
GLONEMO: Global and Accurate Formal Models
for the Analysis of Ad-Hoc Sensor Networks

Ludovic Samper
France Telecom R&D

Email: Ludovic.Samper@francetelecom.com

Florence Maraninchi,
Laurent Mounier

VERIMAG
2, av. de Vignate, F38610

Email: Florence.Maraninchi@imag.fr,
Laurent.Mounier@imag.fr

Louis Mandel
VERIMAG

Email: Louis.Mandel@imag.fr

Abstract— We describe an approach for the formal modeling
and analysis of ad-hoc sensor networks, at various levels ofab-
straction. It is globalbecause it takes into account all the following
aspects: a precise modeling of the hardware that implements a
single node; the protocol layers; the application code; an abstract
model of the physical environment as viewed by the sensors. The
global model is executable, to enable validation by simulations,
but we also aim at analyzing the global model with various formal
validation tools (automatic test, runtime verification techniques,
model-checking and abstract interpretations). Each technique or
tool may need particular abstractions of the model. In this paper,
we illustrate the whole approach with a simple model, and show
what formal analysis can be performed on the model.

I. I NTRODUCTION

A. Ad-hoc Sensor Networks

Ad-hoc sensor networks have emerged recently, for a wide
variety of application domains. A sensor network is a quite
complex computer system. Ensuring a correct behavior of such
a network is hard, and the better way to tackle the problem
is to build modelsthat can be simulated. Moreover, the power
consumption is crucial. All the elements of a network have
some influence on power consumption: the hardware of the
nodes, the method used to access the radio functionalities,
the communication protocols, the application, and even the
environment of the network, that stimulates the sensors and
is often the source of the main activity in the network. Once
again, power consumption has to be estimated in advance, and
this can be done by simulating a model.

B. Models and Simulation

There seems to be a wide agreement on the fact that
traditional network simulators like NS [1] are not sufficient
for ad-hoc sensor networks. In particular, they cannot be
used to describe the hardware in an accurate way, which
seems compulsory for power analyzes. A lot of approaches
have been proposed for simulating ad-hoc sensor networks
in a both accurate and efficient way. We compare these
simulators to our proposal in Section VI below. None of these
approaches is formalized; modeling a network is similar to
a quite complex programming task, with a lot of threads.
Libraries have been developed for some reusable elements
of the models, like the protocols, but it is still hard to

obtain an accurate and efficient simulator while preserving
the faithfulness of the model. Moreover, those simulators do
not help in modeling theenvironmentof the network, i.e., the
physical phenomena that have some influence on the sensors.
Finally, as soon as the power analysis needs an accurate
simulation of the hardware of a node, the problem becomes
the same as simulating efficiently a large piece of hardware.
Simulating 1000 nodes at the Register-Transfer-Level (RTL)
is probably hopeless. People in the hardware design domain
have tackled this problem by defining new levels of abstraction
(like the so-called “transaction-level modeling” [2]) that are
both accurate enough for a first approximate timing or power
analysis, and fast to simulate. Developing such an approach
for ad-hoc sensor networks requires a clear understanding of
the abstractions than can be made on their behavior, while
retaining their main power characteristics.

C. Contributions

We comment on the fact that there is no hope in obtaining
models of sensor networks that are accurate, efficient, and
that take into account all the aspects mentioned above, unless
we are able to describe the elements of the model at various
levels of abstraction. Moreover, such an understanding of the
appropriate abstractions is hard to reach unless we develop
formal models. For instance, having two formal models of a
node at different levels of abstraction means we can try and
prove that one is indeed an abstraction of the other, i.e., that
the power estimations computed with the abstract model are
always over-approximations of the accurate behavior.

We present an approach for theformal modeling of ad hoc
sensor networks, with the following aims: 1) the modeling
formalism has a clear operational semantics, independently of
any execution engine; 2) we take all aspects into account in
the same formalism: the hardware that implements a single
node; the protocol layers; the application code; the physical
environment as viewed by the sensors; 3) we show how a
complete model can be build modularly, possibly with different
levels of details; 4) we list existing analyzes and tools that can
be applied to the formal model.

