
Time Refinement in a Functional Synchronous Language

Louis Mandel
LRI, Université Paris-Sud 11, Orsay, France

INRIA Paris-Rocquencourt, France
louis.mandel@lri.fr

Cédric Pasteur Marc Pouzet
DI, École normale supérieure, Paris, France

INRIA Paris-Rocquencourt, France
firstname.lastname@ens.fr

ABSTRACT
Concurrent and reactive systems often exhibit multiple time
scales. For instance, in a discrete simulation, the scale at
which agents communicate might be very different from the
scale used to model the internals of each agent.

We propose an extension of the synchronous model of
concurrency, called reactive domains, to simplify the pro-
gramming of such systems. Reactive domains allow the
creation of local time scales and enable refinement, that is,
the replacement of an approximation of a system with a more
detailed version without changing its behavior as observed
by the rest of the program.

Our work is applied to the ReactiveML language, which
extends ML with synchronous language constructs. We pre-
sent an operational semantics for the extended language and
a type system that ensures the soundness of programs.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Applicative (functional)
languages; Concurrent, distributed, and parallel languages;
D.3.3 [Language Constructs and Features]: Concurrent
programming structures; D.3.4 [Processors]: Compilers

General Terms
Languages, Theory

Keywords
Synchronous languages; Functional languages; Semantics;
Type systems

1. INTRODUCTION
The concept of discrete logical time greatly simplifies the

programming of concurrent and reactive systems. It is the
basis of synchronous languages [2], which were created for
programming reactive embedded systems that continuously
interact with their environments, such as control command.

(c) 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
PPDP ’13, September 16 - 18 2013, Madrid, Spain
Copyright 2013 ACM 978-1-4503-2154-9/13/09 ...$15.00.

(a) Sampling

(b) Reactive domains

Figure 1: Sampling vs. Reactive domains (each ver-
tical line or box represent one instant of the corre-
sponding clock, horizontal lines represent processes
running in parallel)

The idea is to divide an execution into logical instants, where
communications and computations are assumed to be in-
stantaneous. It gives a deterministic model of concurrency
that can be compiled to sequential imperative code. The
synchronous model can also be used to program discrete
simulations of systems. It is natural to divide the execution
of a simulation into time steps, each corresponding to one
instant of the program. A simulation then comprises multiple
agents running in parallel and synchronizing on the logical
time scale.

Suppose, for example, that we want to simulate the power
consumption in a sensor network [18]. In order to have
a precise estimate of the power consumption, we need to
simulate the hardware of some nodes, in particular the radio.
There are now multiple time scales: the scale of the software
(i.e., MAC protocol) is milliseconds, while the time step of
the hardware would be microseconds. The communication
between these time scales must be restricted: a signal that
varies each microsecond cannot be used to communicate
with a process whose rhythm is in milliseconds. Furthermore,
depending on the level of precision required for the simulation,
we may like to be able to replace a precise but costly version
of one agent, that takes multiple steps to be simulated, with
an instantaneous approximation. This is traditionally called
temporal refinement [14]. It should be possible to change
this precision dynamically and without changing the external
behavior of the system with respect to any other agent.

A traditional solution to this problem in synchronous lan-
guages is to use sampling : a new time scale is obtained by
choosing a subset of instants. In this paper, we propose an
extension of the synchronous model of concurrency called
reactive domains, that allows doing the opposite. Instead of

creating a new time scale by going slower, it creates a faster
time scale by subdividing instants. This is done by creating
local instants that are unobservable from the outside, as
shown in Figure 1. Reactive domains make refinement easy
as they allow hiding local computation steps (Section 3).

Our work is applied to the ReactiveML language [13],
which augments ML with a synchronous model of concur-
rency (Section 2).1 We show how to extend the operational
semantics of the language to incorporate reactive domains
(Section 4). The soundness of programs in the extended set-
ting can be checked using a standard type-and-effect system,
called a clock calculus and reminiscent of the one in data-
flow synchronous languages [2] (Section 5). The article ends
with a discussion of the implementation, several extensions
(Section 6) and related work (Section 7).

