
SLAP 2005 Preliminary Version

Simulation of Mobile Ad hoc Network

Protocols in ReactiveML

Louis Mandel 1 Farid Benbadis 2

Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie

Paris, France

Abstract

This paper presents a programming experiment of a complex network routing pro-
tocol for mobile ad hoc networks within the ReactiveML language.

Mobile ad hoc networks are highly dynamic networks characterized by the ab-
sence of physical infrastructure. In such networks, nodes are able to move, evolve
concurrently and synchronize continuously with their neighbors. Due to mobility,
connections in the network can change dynamically and nodes can be added or
removed at any time. All these characteristics — concurrency with many communi-
cations and the need of complex data-structure — combined to our routing protocol
specifications make the use of standard simulation tools (e.g., NS, OPNET) inad-
equate. Moreover network protocols appear to be very hard to program efficiently
in conventional programming languages.

In this paper, we show that the synchronous reactive model, as introduced in the
pioneering work of Boussinot, matters for programming such systems. This model
provides adequate programming constructs — namely synchronous parallel compo-
sition, broadcast communication and dynamic creation — which allow a natural
implementation of the hard part of the simulation.

The implementation has been done in ReactiveML, an embedding of the re-
active model inside a statically typed, strict functional language. ReactiveML

provides reactive programming constructs together with most of the features of
Ocaml. Moreover, it provides an efficient execution scheme for reactive constructs
which made the simulation of real-size examples feasible. Experimental results show
that the ReactiveML implementation is two orders of magnitude faster than the
original C version; it was able to simulate more than 1000 nodes where the orig-
inal C version failed (after 200 nodes) and compares favorably with the version
programmed in NAB.

Key words: Network Simulation, Reactive Programming

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Mandel & Benbadis

1 Introduction

Mobile ad hoc networks are highly dynamic networks characterized by the
absence of any physical infrastructure. They are composed of nodes which
evolve concurrently and have to synchronize continuously with other nodes in
order to route packets and to update their knowledge of the network topol-
ogy. Among existing routing protocols, age and position based protocols have
recently emerged because of their relatively simple and efficient policies: no
location service is required, the destination position discovery is achieved dur-
ing the packets forwarding step where nodes make elementary forwarding de-
cisions based only on the coordinates of their direct neighbors and of the
destination [7]. This avoids the need for topology knowledge beyond one-hop.

These networks are typical examples of complex dynamic systems, that
is, dynamic systems where not only the state of system evolves during the
execution but also its internal structure. Being highly dynamic, they must
clearly be simulated (that is, programmed!) before any implementation start.
The simulation is useful as a simple graphical observation of the network and
in order to measure the route lengths and network overhead of a particular
protocol. Of course, this simulation is memory and time consuming: the
intrinsic complexity of a simulation step of a network of n nodes is O(n2) in
memory (every node builds a location table for every node of the network)
and is o(n × m) in time where m is the number of neighbors of a node. This
means that the simulation will call for very efficient data-structures in order to
be able to consider real-size networks, 1000 nodes being already an interesting
limit.

The characteristics of these networks — concurrency with many synchro-
nizations and the need of complex data-structures — make the use of standard
simulation tools like NS-2 [12] or OPNET [13] inappropriate. Indeed, NS2 has
been originally designed for conventional (wired) networks and does not treat
well wireless networks. In particular, it is only able to simulate small networks
(1000 nodes network seems to be barely conceivable) whereas we consider large
scale networks. Moreover, these two simulators need that the layers 1 to 3 be
described while we are only interested in layer 3 (the network layer). Fi-
nally, these two simulators appear hard to use. This is why we decided to
program the protocol directly in a conventional programming language (here
C). Nonetheless, getting an efficient programming of age and position based
protocols routing was more than an issue in such a language.

