20]. This is probably a good starting [6]
point if we want to include a model of the operating system
in our framework.

Finally, none of these simulators uses a formal mode[l7]
that could be used for validation. On the other hand, th¢s]
formal validation community does not seem to have starteﬁ
working on sensor networks. To our knowledge, there is n
other approach for the formal and global modeling of sensor
networks, for which we can hope to use validation tools. [10]

VIl. CONCLUSION (11]

We demonstrated the use of a modeling formalism on
an example sensor network. We showed how to include ¢!
the same model: precise algorithms for the application apd,
the protocols, abstract consumption models for the hardware,
and a non-deterministic model for the environment. We al }
explained how to extend this simple example if we need, for
instance, a more detailed model of the hardware. We think
that the main advantage of our modeling framework is tH&!
possibility to replace an abstract model of a component by,
more precise one, and to prove that it is indeed an abstraction.

The simulation is feasible for hundreds of nodes. Moreovét®]
since the model is formally defined as a set of parallel
processes, formal validation techniques can be used. [19]

We are working on the connection of the model to the
automatic validation tools available at Verimag [21], [22].

[20]

REFERENCES [21]

[1] “The Network Simulator -
http://www.isi.edu/nsnam/ns/

[2] F. Ghenassidlransaction Level Modeling With SystemC: TLM Concepts

[3]

ns-2.” [Online]. Available:

And Applications for Embedded SystemSpringer-Verlag, 2005. [22]
L. Lamport, “Proving the correctness of multiprocess prograrisZE
Transactions on Software Engineerjngpl. SE-3, no. 2, pp. 125-143,
1977.

C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks.” in
MOBICOM, 2000, pp. 56-67.

(4]

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a surveyComputer Networksvol. 38, no. 4, pp. 393—
422, 2002.

L. Mandel and M. Pouzet, “Reactiveml, a reactive extension to ml,” in
ACM International conference on Principles and Practice of Declarative
Programming (PPDP’05)Lisbon, Portugal, July 2005.

X. Leroy, “The Objective Caml system release 3.09 Documentation and
user’'s manual,” INRIA, Tech. Rep., 2005.

E. Jahier and P. Raymond, “The lucky language reference manual,”
Verimag Technical Report, Tech. Rep. TR-2004-6, 2005.

] C. C. Enz, A. El-Hoiydi, J.-D. Decotignie, and V. Peiris, “Wisenet:

An ultralow-power wireless sensor network solutioiEEE Computer
vol. 37, no. 8, pp. 62-70, 2004.

A. Bachir, D. Barthel, M. Heusse and A. Duda, “Micro-Frame Preamble
MAC for Multihop Wireless Sensor Networksdccepted, ICC2006.

W. Ye, J. S. Heidemann, and D. Estrin, “Medium access control with
coordinated adaptive sleeping for wireless sensor netwolkEE/ACM
Trans. Netw.vol. 12, no. 3, pp. 493-506, 2004.

“Motorola mc13192 data sheet,” Motorola freescale, 2005. [Online].
Available: freescale.com/filesl/if/doc/datasheet/MC13192DS.pdf

Lin Yuan and Gang QuEnergy-Efficient Design of Distributed Sensor
Networks CRC press, Oct. 2004, ch. 38.

EPFL, “Network in A Box.” [Online]. Available: http://nab.epfl.ch/

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,’j-SIGPLAN vol. 38, no. 5, pp. 1-11, May 2003.

B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: Scalable Sensor
Network Simulation with Precise TimingProceedings of IPSN2005.

J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras, “ATEMU:
A Fine-grained Sensor Network Simulato§econ 2004.

V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network ap-
plications.” in SynSys2004, pp. 188-200.

S. G. Olaf Landsiedel, Klaus Wehrle, “Accurate prediction of power
consumption in sensor networks,” Proceedings of The Second IEEE
Workshop on Embedded Networked Sensors (EmNetSyidhey, Aus-
tralia, May 2005.

TinyOS Team, “Tinyos.” [Online]. Available: www.tinyos.net

N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and verifying
critical systems by means of the synchronous data-flow programming
language.USTRE," IEEE Transactions on Software Engineering, Special
Issue on the Specification and Analysis of Real-Time SystBep.
1992.

M. Bozga, S. Graf, and L. Mounier, “If-2.0: A validation environment
for component-based real-time systems,” Rmoceedings of CAV’'02
(Copenhagen, Denmatrlger. LNCS, K. L. Ed Brinksma, Ed., vol. 2404.
Springer-Verlag, July 2002, pp. 343-348.

