
Q*cert: A Platform for Implementing and Verifying Query
Compilers

Joshua S. Auerbach, Martin Hirzel, Louis Mandel,
Avraham Shinnar & Jérôme Siméon

IBM Research
1101 Kitchawan Rd

Yorktown Heights, NY 10598

ABSTRACT
We present Q*cert, a platform for the specification, verifica-
tion, and implementation of query compilers written using
the Coq proof assistant. The Q*cert platform is open source
and includes some support for SQL and OQL, and for code
generation to Spark and Cloudant. It internally relies on
familiar database intermediate representations, notably the
nested relational algebra and calculus and a novel exten-
sion of the nested relational algebra that eases the handling
of environments. The platform also comes with simple but
functional and extensible query optimizers.

We demonstrate how the platform can be used to imple-
ment a compiler for a new input language or develop new
optimizations that can be formally verified. We also demon-
strate a web-based interface that allows the developer to
explore various compilation and optimization strategies.

1. INTRODUCTION
In application domains where safety, security or privacy

are essential, formal methods are an important part of the
development process. While some effort has been made in
formally proving correct traditional compilers [10], this ques-
tion has received less attention in database systems in gen-
eral and for query compilers in particular.

We demonstrate Q*cert, a platform for the development
and the formal verification of query compilers which is built
using the Coq proof assistant [8]. We show how modern
theorem proving technology can be used to specify and me-
chanically check for correctness a large part of the query
compilation pipeline, resulting in strong correctness guaran-
tees for the final compiler.

While the platform is targeting primarily query compil-
ers built outside of traditional database management sys-
tems (e.g., for DSLs or language-integrated queries [12]), we
believe the experience can be of interest to both database
theorists and practitioners.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3056447

Figure 1: Query Compiler Generation

The source code for the compiler framework1 and an on-
line version of the demo2 are publicly available on github.

2. THE Q*CERT PLATFORM
Figure 1 shows the general idea behind the approach. The

query compiler is first described in a high-level specifica-
tion language that includes the ability to state and mechan-
ically check proofs of correctness, which in our case is the
Coq proof assistant. The compiler itself is then automati-
cally generated from that specification using Coq’s extrac-
tion mechanism [11]. It ensures that it precisely matches
the specification. Once extracted, that compiler behaves as
any other query compiler, taking a query and a database
schema and producing code for execution.

Q*cert is built around a rich data model and type sys-
tem, which include support for atomic types, records, col-
lections, and objects (with a type hierarchy), making it suit-
able for a variety of query languages. At its core, it uses
NRAe [1], a conservative extension of the nested relational
algebra (NRA) [7]. This algebra is designed so that known
results and optimizations on NRA can be applied while also
facilitating compilation of languages wich complex manipu-
lating environments.

The Q*cert platform comes with built-in support for sev-
eral input query languages, including subsets of SQL and
OQL, as well as JRules [3], a domain-specific rules language.
The compiler can emit local JavaScript or Java code, and
distributed code for Spark [15] and the Cloudant NoSQL
database [6]. The complete compilation pipeline is given in
Figure 2. Source languages are listed on the left of the fig-
ure, and target languages are listed on the right. Each box
in the figure corresponds to an intermediate language. Ar-
rows between two boxes are existing translations and loops

1https://github.com/querycert
2https://querycert.github.io/

1703

http://dx.doi.org/10.1145/3035918.3056447
https://github.com/querycert
https://querycert.github.io/

!NRA: NRA with Lambdas
Rule: Rule Macros for CAMP
CAMP: Calculus of
Aggregating Matching
Patterns

DNNRC: Distributed NNRC
tDNNRC: Typed DNNRC
NNRCMR: NNRC with Map/
Reduce
CldMR: NNRC with Cloudant
Map/Reduce

NRA = Nested Relational Algebra
NRAe = NRA with Environments
cNRAe: Core NRAe

NNRC: Named Nested Relational
Calculus
cNNRC: Core NNRC

CAMP

NRAe NNRC

NNRCMR

CldMR

JavaScript

Spark
(Map/Reduce)

Cloudant
(Map/Reduce)

NRA

Java

DNNRC

Rule

OQL

"NRA
SQL

JRule

tDNNRC

"NRA

Frontend Core Compiler Distributed Compiler

OQL

Spark
(Datasets)

cNRAe

NNRC

cNNRC

SQL

Backend

Figure 2: Q*cert Compilation Pipeline

over a single box are existing optimizers. The part of that
pipeline in red in Figure 2 comes with proofs of correctness.