In this paper, we show that the synchronous reactive model introduced
by Boussinot [5] strongly matters for programming those systems. We argue
that this model provides the good programming constructs — synchronous
parallel composition with a common global time scale, broadcast communi-
cation and dynamic creation — making the implementation of the hard part

1 Email: louis.mandel@lip6.fr
2 Email: farid.benbadis@lip6.fr

2

http://www.isi.edu/nsnam/ns
http://www.opnet.com

Mandel & Benbadis

of the network surprisingly simple and efficient. We can remark that the re-
active synchronous model is not contradictory with the asynchronous aspect
of these networks. Synchrony only gives the ability to all nodes to react in
a fair way as it could be done in an imperative implementation. The model
provides language concurrency as opposed to run-time concurrency: reactive
parallel programs are translated into conventional single-thread, yet efficient
programs [1,4,6,14]. Whereas a similar formulation is possible in any conven-
tional programming language using one run-time thread per node, it would
not allow to simulate large networks for clear efficiency reasons.

The implementation has been done in ReactiveML 3 , an embedding of
the reactive model inside a statically typed, strict functional language [10].
ReactiveML provides reactive programming constructs with most of the
features of Ocaml. Reactive constructs give a powerful way to describe the
dynamic part of the system whereas the host language Ocaml provides data-
structures for programming the algorithmic (combinatorial) part. Moreover,
it provides an efficient execution scheme for reactive constructs which made
the simulation of real-size examples feasible.

Experimental results show that the ReactiveML implementation is two
order of magnitude faster than the original C version which was made prior
to the ReactiveML implementation; it was able to simulate more than 1000
nodes where the original C version failed (after 200 nodes); it appeared to be
robust (we ran it for 20 days without any memory increase nor degradation);
it is twice faster than the ad hoc version programmed in NAB [11].

The purpose of this paper is not to present a new protocol 4 but more to
convince of the adequacy of the reactive model for real-size simulation prob-
lems like network protocols. As a side-effect, this protocol can also serve as
an interesting benchmark for validating and comparing the various implemen-
tations of the reactive model [1,6,14].

It would be difficult to implement the simulator in a synchronous language
like Lustre [9], Esterel [3] or Signal [8] for at least two reasons: the use
of complex data structures that are shared between the reactive part and the
computational one, and the dynamic creation that is not allowed in these
languages.

The paper is organized as follows. Section 2 presents briefly the principles
to the routing protocol we have considered. Section 3 describes the Reac-

tiveML implementation. The language is very young and the paper can thus
be considered as a tutorial introduction of the language through a real exam-
ple. In order to ease the presentation, we start with a survival kit which can
easily be skipped. We only give the hard part of the code and give hyper-
links to the complete distribution. Section 4 presents experimental results.
Section 5 discusses several possible extensions of the implementation and we

3 The distribution can be accessed as: http://www-spi.lip6.fr/~mandel/rml.
4 The protocol is described in [2] where numbers have been obtained with the ReactiveML

implementation.

3

http://www-spi.lip6.fr/~mandel/rml
http://caml.inria.fr
http://nab.epfl.ch
http://www-spi.lip6.fr/~mandel/rml

Mandel & Benbadis

pos(s,d)

s

a1

n1 a2
pos(n1,d)

pos(n2,d)

d

Fig. 1. Routing a packet from s to d: anchor nodes a1 and a2 refine estimation of
d’s position.

conclude in section 6.

2 Age and Position Based Routing

The main principle of Age and Position Based (APB) routing protocols is that
each node may have an information about each other node location. This in-
formation is stored in a position table and associated to an age that represents
the time elapsed since the last time the information has been updated. The
position table is queried by a packet to estimate destination position.

In this routing methods, destination location discovery is performed during
packet transfer: a source node does not know destination location when it
sends the packet, it only has an estimation about it. We describe the EASE
(Exponential Age SEarch) [7] routing method, where a source node s needs
to communicate with a destination d, as follows: 5

Set i := 0, age := ∞, a0 := s in
While ai 6= d do

search around ai a node ni such that age(ni, d) ≤ age/2;
age := age(ni, d);
While not the closest node of pos(ni, d) do

forward toward pos(ni, d)
done;
i := i + 1;
ai := the closest node of pos(ni, d)

done

where ai are anchor nodes, 6 pos(n1, n2) is n2’s position as known by n1,
and age(n1, n2) is the age of this information. An illustration of this algorithm
is represented in Fig. 1.

Two different methods are used to update position tables in APB routing
protocols. The first one, LE (for Last Encounter), introduced in [7], uses the

5 For more details about EASE, see [7]
6 Anchor nodes search for a better estimation of destination position than the one included
in the packet.

