
META: Middleware for
Events, Transactions,
and Analytics

M. Arnold
D. Grove
B. Herta
M. Hind
M. Hirzel

A. Iyengar
L. Mandel

V. A. Saraswat
A. Shinnar
J. Siméon

M. Takeuchi
O. Tardieu
W. Zhang

Businesses that receive events in the form of messages and react
to them quickly can take advantage of opportunities and avoid
risks as they occur. Since quick reactions are important, event
processing middleware is a core technology in many businesses.
However, the need to act quickly must be balanced against the
need to act profitably, and the best action often depends on more
context than just the latest event. Unfortunately, the context is
often too large to analyze in the time allotted to processing an
event. Instead, out-of-band analytics can train an analytical
model, against which an event can be quickly scored. We built
middleware that combines transactional event processing with
analytics, using a data store to bridge between the two. Since the
integration happens in the middleware, solution developers need
not integrate technologies for events and analytics by hand. At the
surface, our Middleware for Events, Transactions, and Analytics
(META) offers a unified rule-based programming model.
Internally, META uses the X10 distributed programming
language. A core technical challenge involved ensuring that the
solutions are highly available on unreliable commodity hardware,
and continuously available through updates. This paper describes
the programming model of META, its architecture, and its
distributed runtime system.

Introduction
Business event processing consists of receiving events
from external sources, evaluating some business rules,
and taking an action. Automating this task frees human
operators to focus on difficult cases. Event processing
should be fast. When event processing scales to
high-velocity event streams, it can provide value to the
business by assessing many small risks and opportunities.
In contrast, analytics often consist of scanning the contents
of a data store to build an analytical model,
using technologies ranging from relational queries to
machine-learning algorithms. When analytics scale to
large data sets, the analytics can provide value to the
business by informing high-quality decisions. This paper
is about META (Middleware for Events, Transactions,
and Analytics), which combines the two technologies via a
shared data store. In other words, with META, event

processing uses the results of analytics to make better
decisions.

Motivation
The following three scenarios motivate META: (1) Marketer
Alerts, (2) Disease Tracking, and (3) Shopfront Ads. All
three scenarios follow the high-level picture in Figure 1. At
the center is an event processor, which receives input events,
performs transactions with respect to entities in a store,
uses (scores against) analytics results, and produces
output events (also known as actions). Below are
descriptions of the scenarios:

1. Marketer-Alerts scenario—Consider a business that
receives an input event each time a client reads material
on a product. Each client is represented by an entity in
the store, along with a list of the most recent events.
The analytics training consists of computing the average
length of time spent reading. Given a new input event,Digital Object Identifier: 10.1147/JRD.2016.2527419

M. ARNOLD ET AL. 15 : 1IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

ÓCopyright 2016 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/16 B 2016 IBM

the event processor can score it with respect to the
analytics results to check whether a client dwells
unusually long on certain material. If so, it can generate
an output event to alert the marketer responsible for
that client.

2. Disease-Tracking scenario—In this scenario, input
events report cases of people falling ill. The analytics
training consists of finding clusters of such reports with
similar symptoms, times, and locations. Then, a doctor
faced with a new case can generate an input event
asking for similar cases (scoring). If the new case
belongs to a cluster of known cases, the output event
can report back information about that cluster.

3. Shopfront-Ads scenario—Consider a situation in which
image recognition technology, given an image of a
shopper, returns a shopper description including attire,
age, gender, etc. A retail shop with cameras installed
at the check-out register can record pairs of
〈description, purchase〉 in the store. By treating
the description as features and the purchase as a label,
a machine-learning algorithm can train an analytical
model that predicts the purchase based on the
description. Cameras that watch potential shoppers
walking by the shopfront can generate events with
shopper description, which the event processor can
score against the analytical model to predict a possible
purchase. Then, the output event (action) is to display
an advertisement for the predicted item to purchase on
the shopfront. Note that for privacy reasons this
scenarios uses no identifying information (such as a
credit card number or a mobile phone number).

It is possible to implement these scenarios by using
separate software applications for processing events and for
performing analytics. However, doing so is difficult, as it

requires understanding, installing, programming, and
operating two separate complex systems. Furthermore, it is
insufficient to run the analytics once, since the analytics
results grow stale when new data arrives. One approach
would be to periodically copy the data from the event
processor to the analytics system, while transforming it to
adjust between the data models of the two systems.
Unfortunately, this incurs an extra performance cost, which
means that it can only happen infrequently, e.g., once a
night. Instead, META is an integrated platform that avoids
these problems.
Note that, although the three scenarios use a diverse

set of analytics, they all conform to the same general
structure, shown in Figure 1. All three cases use a
closed-loop system, where events produce inputs for
analytics and save them in a store, and the analytics output
scores for events. Once deployed, no human intervention
is required to upload new analytical models. Whereas
Scenario (1) uses descriptive analytics in the form of
straightforward queries that compute an exact answer,
Scenarios (2) and (3) use predictive analytics in the
form of machine-learning algorithms that produce
approximate results. Among the two predictive analytics,
the clustering employed by Scenario (2) is unsupervised
since it requires no labels, whereas Scenario (3) employs
supervised learning that relies upon 〈features, label〉
pairs.