2. THE REACTIVEML LANGUAGE
ReactiveML2 [13] is based on the synchronous reactive

model of concurrency, which first appeared in the Reac-
tiveC language [3]. It is an extension of the synchronous
model that enables dynamic creation and which extends the
focus of synchronous languages from programming real-time
embedded systems to the problem of dealing with concur-
rency in a general purpose language. ReactiveML applies
the same basic idea to ML, with which it shares many fea-
tures, like higher-order functions and type inference, and
formalisms, like its semantics and type system.

2.1 Examples
ReactiveML is a reactive extension of ML, so any ML

program is also a valid ReactiveML program. For instance,
we can define a tree data type and the preorder iteration of
a function on a tree by:

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

let rec preorder f t = match t with
| Empty -> ()
| Node(l, v, r) ->
f v; preorder f l; preorder f r

The concrete syntax of the language is the one of OCaml,
upon which ReactiveML is built. The type of trees, ’a tree,
is parametrized by the type ’a of its labels. A tree is either
empty, or made of a left child, a label and a right child. The
preorder traversal of the tree is implemented with a simple
recursive function that applies a given function to the label
and recurses first on the left child and then on the right one.
We can almost as easily define the level-order traversal of
the tree in ReactiveML:

let rec process levelorder f t = match t with
| Empty -> ()
| Node (l, v, r) ->

f v; pause;
(run levelorder f l || run levelorder f r)

This example defines a recursive process named levelorder.
Unlike regular ML functions which are instantaneous, a
process can last several instants. In particular, levelorder
awaits the next instant by using the pause operator and then

1The compiler, the extended version of the paper and the
examples mentioned in the paper are available at:
http://reactiveml.org/ppdp13
2http://www.reactiveml.org

recursively calls itself on the left and right children in parallel.
The || operator denotes logical parallelism, that is compiled
to sequential code with cooperative scheduling. The run
operator is used to launch a process. As all processes share
the same notion of instant, these two processes synchronize
on the next pause, which means that f will be applied to
all the labels at the same depth during a given instant. It
should be noted that the order in which processes running
in parallel are executed is unspecified.

Processes running in parallel can communicate using broad-
cast signals. A signal is a stream of values, that is, a sequence
of values indexed by the instants. Processes have a consistent
view of a signal’s status during an instant: either present or
absent and henceforth unable to change for the rest of the
instant. Running the following process prints "Hello world"
at the first instant, as the first branch of the parallel reacts
immediately to the presence of the signal go:

let process hello_world =
signal go in
await immediate go; print_string "Hello world"
||
emit go

A signal can also carry a value. Several processes can emit
different values on a signal during the same instant, which is
termed multi-emission. These values are combined using a
function given in the definition of the signal. The value of a
signal at a given instant is obtained by folding this function
across emitted values, starting from a default value. In the
following example, the value of the signal s is the sum of
emitted values:

let process sig_gather =
signal s default 0 gather (+) in
emit s 2 || emit s 4
|| await s(v) in print_int v

This process prints 6 (i.e. 0 + 2 + 4), but on the second
instant. Indeed, we want to ensure that all processes read
the same value for each signal. This means that when we
try to read the value of a signal, we have to be sure that no
other value will be emitted later in the instant. The easiest
way to enforce this is to wait for the end of the instant and
to only read the value at the next instant. One can react
immediately to the presence of a signal, as in the previous
example, but it takes one instant to read its value. Finally, a
signal also stores its last value, that can be used for instance
to maintain its value across instants:

let process hold s =
loop emit s (last s); pause end

2.2 Programming Agents in ReactiveML
Figure 2a shows an example of a node in a simulation

of a sensor network, that is, a network of small low-cost
sensors that collect and communicate environmental data. It
receives messages on the signal me (line 10), decrements them
and then forwards them to all of its neighbors (line 6) (iter
iterates a process on all the elements of a list). The second
part of the node (lines 13 to 18) models energy consumption:
the energy of the node is decremented by max_power at each
time step, that corresponds to one millisecond of simulation
time. The node terminates when its energy crosses the e_min
threshold. This is achieved by using preemption through
the do/until control structure. Indeed, do e until dead done
executes the body e until the emission of the signal dead,
then terminates in the next instant.