4

Mandel & Benbadis

encounter between nodes. Each node remembers the location and time of its
last encounter with every other node. The second method, ELIP (Embedded
Location Information Protocol) [2], uses also the encounter between nodes,
but disseminates nodes locations in data packets. In this method, a source
node can include its current coordinates in every message it sends in such a
way that all the nodes that participate to the forwarding procedure update
their knowledge about the source.

To simulate these two protocols, we have to represent a set of nodes that
evolve in parallel. All of them move, communicate and update their local
position tables, which contains an estimation of the position of all other nodes,
at every simulation instant.

The goal of our simulator is to compare two dissemination methods to be
used in an APB ad hoc routing algorithm. We did not conceive a generic
simulator which can be used for any routing protocol. Moreover, we do not
focus on the efficiency of the routing protocol EASE, which has been proven
in [7], but on the performance of ELIP and LE, two dissemination algorithms.
The important point is that the two dissemination algorithms are evaluated in
the same conditions. For this reason, we do not have to consider the physical
and link layers, and do not take into account the interferences and packets
loss. We only focus on the network layer, and consider that when a node
broadcasts a packet, all its direct neighbors receive it.

3 Implementation in ReactiveML

3.1 ReactiveML Survival Kit

ReactiveML is built above Ocaml such that every Ocaml program (with-
out objects, labels and functors) is a valid ReactiveML program and Re-

activeML code can be linked to any Ocaml library.

A program is a set of definitions. Definitions introduce, like in Ocaml,
types, values or functions. We illustrate the syntax with the example of posi-
tions. We define the type of positions as a record and an example of a position
(4, 2). Then, we define the function distance2 that computes the square of
the Euclidean distance between two positions.

type position = { x: int; y: int }

let pos42 = { x = 4; y = 2 }

let distance2 p1 p2 =

(p2.x - p1.x) * (p2.x - p1.x) + (p2.y - p1.y) * (p2.y - p1.y)

This is regular Ocaml code. ReactiveML adds to this functional lan-
guage, the process definition. Processes are state machines whose behavior can
be executed through several instants. They are opposed to regular Ocaml

functions which are considered to be timeless. 7 Let us consider the process

7 In circuit terminology, processes are sequential functions whereas Ocaml functions are

5

http://www-spi.lip6.fr/~mandel/rml/slap/

Mandel & Benbadis

hello_world that prints “hello” at the first instant and “world” at the second
one (the pause statement suspends the execution until the next instant):

let process hello_world =

print_string "hello ";

pause;

print_string "world"

Then to execute a process we use the run primitive: run hello_world.

Communication between parallel processes is made by broadcasting sig-
nals. A signal can be emitted (emit) and awaited (await). There is also
suspension (do/when) and preemption (do/until) constructs that use signals.
We illustrate these constructs with a process suspend_resume that controls
the instant where a process is executed.

We first define a process sustain parameterized by a signal s. sustain

emits the signal s at every instant.

let process sustain s = loop emit s; pause end

The loop/end construct is the unbounded iteration.

switch is a process parameterized by two signals, s_in and s_out. Its
behavior is to start the emission of s_out when s_in is emitted and to sustain
this emission while s_in is absent. When s_in is emitted again, the emission
of s_out is stopped and the process returns in its initial state.

let process switch s_in s_out =

loop

await immediate s_in;

pause;

do run (sustain s_out) until s_in done

end

We can see in this example the await which stops the execution of the process
until s_in is emitted, and the preemption construct do/until which kills, at
the end of the instant, its body when the signal s_in is present.

We define now the process suspend_resume parameterized by a process p
and a signal s. This process awaits the first emission of s to start the execution
of p. Then, each emission of s alternatively suspends the execution of p and
resumes it. We implement this process with the parallel composition of (1)
a do/when construct that executes p only when the signal active is present
and (2) the execution of a switch that controls the emission of active with
the signal s.

let process suspend_resume p s =

signal active in

do run p when active

||

considered to be combinatorial.