High-level overview
META is a project at IBM Research that is closely
affiliated with an IBM product called “Operational
Decision Manager: Decision Server Insights” [1], or ODM
Insights for short. This paper describes META, not ODM
Insights. This paper omits or simplifies some aspects of
ODM Insights, while also adding other aspects that exist
only as a research prototype. This paper does not make
any statements about the capabilities of the product.
Consult the product documentation for authoritative
information about ODM Insights [1].
Incoming events from external systems into META are

typed objects that can be represented naturally as XML
(Extensible Markup Language) or JSON (JavaScript**
Object Notation) documents. Events are handled by
event-processing agents. Each agent subscribes to certain
event types, and META routes events to subscribing
agents. Event processing is reactive: when an event arrives,
agents are activated, run some business rules, and then
become passive again waiting for the next event. Each
agent activation reads or writes zero or more entities,
which are typed objects that reside in a transactional store.
An agent activation manipulates a relatively small amount
of data. All side effects of an agent activation, which
comprise optionally modifying the entities store and
emitting zero or more output events, belong to a

Figure 1

High-level overview of META (Middleware for Events, Transac-
tions, and Analytics)

15 : 2 M. ARNOLD ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

transaction, which happens exactly once and is atomic.
Outgoing events go either to external systems or are
consumed by other agents. (An agent can subscribe to any
kind of events, whether received from the outside world or
produced by other agents. This is useful for building
modular applications.) However, when META consumes
its own events, it triggers a separate transaction.
Analytics training is decoupled from event processing.

Training reads a large portion of the data in the store,
but does not write any entities. Training runs either
incrementally or on a frequent periodic schedule (for
example every 15 minutes). The result of training is an
analytical model, which may be slightly stale. Analytics
scoring is part of event processing. Scoring happens
during agent activation and consults the most recent
available analytical model. We use the terms training and
scoring in a general sense that encompasses both
descriptive and predictive analytics. For instance, scoring
may simply compare a value to a computed average, or it
may traverse a decision tree.
Another way to view META is as a middleware for

building Systems of Insight. It resides at the intersection
between Systems of Engagement, which are the front-ends
through which an enterprise interacts with individual
consumers, and Systems of Record, which are the
back-ends where an enterprise holds the authoritative copy
of its data. By connecting these two technologies, META
is a platform for building solutions that bring more
insights to bear when engaging individual consumers.
The main challenges in the design of META involved

offering a unified programming model and a scalable
execution platform for events and analytics. At design
time, the developer should be able to specify event rules
and analytics in a uniform way. META supports this by a
family of domain-specific languages for defining the
data model and the code (rules and analytics). At runtime,
the system should be able to handle both high-velocity
event streams and high-volume analytics. META supports
this by a resilient distributed architecture with a shared
in-memory store. For scalable analytics, META internally
uses the X10 distributed programming language [2],
which was developed in-house and combines scale-out
characteristics with a high-level, general-purpose
developer experience.

Related work
While META integrates event processing with analytics in
a single system, one can also combine them by using
separate systems. In fact, the databases community has
long separated OLTP (Online Transaction Processing) for
reacting to high-velocity data in motion from OLAP
(Online Analytical Processing) for analyzing high-volume
data at rest [3]. Applying OLAP on the contents of an
OLTP system traditionally requires an ETL (Extract

Transform Load) step, for instance, once a night. Recent
technological advances make integrated systems feasible:
main memory has grown cheaper and thus larger, and
distributed main-memory systems have become more
scalable and resilient. Integrating the technologies in a
single system leads to better performance, usability,
and resilience.
HyPer is a database system that supports both OLTP

and OLAP with high performance [4]. Similarly, HANA is
a database system for high-performance OLTP and
OLAP [5]. Both HyPer and HANA adapt relational
database techniques for the case where most tables reside
in memory for good performance. Whereas HyPer and
HANA focus on basic database transactions and queries,
META offers a higher-level programming model for
business event processing and diverse analytics. Spark
Streaming is an offshoot of a batch analytics platform
that emulates stream processing via micro-batches [6].
Conversely, Flink** is a streaming system that also offers
batch processing [7]. Naiad is a dataflow platform that
supports both streaming and iterative high-volume
analytics in the same application [8]. Whereas Spark
Streaming, Flink, and Naiad focus on sequences of data
transformation stages, META offers a higher level of
abstraction with an agent-centric event processing
middleware integrated with out-of-band analytics.
CQL (Continuous Query Language) is a streaming

language designed around the duality between streams
and relations [9]. While its notion of relations could help
integrate streaming with analytics on data at rest, CQL did
not further explore this design point. SPL (Streams
Processing Language) is a streaming language for
distributed processing using in-memory state [10]. While
many SPL applications also score streams with respect to
analytical models, those analytical models are trained on
separate systems. ActiveSheets** uses spreadsheets for
stream processing, but does not pursue large-scale
analytics of data at rest [11]. Percolator is a continuous
distributed incremental analytics system aiming at keeping
analytical models fresh [12]. The Percolator paper
focuses on the analytics, and does not explain how they
can be integrated with event processing. For more on
stream and event processing see the survey paper by
Cugola and Margara [13].