http://reactiveml.org/ppdp13
http://www.reactiveml.org

1 let process node me neighbors =
2 signal dead in
3 signal energy default e_0 gather (fun x _ -> x) in
4 let process send msg n = emit n msg in
5 let process forward_msg msg =
6 if msg>1 then run iter (send (msg-1)) neighbors
7 in
8 do
9 loop (* protocol *)

10 await me(msgs) in run iter forward_msg msgs
11 end
12 ||
13 loop (* power *)
14 if last energy < e_min
15 then emit dead
16 else emit energy (last energy -. max_power);
17 pause
18 end
19 until dead done

(a) A simple node in a sensor network

let dt = 0.01
signal env default (fun _ -> zero_vector)

gather add_force

let rec process body (x_t, v_t, w) =
emit env (force (x_t, w));
await env(f) in
(* euler semi-implicit method *)
let v_tp = v_t ++. (dt **. (f x_t)) in
let x_tp = x_t ++. (dt **. v_tp) in
run body (x_tp, v_tp, w)

let process main =
for i = 1 to 100 dopar
run body (random_planet ())

done

(b) The n-body problem (++. and **. are operations
on vectors)

Figure 2: Two simple examples

Another simple example of simulation is the n-body prob-
lem, solved using a fixed-step numerical integration in Fig-
ure 2b. The idea is to use a global signal env, whose value is
a force field, that is, a function mapping a position to a force.
Each body, characterized by its current position, velocity and
weight, is a process that, at each instant, sends its attraction
by emitting on env, receives the sum of all the forces emitted
by other bodies and uses this force to compute its position
dt later. The main process is made of several bodies run in
parallel using a parallel for loop.

3. REACTIVE DOMAINS
A reactive domain introduces a local notion of instant,

unobservable from the outside. It can also be seen as a reifi-
cation of the execution engine attached to any ReactiveML
program. It means that a domain behaves as if its body
was executed by a separate execution engine, with its own
notion of step. A reactive domain is in charge of dynami-
cally scheduling processes and, in particular, deciding when
a local instant is over. It also manages signals, for instance
storing their last value or activating processes awaiting their
emission.

3.1 Reactive Domains and Clocks
A reactive domain is declared by the keyword domain:

domain ck do e done

The name ck is the identifier of the domain, that we call a
clock. It is bound only in the body e of the domain. The
clock represents the notion of instant attached to the domain.
That is why the pause operator now takes as argument a
clock: pause ck waits for the next instant of the domain of
clock ck. For instance, the following process prints "Hello "
during the first instant of the clock ck and "world" during
the second instant of ck.

let process hello_world_ck =
domain ck do
print_string "Hello "; pause ck;
print_string " world"

done

Both instants of ck are included in the first instant of the

global clock, called global_ck.3 These local instants can
only be observed by processes inside the reactive domain, so
hello_world_ck is equivalent to:

let process hello_world_seq =
print_string "Hello ";
print_string " world"

as if the synchronization on the local clock ck was erased.
Reactive domains form a tree, called the clock tree, where

one reactive domain is a child of another if it is defined in
the latter’s scope. We will say that a clock ck’ is faster than
ck if ck’ is a descendant of ck in the clock tree. The global
clock global_ck is slower than any other clock, that is, it is
the root of the clock tree.

While the hello_world_ck process terminates instantan-
eously, it is possible for the execution of a reactive domain
to span several instants of its parent domain. It is then
necessary to relate the instants of the reactive domain to
those of its parent, that is, to know how many steps of the
reactive domain should be taken in each step of the parent
reactive domain. The simplest way is to create a periodic
reactive domain, that performs n local instants per instant
of its parent reactive domain, using the keyword by:

let process stutter msg =
domain ck by 6 do
loop print_string msg; pause ck end

done

The expression run stutter "a" prints six a’s at each instant
of the global clock. Instants of sibling reactive domains are
unrelated. For instance, run stutter "a" || run stutter "b"
prints six a’s and six b’s at each instant in an unspecified
order.