6

Mandel & Benbadis

emit s v1

emit s vn

emit s v2

await s(y) in ...

await s(x) in ...

v = (f vn ... (f v2 (f v1 d))...)

f v

d

Fig. 2. Multi-emission on signal s, combined with function f, gives the value v at
the next instant.

run (switch s active)

Notice that suspend_resume is an example of higher-order process since it
takes a process p as a parameter.

ReactiveML also provides valued signals. They can be emitted (emit
signal value) or awaited to get the associated value (await signal (pattern)
in expression). Valued signals call for a particular treatment in case of multi-
emission. When a valued signal is declared, we have to define how to combine
values in the case of multi-emission on a signal during the same instant. This
is achieved with the construct:

signal name default value gather function in expression

The behavior of multi-emission is illustrated in Fig. 2. We assume signal
s declared with the default value d and the gathering function f. If values v1,
..., vn are emitted during an instant, then all the await receive the value v at
the next instant. 8

For example, if we want to define a signal sum that computes the sum of
the emitted values, then we can write:

signal sum default 0 gather (+) in ...

In this case, the program await sum(x) in print_int x awaits the first
instant in which sum is emitted and then, at the next instant, prints the sum
of the values emitted.

Another very useful signal declaration is the one that collects all the values
emitted during the instant:

signal s default [] gather fun x y -> x :: y in ...

Here, the default value is the empty list and the gathering function builds the
list of emitted values.

We stop this short introduction here. Various examples of ReactiveML

programs can be accessed at www-spi.lip6.fr/~mandel/rml .

8 v = (f vn ... (f v2 (f v1 d))...)

7

www-spi.lip6.fr/~mandel/rml

Mandel & Benbadis

3.2 Data structures

We consider a node n. To use an age and position based routing protocol,
n must be aware about its position. n stores the information it has about
other nodes positions in a local position table. The a’s entry in n’s table,
looks like this: [IDa, pos(n, a), date(n, a)] where pos(n, a) is an estimation of
a’s position, and date(n, a) indicates when n got this information. n knows
its immediate neighborhood represented by the set of all the nodes under its
radio range.

We then define the type of a node as a record:

type node =

{ id: int;

mutable pos: position;

mutable date: int;

pos_tbl_le: Pos_tbl.t;

pos_tbl_elip: Pos_tbl.t;

mutable neighbors: node list; }

where id is the unique identifier of the node, pos its current position and,
neighbors the list of nodes that are under its coverage range. date is the
current local date of the node, essentially used to compute the age of other
nodes position information. pos_tbl_le and pos_tbl_elip are the position
tables used to simulate the LE and ELIP dissemination protocols.

The record contains mutable fields which can be modified, and non-mutable
fields which are fixed at the creation of the concerned record. pos_tbl_le and
pos_tbl_elip are not mutable because we implement them as imperative
structures in the module Pos tbl. The position tables associate a position
and a date to each node.

Packets for age and position based routing protocols contain the following
fields: the source and destination identifiers, an estimation of destination po-
sition, the age of this information, and data to be transmitted. When using
ELIP, the packets can contain also source node location.

In the simulator, packets do not contain data but contain other informa-
tion used for statistics computation. This information is also useful for the
graphical interface.

type packet =

{ header: packet_header;

src_id: int;

dest_id: int;

mutable dest_pos: position;

mutable dest_pos_age: int;

(* to compute statistics *)

mutable route: node list;

mutable anchors: node list; }

8

http://www-spi.lip6.fr/~mandel/rml/slap/simulator/global.rml.html
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/pos_tbl.rmli.html

Mandel & Benbadis

src_id, dest_id, dest_pos and dest_pos_age are used for routing. route

is the list of nodes that the packet traveled through, and anchors is the list
of anchor nodes. header indicates if the packet is a LE or an ELIP packet.

type packet_header =

| H_LE

| H_ELIP of position option

The type position option indicates that ELIP packets can contain the po-
sition of the source node or not.

3.3 Behavior of a node

The heart of the simulator is the description of a node’s behavior. Indeed, the
simulator execution is the parallel composition of all the nodes execution.