Paper organization
The remainder of this paper is structured into four
sections. The programming-model section describes the
developer experience for programming solutions on top of
the META middleware. The architecture-overview section
examines the system internals. The section on X10 for
analytics dives deeper into research aspects of the
implementation. Finally, the conclusion section

M. ARNOLD ET AL. 15 : 3IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

summarizes the paper and gives an overview of ongoing
research activities.

Design time: Programming model
In this section, we describe the interface that META
provides to developers for programming solutions.
We make the concepts and capabilities of META more
concrete while leaving a discussion of how META itself is
implemented to subsequent sections. The META
programming model revolves around three basic concepts:
entity, event, and agent. An entity is an object in the store,
an event is an object on the wire, and an agent hosts
code to process an event bound to an entity. This section
uses the Marketer-Alerts scenario from the introduction
as a running example. Listing 1 shows the code for
this scenario.
As Listing 1 shows, META provides natural-language

syntax to define types, event processing rules, and
analytics. This syntax does not permit free-flow natural
language, but rather, consists of domain-specific languages
(DSLs). Type definitions such as Client and Read
Event in Listing 1 extend the vocabulary of the base
DSLs, making it possible to verbalize properties of objects
in rules (i.e., express the properties in a syntax approaching
natural English language). While code for META is

typically written by programmers, it is designed to be
readable by non-programmers. This enables domain
experts in the line of business to understand and give
feedback on the business rules. The technology for
DSLs used by META comes from the IBM Operational
Decision Manager (ODM) product suite. Some ODM
products even support DSLs resembling natural languages
aside from English.

Specifying the data model
Lines 1 through 8 of Listing 1 define two types. In
META, a concept is a user-defined type for an object with
properties. A business entity type such as Client in
Listing 1 is a concept with a mandatory identified by
property, which holds the primary key of the object.
A business event type such as Read Event in Listing 1 is
a concept with a mandatory timestamped by property.
Entities are mutable and events are immutable. Properties
that are defined via has contain either primitive values
or nested instances of other concepts. In contrast,
properties that are defined via is related to contain the key
of another entity, not its value. One feature that is not
illustrated by Listing 1 involves properties that can also be
defined using the plural voice to define lists.

Listing 1 Example code illustrating the domain-specific languages of META. Identifiers for user-defined entities
and events, along with their properties, agents, and queries, are typeset in bold.

15 : 4 M. ARNOLD ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

Specifying event agents
Lines 10 through 23 of Listing 1 define an agent. An
agent descriptor (Lines 11 through 13) subscribes the
agent to events and defines how to determine the key of
the bound entity given an event. META supports three
kinds of event-handling agents: rule agents, Java** agents,
and predictive scoring agents. The agent in Listing 1 is
an example of a rule agent. A rule agent defines
event-condition-action rules using the when-if-then syntax
illustrated in Lines 16–23. Each rule has implicit variables
in scope for the triggering event (here, this Read Event)
and the bound entity (here, the Client). Aside from the
surface syntax, the code resembles production rules such
as OPS5 (Official Production System 5), where the
condition can involve pattern matching, and the action can
involve modifying or creating new working memory
elements [14]. Some features that are not illustrated by
Listing 1 are rules that can also include aggregations,
temporal predicates, and geo-spatial expressions. One
benefit of the rule-based approach is that it is possible to
add new rules without disrupting the rest of the system.
This enables a more modular and agile development
process.

Specifying analytics
Lines 26 through 29 of Listing 1 define analytics. The
example illustrates a global event query, which ranges
over all events of a certain type, i.e., not just the
events bound to a particular entity. Another kind of
analytics in META not illustrated here is the global entity
query, which ranges over all entities of a certain type.
Event queries and entity queries perform descriptive
analytics over data in motion and data at rest, respectively.
In relational terminology, they typically involve selection,
projection, and aggregation. Aside from these forms of
analytics, META also supports predictive analytics via
SPSS* [15]. SPSS supports a large variety of algorithms,

including, but not limited to, various decision trees,
various clustering algorithms, logistic regression,
neural networks, anomaly detection algorithms,
Bayesian networks, and support-vector machines.
For predictive analytics, the training happens in SPSS,
and the scoring happens in a predictive scoring agent
(one of the three kinds of event agents mentioned above).
Overall, META offers a consolidated programming

model for both events and analytics. This facilitates
authoring solutions that combine these two technologies in
order for the insights from analytics to inform the actions
of event processing.