While verification techniques have greatly matured,3 most
applications to databases have focused on query languages
formalization [2, 14]. One notable exception is the Coko-
Kola project [5] which used the Larch theorem prover in
the context of a rule-based compiler4. By leveraging recent
theorem proving advances, we were able to formally verify
a much larger part of the query compilation pipeline.

3. AUDIENCE EXPERIENCE
We use NRAλ, a simple surface query language, to demon-

strate the extensibility of the platform and illustrate its in-

ternals. We show how NRAλ can be integrated into the
compiler and how to add (and prove) new optimizations.
Finally, we demonstrate a web-based interface designed to
test and debug the resulting compiler.

3.1 Compiling NRAλ

NRAλ [1] is a simple language of relational operators writ-
ten as functions with closures, in a style similar to that of
C# Linq [12] or Spark’s RDD [15] operations. The following
example returns the persons whose age is less than 30 from
the union of two collections:

Persons1.union(Persons2).filter{p => p.age < 30}

Figure 3 sketches the different code components required

to integrate NRAλ into the compiler. We are going to ex-
plain them in turn. A full version of the code in HTML form
can be found by clicking on the flower symbol _.

In order to add a new language in Q*cert, the first step
is to define its Abstract Syntax Tree (AST). In Coq, an
AST can be defined with an inductive type. The AST

for NRAλ is given in Figure 3 (a) as the type lnra. The
AST nodes are prefixed with LNRA, and include access to in-
put tables (LNRATable), constants (LNRAConst), predefined
unary (LNRAUnop) or binary (LNRABinop) operators which
notably include comparisons, and relational operators: map
(LNRAMap), filter (LNRAFilter) and product (LNRAProduct).
Finally, a separate type called lnra_lambda with a single
AST node (LNRALambda) is used to represent lambda terms.

3A review of the state of the domain can be found in [9].
4http://www.cs.brandeis.edu/˜cokokola/

For the frontend part of the compiler, the AST simply
reflects the structure of the original query. In our example,
the AST is as follows:

Definition demo_example :=
LNRAFilter (LNRALambda "p"

(LNRABinop ALt
(LNRAUnop (ADot "age") (LNRAVar "p"))
(LNRAConst (dnat 30))))

(LNRABinop AUnion (LNRATable "Persons1")
(LNRATable "Persons2")).

The second step to add a new language is to define its

semantics using an evaluation function. For NRAλ, the sig-
nature of that eval function is given in Figure 3 (c). It takes
a global environment (global_env) for the input tables, a
local environment (env) for the variables that are in scope
(i.e., bound in lambda terms), and an AST node (op). The
function returns an optional value (of type option data)
as output, accounting for the fact that some queries may
not be well-typed and fail. The evaluation function simply
matches the operator against each possible AST node, eval-
uates its operands as needed and applies the semantics for
that operator. In the case of lambda terms, the evaluation
function (lnra_lambda_eval) takes an additional input (d
of type data) corresponding to the value to be bound to the
declared variable in the lambda term.

Once the language has been defined, it can be connected
to the rest of the compiler by translating it to one of the
existing intermediate languages. The initial target mostly
commonly the nested relational algebra, which also serves
as the main representation for optimization, but it can be
any other available intermediate language. We use NRAe,
a variant of the nested relational algebra from [7] with a
combinators semantics which is described in more details
in [1]. For NRAλ, the translation function’s signature is
given in Figure 3 (b), taking an operator (op) of type lnra
as input and returning an equivalent AST of type nraenv for

NRAe. As an example, filter nodes in NRAλ are naturally
translated to selection operators in NRAe.

So far this code could have been written in any program-
ming language, but using Coq also allows the developer
to write the correctness statement for the translation from
NRAλ to NRAe as show in Figure 3 (d). The theorem
states that in the context of a global environment: for every
local environment env, every lambda term lop, and every
input data d, evaluating the lambda term in that environ-
ment over value d gives the same result as evaluating the
translation of that lambda term to NRAe (nraenv_eval is
the evaluation function for NRAe). The theorem is accom-
panied by a proof by induction (elided from the text for
space reasons), which is mechanically verified by the Coq
proof assistant.

Put together, the code fragments from Figure 3 represent
only about 500 lines of code and are sufficient to implement

and verify correct the NRAλ box on the upper left of Fig-
ure 2 along with the translation from it to the NRAe box.

For the interested audience, the demonstration will also

include an on-the-fly extension to the AST for NRAλ (e.g.,
with a flat-map operator), translation to NRAe, and a short
interactive session with the Coq proof assistant to verify that
extension correct.

