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Stan is a popular declarative probabilistic programming language with a high-level syntax for expressing

graphical models and beyond. Stan differs by nature from generative probabilistic programming languages

like Church, Anglican, or Pyro. In this paper, we present a comprehensive compilation scheme to compile

any Stan model to a generative language. We use this result to build a compiler from Stan to Pyro and extend

extend Stan with support for explicit variational inference guides and deep probabilistic models. Overall, our

paper clarifies the relationship between declarative and generative probabilistic programming languages and

is a step towards making deep probabilistic programming easier.

1 INTRODUCTION
Probabilistic Programming Languages (PPLs) are designed to describe probabilistic models and run

inference on these models. There exists a variety of PPLs [1, 5, 8, 9, 12, 13, 20–23, 25, 28–30, 36, 37].

Declarative Languages like BUGS [20], JAGS [30], or Stan [5] focus on efficiency, constraining

what can be expressed to a subset of models for which fast inference techniques can be applied.

This family enjoys broad adoption by the statistics and social sciences communities [4, 10, 11].

Generative languages like Church [12], Anglican [36], WebPPL [13], Pyro [1], and Gen [7] focus

on expressivity and allow the specification of intricate models with rich control structures and

complex dependencies. Generative PPLs are particularly suited for describing generative models, i.e.,
stochastic procedures that simulate the data generation process. Generative PPLs are increasingly

used in machine-learning research and are rapidly incorporating new ideas, such as Stochastic

Gradient Variational Inference (SVI), in what is now called Deep Probabilistic Programming [1, 37].

While the semantics of probabilistic languages have been extensively studied [14, 15, 18, 35], to

the best of our knowledge little is known about the relation between the two families. This paper

presents a comprehensive compilation scheme that can be used to compile any Stan program to a

generative PPL. This makes it possible to leverage the rich set of existing Stan models for testing,

benchmarking, or experimenting with new features or inference techniques.

In addition, recent probabilistic languages offer new features to program and reason about

complex models. Our compilation scheme combined with conservative extensions of Stan can

be used to make these benefits available to Stan users. As a proof of concept, this paper shows

how to extend Stan with support for deep probabilistic models by compiling Stan to Pyro. This

approach has the following advantages: (1) Pyro is built on top of PyTorch [27]. Programmers

can thus seamlessly import neural networks designed with the state-of-the-art API provided by

PyTorch. (2) Variational inference was central in the design of Pyro. Programmers can easily craft

their own inference guides to run variational inference on deep probabilistic models. (3) Pyro

also offers alternative inference methods, such as NUTS [16] (No U-Turn Sampler), an optimized

Hamiltonian Monte-Carlo (HMC) algorithm which is the preferred inference method for Stan. We

can thus validate the results of our approach against the original Stan implementation on classic

probabilistic models.
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data { int N; int<lower=0,upper=1> x[N]; }
parameters { real<lower=0,upper=1> z; }
model {

z ~ beta(1, 1);
for (i in 1:N) x[i] ~ bernoulli(z); }

z x

Np(z | x1, . . . , xN )

Fig. 1. Biased coin model in Stan.

To summarize, this paper makes the following contributions: (1) A comprehensive compilation

scheme from Stan to a generative PPL (§2). (2) A compiler from Stan to Pyro with support for

explicit variational inference guides and deep probabilistic models (§3).

2 COMPILATION
This section shows how to compile a declarative language that specifies a joint probability dis-

tribution like Stan [5] to a generative PPL like Church, Anglican, or Pyro. Translating Stan to

a generative PPL also demonstrates that Stan’s expressive power is at most as large as that of

generative languages, a fact that was not clear before our paper.

As a running example, consider the biased coin model shown in Figure 1. This model has observed

variables xi , i ∈ [1 : N ], which can be 0 for tails or 1 for heads, and a latent variable z ∈ [0, 1] for
the bias of the coin. Coin flips xi are independent and identically distributed (IID) and depend on z
via a Bernoulli distribution. The prior distribution of parameter z is Beta(1, 1).