Reactive domains can be created dynamically and nested
arbitrarily. For instance, the stutter process can be rewrit-
ten as follows:

let process stutter_nested msg =
domain ck1 by 3 do
domain ck2 by 2 do
loop print_string msg; pause ck2 end

done
done

3global_ck is a global variable which is the global clock of
the program.

gl
ob
al
_c
k

ck ck

(a) Make a process instantaneous

gl
ob
al
_c
k

ck1

ck2

ck3

(b) Agents: one reactive domain per agent

ck

gl
ob
al
_c
k

(c) Hide computation steps (multi-steps integration)

Figure 3: Several patterns of programming with re-
active domains

3.2 Reactive Domains and Signals
The consequence of introducing reactive domains is that

each signal is now attached to a reactive domain, that is, it
has one value for each instant of this domain. This explains
why we use the term clock for a domain’s identifier. Indeed,
in synchronous languages, a clock is a boolean stream that
indicates the instants when a stream is present [2]. The
semantics of signals defined inside a reactive domain is exactly
the same as before. For instance, if we run one of the
examples of Section 2.1 inside a reactive domain, the result
is the same: sig_gather_ck prints 6 during the second instant
of ck, but during the first instant of the global clock:

let process sig_gather_ck =
domain ck do run sig_gather done

Emitting a value on a signal with a slower clock (that we will
call a slow signal) is not an issue thanks to multi-emission:
all the values emitted during the instant of the signal’s clock,
including the multiple instants of child reactive domains,
are gathered to compute the value for the instant. It is
also possible to await the emission of a slow signal. The
continuation will occur in the next instant of the emitted
signal’s clock, as in the following process:

let process slow_signal =
signal s default 0 gather (+) in
domain ck by 3 do
await s(v) in print_int v

done
||
emit s 4

A 4 is printed during the second instant of the global clock,
as if there were no reactive domain, but during the fourth
instant of clock ck. The result would have been the same
if the emit statement had been inside the reactive domain.
Sibling reactive domains can thus communicate using signals
attached to a common ancestor in the clock tree.

While in ReactiveML, any process can use any signal
freely, reactive domains introduce some restrictions. First, as
the instants of a reactive domain are unobservable from the
outside, it does not make sense to access a signal attached

to a reactive domain from outside that domain where the
different values of the signal cannot be distinguished. The
second restriction is that it is forbidden to react immediately
to the presence of a slow signal. Let’s illustrate the problem
with the following process:

let process immediate_dep_wrong =
signal s in
domain ck do
await immediate s; print_string "Ok"
||
pause ck; emit s

done

During the first instant of ck, we suppose that s is not
present, so the first branch of the parallel is blocked. But
in the second instant of ck – yet still in the first instant of
global_ck – s is emitted, which should trigger the printing of
"Ok". We reject this process because it makes two different
assumptions about the presence of s during the same instant
of the clock of s, which goes against the principle that all
processes have the same view of a signal’s status and value
at an instant. The type system defined in Section 5 ensures
that these two types of errors never occur.

3.3 Relating Clocks
Let’s consider this process:

let process delayed_hello_world =
signal s default "" gather (^) in
domain ck by 10 do
pause global_ck; emit s "Hello world"
||
await s(v) in print_string v

done

At the end of the first instant of ck, the first branch of the
parallel is waiting for the next instant of global_ck and the
other one is waiting for a signal on global_ck. If the reactive
domain executed another local instant, its body would not
evolve. It is not necessary to do ten local instants: the
reactive domain can directly wait for the next instant of
global_ck before doing its next local instant. We can thus
interpret the number given after by as a bound on the number
of instants that a reactive domain can do.

We could just treat this property as a run-time optimiza-
tion, but we believe it can be usefully incorporated in the
semantics of the language so as to accept more programs.
Indeed, in most cases, as in the previous example, it is clear
that the body of the reactive domain will be blocked waiting
for a slower clock at some point. It is thus permitted to omit
the bound (as was done in the first examples). A reactive
domain then not only decides when its local instants are
finished, but also when to wait for the next instant of its
parent clock. It does so automatically if all the processes it
contains are waiting for the next instant of a slower clock,
either via an explicit pause or by waiting for a signal with a
slower clock.

Special care has to be taken not to produce a reactive
domain that is not reactive, that is, that never waits for the
next instant of its parent clock and behaves like an infinite
loop. This will be discussed in Section 6.3.