The behavior of each node is composed of three steps. A node (1) moves,
(2) discovers its neighborhood, and (3) routes packets. These steps are com-
bined in a process node 9 which is parameterized by the initial position of
the node pos_init, a function move that computes its next position, and a
function make_msg that creates a list of destinations to reach.

let process node pos_init move make_msg =

let self = make_node pos_init in

loop

self.date <- self.date + 1;

(* Moving *)

self.pos <- move self.pos;

emit draw self;

(* Neighborhood discovering *)

...

update_pos_tbl self self.neighbors;

(* Routing *)

pause;

let msg = make_msg self in

...

pause;

end

This process creates a record of type node that represents the internal state of
the node. Then it enters in the permanent behavior which is executed through
three instants. In the first one, a node updates the local date, moves and emits
its new position on the global signal draw for the graphical interface. 10 At

9 http://www-spi.lip6.fr/~mandel/rml/slap/simulator/node.rml.html
10 A screenshot is given in Fig. 3

9

http://www-spi.lip6.fr/~mandel/rml/slap/simulator/node.rml.html
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/node.rml.html

Mandel & Benbadis

(a) Topology connectivity. Each
green line represents two neigh-
bor nodes, while the black circle
represents one node coverage re-
gion.

(b) An example of routing paths
using ELIP (blue) and LE (red)
dissemination methods. The red
circle represents the search per-
formed by the anchor node when
using LE.

Fig. 3. Screenshots of the simulator graphical interface.

the end of the first and during the second instant, the new neighborhood is
computed and the position tables are updated using encounters between nodes.
The third and last instant is the routing. By enclosing this part between two
pause statements, we have the guaranty that the topology can not change.
We detail now the main steps of the process.

3.3.1 Mobility

Nodes movements are parameterized by a mobility function move. This func-
tion computes the new position of a node according to the current position.
The move function must have the following signature:

val move : position -> position

We can implement very simple mobility functions like random moves where
a node can move to one of its eight adjacent positions.

let random pos = translate pos (Random.int 8)

val random : position -> position

(Random.int 8) is the call of the function Random.int of the Ocaml stan-
dard library and translate which is a function that returns a new position.

We can also implement more realistic mobility models like the random
way-point one. With this mobility model, a point is chosen randomly in the
simulation area and the node moves up to this point. When it reaches this
point, a new one is chosen. This function is interesting because it must keep

10

http://www-spi.lip6.fr/~mandel/rml/slap/simulator/move.rml.html
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/move.rml.html#random
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/move.rml.html#translate
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/move.rml.html#random_waypoint
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/move.rml.html#random_waypoint

Mandel & Benbadis

an internal state.

let random_waypoint pos_init =

let waypoint = ref pos_init in

fun pos ->

if pos = !waypoint then waypoint := random_pos();

(* move in the direction of !waypoint *)

...

val random_waypoint : position -> position -> position

The partial application of this function with only one parameter:

random_waypoint (random_pos())

returns a mobility function that can be given as an argument to a node.

3.3.2 Neighborhood

In real networks, the neighborhood of a node is obtained thanks to the phys-
ical layer. By contrast, in the simulator it has to be computed. Moreover,
neighborhood discovery is the key point of the efficiency of the simulator. We
first give a simple method to compute the neighbors of a node, then we explain
how it can be improved.

To compute its neighborhood, a node needs to know the position of other
nodes. In this first method, we use a signal hello to gather all nodes coordi-
nates. Each node emits its position on hello such that the value associated
to the signal is the list of all nodes. Thus the code of a node looks like the
following (self is the internal state of the node):

emit hello self;

await hello(all) in

self.node_neighbors <- get_neighbors self all;

The function get neighbors returns the all’s sublist that contains the nodes
under the coverage range of self.

This neighborhood discovery method is very simple but its drawback is
that each node has to compute its distance with all other nodes. To improve
this method, we split the simulation area in small areas and associate a hello

signal to each area. That way, a node has only to compute its distance with
the nodes in the areas under its range.

We consider node n in Fig. 4. In the one hand, n sends its position on
the signals present in the 4 squares touched by its radio transmission (the
4 gray squares in this figure). In the other hand, nodes a and c transmit
their position on the signal present in the square where n is. n receives then
positions of a and c. Using this information, n computes its distance from a
and c and concludes that c is a neighbor while a is not. n does not consider
node b because this node does not emit its position on the signal present in
the square where n is located.