2.1 Generative translation
Generative PPLs are general-purpose languages extended with two probabilistic constructs [14, 35,

38]: sample(D) generates a sample from a distribution D and factor(v) assigns a score v to the

current execution trace. Typically, factor is used to condition the model on input data [36]. We

also introduce observe(D,v) as a syntactic shortcut for factor(Dpdf(v)) where Dpdf denotes

the density function of D. This construct penalizes executions according to the score of v w.r.t. D
which captures the assumption that the observed data v follows the distribution D.

Compilation. Stan uses the same syntax v ~ D for both observed and latent variables. The

distinction comes from the kind of the left-hand-side variable: observed variables are declared in

the data block, latent variable are declared in the parameters block. A straightforward generative
translation compiles a statement v ~ D into v = sample(D) if v is a parameter or observe(D, v)
if v is data. For example, the Stan code from Figure 1 is compiled into (using Python syntax):

def model(N, x):

z = sample(Beta(1.,1.))

for i in range(0, N):

observe(Bernoulli(z), x[i])

return z

2.2 Non-generative features
In Stan, a model represents the unnormalized density of the joint distribution of the parameters

defined in the parameters given the data defined in the data block [5, 15]. A Stan program can

thus be viewed as a function from parameters and data to the value of a special variable target
that represents the log-density of the model. A Stan model can be described using classic imperative

statements, plus two special statements that modify the value of target. The first one, target+= e ,
increments the value of target by e . The second one, e ~ D, is equivalent to target+= Dlpdf(e) [15].
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Compiling Stan to Generative Probabilistic Languages 3

Table 1. Stan features: example, prevalence and compilation.

Feature % Example Compilation

Left expression 7.7 sum(phi) ~ normal(0, 0.001*N); observe(Normal(0.,0.001*N), sum(phi))

Multiple updates 3.9

phi_y ~ normal(0,sigma_py);
phi_y ~ normal(0,sigma_pt)

observe(Normal(0.,sigma_py), phi_y);
observe(Normal(0.,sigma_pt), phi_y)

Implicit prior 60.7

real alpha0;
/* missing 'alpha0 ~ ...' */

alpha0 = sample(ImproperUniform())

Target update 16.3

target += -0.5 * dot_self(
phi[node1] - phi[node2]);

factor(-0.5 * dot_self(
phi[node1] - phi[node2])))

Unfortunately, these constructs allow the definition of models that cannot be translated using

the generative translation defined above. Specifically, Table 1 lists the Stan features that are not

handled correctly. A left expression is a case where the left-hand-side of ~ is an arbitrary expression.

The multiple updates feature occurs when the same parameter appears on the left-hand-side of

multiple ~ statements. An implicit prior occurs when there is no explicit ~ statement in the model

for a parameter. A target update is a direct update to the log-density of the model.

The “%” column of Table 1 indicates the percentage of Stan models that exercise each of the non-

generative features among the 502 files in https://github.com/stan-dev/example-models. The
example column contains illustrative excerpts from such models. Since these are official and long-

standing examples, we assume that they use the non-generative features on purpose. Comments in

the source code further corroborate that the programmer knowingly used the features. While some

features only occur in a minority of models, their prevalence is too high to ignore.

2.3 Comprehensive translation
The previous section illustrates that Stan is centered around the definition of target, not around
generating samples for parameters, which is required by generative PPLs. The idea of the com-

prehensive translation is to add an initialization step to generate samples for all the parameters

and compile all Stan ~ statements as observations. To initialize the parameters we draw from the

uniform distribution in the definition domain of the parameters. For the biased coin example, this

translation yields:

def model(N, x):

z = sample(Uniform(0.,1.))

observe(Beta(1.,1.), z)

for i in range(0, N):

observe(Bernoulli(z), x[i])

return z

The compilation column of Table 1 illustrates the translation of non-generative features. Left

expression and multiple updates are simply compiled into observations. Parameter initialization

uses the uniform distribution over its definition domain. For unbounded domains, we introduce

new distributions (e.g., ImproperUniform) with a constant density that can be normalized away

during inference. Compiling the rest of the language does not raise additional difficulties (see §A).