3.4 Using Reactive Domains
Reactive domains are useful for several typical patterns.

The first is to make a process instantaneous. For instance,
one can hide the internal steps used in the levelorder example
of Section 2.1 (pause without any argument waits for the

let process node_with_energy me neighbors =
domain us by 1000 do
signal dead in
signal energy default e_0 gather (fun x _ -> x) in
signal power default 0.0 gather (+.) in
signal r_in default (0,me) gather (fun x _ -> x) in
signal r_ack in
let process send msg n =
emit r_in (msg, n); await immediate r_ack

in
...
do
... (* protocol *) ||
loop (* radio *)
await r_in (msg, n) in
for i=1 to packet_send_time do
emit power send_power; pause us

done;
emit n msg; emit r_ack

end
||
loop (* power *)
emit power on_power;
if last energy < e_min
then emit dead
else emit energy

(last energy -. (last power /. 1000.0));
pause us

end
until dead done
done

(a) A node with refined power consumption

let rec process body_heun env (x_t, v_t, w) =
emit env (force (x_t, w));
await env(f_t) in
(* step 1 *)
let f_t = f_t x_t in
let v_int = v_t ++. (dt **. f_t) in
let x_int = x_t ++. (dt **. v_t) in
(* step 2 *)
emit env (force (x_int, w));
await env(f_int) in
let f_int = f_int x_int in
let v_tp = v_t ++.

((dt /. 2.0) **. (f_t ++. f_int)) in
let x_tp = x_t ++.

((dt /. 2.0) **. (v_t ++. v_int)) in
(* next step*)
pause global_ck;
run body_heun env (x_tp, v_tp, w)

let process main =
domain computation_ck do
signal env default (fun _ -> zero_vector)

gather add_force in
for i = 1 to 100 dopar
run body_heun env (random_planet ())

done
done

(b) Multi-step integration method (Heun’s method)

Figure 4: Two examples with reactive domains

next instant of the local clock, that can also be obtained
using the local_ck operator):

let process levelorder_inst f t =
domain ck do
run levelorder f t

done

Figure 3a illustrates the behavior of the reactive domain:
it hides all internal steps and behaves as an instantaneous
process on the global clock. This process could not have been
written without the automatic waiting of reactive domains
(Section 3.3) as it executes an unbounded number of local
instants, equal to the tree depth.

The second pattern is for programming agent-based sim-
ulations. Reactive domains allow each agent to perform an
arbitrary number of internal steps during each step of the
simulation, that corresponds to one instant of the global
clock. One simply has to declare one reactive domain per
agent, as in Figure 3b. Agents only synchronize at the end
of the instant of the global clock. Signals for communica-
tion between agents remain attached to the global reactive
domain, and are thus buffered automatically.

We can use this idea to better simulate the power con-
sumption of the node from Figure 2a, by modeling the fact
that power consumption is related to the number of messages
sent. An abbreviated version of the resulting program is
shown in Figure 4a. The idea is to use a reactive domain
to introduce a new local time scale, corresponding to mi-
croseconds of simulation time. The radio is represented by
a process receiving a message to be sent and a destination
on the r_in signal. The sending of the message is modeled
by waiting packet_send_time microseconds, during which

the power consumption is raised by send_power. After that,
the radio actually sends the message to the destination and
acknowledges the sending on the r_ack signal.

A similar use is to hide computation steps shared by many
agents. The fast clock is then shared by several processes as
in Figure 3c, whereas in Figure 3b each process has its own
local clock. An example of this pattern is an extension of the
n-body simulation of Figure 2b to use multi-steps integration
methods, here Heun’s method. The resulting code is shown
in Figure 4b. Each step of the computation corresponds to
one instant of a reactive domain, shared by all bodies. As
these instants are unobservable from the outside, it is easy to
add processes such as the GUI on the global clock (last line
in Figure 3c) or to dynamically switch methods (e.g. from a
two-steps to a four-steps method) without any influence on
the rest of the program.