The formalism we choose is expressive enough so that we
do not have to make a priori abstractions when modeling a

sensor network. It is based on a clean and simple parallel
construct, usable at two levels: the physical parallelism be-
tween the nodes of the network, and the physical or logical
parallelism inside a node. Physical parallelism inside a node
may be due to the presence of several pieces of hardware
(sensors, CPU, dedicated piece of hardware for the MAC
protocol, ...). Logical parallelism accounts for the presence
of several processes, either executed on top of an operating
system, or statically scheduled.

Our formalism isexecutable. Simulations are feasible for
several thousands of nodes. Formal analyzes are possible,
for two kinds of properties: 1) the consistency between the
abstraction of a component used in the global model, and
the precise description of the same component (for instance
the hardware); 2) global safety properties of the network
(safety [3] properties are the most interesting ones because
they are preserved by abstractions).

The rest of the paper is organized as follows: Section II
describes a toy example; Section III describes the formal
model we use, and a language that implements it; Section IV
uses this formalism to model the toy example; Section V
lists the possible uses of the model; Section VI compares our
approach to existing ones; Section VII concludes.

II. A N EXAMPLE

In a sensor network the nodes collaborate and exchange
information in order to achieve a given service. We describe
an example application, which protocols we choose, and why.
The choices presented here are deliberately simple, but the
formalism can be used to model more realistic cases.

We assume auniformnetwork, where most of the nodes are
the same. However, to collect data, there can be one or several
more powerful nodes calledsinks that get the data and pilot
the network. Sinks are not energy-constrained, hence we do
not consider them here, since our model is intended to allow
power analyzes.

A. Application

The goal of the network is to detect the presence of a
radioactive cloud. Nodes have sensors to detect the radiations,
and are scattered in a sensor field. When the cloud is detected
by a node, it broadcasts alarm messages to the whole network.

B. Routing

In sensor networks communication patterns are specific, and
the routing protocol depends directly on the application. Uni-
cast is not a sensor network communication model, whereas
flooding or broadcast can be useful. In this paper, we use
the simplest routing mechanism, which isflooding: each data
packet is sent to the whole network. We could have chosen
a sink oriented pattern, and modeled a protocol like directed
diffusion [4] where the communication pattern is a kind of
converge-cast. Flooding is not an optimal routing mechanism
for our application. Since a sensor network is quite dense, two
nodes may sense the same stimulus at the same time, hence
they will send the same messages. With flooding their common

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Receive

Preamble

DATAPreamble

DATA Sleep Receive

Sleep Sleep Sleep Receive

New

Backoff
Random

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

Random BackoffCarrier Sense

A

B

C

Fig. 1. Medium Access Control with back-off: B and C send messages. A
and C are not in the range of each other.

neighbors will receive duplicated messages. See section V-A
on observing this phenomenon by simulations.

C. Medium Access Control

To avoid energy waste, the MAC protocol is important. It
plays a role in collision avoidance and collisions increase the
energy consumption by involving re-transmissions. We imple-
ment a back-off. Figure 1 gives a possible timing behavior
for three nodes A, B and C. The sender has to wait for a
random time before emitting anything (when the routing is
flooding, after a transmission all the neighbors of a node have
immediately a packet to send, and the collision probability
is high). Before an emission there is also a carrier sense:
the sender checks whether the channel is free. If there is a
signal on the channel, it delays the emission. One of the major
sources of energy waste is idle listening. Idle listening is when
the radio is listening whereas there is no signal on the channel.
Hence, we implement in our model a MAC with preamble
sampling. A preamble precedes each data packet for alerting
the receiving node and all nodes in the network sample the
medium with a common period.

This MAC protocol is representative of the protocols used in
sensor networks. Our modeling formalism allows to describe
such an algorithm, with random operations and timing.