Correctness. The semantics of Stan as described in [15] is the semantics of a classical imperative

language that defines an environment containing, in particular, the value of the special variable

target: the unnormalized log-density of the model. On the other hand, the semantics of a generative

PPL as described in [35] defines a kernel mapping an environment to a measurable function. Our

https://github.com/stan-dev/example-models
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4

compilation scheme adds uniform initializations for all parameters which comes down to the

Lebesgue measure on the parameters space, and translates all ~ statements to observe statements.

We can then show that succession of observe statements yields a distribution with the same

log-density as the Stan semantics.

Implementation. The comprehensive compilation scheme can be used to compile any Stan pro-

gram to a generative PPL leveraging the rich set of existing Stan models for testing, benchmarking,

or experimenting with new features or inference techniques. As a proof of concept, we implemented

a compiler from Stan to Pyro.

Built as a Python library on top of PyTorch, Pyro is described as a deep universal probabilistic
programming language in the line of WebPPL. Probabilistic models may involve deep neural

networks to capture complex relations between parameters. Pyro was also designed to natively

support variational inference (see §3.1).
In Pyro, sample is v = sample(name,D), and observe is sample(name,D,obs=e). In both cases,

the user must specify a unique name as a Python string. Translating target update requires over-
coming the obstacle that Pyro does not directly expose the log-density accumulator to the program-

mer. Instead, we use the exponential distribution with parameter λ = 1 whose density function

is Exp
pdf

(1)(x) = e−x . Observing a value −v from this distribution multiplies the score by ev ,

which corresponds to the update target += v . This approach is similar to the “zeros trick” from

BUGS [19]. Finally, compared to Stan, Pyro does not use the context to lift constants to vectors (e.g.,

x ~ normal(0, 1) where x is of type real[N]). Shapes thus need to be computed by the compiler.

3 EXTENDING STAN: EXPLICIT VARIATIONAL GUIDES AND NEURAL NETWORKS
Recent probabilistic languages like Pyro offer new features to program and reason about complex

models. This section shows that our compilation scheme combined with conservative syntax

extensions can be used to lift these benefits for Stan users. Building on Pyro, we propose DeepStan,

an extension of Stan with: (1) variational inference with high-level but explicit guides, and (2) a

clean interface to neural networks written in PyTorch. From another perspective, we contribute a

new frontend for Pyro that is high-level and self-contained, with hundreds of Stan models ready to

try (§C evaluates DeepStan on multiple examples).

3.1 Explicit variational guides
Variational Inference (VI) tries to find the member qθ ∗ (z) of a family Q =

{
qθ (z)

}
θ ∈Θ of simpler

distributions that is the closest to the true posterior p(z | x) [2]. Members of the family Q are

characterized by the values of the variational parameters θ . The fitness of a candidate is measured

using the Kullback-Leibler (KL) divergence from the true posterior, which VI aims to minimize

qθ ∗ (z) = argminθ ∈Θ KL

(
qθ (z) | | p(z | x)

)
. Pyro natively support variational inference and lets users

define the family Q (the variational guide) alongside the model. To make this feature available

for Stan users, we extend Stan with two new optional blocks: guide parameters and guide. The
guide block defines a distribution parameterized by the guide parameters. Variational inference
then optimizes the values of these parameters to approximate the true posterior.