11

http://www-spi.lip6.fr/~mandel/rml/slap/simulator/node.rml.html
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/node.rml.html#get_neighbors

Mandel & Benbadis

c

n

a
b

Fig. 4. Topology split into multiple squares. Node n emits its position on the gray
squares, while it listens on the one it is located.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000

tim
e

(s
)

number of nodes

area = 2*range
area = 1000

(a) Comparison of simulation
times depending on the number
of nodes and the neighborhood
discovery method.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
)

area size

D = 10
D = 20
D = 30

(b) Comparison of simulation
times depending on the areas size
for the improved method.

Fig. 5. Simulation times for neighborhood discovery.

All the hello signals are stored in a two dimensional array hello_array.
We define a function get areas that returns the area of a node and the list
of neighbor areas that are under its range.

val get_areas : position -> (int * int) * (int * int) list

Now the behavior of a node is to emit its position in all the areas under
its range and to compute its distance with all the nodes which have emitted
their position in its area. So the code of the neighborhood discovery becomes:

let (i,j) as local_area, neighbor_areas =

get_areas self.pos.x self.pos.y

in

List.iter

(fun (i,j) -> emit hello_array.(i).(j) self)

(local_area::neighbor_areas);

await hello_array.(i).(j) (all) in

self.neighbors <- get_neighbors self all;

Fig. 5 shows the effect of the area split on execution time. In Fig. 5(a),

12

http://www-spi.lip6.fr/~mandel/rml/slap/simulator/area.rml.html#get_areas

Mandel & Benbadis

we compare the first method, where all the nodes emit and listen on the same
signal, to the second one, where each nodes emits only on the areas under its
radio range. Because, in the first method, each node computes its distance to
every other node, the neighborhood discovery procedure spends much more
time than in the second method, where each node computes its distance to the
nodes that emit on its adjacent areas only. We observe that for the simulation
of 1000 nodes the second method is 2 times faster than the first one. Then
for 2000 nodes it is 4 times faster and for 5000 nodes it is more than 20 times
faster.

We focus now on the second method, which is more appropriate. As we can
see in Fig. 5(b), the execution time depends heavily on the area size. In this
figure, which represents times required for simulating a 2000 nodes topology
using three different densities, 11 we observe that dividing the topology in a big
number of squares is not efficient. In this case, each node emits its position on
a large number of signals, which requires resources. In the other hand, dividing
the topology in large squares makes that a node receives large number of nodes
positions on its signal. It spends then long time to compute distances with
nodes placed far from it. Simulation results show that 2-ranges-sided squares
seems to be a good compromise for both densities simulated.

3.3.3 Routing

The last step in a node execution is the packets routing, which is described in
section 2. 12 The important point is that we assume that routing is instanta-
neous, which means that the topology is fixed during routing. This scenario
is realistic because we assume that nodes move at human speed, while pack-
ets travel at light speed. Topology is then supposed to change at time scale
of seconds or longer, while packets spend at most tens of milliseconds from
source to destination. We can then use Ocaml functions, which are supposed
instantaneous, to implement the routing protocols.

In the simulator, we compare two location dissemination methods, both of
them combined with the same forwarding algorithm. This algorithm computes
the next node which will receive the packet. We use a classical geographical
method. The packet is forwarded to the neighbor that is the nearest (for the
Euclidean distance) to the destination. The interesting point in the function
forward is that a node can access to the internal state of other nodes executed
in parallel. ReactiveML guaranties that this action is not interruptible such
that there is no need to protect the access to share data like in the thread
model.

11 We recall that the density represents the average number of nodes per coverage region,
which depends on the nodes radio range.
12 http://www-spi.lip6.fr/~mandel/rml/slap/simulator/routing.rml.html

13

http://www-spi.lip6.fr/~mandel/rml/slap/simulator/routing.rml.html
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/routing.rml.html#forward
http://www-spi.lip6.fr/~mandel/rml/slap/simulator/routing.rml.html

Mandel & Benbadis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 500 1000 1500 2000 2500 3000 3500 4000

tim
e

(s
)

number of nodes

D = 20

(a) Simulation times.