D. Hardware

An accurate model of a network, allowing power analyzes,
should include a model of the energy consumed by the hard-
ware. In this paper, we useabstract modelsof the hardware
consumption, not complete descriptions of the real hardware
of a node. Power consumption can be divided into three do-
mains: sensing, communication, and data processing. Energy
expenditure in data processing and sensing is quite small com-
pared to data communication [5]. Hence the first consumption
model to include is the one of the radio. Furthermore, the
switching times and thus the switching consumptions between
the different power states cannot always be neglected. Hence,
for a significant evaluation of the consumption, they must be
included in the model.

III. A M ODELING FORMALISM

A. Communicating Input/Output Interpreted Automata

Our modeling formalism is made of communicating parallel
interpreted automata. Such an automaton has a finite number

2

of explicit states, and its transitions are labeled by conditions
on somevariables, conditions on the presence or absence of
somesignals, assignements to thevariables, and emissions of
signals. The conditions may be combined freely with Boolean
formulas. The signals whose presence is tested (resp. that are
emitted) are calledinputs(resp.outputs) of the automata. See,
for instance, Figure 5.

Signals are used to synchronize automata, according to the
synchronous broadcastcommunication mechanism.Broadcast
means that if an automaton emits a signal, any number of
other automata may be listening and reacting to it;synchronous
means that the automaton thats sends a signal, and all the other
automata that react to it do so “at the same time”.

An interpreted automaton may have the expressive power of
Turing machines, if the type of the variables is not constrained,
making it possible to include algorithms in our models. The
communication mechanism can be used to model pure syn-
chronous systems, as well as asynchronous ones. If we need
to include the VHDL description of the hardware of a node
into our global model, it is possible; if we need to describe
the asynchronous behavior of a communication protocol, it
is also possible. All the automata are deterministic (although
we may describe finite non-deterministic in the behaviors
by introducing additional inputs calledoracles). The parallel
composition is also deterministic.

B. Quantitative Data

In order to model quantitative properties of our systems, we
allow the states of the automata to be labeled by quantitative
properties (energy consumed while in this state, time spent
in this state, ...). These state labels do not interfere with the
communication between the automata, because we cannot use
their values in conditions. In the parallel composition of two
automata, for each global state(q1, q2), we gather the labels
from q1 and q2. Depending on the quantity, the combination
of the labels may be a sum, a max, etc.

If we want to attach a quantitative information to a transition
between statesq1 and q2, we simply add a transient statex
between the two, and attach the information to this state.

C. An implementation in the functional style: ReactiveML

ReactiveML [6] is a functional-style language that extends
ML [7] with reactive primitives. It can be used to program the
automata of our modeling formalism, their compositions, and
the state quantitative labels. Parallel composition is an easy-
to-use primitive construct. Algorithms can be described by
ML-like code. The synchronization between parallel processes
is an implementation of the semantics described above. Any
number of processes can write a value on the same signal, and
all the processes that are listening to it see the set of values
posted, and may combine them as they need. The value carried
by a signal can be of any ML type.

The most natural way to execute a ReactiveML program is
to exhibit thebasic clockon which all the processes evolve.
It is sometimes slow, for instance when we model multi-rate
systems with very different rates. This is the case if we include

in the same model: a piece of hardware that has to be observed
each millisecond for the energy count to be accurate, and also
a protocol that may be observed each second only; the basic
clock would be 1 ms. See comments on simulation speed in
section V-A.

One could implement an event-driven execution, to allow
for better performances without changing the semantics of
the model. However, as mentioned in the introduction, the
bad performances of an accurate hardware simulation are not
only due to the execution engine, but are often intrinsic to the
level of details of the description. This is well known in the
hardware design domain, and the only solution is to change
the level of abstraction of the model itself.

D. Connection to Lucky

Since we do not have a complete knowledge of the physical
phenomena involved in the environment, it is convenient to
model the environment using a language based onconstraints.
We may express constraints between values of type real, at one
moment in time, or relating successive instants of the behavior.
For instance, we may express that the value of an input signal
is within a given interval, and also that it increases, with a
slope in a given interval. By expressing constraints that relate
several values, we may describe quite complex behaviors.