3.5 A Modularity Issue
We have seen that some communications take time because

of multi-emission. This can lead to modularity problems,
as we will see on a few examples, and makes it even more
necessary to be able to hide local instants. Let’s first define a
higher-order process lift that turns a function on values into
a function on streams (like the arr combinator in FRP [15]).
It awaits a new value on a signal s_in, applies f to it and
emits the result on another signal s_out:

let process lift f s_in s_out =
loop
await s_in(v) in
emit s_out (f v)

end

global_ck

s_in

s_out

global_ck

s_in

tmp s_out

⇔ global_ck ck

tmp

s_in

s_out

⇔

Figure 5: Fixing a modularity problem with reac-
tive domains (left: fg1, top-right: fg2, bottom-right:
fg2_good)

We can now define a process fg1 that applies the composi-
tion of two functions g and f:

let process fg1 s_in s_out =
run lift (fun v -> f (g v)) s_in s_out

Suppose that, for modularity reasons, we want to separate
the computations of f and g. We use a local signal tmp to
communicate between the two processes:

let process fg2 s_in s_out =
signal tmp default 0 gather (+) in
run lift f s_in tmp || run lift g tmp s_out

The problem is that, while fg1 emits the result one instant
after the emission of a value on s_in, it takes two instants
for fg2 to do the same. We can fix this problem by running
the process inside a reactive domain:

let process fg2_good s_in s_out =
domain ck do
run fg2 s_in s_out

done

The fg2_good process has the same behavior as the fg1 pro-
cess: it takes two instants of the local clock ck to compute the
result, but only one on the global clock. Figure 5 illustrates
the behavior of these three processes.

4. OPERATIONAL SEMANTICS
In this section, we extend the ReactiveML operational

semantics [13] to support reactive domains. It is itself an
extension of the small-step reduction semantics of ML.

4.1 Language Abstract Syntax
We present the semantics on a core language, based on a

call-by-value functional kernel extended with synchronous
primitives: defining and running a process, waiting for the
next instant of a clock, a parallel let, declaring a signal,
emitting a value, awaiting its emission or getting its last
value, preemption (until) and suspension (when) control
structures, declaring a reactive domain and accessing the
local clock (local ck):

e ::= x | c | (e, e) | λx.e | e e | rec x = e

| process e | run e | pause e | let x = e and x = e in e

| signal x default e gather e in e | emit e e
| await e(x) in e | last e | do e until e | do e when e
| domain x by e do e | e in ck | local ck

The expression do e when s executes its body only when s
is present; e in ck is used to represent a reactive domain
executing. It represents the result of instantiating the expres-
sion domain x by e do e and cannot itself be used directly
in a program. We denote by variables that do not appear
free in the body of a let and by () the unique value of type
unit. Among others, it is possible to derive the following
constructs from this kernel:

await immediate e , do () when e

e1 || e2 , let = e1 and = e2 in ()

let x = e1 in e2 , let x = e1 and = () in e2

e1; e2 , let = e1 in e2

domain x do e , domain x by∞ do e

loop e , run ((rec loop =

λx.process (run x; run (loop x))) (process e))

signal s in e , signal s default []

gather (λx.λy.x :: y) in e

emit e , emit e ()

pause , pause local ck

4.2 Notations
C is a denumerable set of clock names, denoted ck. The

global clock is denoted >ck ∈ C. N is a denumerable set of
signal names, denoted n. Values are the regular ML values,
plus processes, signal names indexed by their clock and clock
names:

v ::= c | (v, v) | λx.e | process e | nck | ck (values)

A local signal environment is a partial mapping from signal
names to tuples (d, g, l,m) where d and g are the default value
and gather function, l the last value and m the multiset of
values emitted at an instant. A signal environment S is a par-
tial mapping from clock names to local signal environments.
If S(nck) = S(ck)(n) = (d, g, l,m), we write Sd(nck) = d
(similarly for the others) and Sv(nck) = fold g d m if m 6= ∅
(Sv(nck) is not defined otherwise). We write nck ∈ S when
n is present, that is, Sm(nck) 6= ∅, and nck 6∈ S otherwise.
We denote by S + [v/nck] the environment where v is added
to the multiset Sm(nck) and by next(S, ck) the environment
where the last value of any signal with clock ck is set to its
current value Sv(nck) (if defined) and Sm(nck) is set to ∅.