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 0 500 1000 1500 2000 2500 3000 3500 4000

M
em

or
y

(w
or

ds
)

number of nodes

D = 20

(b) Memory usage.

Fig. 6. Simulations depending on the number of nodes with a topology density
D=20.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

tim
e

(s
)

number of nodes

RML, D = 20
NAB, D = 20

(a) With packets emission.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000

tim
e

(m
s)

number of nodes

RML, D = 20
NAB, D = 20

(b) Without packet emission.

Fig. 7. Comparison of simulation times, between NAB and ReactiveML simulator,
depending on the number of nodes with a topology density D=20.

4 Analysis

The simulation speed depends on the parameters: number of nodes, coverage
range, number of emitted packets, simulation area size, etc. These parameters
are linked through the relative density, given by the number of nodes per
coverage zone, in order to get a realistic simulation environment.

First, we analyze our program capability to simulate large networks. Fig. 6(a)
represents simulation times depending on number of nodes. We observe that
at about 3000 nodes the execution time becomes suddenly more important.
This is due to memory usage, when there is enough nodes so that the process
has to swap. We can see in Fig. 6(b) that the memory usage looks like being
quadratic in the number of nodes. This result is natural because each node
has a position table that contains positions of all other nodes. To overcome
this limitation, we can limit the number of destination nodes such that only
a subset of nodes have to be in the position tables.

Now, we compare our simulator with NAB, a simulator developed by the
authors of EASE. The Fig. 7(a) represents the execution time for a simulation

14

Mandel & Benbadis

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 500000 1e+06 1.5e+06

M
em

or
y

(w
or

ds
)

Time (s)

heap words
live words

Fig. 8. Memory usage during 20 days.

where each node emits a packet at each instant. This type of simulation with
a lot of mobility and communications is interesting to evaluate the dissem-
ination algorithms. The numbers shows that NAB is less efficient than the
ReactiveML implementation but this comparison is unfair. Indeed NAB
simulates the MAC layer such that routing a packet is much more time con-
suming than in our simulator. Because neighborhood discovery is time con-
suming (about 25% of the simulation time with the optimized version), an
interesting comparison with NAB is thus the packets-free simulations. In this
case, we compare only the neighborhood discovery. The MAC layer does not
affect the simulation such that, the two simulators have to do exactly the
same thing. The execution time is given in Fig. 7(b). We can observe that
the expressiveness of the signal communication gives us a very simple way to
define an efficient algorithm. Moreover, our simulator use less memory than
NAB.

The last point on which we want to put emphasis is the memory usage
stability. Figure 8 shows the size of the heap and the number of live words in
the heap during the execution of a simulation. We can notice that during 20
days of execution, the size of the heap is constant.

5 Dynamic Extension

In ad hoc networks, protocols must be robust to topology changes, which
includes nodes join and leave. Thus, nodes can be added or removed dynam-
ically.

Preemptible nodes are defined using the construct do/until:

let process preemptible_node pos_init move make_msg kill =

do

run (node pos_init move make_msg)

until kill done

Figure 9, we present the memory usage of a simulation that removes a
node at each instant. It shows that the garbage collector works on processes.

A more interesting point is the dynamic creation of processes. In Reac-

tiveML, dynamic creation is made through recursion. We define the recursive

15

Mandel & Benbadis

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 0 1000 2000 3000 4000 5000 6000

M
em

or
y

(w
or

ds
)

Time (number of instants)

heap words
live words

Fig. 9. Memory usage of a simulation that removes a node at each instant.

process add that creates new nodes as follow:

let rec process add new_node start =

await new_node (pos) in

run (add new_node start)

||

await immediate start;

run (node pos

(random_waypoint (random_pos()))

make_msg)

This process is parameterized by two signals: new_node and start. new_node
is emitted (with an initial position) when a new node is created. The signal
start is emitted at each new moving step, it is used to synchronize the new
node with the other ones. Indeed, the new node must start with its moving
step when all nodes move.

6 Conclusion

In this paper, we addressed the problem of simulating mobile ad hoc networks.
We believe that existing tools are not totally satisfactory because they are
both difficult to use and not adapted to large scale and/or highly dynamic
scenarios.