The Lucky [8] execution engine is based on a constraint
solver, for Boolean and numerical constraints. Executing a
Lucky program produces a sequence of random values that
respect the constraints. Lucky is connected to ReactiveML: a
reactiveML program may include a process that corresponds to
the execution of the Lucky engine for a given Lucky program.

Putting the model of the environment in our global model
makes it closed. There is no need for inputs during the
simulation. This methods allows toprogramrealistic scenarios
for the communications of our network. In particular, it allows
to define correlated scenarios for all the inputs sensed by the
nodes, and not only independent ones.

IV. GLOBAL MODELING

We describe a global model of the example explained in
Section II, using the modeling formalisms of Section III.

A. Principles

Our global model is a set of communicating processes
written in ReactiveML or Lucky. Figure 2 shows the processes
and the information they exchange. The model is made of:

• a model of a node, expressing functional behavior and
consumption properties; this model has one instance for
each node, and all these instances are parallel processes;

• a model of the medium, i.e. the air in which the radio
signals are propagated; this model “knows” the topology
of the network, and includes the hypothesis we make on
the radio link; we could include perturbations here; it
receives signals from the MAC part of all nodes, and
sends signals to the MAC parts of the appropriate nodes,
w.r.t. the topology.

3

O
bs

er
ve

rs
 o

f
Q

ua
nt

ita
tiv

e
Pr

op
.Environment

Application

Routing

MAC

A node

Air

Application

Routing

MAC

A node

other
nodes

Fig. 2. Processes and Communications

let process send_alarm self cloud_pos =
if (present_cloud self cloud_pos) then

if (not self.node_pre_present_cloud) then
let new_packet = make_packet() in

emit self.application_to_routing
(new_packet);

self.node_pre_present_cloud <-
present_cloud self cloud_pos;

Fig. 3. Part of the application code

• a set ofobservers, i.e., processes that do not interfere
with the others, but look at their current states in order
to compute a global consumption from all their labels.

• the model of the environment, written in Lucky and
included as a particular process; it sends signals to the
application part of each node.

The model of a node is further detailed. It is described
as the parallel composition of: a process for the functional
behavior of the application (the algorithm implemented on the
node); a process for the functional behavior of the routing; a
process for the functional behavior of the MAC protocol. All
these models have quantitative properties attached, expressing
the power consumed by the hardware in each state. The
application process sends signals to the routing process, which
sends signals to the MAC process, for emission. The MAC
process can also sends signals to the routing process, in case
of reception.

B. The Application

The application part of each node sends an alarm signal to
the routing part when it receives a signal from the environment
and determines that it is under the cloud (it compares its
position with the cloud position). This alarm packet is sent
only once for each detection of the cloud (the edge between
“no cloud” and “cloud”). If the cloud does not move, then the
nodes under the cloud will send only one alarm packet.

The application is included in the model as a detailed
algorithm written as a ReactiveML process. The style of the
code is illustrated by Figure 3.

C. The Environment

We model the moves of a cloud under the influence of the
wind. Figure 4 is the Lucky program. The variablesWind x
and Wind y represent a two-dimensional wind, which does
not vary a lot. The cloud is a disk whose center has the
coordinatesx cloud and y cloud . The constraints may
involve expressions likepre x cloud , to talk about the

inputs {}
outputs {

x_cloud: float init 350.0 max 700.0 min 0.0;
y_cloud: float init 350.0 max 700.0 min 0.0;}

locals {
Wind_x : float min -0.5 max 0.5 init 0.0;
Wind_y : float min -0.5 max 0.5 init 0.0;}

nodes { init :stable;
s_on : stable;}

start_node { init }
transitions {

init -> init cond
if (pre Wind_y - Wind_y) >= 0.0
then (pre Wind_y - Wind_y) < 0.05
else (pre Wind_y - Wind_y) > -0.05

and
abs (pre Wind_x - Wind_x) < 0.05

and
(if Wind_y >= 0.0

then ((y_cloud-pre y_cloud) <= Wind_y
and (y_cloud-pre y_cloud) >= 0.0)

else ((y_cloud-pre y_cloud) <= 0.0
and (y_cloud-pre y_cloud) >= Wind_y))

and
(if Wind_x >= 0.0

then ((x_cloud-pre x_cloud) <= Wind_x
and (x_cloud-pre x_cloud) >= 0.0)

else ((x_cloud-pre x_cloud) <= 0.0
and (x_cloud-pre x_cloud) >= Wind_x))