Runtime: Architecture overview
Now that we have seen how a developer can implement a
solution on top of META, we examine the internals to
see how META itself is implemented. Recall from the
introduction that the three central components of
META are the event processor, the store, and the
analytics.
One of the design objectives of META is that it

should scale to large volumes of events and entities by
using the memory and compute resources of a cluster of
computers, not just a single computer. Therefore,
META is designed as a distributed system, using several
processes that each have event agents, store shards, and
analytics agents, as depicted in Figure 2. Taken together,
the store shards constitute a partitioned in-memory store.
A partitioning function maps from an object key to a
shard and the process that own it. Since event agents are
bound to entities, and entities are partitioned across all
shards, the code (for instance, the rules) for all event
agents exist in all processes.
The green path in Figure 2 illustrates event processing

in META. Consider an input event, e.g., a Read Event
{date:“2015-0729-10:17:37.231”,client:
“Chuck”,topic:“tech”,length:“23:28.310”}.

Figure 2

Distributed architecture of META

M. ARNOLD ET AL. 15 : 5IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

An event router consults the partitioning function to
determine the destination process. For the above event,
that would be the process containing the entity for Chuck,
e.g., {name:“Chuck”, marketer:“Mary”}. That
process activates the subscribing event agent, which
performs a transaction against the local shard that contains
the bound entity. The activation may also involve scoring
against an analytical model and generating output events,
e.g., sending an alert to Chuck’s marketer, Mary. The
green path is optimized for low latency and high
throughput by using a relatively small amount of local
independent in-memory data per activation.
The blue path in Figure 2 illustrates analytics in META.

Analytics agents in all processes scan data from all store
shards in parallel. The analytics agents perform
data-parallel local computation, punctuated by global
communication and coordination with each other. The
result of analytics is an analytical model, which can
subsequently be used for scoring during event processing.
The blue path is optimized for volume by using data
parallelism to analyze a substantial portion of the global
in-memory data.
Another design objective of META is that it should be

resilient. First, META is designed for high availability:
it survives node failure without downtime or data loss. To
achieve high availability, META uses a replicated store,
where each object has a primary copy and a secondary
copy in different shards on different computers. Second,
META is designed for continuous availability: it supports
software upgrades without downtime. To achieve
continuous availability, META uses rolling upgrades.
It takes advantage of the high-availability support by
stopping processes with old code one at a time, and
starting processes with new code to replace them. Third,
META is designed for disaster recovery: even if all nodes
fail, it can restart without data loss. META enables
disaster recovery via write-through to a durable backup
store: each transaction saves essential data to disk. This is
an optional feature that can be enabled or disabled
depending on solution requirements.
At the level of the programming model described in the

previous section, solution developers need not concern
themselves with how the system is implemented internally.
However, in the interest of advancing the state of the art
by sharing our experience with building META, here we
mention some technology choices. The store is
WebSphere* eXtreme Scale (WXS). The processes use
the WebSphere Application Server Liberty Core on a Java
Virtual Machine (JVM**). META uses the OSGi
(Open Services Gateway initiative) module system for
Java, which Liberty implements. The rule agents are
implemented by compiled Rete engines [16]. And the
analytics are implemented on the basis of Java and X10,
as outlined in the following section. Note that since these

choices are not exposed to the solution developer, they
may change. Furthermore, technology choices in META
do not necessarily reflect those in ODM Insights.
In this section, we described in broad strokes how

META is implemented by a resilient distributed system.
On a three-server cluster, with high-availability enabled
but disaster-recovery disabled, META achieves
throughputs above 10,000 events per second with
subsecond latencies. The following section dives more
deeply into one of the challenging implementation aspects
of META.

X10 for analytics
Recall that in META, entity state is distributed across a
cluster of machines. Performing analytics over this state
requires orchestrating calculations and data movements
over the cluster. The X10 programming language and
runtime system are designed to ease the development
and deployment of such codes. META uses X10 to
implement analytics. In this section, we provide a brief
introduction to X10 and discuss the use and integration of
X10 in META.

X10 and APGAS
The X10 programming language [2] is an imperative,
object-oriented language built on the APGAS
programming model (Asynchronous Partitioned Global
Address Space) [17]. In this model, a distributed system is
viewed as a collection of places. An X10 application
runs over a collection of places, possibly large, possibly
heterogeneous. X10 makes it easy to construct aggregate
objects and orchestrate aggregate tasks that span over
multiple places. For example, the X10 standard library
offers distributed arrays implemented in X10 [18]. These
arrays support distributed operations such as reductions.
A typical X10 program first implements and constructs a
series of distributed data structures, then computes over a
global view of the data, e.g., sequences of map-reduce
jobs over distributed key-value maps. More information on
X10 can be found online [19].