Similarly, a clock environment H maps clock names ck to
tuples (pck, r,m), where pck is the parent clock of ck and r
(resp. m) tracks the number of steps remaining (resp. the
maximum number of steps) in the current instant of the
parent clock (r,m ∈ N ∪ {∞}). The same notation is used
to refer to the individual fields (for instance Hr(ck)). We
denote by H[ck ← i] the environment where Hr(ck) is set
to i.

A clock environment induces a partial order �H, which is
the smallest reflexive, transitive and antisymmetric relation
such that ck �H Hpck(ck). Intuitively, ckF �H ckS means
that ckS is slower than ckF . We write ck �H C iff ∀ck′ ∈
C. ck �H ck′. C↑H denotes the upward closure of C, that is:

C↑H = {ck′ | ∃ck ∈ C. ck �H ck′}

4.3 Semantics
We define two reductions: the step reduction, denoted ck−→,

and the end-of-instant reduction C−→eoi. The step reduction
is parametrized by the local clock ck. The execution of a

λx.e v/H,S ck−→ e[x← v]/H,S rec x = e/H,S ck−→ e[x← rec x = e]/H,S run (process e)/H,S ck−→ e/H,S

let x1 = v1 and x2 = v2 in e/H,S ck−→ e[x1 ← v1;x2 ← v2]/H,S

n 6∈ Dom(S(ck)) S ′ = S(ck)[n 7→ (vd, vg, vd, ∅)]

signal x default vd gather vg in e/H,S
ck−→ e[x/nck]/H,S ′

ck �H ck′

emit nck
′
v/H,S ck−→ ()/H,S + [v/nck

′
]

ck �H ck′

last nck
′
/H,S ck−→ Sl(nck

′
)/H,S

ck �H ck′

do v until nck
′
/H,S ck−→ ()/H,S

ck = ck′ nck
′
∈ S

do v when nck
′
/H,S ck−→ v/H,S

(Inst)
i > 0 ck′ 6∈ Dom(H) H′ = H[ck′ 7→ (ck, i− 1, i− 1)] S ′ = S[ck′ 7→ []]

domain x by i do e/H,S ck−→ e[x← ck′] in ck′/H′,S ′

(Term) v in ck′/H,S ck−→ v/H,S local ck/H,S ck−→ ck/H,S

(Context)
e/H,S ck−→ e′/H′,S ′

Γ(e)/H,S ck−→ Γ(e′)/H′,S ′
(When)

ck = ck′ nck
′
∈ S e/H,S ck−→ e′/H′,S ′

do e when nck
′
/H,S ck−→ do e′ when nck

′
/H′,S ′

(Step)
e/H,S ck′−→ e′/H′,S ′

e in ck′/H,S ck−→ e′ in ck′/H′,S ′
(LocalEoi)

Hr(ck′) > 0 e/H,S {ck
′}−→ eoi e

′/H′,S ′ e′ 6= e
H′′ = H′[ck′ ← Hr(ck′)− 1] S ′′ = next(S ′, ck′)

e in ck′/H,S ck−→ e′ in ck′/H′′,S ′′

Figure 6: The step reduction

ck ∈ C

pause ck/H,S C−→eoi ()/H,S

e1/H,S
C−→eoi e

′
1/H′,S′ e2/H′,S′

C−→eoi e
′
2/H′′,S′′

let x1 = e1 and x2 = e2 in e/H,S C−→eoi let x1 = e′1 and x2 = e′2 in e/H′′,S′′

ck ∈ C nck ∈ S

await nck(x) in e/H,S C−→eoi e[x← Sv(nck)]/H,S

ck ∈ C↑H nck ∈ S e/H,S C−→eoi e
′/H′,S′

do e when nck/H,S C−→eoi do e
′ when nck/H′,S′

ck ∈ C nck ∈ S e/H,S C−→eoi e
′/H′,S′

do e until nck/H,S C−→eoi ()/H,S

ck ∈ C↑H ck 6∈ C ∨ nck 6∈ S e/H,S C−→eoi e
′/H′,S′

do e until nck/H,S C−→eoi do e
′ until nck/H′,S′

(StuckDomain)
e/H,S

C∪{ck′}
↪→ eoi

e in ck′/H,S
C
↪→eoi

(ParentEoi)

e/H,S C∪{ck
′}−→ eoi e

′/H′,S′ e′ 6= e
H′′ = H′[ck′ ←Hm(ck′)] S′′ = next(S′, ck′)