}
Fig. 4. Lucky program for the environment

previous value of thex cloud variable. This allows to
express constraints on sequences. The effect of the wind on
the cloud is described by constraints of the form:if Wind x
>= 0.0 then ((x cloud-pre x cloud) <=
Wind x and (x cloud-pre x cloud) >= 0.0).
Generating a sequence of values for the tuple(x cloud,
y cloud) could give:(395.49, 385.98), (395.86,
386.15), (396.22, 386.33),

D. The Protocol Layers

1) Medium Access Control:The MAC protocol imple-
mented in our global model is a preamble sampling MAC
protocol (an example behavior was given on Figure 1). Fig-
ure 5 is the algorithm, described by an automaton. We give
a simplified version, because the complete one would be
two much detailed. In our model, the MAC protocol is a
ReactiveML process that encodes the automaton, with all the
details of the algorithm and the data structures exchanged.
This process receives inputs from the routing part of the model
(packet to send) and from the model of the medium (channel
busy, channel freefor instance). Additional signals (not shown
here) are used to synchronize this automaton with the power
consumption model (see IV-E below).

The effect of the MAC protocol can be observed by re-
placing the above protocol by another one (for instance the
WiseMAC proposed by El Hoiydi et al [9], which adapts the
length of the preamble to avoid sending a too long preamble
before the data; or the MFP proposed by Bachir et al [10]; or
a synchronized MAC protocol like S-MAC [11]).

4

CCA

mode
Receive

Carrier

Sense Emission
of the

Preamble Emission
of the
Packet

Channel Busy

end of the preamble

or
t=0[T]

End of the packet

preamble detected
and
t=t_detect[T]

Packet to send

Reception Emission

CCA : Clear Channel Assessment

Sleep

Reception failure
(timeout)

End of the
reception

Channel Free

on the channel
no signaland

t=t_detect[T]

End of the
random Backoff

Random
Backoff

Fig. 5. Functional model of the MAC protocol

Sleep Idle

Transmit

Receive

35.1 mW

145.8 mW

140.4 mW

140.4 mW

140.4 mW

145.8 mW

140.4 mW

140.4 mW

140.4 mW

140.4 mW

400 µs

332 µs

144 µs

144 µs

100 µs 100 µs

Fig. 6. Energy consumption of the radio

2) Routing: The routing we model is flooding: each node
retransmits all the packets it receives except the ones it has
already forwarded, hence preventing packets from doing loops
in the network. The model is quite simple: the application
part of the model of a node sends a packet to the MAC part,
which sends it to the model of the air. The air then sends the
packet to the appropriate set of nodes. The MAC part of the
nodes receives the corresponding signal, and transmits it to the
routing part of the model. This is where the check for loops is
implemented. If the packet has not been seen yet, the routing
part of the model sends a signal to the MAC part, which again
sends it to the air. The routing is included in the model as a
detailed algorithm written as a ReactiveML process.

E. The Hardware of a Node

The application and the protocols are included in our global
model as simple but precisealgorithms. The hardware could
also be included as a precise description (e.g., in VHDL),
but this would make the model quite complex, and this level
of detail is not always needed. In this paper, we show how
to define an abstract view of the hardware, concerning the
energy consumption. This abstract model could be compared
to a precise one (see section V).

1) The model: The consumption of the hardware is in-
cluded in our model in the form of an automaton that describes
the relevant states of the radio (see Figure 6). The actual
numbers correspond to some consumptions that have been
measured on a Freescale MC13192 [12]. The main states are
sleep , idle , transmit and receive . The dashed-line
states are transient states included in the model to represent

the consumption of a transition between those main modes
(see paragraph III-B).