DeepStan inherits restrictions for the definition of the guide from Pyro: the guide must be defined

on the same parameter space as the model, i.e., it must sample all the parameters of the model; and

the guide should also describe a distribution from which we can directly generate valid samples

without running the inference first, which prevents the use of observe statements. Our compiler

checks these restrictions statically for early error reporting. Once these conditions are verified,

the generative translation from Section 2.1 generates a Python function that can serve as a Pyro

guide. The guide parameters block is used to generate Pyro param statements, which introduce
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z

decoderθ

µ

Bernoulli

x

N

model pθ (x | z)

z

Normal

encoder

µz,σz

ϕ

x

N

guide qϕ (z | x)

networks {
Decoder decoder; Encoder encoder; }

data {
int nz;
int<lower=0, upper=1> x[28, 28]; }

parameters { real z[_]; }
model {

real mu[_, _];
z ~ normal(0, 1);
mu = decoder(z);
x ~ bernoulli(mu); }

guide {
real encoded[2, nz] = encoder(x);
real mu_z[_] = encoded[1];
real sigma_z[_] = encoded[2];
z ~ normal(mu_z, sigma_z); }

Fig. 2. Graphical models and DeepStan code of the Variational Auto-Encoder model and guide.

PyTorch learnable parameters. Unlike Stan parameters that define random variables for use in the

model, guide parameters are learnable coefficients that will be optimized during inference.

The restrictions imposed on the guide do not prevent the guide from being highly sophisticated.

For instance, the following section shows an example of a guide defined with a neural network.

3.2 Adding neural networks
One of the main advantages of Pyro is its tight integration with PyTorch which allows the authoring

of deep probabilistic models, that is, probabilistic models involving neural networks. In comparison,

it is impractical to define neural networks directly in Stan. To make this feature available for Stan

users, we extend Stan with an optional block networks to import neural network definitions.

Neural networks can be used to capture intricate dynamics between random variables. An

example is the Variational Auto-Encoder (VAE) illustrated in Figure 2. A VAE learns a vector-space

representation z for each observed data point x (e.g., the pixels of an image) [17, 31]. Each data

point x depends on the latent representation z in a complex non-linear way, via a deep neural

network: the decoder. The leftmost part of Figure 2 shows the corresponding graphical model. The

output of the decoder is a vector µ that parameterizes a Bernoulli distribution over each dimension

of x (e.g., each pixel is associated to a probability of being present in the image).

The main idea of the VAE is to use variational inference to learn the latent representation. The

guide maps each x to a latent variable z via another neural network: the encoder. The middle part

of Figure 2 shows the graphical model of the guide. The encoder returns, for each input x , the
parameters µz and σz of a Gaussian distribution in the latent space. Then inference tries to learn

good values for the parameters θ and ϕ, simultaneously training the decoder and the encoder.

The right part of Figure 2 shows the corresponding code in DeepStan. A network is introduced

by the name of its class and an identifier. This identifier can then be used in subsequent blocks,

in particular the model block and the guide block. The network class must be implemented in

PyTorch and the associated variable must be a valid instance of the class.

Neural networks can also be treated as probabilistic models. A Bayesian neural network is a

neural network whose learnable parameters (weights and biases) are random variables, instead of

concrete values [26]. Building on Pyro features, we make it easy for users to lift neural networks,
i.e., replace concrete neural network parameters by random variables (see details in §B.1).
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Tensor dimension analysis. Since model code spans both Stan and PyTorch, one challenge is to

minimize redundancy while checking for errors and generating efficient code. As shown in Figure 2

we let users elide some of the concrete tensor dimensions by writing the wildcard “_” instead.
Types that use the wildcard have their size and number of dimensions automatically filled in by the

compiler. The DeepStan compiler needs to derive information about dimensions for two purposes:

error checking and code generation. It deduces the tensor dimensions with a Hindley-Milner style

polymorphic type analysis [24]. In Figure 2, the compiler is able to compute the shape of parameters

z (nz), mu (28, 28), mu_z and sigma_z (nz) (see details in §B.2).