X10 as a Service
The X10 programming concepts closely align with the
META concepts of distributed entities and global queries,
making it natural to express META analytics in X10.
Moreover, the X10 compiler can generate Java code from
X10 code [20, 21], providing language compatibility with
the rest of META—META is primarily implemented in
Java and runs across a cluster of JVMs. Nevertheless,
running X10 analytics and the X10 runtime as a service in
a META cluster requires solving key technical challenges,
which we now discuss. A similar and possibly even more
significant effort would be needed to embed other

15 : 6 M. ARNOLD ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

distributed analytics frameworks (such as Spark [6]) as a
subsystem of a well-behaved piece of middleware.
X10 was initially developed for the high-performance

computing (HPC) audience to run scientific applications
on the IBM Power* 775 and other high-performance,
high-availability systems [22]. As a result, the X10
runtime was biased toward launching and running a single
application with high performance on dedicated resources
assumed to be reliable. In contrast, in META, X10 is
intended to support running 1) a series of jobs, 2) using a
persistent pool of Java Virtual Machines managed by
META, 3) shared with other META services 4) running on
commodity clusters. These clusters can experience node
failures, live addition of nodes, or rolling upgrades.
We review these four requirements in turn:

1. To run a series of jobs using a common X10 runtime
instance, we augment the X10 runtime with APIs
(application programming interfaces) for startup and
shutdown, job submission, and monitoring. Moreover,
we refactor the runtime to eliminate the global state
and replace it with per-job state, making it possible to
run multiple jobs in parallel without interference.

2. To run X10 as part of a META cluster, we developed
new X10 runtime mechanisms for launching, linking
together, and destroying X10 places within the JVMs of
META. Instead of launching new X10 processes
directly with our own launcher, we bootstrap the startup
of the runtime as an OSGi service, and use the META
data storage layer to communicate initial bootstrap
information about the runtimes. This mechanism enables
us to establish connections among X10 places following
the topology of the META cluster, and gives X10
programs direct and fast access to the data stored within
the META JVMs. We expand on our bootstrap
implementation later in this document.

3. To properly share system resources with other META
components, we make sure idle threads in the X10
runtime do not waste CPU time. In the HPC context,
polling or busy waiting minimizes latency using CPU
time that is wasted anyway, as the system is dedicated
to running a single program at any point in time.
In the META context, idle threads are suspended so that
other META services can use the CPU if needed, or
CPUs can be throttled to reduce energy consumption.

4. To support live cluster reconfigurations—node loss,
addition, or upgrade—we proceeded in steps. In a first
release of META, we encapsulated the X10 runtime in a
reloadable bundle, with an X10 management service
monitoring the cluster and X10 state. This made it
possible to unload, reconfigure, and reload the X10
runtime upon cluster reconfigurations, on demand. In a
second release, we added the ability to reconfigure the
X10 runtime as it is running. In particular, we make it

possible to establish and close connections between
X10 places at any time. When a cluster change is de-
tected, connections to missing places are closed,
new places are started on JVMs joining the cluster, and
new connections are established. While the X10 runtime
itself now survives cluster reconfigurations, we still
cancel all in-progress analytic jobs since the jobs are
not capable of adjusting dynamically to new cluster
configurations. Our cancellation implementation
guarantees that cancelled jobs cannot interfere with
new jobs. The implementation reports cancelled jobs so
that these jobs can be resubmitted to the X10 service,
if needed.

To facilitate building and deploying X10 in the context of
META, we also replace our native communication library
with a pure Java implementation over TCP/IP sockets,
thereby eliminating all native code and JNI (Java Native
Interface) wrappers from the X10 runtime.
Our bootstrap code deserves some additional discussion.

As mentioned above, we do not launch X10 ourselves, but
rather embed the startup of X10 within the startup of the
rest of META, so that the cluster itself is managed by
META scripts and utilities, without concern for X10
directly. Our implementation consists of two OSGi
bundles; additionally, we make use of two unique data
map types in WebSphere eXtreme Scale (WXS),
described below, which are independent from the normal
maps used to hold META data. Our first OSGi bundle is a
small X10 management bundle, which performs the
launching function for the second OSGi bundle, which is
the X10 runtime itself. There are additional bundles
which are the X10 programs for computing global
aggregates. They depend on the X10 runtime bundle and
share the same lifecycle. We configure a per-JVM map
(a CONTAINER_MAP in WXS terms) that does not hold
any actual data, but whose configuration we can query at
runtime to identify the number of JVMs in the cluster
and thus the number of places we should expect in X10.
Our X10 management bundle partially initializes the X10
runtime bundle in each container, which opens up a listen
socket at some dynamic operating-system provided port
number. The management bundle then gathers up the port
number of the local X10 runtime, combines it with the
hostname defined for the WXS container, and stores this
information into a single-partition WXS map, accessible
from any JVM in META. This co-locates the hostname
and port information for every place into a single JVM,
from which we can then retrieve, sort, and compare the
number of entries to the expected count from the per-JVM
map. Once our management bundle in each JVM
determines that it has the connection information for all
other places, it configures the X10 runtime bundle to
initialize the communication links to other places, and