In sleep mode, the radio is switched off and consumes
nearly zero. Inidle mode, the radio consumes as much
as when it is receiving but there is nothing on the channel.
In this mode, the radio is performing a carrier sense or is
waiting for a signal on the channel. This state corresponds to
Idle Listening. Intransmit mode, the node is transmitting
a signal on the channel. The corresponding consumption
depends on the transmit power but we assume that the power
of the transmission is constant for each node and that it
is static. It would be very easy to describe different nodes
each transmitting at a fix power. We could also imagine
that a node can change dynamically its transmission range
by increasing the transmit power which would consequently
increase the consumption. To integer the power control in our
tool we would have to admit several but a finite number of
different transmission powers, each of which having a specific
consumption. Inreceive mode, the node is receiving and
decrypting a signal. The corresponding consumption is not
far from the transmitting consumption. We assume that
sending a preamble or a data packet is equivalent regarding
the radio state and hence the consumption.

Our model uses additional signals that are not shown on the
picture to ensure that this automaton is strongly synchronized
with the automaton of the MAC algorithm (Figure 5). For
instance, when the MAC automaton is in stateCCA, the
consumption model automaton is in stateIdle .

2) Extension: CPU and memory consumption:Even if
communicating consumes the most energy, the consumption
of the microprocessor cannot be neglected. Yuan et al [13]
assume it can take up to 30% of the total energy consumption.

If we want to model the energy consumption of the CPU,
or that of the memory, we can do that with additional parallel
automata, in the style of Figure 6, which means: 1) identifying
relevant states for the consumption; 2) finding values to
associate with these states, for instance with real measures; 3)
relating such a consumption automaton to the other automata
that describe the application and the protocols.

The difficult part is point 3. In the model above, it was easy
to determine how the radio consumption is influenced by the
behavior of the network, and we included this in the model:
the radio consumption automaton (Figure 6) is driven by the
MAC algorithm (Figure 5). But for the consumption of the
CPU and the memory, it is intrinsically more complex.

Concerning the CPU, the consumption model could be
Dynamic Voltage Scaling (DVS). The model is an automaton
that has one state per voltage level, and transitions that reflect
what voltage level changes are possible in the hardware.
The conditions on this automaton have to be related to the
behavior of the software that runs on the CPU. A solution
is to analyze the code first, statically, in order to insert
DVS commands. In this case, the model is quite easy to
write: a special instruction in the code itself determines the
transitions in the consumption automaton. Other solutions may
be based on dynamic measures of the CPU activity. In all

5

cases, the intrinsic difficulty is in finding a DVS solution, not
in modeling.

For the memory, the problem is roughly the same.
3) Extension: including an OS:If we want to include an

operating system into the model, we will not include it as
detailed algorithms. Instead, we will build an abstract model
of it, identifying the relevant states that have some influence on
the consumption. For instance, we could model the scheduler
just to know whether a process is running. When there is no
process running, the activity of the CPU is reduced, and so is
its consumption.

V. USING THE MODEL

A. Simulations

First of all, since the model is executable, we can simulate it.
We can observe the behavior in a graphical window: the cloud
moves, triggers the activity of the nodes, we can observe the
energy spent and the way messages travel. With 500 nodes,
and a basic clock representing10−4s, the simulation runs at a
sufficient speed for the observations. 5000 nodes with a basic
clock of 10−3s is also feasible. Since the graphical display
takes a large portion of the computation time, we can obtain
even more efficient simulations by removing it. We should then
includeobserverprocesses in parallel of the model, to compute
relevant quantities and produce output files for drawing curves.

An observation that can be made on the model, thanks to the
modeling of the environment, is that flooding is not a good
choice for our application: two nodes may sense the same
stimulus at the same time, and send the same messages. Their
common neighbors then receive duplicated messages. If we
had modeled the environment with Poisson laws to simulate
the packet arrival at each node, two neighboring nodes would
have been very unlikely to send the same message at the same
time. Our environment model generates correlated signals for
the sensors that are under the cloud, and is therefore realistic.