3.3 Experiments
We tested our compilation scheme on 6 classical probabilistic models taken from the set of Stan

examples. We run inference on the generated Pyro code using NUTS (No U-Turn Sampler [16], an

optimized HMC which is the preferred inference method for Stan, and verified that the results were

consistent with those of Stan. We also showed on a simple multimodal example that, sometimes,

using explicit VI gives comparable or even more accurate results (see §C.1).

Since Stan lacks support for deep probabilistic models, we compared the performance of the

code generated by our compiler with hand-written Pyro code on the VAE described in §3.2 and a

simple Bayesian neural network. In both cases, we found comparable results (see §C.2).

4 RELATEDWORK
To the best of our knowledge, we propose the first comprehensive translation of Stan to a generative

PPL. The closest related work has been developed by the Pyro team concurrently [3] to our work [6].

Their work focuses on performance and our work on completeness. Their proposed compilation

technique corresponds to the generative translation presented in §2.1 and thus only handles a

subset of Stan. Compared to our approach, they are also looking into independence assumptions

between loop iterations to generate parallel code. Combining these ideas with our approach is a

possible future direction. They do not extend Stan with VI and neural networks.

The goal of compiling Stan to Pyro is not to replace Stan’s highly optimized inference engine [16],

but rather to create a platform for experimenting with new ideas. As an example, we showed in

§3.1 how to extend Stan with explicit variational guides. In the same vein, Pyro now offers tools for

automatic variational guide synthesis [2] that can now be tested on existing Stan models.

In recent years, taking advantage of the maturity of DL frameworks, multiple deep probabilistic

programming languages have been proposed: Edward [37] and ZhuSuan [33] built on top of

TensorFlow, Pyro [1] and ProbTorch [34] built on top of PyTorch, and PyMC3 [32] built on top

of Theano. All these languages are implemented as libraries. The users thus need to master the

entire technology stack of the library, the underlying DL framework, and the host language. In

comparison, DeepStan is a self-contained language and the compiler helps the programmer via

dedicated static analyses (e.g., the tensor dimension analysis of §3.2).

5 CONCLUSION
This paper presents a comprehensive compilation scheme from Stan to any generative probabilistic

programming language. We thus show that Stan is at most as expressive as this family of languages.

To validate our approach we implemented a compiler from Stan to Pyro. Additionally, we designed

and implemented extensions for Stan with explicit variational guides and an interface with PyTorch.
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x

mlpθ

λ

Cat.

l

N

p(θ | x, l)

networks { MLP mlp; }
data { int<lower=0, upper=1> img[28, 28];

int<lower=0, upper=9> label; }
parameters { real mlp.l1.weight[_]; real mlp.l1.bias[_];

real mlp.l2.weight[_]; real mlp.l2.bias[_]; }
model { real lambda[10];

mlp.l1.weight ~ normal(0, 1);
mlp.l1.bias ~ normal(0, 1);
mlp.l2.weight ~ normal(0, 1);
mlp.l2.bias ~ normal(0, 1);
lambda = mlp(img);
label ~ categorical_logits(lambda); }

guide parameters { real w1_mu[_]; real w1_sgma[_];
real b1_mu[_]; real b1_sgma[_];
real w2_mu[_]; real w2_sgma[_];
real b2_mu[_]; real b2_sgma[_]; }

guide { mlp.l1.weight ~ normal(w1_mu, exp(w1_sgma));
mlp.l1.bias ~ normal(b1_mu, exp(b1_sgma));
mlp.l2.weight ~ normal(w2_mu, exp(w2_sgma));
mlp.l2.bias ~ normal(b2_mu, exp(b2_sgma)); }

Fig. 3. Graphical models and DeepStan code of the Bayesian MLP.