M. ARNOLD ET AL. 15 : 7IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

begin running jobs. There is additional logic to handle
JVM additions or removals in all phases of startup and
after running jobs. The per-JVM maps continue to be
monitored for place addition and removal. The
single-partition map is consulted whenever a new JVM
comes online, to detect if X10 is already running in the
cluster, and to get the associated hostnames and ports
for the new place to connect to.

Conclusion
In this paper, we discussed META—Middleware for
Events, Transactions, and Analytics. META made it
possible for business event processing to use insights
learned from the context to arrive at the best actions. We
provided an overview of the META programming model.
By offering a unified programming model for both event
processing and analytics, META simplified solution
development. Next, we provided an overview of the
in-memory distributed architecture of META. This
architecture was designed to scale while also offering a
high level of resilience. Finally, we provided a deep-dive
on how the X10 programming language was used to
implement parts of META. X10 is a general-purpose
distributed programming language that makes it easier to
implement distributed analytics than doing so from scratch
in a non-distributed language such as Java. Overall,
META is a middleware for writing systems of insight
that combine events with analytics.
Much additional research on META is possible. We

note that the text in the following paragraphs is not a
statement about the future roadmap of the ODM Insights
product, which is ultimately driven by customer
requirements.
We are exploring how to use rule languages for more

general descriptive analytics. CAMP (Calculus for
Aggregating Matching Patterns) lays a foundation for
this [23]. We are also exploring more diverse predictive
analytics implemented in X10, including parallel
DBSCAN (Density Based Spatial Clustering of
Applications with Noise) [24]. More generally, on the
front of predictive analytics, we are investigating tighter
integration of META with SPSS [15], using our M3R
(Main-Memory Map Reduce) technology [25] as a
common foundation. One fundamental trade-off for
predictive analytics is between the frequency of retraining,
which incurs a performance cost, and the accuracy of the
analytical model, which tends to degrade when training is
less frequent. To address this issue, we are developing
AQuA (Adaptive-Quality Analytics).
We are exploring how to optimize event processing

performance [26]. We have demonstrated that META can
be integrated with InfoSphere* Streams [10],
the high-performance stream processing platform of IBM.
The integration uses Streams as a front-end to consume a

“firehose” of raw events and turn it into a smaller volume
of higher-value business events for META. One major
performance factor for META concerns the transactional
store; other isolation levels could yield better performance
[27]. For certain event handling patterns in META,
there are also known techniques with “good” algorithmic
complexity based on sliding-window aggregation [28] and
finite-state machines [29]. (We use the phrase “good
algorithmic complexity” to indicate at most logðNÞ time
per event, where N is the amount of state maintained by
the system.) We are exploring how to use those to
simplify and optimize stateful rule agents. Finally, we are
investigating cloud-hosting for META. One aspect of this
that we are exploring is using a NoSQL or SQL JSON
store for META [30].
Finally, we are exploring how to add fault tolerance and

elasticity to the X10 programming language [31] to enable
applications such as META analytics to detect place
failures or cluster reconfigurations, and seamlessly recover
and adapt to the new configuration. Overall, META has a
diverse research agenda with an active technology transfer
pipeline.

Acknowledgments
We thank the ODM Insights team (especially
Steve Demuth, Stephane Mery, Dan Selman, and
David Martin) for a fruitful collaboration. We also thank
the anonymous reviewers for constructive and meticulous
feedback.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both

**Trademark, service mark, or registered trademark of Oracle
America, Apache Software Foundation, or Component Software, Inc ,
in the United States, other countries, or both

References
1 IBM Corporation, Operational Decision Manager Decision

Server Insights [Online] Available http //www ibm com/
support/knowledgecenter/SSQP76_8 7 1

2 P Charles, C Donawa, K Ebcioglu, C Grothoff, A Kielstra,
C von Praun, V Saraswat, and V Sarkar, “X10 An
object-oriented approach to non-uniform clustered computing,”
in Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2005, pp 519–538

3 S Chaudhuri and U Dayal, “An overview of data warehousing
and OLAP technology,” in International Conference on
Management of Data (SIGMOD), 1997, pp 65–74

4 A Kemper and T Neumann, “HyPer A hybrid OLTP&OLAP
main memory database system based on virtual memory
snapshots,” in International Conference on Data Engineering
(ICDE), 2011, pp 195–206

5 V Sikka, F Farber, W Lehner, S K Cha, T Peh, and
C Bornhovd, “Efficient transaction processing in SAP HANA
Database The end of a column store myth,” in Demonstration
at the International Conference on Management of Data
(SIGMOD-Demo), 2012, pp 731–742