1704

https://querycert.github.io/sigmod17/index.html
http://www.cs.brandeis.edu/~cokokola/

Inductive lnra : Set :=
| LNRAVar : string -> lnra
| LNRATable : string -> lnra
| LNRAConst : data -> lnra
| LNRABinop : binOp -> lnra -> lnra -> lnra
| LNRAUnop : unaryOp -> lnra -> lnra
| LNRAMap : lnra_lambda -> lnra -> lnra
| LNRAMapConcat : lnra_lambda -> lnra -> lnra
| LNRAProduct : lnra -> lnra -> lnra
| LNRAFilter : lnra_lambda -> lnra -> lnra
with lnra_lambda : Set :=
| LNRALambda : string -> lnra -> lnra_lambda
.

(a) Abstract Syntax Tree _

Fixpoint nraenv_of_lnra (op:lnra) : nraenv :=
match op with
| LNRAVar x => NRAEnvUnop (ADot x) NRAEnvEnv
| LNRATable x => NRAEnvGetConstant x
...
| LNRAFilter lop1 op2 =>

NRAEnvSelect (nraenv_of_lnra_lambda lop1)
(nraenv_of_lnra op2)

end
with nraenv_of_lnra_lambda (lop:lnra_lambda) : nraenv :=

...

(b) Translation to Algebra _

Context (global_env:list (string*data)).
Fixpoint lnra_eval (env: bindings) (op:lnra)

: option data :=
match op with
| LNRAVar x => edot env x
| LNRATable t => edot global_env t

...
with lnra_lambda_eval (env:bindings)

(lop:lnra_lambda)
(d:data)

: option data :=
...

(c) Semantics with eval _

Context (global_env:list (string*data)).
Theorem nraenv_of_lnra_lambda_correct :

forall env:bindings, forall lop:lnra_lambda, forall d:data,
lnra_lambda_eval h global_env env lop d =
nraenv_eval h global_env

(nraenv_of_lnra_lambda lop) (drec env) d.
Proof.

destruct lop.
revert env s.
lnra_cases (induction l) Case;

...
Qed.

(d) Translation Correctness _

Figure 3: Compiling NRAλ

3.2 Adding New Optimizations
Once a surface language has been added to the compiler,

a natural next step is to allow new rewrites on a subsequent
intermediate language representation for optimization pur-
poses. Both the NRAe and NNRC intermediate languages
come with a built-in optimizer that has been designed to
facilitate extensibility.

A natural optimization to consider for our previous exam-
ple is simply to push the filter through the union. Similarly
to a rule-based approach [4, 13, 5], a new optimization can
be expressed in Q*cert as a rewrite over the algebraic plan.
As an example, this is the implementation of the distribu-
tivity law for selection over union:

Definition select_union_distr_fun q :=
match q with
| NRAEnvSelect q0 (NRAEnvBinop AUnion q1 q2) =>

NRAEnvBinop AUnion
(NRAEnvSelect q0 q1) (NRAEnvSelect q0 q2)

| _ => q
end.

The optimizer itself is written in a functional style and
applies actual pattern-matching (using match q with...)
to check that the query plan has the shape required for the
rewrite (here a selection over a union). If the query plan
matches, it is rewritten accordingly. The correctness of this
function can also be expressed and proved in Coq:

Lemma select_union_distr_fun_correctness q:
select_union_distr_fun q ≡ q.

Proof.
Hint Rewrite select_union_distr : envmap_eqs.
prove_correctness q.

Qed.

This lemma states that for all query plans q, applying the

function select_union_distr_fun returns an equivalent query.
The proposition is followed by a proof script that is mechani-
cally checked. The proof relies on an automated proof tactic
prove_correctness using the lemma select_union_distr as a
hint, which stands for the distributivity law of selection over
union and can be stated as follows _:

Lemma select_union_distr q0 q1 q2 :
σ〈 q0 〉(q1 ∪ q2) ≡ σ〈 q0 〉(q1) ∪ σ〈 q0 〉(q2).

Proof. ... Qed.

Once created, the optimization and corresponding proof
needs simply be registered with the overall optimizer whose
proof of correctness is generic (i.e., the global proof for the
optimizer only relies on the proof of local correctness for
new rewrites). The optimization is then available and as we
will see can be turned on and off by the developer once the
compiler is extracted.

3.3 Web Interface
Extracting the compiler itself from its Coq specification

results in an executable engine that can be used from the
command-line or within a Web browser. For ease of demon-
stration, we will mostly illustrate the extracted compiler
through that Web interface. Two important features of the
interface for compiler development are:

• Since the Q*cert compilation pipeline is extensive (see
Figure 2), the interface allows developer to select in-
put and target languages and choose the specific com-
pilation paths. This is done through a simple graphi-
cal representation5 illustrated in Figure 4. The query
builder shows all existing intermediate languages at

5Snapshots for the Web user interface as based on an early,
but functionally complete, prototype.