A COMPILING STAN’S BLOCKS
§2.3 has described how to translate Stan’s data, parameters, and model blocks. Stan programs can

have additional blocks for pre- and post-processing which we translate as follows. Functions in the

functions block are translated to Python functions. We translate the transformed data block to

a Python function that takes the data as arguments and returns the transformed data, and then

introduce a new argument to the compiled model for receiving the transformed data. Stan separates

the transformed parameters block from the model block to allow querying additional values

after the inference. We merge the compiled code of the transformed parameters and model
blocks and generate a new function that takes as arguments the data and a sample of the parameters

and returns a sample of the transformed parameters. Finally, the generated quantities block is

compiled into a function that takes as arguments the data, the transformed data, and a sample of

the inferred parameters, and returns the generated quantities.

B STANWITH EXPLICIT VARIATIONAL GUIDES AND NEURAL NETWORKS
B.1 Bayesian networks
DeepStan lets users lift parameters of a neural network to random variables to create a Bayesian

neural network [26]. The left side of Figure 3 shows a simple classifier for handwritten digits based

on a multi-layer perceptron (MLP) where all the parameters are lifted to random variables. Unlike

the networks used in the VAE, the parameters (regrouped under the variable θ ) are represented using
a circle to indicate random variables. The inference starts from prior beliefs about the parameters

and learns distributions that fit observed data. We can then generate samples of concrete weights

and biases to obtain an ensemble of as many MLPs as we like. The ensemble can vote for predictions

and can quantify agreement.

The right of Figure 3 shows the corresponding code in DeepStan. We let users declare lifted neural

network parameters in Stan’s parameters block just like any other random variables. Network

parameters are identified by the name of the network and a path, e.g., mlp.l1.weight, following
PyTorch naming conventions. The model block defines normal(0,1) priors for the weights and
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biases of the two linear layers of the MLP. Then, for each image, the computed label follows a

categorical distribution parameterized by the output of the network, which associates a probability

to each of the ten possible values of the discrete random variable label. The guide parameters
define µ and σ , and the guide block uses those parameters to propose normal distributions for the

model parameters.

Compiling Bayesian neural networks. To lift neural networks we use Pyro random_module, a
primitive that takes a PyTorch network and a dictionary of prior distributions and turns the network

into a distribution of networks where each parameter is sampled from the corresponding prior

distribution. We treat network parameters as any other random variables, that is, we apply the

comprehensive translation from Section 2.3. This translation initializes parameters with a uniform

prior and then compiles Stan ~ statements in the model block into Pyro observe statements.

priors = {'l1.weight': ImproperUniform(nh, nx),

...} # dict entries for remaining parameters

lifted_mlp = random_module("mlp", mlp, priors)()

params = dict(lift_mlp.named_parameters())

sample('l1.weight', Normal(zeros(nh, nx), ones(nh, nx)), obs=params['l1.weight'])

... # observe statements for remaining parameters

lambda_ = lifted_mlp(img)

sample("obs", Categorical(logits=lambda_), obs=label)

It is also possible to mix probabilistic parameters and non-probabilistic parameters. Our transla-

tion only lifts the parameters that are declared in the parameters block by only adding those to

the priors dictionary.

Compiling the guide. We apply the compilation scheme described in Section 3.1. Variational

parameters declared in the guide parameters block are compiled to learnable PyTorch parameters.

Since they obey the restriction listed in Section 3.1, we can directly lift the network using the

distribution defined in the guide block. Each ~ statement associated to a network parameter is

added to the dictionary of priors used by random_module.

w1_mu = param("w1_mu", torch.randn((nh, nx)))

w1_sgma = param("w1_sgma", torch.randn((nh, nx)))

... # param declarations for remaining guide parameters

priors = {'l1.weight': Normal(w1_mu, exp(w1_sgma)),

...} # dict entries for remaining parameters

lifted_mlp = random_module("mlp", mlp, priors)()