15 : 8 M. ARNOLD ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

6 M Zaharia, T Das, H Li,T Hunter, S Shenker, and I Stoica,
“Discretized streams Fault-tolerant streaming computation at
scale,” in Symposium on Operating Systems Principles (SOSP),
2013, pp 423–438

7 Apache, Flink Scalable Batch and Stream Data Processing
[Online] Available https //flink apache org

8 D G Murray, F McSherry, R Isaacs, M Isard, P Barham, and
M Abadi, “Naiad A timely dataflow system,” in Symposium on
Operating Systems Principles (SOSP), 2013, pp 439–455

9 A Arasu, S Babu, and J Widom, “The CQL continuous query
language Semantic foundations and query execution,” Journal
on Very Large Data Bases (VLDB J), vol 15, no 2,
pp 121–142, Jun 2006

10 M Hirzel, H Andrade, B Gedik, G Jacques-Silva, R Khandekar,
V Kumar, M Mendell, H Nasgaard, S Schneider, R Soulé, and
K -L Wu, “IBM streams processing language Analyzing big
data in motion,” IBM J Res & Dev , vol 57, no 3/4, paper 7,
pp 7 1–7 11, 2013

11 M Vaziri, O Tardieu, R Rabbah, P Suter, and M Hirzel,
“Stream processing with a spreadsheet,” in European
Conference on Object-Oriented Programming (ECOOP),
2014, pp 360–384

12 D Peng and F Dabek, “Large-scale Incremental Processing
Using Distributed Transactions and Notifications,” in Operating
Systems Design and Implementation (OSDI), 2010, pp 251–264

13 G Cugola and A Margara, “Processing flows of information
From data stream to complex event processing,” ACM Computing
Surveys (CSUR), vol 44, no 3, Jun 2012

14 C L Forgy, “OPS5 user’s Manual,” Carnegie Mellon University
(CMU), Tech Rep 2397, 1981

15 IBM, SPSS software Predictive Analytics Software and
Solutions [Online] Available http //www ibm com/software/
analytics/spss/

16 C L Forgy, “Rete A fast algorithm for the many pattern/many
object pattern match problem,” Artificial Intelligence, vol 19,
no 1, pp 17–37, Sep 1982

17 V Saraswat, G Almasi, G Bikshandi, C Cascaval,
D Cunningham, D Grove, S Kodali, I Peshansky, and
O Tardieu, “The asynchronous partitioned global address space
model,” in Workshop on Advances in Message Passing (AMP),
2010

18 D Grove, J Milthorpe, and O Tardieu, “Supporting array
programming in X10,” in Workshop on Libraries, Languages
and Compilers for Array Programming (ARRAY), 2014

19 X10 Open-Source Community, X10 Performance and
Productivity at Scale [Online] Available http //x10-lang org

20 M Takeuchi, Y Makino, K Kawachiya, H Horii, T Suzumura,
T Suganuma, and T Onodera, “Compiling X10 to java,” in X10
Workshop (X10), 2011, pp 3 1–3 10

21 M Takeuchi, D Cunningham,D Grove, and V Saraswat,
“Java interoperability in managed X10,” in X10 Workshop (X10),
2013, pp 39–46

22 O Tardieu, B Herta, D Cunningham, D Grove, P Kambadur,
V Saraswat, A Shinnar, M Takeuchi, and M Vaziri, “X10 and
APGAS at Petascale,” in Symposium on Principles and Practice
of Parallel Programming (PPoPP), 2014, pp 53–66

23 A Shinnar, J Siméon, and M Hirzel, “A pattern calculus for
rule languages Expressiveness, compilation, and mechanization,”
in European Conference on Object-Oriented Programming
(ECOOP), 2015, pp 542–567

24 M Patwary, M Ali, D Palsetia,A Agrawal, W Liao, F Manne,
and A Choudhary, “A new scalable parallel DBSCAN algorithm
using the disjoint-set data structure,” in Conference for High
Performance Computing, Networking, Storage and Analysis (SC),
2012, pp 1–11

25 A Shinnar, D Cunningham, B Herta, and V A Saraswat,
“M3R Increased performance for in-memory Hadoop jobs,” in
Conference on Very Large Data Bases (VLDB) Industrial Track,
2012, pp 1736–1747

26 M Hirzel, R Soulé, S Schneider, B Gedik, and R Grimm,
“A catalog of stream processing optimizations,” ACM Computing
Surveys (CSUR), vol 46, no 4, Apr 2014

27 H Berenson, P Bernstein, J Gray, J Melton, E O’Neil, and
P O’Neil, “A critique of ANSI SQL isolation levels,” in
International Conference on Management of Data (SIGMOD),
1995, pp 1–10