B. Formal validation

Now, since the model is formal, we can apply formal val-
idation techniques and tools. Technically, it means extracting
models in a form usable by the validation tools, from the
ReactiveML code. This is not done yet, but since ReactiveML
and Lucky have a formal semantics and a simple parallel
construct, it is only a technical problem.

The first use we have in mind is the validation of the
abstractionsthat are needed for the model to be of a reasonable
complexity. For instance, we think that we should never
include in the model a full description of the hardware, at the
abstraction level that is needed for precise energy evaluations,
i.e., the RTL level. But if we include an abstraction of it, we
should prove that: 1) it is indeed an abstraction of the real
hardware, and 2) the composition with the rest of the model
preserves this abstraction. Point 1) should be tackled with
automatic formal verification techniques like model-checking,
to compare our abstract model with an RTL description of the
CPU. Point 2) has to be proved manually on the semantics of
parallel composition (easy).

The second use is the verification ofglobalproperties. There
are three difficulties: the global properties related to the life
span of the network arequantitativeproperties, for which there
exist very few efficient verification tools; the global model
includes software pieces, for which most interesting properties
are undecidable; and a global model with 1000 nodes is likely
to cause state explosion in any automatic verification tool. Our
approach is based on abstractions. First, we need to abstract the
quantitative properties into logical ones, by discretizing things:
it is sufficient to define a small number of discrete energy
states for each node, including the zero-energy one, and to talk
about the global state in which a given proportion of the nodes
have reached this zero-energy state. For the undecidability
and size problems, the only solution is to find appropriate
abstractions of the models, and to usesafetyproperties that are
preserved by abstractions (i.e., if an automatic tool declares a
property true on the abstract model, it is true on the concrete
one; the tool implements an approximate analysis, meaning it
may also answer “don’t know”).

We are now studying the safety properties of the form:after
time T, the system still has more than x % of the nodes alive.
To be able to prove such a property automatically, we need to
define abstractions of the software parts of the model.

VI. RELATED WORK

NAB [14] is a network simulator written in ML, aimed at:
scalability, visualization, and a clean, flexible architecture. The
arguments for using ML instead of C are the same as ours, but
ReactiveML is even better because parallelism is a primitive
construct. NAB is not particularly well suited for an accurate
modeling of the energy.

The nesC [15] language is a programming language, and
does not help in modeling the hardware or the environment.
However, it would be interesting to study the integration of
nesC code into our model. The semantics of parallelism in
nesC is not too far from the semantics of ReactiveML.

Avrora [16] is written in Java and is cycle-accurate. It is able
to execute the binary code of an application. The efficiency
of the simulation relies on a quite complex synchronization
pattern which in fact constitutes the model of the radio. For
the environment, models are still needed, and the interaction
between a model of some component and the exact description
of another component is not formalized. It would be hard to
use this framework to play with various abstractions.

Atemu [17] executes binary code and synchronizes the
nodes on the clock cycle of the processor. Fine grain properties
can be obtained up to 120 nodes. To our opinion, simulating
the hardware at this level of detail is probably hopeless.

PowerTOSSIM [18] makes interesting abstractions on the
power used by a node, by relating it to the number of packets
transmitted, the number of instructions executed, etc. This
could be the basic of some abstract models of the hardware
in our framework.

AEON [19] proposes to build an energy model by running
a real network, and then to include this model in a simulator
like AVRORA, to do some profiling. In section IV we used

6

a similar approach for the radio consumption model. AEON
allows to observe the impact of the energy management
primitives of TinyOS [20]. This is probably a good starting
point if we want to include a model of the operating system
in our framework.

Finally, none of these simulators uses a formal model
that could be used for validation. On the other hand, the
formal validation community does not seem to have started
working on sensor networks. To our knowledge, there is no
other approach for the formal and global modeling of sensor
networks, for which we can hope to use validation tools.

VII. C ONCLUSION

We demonstrated the use of a modeling formalism on
an example sensor network. We showed how to include in
the same model: precise algorithms for the application and
the protocols, abstract consumption models for the hardware,
and a non-deterministic model for the environment. We also
explained how to extend this simple example if we need, for
instance, a more detailed model of the hardware. We think
that the main advantage of our modeling framework is the
possibility to replace an abstract model of a component by a
more precise one, and to prove that it is indeed an abstraction.