B.2 Tensor dimension analysis
We designed the following type system for DeepStan:

type ::= real | int | type[dim] | vector[dim] | matrix[dim, dim]
| typeVar | type[?dim] type[*] | tensor[tensorExpr, intLit]

dim ::= intLit | intExpr | dimVar | dim[tensorExpr, intLit]

There are two kinds of types: original Stan types vs. new generic types we introduced for

our analysis. Original Stan types include real, int, arrays type[dim], vector, and matrix. New
generic types express various degrees of unknown information, which can then be deduced by

unifying such types with other more specific types. A typeVar means nothing is known about the

type. A type[?dim] can unify with both arrays and vectors. A type[*] has an unknown number of
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Table 2. Comparison of execution time and parameter distributions between Stan and DeepStan.

Model Coin Double Normal Linear Regression Seeds 8 Schools Aspirin

Stan (s) 30.82 + 0.13 27.87 + 0.09 29.60 + 0.34 30.38 + 1.67 31.31 + 0.52 29.13 + 0.58

DeepStan (s) 199.18 66.62 311.26 883.86 305.77 404.90

Max SKL theta: 0.0037 theta: 0.006 sigma: 0.005 alpha0: 0.058 mu: 0.017 shrinkage[1]: 0.007

dimensions. And a tensor[tensorExpr, intLit] represents a tensor returned by a neural network

via tensorExpr, then subscripted intLit number of times. Analogously, there are also more-or-less

generic dimensions dim.

The following example illustrates how our analysis uses generic types and unification to figure

out the type of variable z in the VAE in Figure 2. The parameters block declares real z[_],
which our analysis represents with the generic type real[*]. But code generation needs concrete

dimensions for initializing z correctly. The analysis needs to derive those concrete dimensions

elsewhere. The statement z ~ normal(0, 1) yields no new information about the dimensions

because it is auto-vectorized. The declaration real encoded[2,nz] tells the analysis that vari-

able encoded has type real[2][nz], a nested array of dimensions intLit 2 and intExpr nz. The
assignment mu_z = encoded[1] unifies the type of mu_z with real[nz]. Finally, the statement

z ~ normal(mu_z, sigma_z) unifies the type of z with the type of mu_z, so now z has type

real[nz]. The code generator then uses that deduced type to put the concrete dimension size nz
into the generated Python:

z = sample(ImproperUniform(shape=nz))

sample(dist.Normal(zeros(nz), 1), obs=z)

C EXPERIMENTS
This section evaluates DeepStan on multiple examples. For a subset of examples, we run inference

on the generated Pyro code using NUTS (No U-Turn Sampler) [16], an optimized HMC which is the

preferred inference method for Stan, and compare the results with Stan. We show that, sometimes,

using explicit VI gives comparable or even more accurate results. Finally, for deep probabilistic

models, we compare the generated Pyro code against hand-written code and find comparable

results.

C.1 Comparison of Stan and DeepStan
This section describes several experiments comparing inference output from Stan and DeepStan.

The first two examples exercise our translation technique. Coin is the example presented Figure 1.

Double normal is doing multiple updates of the same parameter theta.
The next four examples, linear regression, seeds, 8 schools, and aspirin are taken from the Stan

examples git repository.
1 Seeds is used for comparing SlicStan to Stan in [15], 8 schools and aspirin

are popular hierarchical examples.

The inferencemethod is NUTSwith 10,000 sampling steps, 300warmup steps and 1 chain. For each

parameter, we compare the posterior marginal distributions generated by Stan and DeepStan using

a symmetrized version of the Kullback–Leibler (KL) divergence: SKL(P,Q) = KL(P,Q) + KL(Q, P),
where P and Q are the two probability distributions being compared.

Table 2 summarizes the results of our experiments. The first two lines report the execution time

for Stan and DeepStan averaged over 5 runs. For Stan we separate compilation and inference time.