28 K Tangwongsan, M Hirzel, S Schneider, and K -L Wu,
“General incremental sliding-window aggregation,” in Conference
on Very Large Data Bases (VLDB), 2015, pp 702–713

29 M Hirzel, “Partition and compose Parallel complex event
processing,” in Conference on Distributed Event-Based Systems
(DEBS), 2012, pp 191–200

30 M Enoki, J Simeon, H Horii, and M Hirzel, “Event processing
over a distributed JSON store Design and performance,” in
Conference on Web Information System Engineering (WISE),
2014, pp 395–404

31 D Cunningham, D Grove, B Herta, A Iyengar, K Kawachiya,
H Murata, V A Saraswat, M Takeuchi, O Tardieu, “Resilient
X10 efficient failure-aware programming,” in Symposium on
Principles and Practice of Parallel Programming (PPoPP),
2014, pp 67–80

Received August 5, 2015; accepted for publication
August 28, 2015

Matthew Arnold IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (marnold@us
ibm com) Dr Arnold is a Research Staff Member at IBM and
manages the Cloud Continuous Quality group His research interests
involve developing analytics and tooling to aid program
understanding, optimization, testing, and debugging of modern
cloud applications

David Grove IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (groved@us
ibm com) Dr Grove is a Principal Research Staff Member at IBM
and a Fellow of the Association for Computing Machinery He
currently co-leads the X10 research project His research interests
include the analysis and optimization of object-oriented languages,
virtual machine design and implementation, scalable runtime
systems, Just-In-Time compilation, online feedback-directed
optimization, and automatic memory management

Benjamin Herta IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (bherta@us
ibm com) Mr Herta focuses on distributed programs, both in the
realm of High Performance Computing (HPC), and in application
frameworks such as Apache Spark For META, Mr Herta was
primarily focused on the networking code used by the X10 runtime,
and integration of X10 with the META data store and job execution

Michael Hind IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (hindm@us
ibm com) Dr Hind is a Distinguished Research Staff Member and
Senior Manager of the Programming Technologies Department
Dr Hind is an ACM Distinguished Scientist and Associate Editor of
ACM Transactions on Architecture and Code Optimization His
research interests include programming models and their
implementations, static and dynamic development tools, and
middleware for emerging commercial paradigms

Martin Hirzel IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (hirzel@us ibm
com) Dr Hirzel is a Research Staff Member at IBM and manages
the Programming Languages research group His research concerns
programming languages, event and stream processing, and analytics
He also serves as the Architect of Analytics for the ODM Insights
product

M. ARNOLD ET AL. 15 : 9IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

Arun Iyengar IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (aruni@us ibm
com) Dr Iyengar performs research and development on distributed
computing, cloud computing, and Web performance, as well as
fault-tolerant computing and high availability at the IBM T J
Watson Research Center

Louis Mandel IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (lmandel@us
ibm com) Dr Mandel is a Research Staff Member at IBM His main
research topic is on the design and implementation of programming
languages for reactive systems

Vijay A. Saraswat IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (vsaraswa@us
ibm com) Dr Saraswat is currently a Distinguished Research Staff
Member in Cognitive Computing, working on logic, knowledge
representation, and machine learning He is also Chief Scientist for
the IBM Operational Decision Management (ODM) business unit
Previously, he started and led the META project, and was
responsible for the design and initial implementation of the analytics
capability for ODM Insights He also started and co-led the X10
high performance programming language effort His main research
interests are in logic, distributed systems, programming languages,
and artificial intelligence

Avraham Shinnar IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (shinnar@us
ibm com) Dr Shinnar is a Research Staff Member at IBM Research
His research focuses on programming languages, including work on
type systems, formal verification, and distributed computing

Jérôme Siméon IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (simeon@us
ibm com) Dr Siméon is a Research Scientist at IBM Watson with a
background in databases and programming languages He was a
major contributor to the field of XML (Extensible Markup
Language) processing, including XQuery of WC3 (World Wide
Web Consortium) His current interests include languages and
compilers, as well as transaction management for NoSQL databases

Mikio Takeuchi IBM Research Division, Tokyo Research
Laboratory (mtake@jp ibm com) Mr Takeuchi is a Research Staff
Member at IBM leading the design and implementation of Managed
X10 (X10 for the Java virtual machines) His research interests
include programming languages, high performance computing,
distributed computing, and analytics

Olivier Tardieu IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (tardieu@us
ibm com) Dr Tardieu is a Research Staff Member at the IBM T J
Watson Research Center, leading the design and implementation of
the X10 runtime His research interests include parallel
programming models and languages, HPC systems, software safety,
and fault tolerance

Wei Zhang IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (weiz@us ibm
com) Dr Zhang is a Research Staff Member at IBM and a member
of the Programming Languages research group His research
interests include parallel programming, large-scale machine learning,
and concurrent software reliability

15 : 10 M. ARNOLD ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 15 MARCH/MAY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