The simulation is feasible for hundreds of nodes. Moreover,
since the model is formally defined as a set of parallel
processes, formal validation techniques can be used.

We are working on the connection of the model to the
automatic validation tools available at Verimag [21], [22].

REFERENCES

[1] “The Network Simulator - ns-2.” [Online]. Available:
http://www.isi.edu/nsnam/ns/

[2] F. Ghenassia,Transaction Level Modeling With SystemC: TLM Concepts
And Applications for Embedded Systems. Springer-Verlag, 2005.

[3] L. Lamport, “Proving the correctness of multiprocess programs,”IEEE
Transactions on Software Engineering, vol. SE-3, no. 2, pp. 125–143,
1977.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks.” in
MOBICOM, 2000, pp. 56–67.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey.”Computer Networks, vol. 38, no. 4, pp. 393–
422, 2002.

[6] L. Mandel and M. Pouzet, “Reactiveml, a reactive extension to ml,” in
ACM International conference on Principles and Practice of Declarative
Programming (PPDP’05), Lisbon, Portugal, July 2005.

[7] X. Leroy, “The Objective Caml system release 3.09 Documentation and
user’s manual,” INRIA, Tech. Rep., 2005.

[8] E. Jahier and P. Raymond, “The lucky language reference manual,”
Verimag Technical Report, Tech. Rep. TR-2004-6, 2005.

[9] C. C. Enz, A. El-Hoiydi, J.-D. Decotignie, and V. Peiris, “Wisenet:
An ultralow-power wireless sensor network solution.”IEEE Computer,
vol. 37, no. 8, pp. 62–70, 2004.

[10] A. Bachir, D. Barthel, M. Heusse and A. Duda, “Micro-Frame Preamble
MAC for Multihop Wireless Sensor Networks,”accepted, ICC, 2006.

[11] W. Ye, J. S. Heidemann, and D. Estrin, “Medium access control with
coordinated adaptive sleeping for wireless sensor networks.”IEEE/ACM
Trans. Netw., vol. 12, no. 3, pp. 493–506, 2004.

[12] “Motorola mc13192 data sheet,” Motorola freescale, 2005. [Online].
Available: freescale.com/files/rfif/doc/datasheet/MC13192DS.pdf

[13] Lin Yuan and Gang Qu,Energy-Efficient Design of Distributed Sensor
Networks. CRC press, Oct. 2004, ch. 38.

[14] EPFL, “Network in A Box.” [Online]. Available: http://nab.epfl.ch/
[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,

“The nesC language: A holistic approach to networked embedded
systems,”j-SIGPLAN, vol. 38, no. 5, pp. 1–11, May 2003.

[16] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: Scalable Sensor
Network Simulation with Precise Timing,”Proceedings of IPSN, 2005.

[17] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras, “ATEMU:
A Fine-grained Sensor Network Simulator,”Secon, 2004.

[18] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network ap-
plications.” in SynSys, 2004, pp. 188–200.

[19] S. G. Olaf Landsiedel, Klaus Wehrle, “Accurate prediction of power
consumption in sensor networks,” inProceedings of The Second IEEE
Workshop on Embedded Networked Sensors (EmNetS-II), Sydney, Aus-
tralia, May 2005.

[20] TinyOS Team, “Tinyos.” [Online]. Available: www.tinyos.net
[21] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and verifying

critical systems by means of the synchronous data-flow programming
languageLUSTRE,” IEEE Transactions on Software Engineering, Special
Issue on the Specification and Analysis of Real-Time Systems, Sept.
1992.

[22] M. Bozga, S. Graf, and L. Mounier, “If-2.0: A validation environment
for component-based real-time systems,” inProceedings of CAV’02
(Copenhagen, Denmark), ser. LNCS, K. L. Ed Brinksma, Ed., vol. 2404.
Springer-Verlag, July 2002, pp. 343–348.

7