1https://github.com/stan-dev/example-models

https://github.com/stan-dev/example-models
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Stan

0 10 20
0

1000
DeepStanSVI
DeepStan

parameters {
real cluster;
real theta; }

model {
real mu;
cluster ~ normal(0, 1);
if (cluster > 0) mu = 20;
else mu = 0;
theta ~ normal(mu, 1); }

guide parameters {
real mc;
real m1; real m2;
real ls1; real ls2; }

guide {
cluster ~ normal(mc, 1);
if (cluster > 0) theta ~ normal(m1, exp(ls1));
else theta ~ normal(m2, exp(ls2)); }

Fig. 4. DeepStan code and histograms of the multimodal example using Stan, DeepStan with NUTS, and
DeepStan with VI.

Experiments were run on a MacBook Pro 6 cores i9 (2.9 GHz, 32 GB RAM). Stan first compiles the

model to C++, which takes significant time, but the inference is impressively fast. In comparison,

the compilation from DeepStan to Pyro is quasi-instantaneous, but the Pyro version of NUTS is

slower. Remark that there is a new beta version of Pyro called NumPyro. We can expect pretty

different performance results with this new version.

The last line compare the distribution inferred by Stan and DeepStan for the 32 parameters of

the 6 models. Each entry is the parameter with the maximal SKL averaged over 5 runs. A SKL

close to zero indicates that the distributions are very similar. We observe that in all cases the SKL

approaches 0 when the number of samples increases. These results empirically validate that our

translation from DeepStan to Pyro preserves the Stan semantics.

Explicit Variational Guide. The multimodal example shown in Figure 4 is a mixture of two

Gaussians with different means but identical variance. The histograms in the left half of Figure 4

show that in both Stan and DeepStan, this example is particularly challenging for NUTS. Using

multiple chains, NUTS finds the two modes, but the chains do not mix and the relative densities

are incorrect. This is a known limitation of HMC. As shown in the code of Figure 4 we can provide

a custom variational guide that will correctly infer the two modes (DeepStanSVI). Note, however,

that this approach requires a-priori knowledge about the shape of the true posterior.

C.2 Deep probabilistic models
Since Stan lacks support for deep probabilistic models, we could not use it as a baseline. Instead,

we compare the performance of the code generated by our compiler with hand-written Pyro code

on the VAE described in §3.2 and a simple Bayesian neural network.

VAE. Variational autoencoders were not designed as a predictive model but as a generative

model to reconstruct images. Evaluating the performance of a VAE is thus non-obvious. We use

the following experimental setting. We trained two VAEs on the MNIST dataset using VI: one

hand-written in Pyro, the other written in DeepStan. For each image in the test set, the trained

VAEs compute a latent representation of dimension 5. We then cluster these representations using

KMeans with 10 clusters. Then we measure the performance of a VAE with the pairwise F1 metric:
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true positives are the number of images of the same digit that appear in the same cluster. For Pyro

F1=0.41 (precision=0.43, recall=0.40), and for DeepStan F1=0.43 (precision=0.44, recall=0.42). These

numbers shows that compiling DeepStan to Pyro does not impact the performance of such deep

probabilistic models.

Bayesian MLP. We trained two versions of a 2-levels Bayesian multi-layer perceptron (MLP)

where all the parameters are lifted to random variables (see §B.1): one hand-written in Pyro, the

other written in DeepStan. We trained both models for 20 epochs on the training set. For each

model we then generated 100 samples of concrete weights and biases to obtain an ensemble MLP.

The log-likelihood of the test set is then computed for each MLP. We observe that the log-likelihood

distribution is indistinguishable for the two models (SKL : 0.039) and the execution time is about

the same. Again, these experiments show that compiling DeepStan models to Pyro has little impact

on the model.

Additionally, we observe that changing the priors on the network parameters from normal(0,1)
to normal(0,10) (see §B.1) increases the accuracy of the models from 0.92 to 0.96. This further

validates our compilation scheme where priors on parameters are compiled to observe statements

on deep probabilistic models.
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