1705

https://querycert.github.io/sigmod17/Qcert.LambdaNRA.Lang.LambdaNRA.html#lnra
https://querycert.github.io/sigmod17/Qcert.Translation.LambdaNRAtoNRAEnv.html#nraenv_of_lnra_lambda
https://querycert.github.io/sigmod17/Qcert.LambdaNRA.Lang.LambdaNRA.html#lnra_eval
https://querycert.github.io/sigmod17/Qcert.Translation.LambdaNRAtoNRAEnv.html#nraenv_of_lnra_lambda_correct
https://querycert.github.io/sigmod17/Qcert.NRAEnv.Optim.NRAEnvRewrite.html#select_union_distr

the bottom, and the current compilation path at the

top: in our example the developer selected NRAλ as
source and JavaScript as target and the rest of the
compilation path is filled in automatically.

• The ability to examine and select existing optimiza-
tions as illustrated in Figure 5. The interface provides
links to the rewrites specification in Coq and optimiza-
tions can be selected or removed. The figure high-
lights in blue the optimization for distributing filter
over union that was discussed earlier. As the com-
piler runs, the optimizer produces traces to help iden-
tify which specific optimizations are being used and in
which order.

Figure 4: Compilation Path Builder

Figure 5: Optimizer Tuning

Once the compilation path is defined and the set of op-
timizations selected, the user can write a query in the ex-
pected source language and compile it. Additional function-
alities for the interface include:

1. Inspection of the intermediate queries for each lan-
guage used during compilation from source to target.

2. Ability to specify the schema in either JSON form or
SQL form.

3. Ability to load data in either JSON form or tabular
form and call the evaluation function for the various
intermediate languages (e.g., the one used for NRAλ)
in order to check the result of a query.

4. Ability to execute code emitted for the JavaScript tar-
get. Additional query runners for the other target lan-
guages are available from the command line.

Examples to illustrate the different input query languages

(SQL, OQL, NRAλ, and JRule) will be part of the demo,
including TPC-H queries in the SQL case.

Participants at the demonstration will be encouraged to
challenge the Q*cert team with their favorite query opti-
mizations or rewrites!

4. REFERENCES
[1] J. Auerbach, M. Hirzel, L. Mandel, A. Shinnar, and

J. Siméon. Handling environments in a nested
relational algebra with combinators and an
implementation in a verified query compiler. In ACM
SIGMOD, 2017.

[2] V. Benzaken, E. Contejean, and S. Dumbrava. A Coq
formalization of the relational data model. In
European Symposium on Programming (ESOP), 2014.

[3] J. Boyer and H. Mili. Agile Business Rule
Development. Springer, 2011.

[4] M. J. Carey, D. J. DeWitt, D. Frank, G. Graefe, J. E.
Richardson, E. J. Shekita, and M. Muralikrishna. The
architecture of the EXODUS extensible DBMS. In
Workshop on Object-Oriented Database Systems.
Springer Berlin Heidelberg, 1991.

[5] M. Cherniack and S. B. Zdonik. Rule languages and
internal algebras for rule-based optimizers. In ACM
SIGMOD, 1996.

[6] Anatomy of the Cloudant DBaaS, 2015.
https://cloudant.com/CloudantTechnicalOverview.pdf.

[7] S. Cluet and G. Moerkotte. Nested queries in object
bases. In Workshop on Database Programming
Languages (DBPL), pages 226–242, 1993.

[8] The Coq proof assistant reference manual, v. 8.4pl41.

[9] X. Leroy. Desperately seeking software perfection.
www.lip6.fr/colloquium/Leroy-2015-10-20.pdf.

[10] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.

[11] P. Letouzey. Extraction in Coq: An overview. In
Proceedings of the 4th Conference on Computability in
Europe: Logic and Theory of Algorithms, 2008.

[12] E. Meijer. The world according to LINQ.
Communications of the ACM, 54(10):45–51, 2011.

[13] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/rule based query rewrite optimization in
Starburst. In ACM SIGMOD, pages 39–48, 1992.

[14] A. Shinnar, J. Siméon, and M. Hirzel. A pattern
calculus for rule languages: Expressiveness,
compilation, and mechanization. In European
Conference for Object-Oriented Programming, 2015.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing,
volume 10, page 10, 2010.

1706

www.lip6.fr/colloquium/Leroy-2015-10-20.pdf

	Introduction
	The Q*cert platform
	Audience experience
	Compiling NRA[Please insert \PrerenderUnicode{Î»} into preamble]
	Adding New Optimizations
	Web Interface

	References