We decided to implement our simulator in ReactiveML because this lan-
guage allows a large number of parallel processes to be executed. Moreover,
the fact that ReactiveML is based on Ocaml allowed us to easily define
complex functions like moving or routing. The expressive broadcast commu-
nication makes it simple to modify a naive method for neighborhood discovery
into an efficient one. ReactiveML compilation techniques, associated to the
Ocaml runtime, results in efficient simulations.

Efficiency is a central aspect in ReactiveML. The design and semantics
have been tuned for that purpose. For example, the parallel construct is
deterministic but the evaluation order is not specified, giving the opportunity
to execute parallel branches in any appropriate order. Signals are efficiently
represented (as Ocaml values are, and can thus be automatically garbage

16

Mandel & Benbadis

collected) and the access to a signal is done in constant time. There is no
busy waiting during run-time: suspended processes (e.g., awaiting for some
condition or signal to be emitted) are only waked-up when necessary. Several
experiments have shown that the execution scheme of ReactiveML competes
with the best existing execution schemes for reactive languages [1,6,10].

Because the protocol was described in a programming language (and not
in a dedicated simulator), it is easy to extend and change some of the inter-
nal data-structures involved in the routing protocol. Moreover, the graphical
observation itself could be programmed with reactive constructs (e.g., sus-
pending the simulation, drawing the topology). That is, observing a reactive
program is also a reactive problem.

The perspective of this work is to simulate another kind of network (sensor
network), and take into account other dynamic aspects like energy consump-
tion. The goal of the simulator is to understand the interactions between the
different protocol layers in order to increase the lifetime of the whole network.
In this simulator we can find dynamic aspects, the need of scalability and also
the simulation of the MAC layer.

References

[1] Raúl Acosta-Bermejo. Rejo - Langage d’Objets Réactifs et d’Agents. PhD
thesis, Ecole des Mines de Paris, 2003.

[2] Farid Benbadis, Marcelo Dias de Amorim, and Serge Fdida. ELIP: Embedded
location information protocol. In IFIP Networking 2005 Conference, 2005.

[3] G. Berry. The foundations of esterel. In G. Plotkin, C. Stirling, and M. Tofte,
editors, Proof, Language, and Interaction: Essays in Honour of Robin Milner,
pages 425–454. MIT Press, 2000.

[4] Frédéric Boussinot. Concurrent programming with Fair Threads: The LOFT
language, 2003.

[5] Frédéric Boussinot and Robert de Simone. The SL synchronous language.
Software Engineering, 22(4):256–266, 1996.

[6] Christian Brunette. Construction et simulation graphiques de comportements:

le modèle des Icobjs. PhD thesis, Université de Nice-Sophia Antipolis, 2004.

[7] Matthias Grossglauser and Martin Vetterli. Locating nodes with EASE: Last
encounter routing in ad hoc networks through mobility diffusion. In Proceedings

of IEEE Infocom, March 2003.

[8] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Lemaire. Programming real-
time applications with signal. Proc. of the IEEE, 79(9):1321–1336, September
1991.

17

Mandel & Benbadis

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data-flow programming language lustre. Proc. of the IEEE, 79(9):1305–1320,
September 1991.

[10] Louis Mandel and Marc Pouzet. ReactiveML, a reactive extension to ML.
Technical report, Laboratoire d’Informatique de Paris 6, 2005. Available at
http://www-spi.lip6.fr/~mandel/rml.

[11] Network in A Box. http://nab.epfl.ch/.

[12] The network simulator. http://www.isi.edu/nsnam/ns.

[13] OPNET Modeler. http://www.opnet.com.

[14] Jean-Ferdinand Susini. L’approche réactive au dessus de Java : sémantique et

implémentation des SugarCubes et de Junior. PhD thesis, Ecole des Mines de
Paris, 2001.

18

http://www-spi.lip6.fr/~mandel/rml
http://nab.epfl.ch/
http://www.isi.edu/nsnam/ns
http://www.opnet.com

	Introduction
	Age and Position Based Routing
	Implementation in ReactiveML
	ReactiveML Survival Kit
	Data structures
	Behavior of a node

	Analysis
	Dynamic Extension
	Conclusion
	References