e in ck′/H,S C−→eoi e
′ in ck′/H′′,S′′

v/H,S
C
↪→eoi

ck ∈ C↑H ck 6∈ C

pause ck/H,S
C
↪→eoi

ck ∈ C↑H ck 6∈ C ∨ nck 6∈ S

await nck(x) in e/H,S
C
↪→eoi

ck ∈ C↑H nck 6∈ S

do e when nck/H,S
C
↪→eoi

Figure 7: The end-of instant reduction

reactive domain consists in applying the step reduction with
the local clock as many times as possible, to get a so-called
end-of-instant expression. Then, the end-of-instant reduction
prepares the execution of the next instant of the domain.

A program is executed inside the global reactive domain
of clock >ck . This means that the semantics of a program p
is given by the reduction of the expression p̃ defined by:

p̃ , let global ck = local ck in p

A program step, denoted ⇒, is made of many step reduc-
tions followed by one end-of-instant reduction in the local
clock >ck :

e/H,S
>ck

−→∗ e′/H′,S ′ e′/H′,S ′ {>ck}−→ eoi e
′′/H′′,S ′′

e/H,S ⇒ e′′/H′′,S ′′

The reduction starts from e0 = p̃ and the initial clock and
signal environments are both empty: H0 , [] and S0 , [].

Step reduction. The step reduction is expressed as:

e/H,S ck−→ e′/H′,S ′

meaning that under the local clock ck, the expression e
reduces to e′ and transforms the clock and signal environ-
ments H and S into H′ and S ′. The rules are given in
Figure 6, where the basic rules are adapted directly from
ReactiveML [13] and new rules are introduced for executing
reactive domains:

• A reactive domain is initialized by first evaluating the
bound on the number of steps, initializing the clock
environment and instantiating the clock variable with
a fresh clock (Inst rule).

• Then, local reduction steps (Step rule) are applied
while possible. If the body is reduced to a value, the
reactive domain terminates (Term rule), returning
that value. Otherwise, a new local instant is started
if the steps remaining counter has not reached zero
and work remains to be done in the next local step
(LocalEoi rule). Indeed, if the end-of-instant relation
leaves the body unchanged (here e = e′), doing more
local steps would not change anything, as the body is
already stuck w.r.t. the step reduction. The reactive
domain is then stuck waiting for the end-of-instant of
its parent reactive domain, as explained in Section 3.3.

• A signal can only be accessed if its clock ck′ is accessible,
that is, if ck′ is slower than or equal to the local clock ck,
denoted ck �H ck′ in the rules.

• The Context rule applies a head reduction in any
valid evaluation context Γ, defined by:

Γ ::= [] | Γ e | e Γ | (Γ, e) | (e,Γ) | run Γ | pauseΓ

| let x = Γ and x = e in e

| let x = e and x = Γ in e

| signal x default Γ gather e in e

| signal x default e gather Γ in e

| emit Γ e | emit e Γ | await Γ(x) in e | last Γ

| do Γ until e | do e until Γ

| do e when Γ | domain x by Γ do e

• We need to add a special rule for do e when n, as its
body is an evaluation context only if the signal n is

present. The clock of the signal must also be equal to
the local clock as suspension represents an immediate
dependency.

End-of-instant reduction. The end-of-instant reduction is
expressed as:

e/H,S C−→eoi e
′/H′,S ′

meaning that during the end-of-instant of the clocks in the
set C, e reduces to e′ and transforms the clock and signal
environments H and S into H′ and S ′. We also write:

e/H,S C
↪→eoi ⇔ e/H,S C−→eoi e/H,S

The rules are given in Figure 7. As for the step reduction,
the basic rules are the same as in regular ReactiveML. The
novelties are as follows:

• In several cases, we require the clock of signals to be
in the upward closure of C, denoted C↑H, which is
basically the set of accessible clocks. The relation is
not defined if we try to access a clock that is not in
this set.

• Expressions that await a signal only reduce during the
end-of-instant of the signal clock.

• There are two cases for reactive domains: either the
body is left untouched by the end-of-instant relation
(rule StuckDomain), which means it is waiting for
a slower clock and will remain stuck until the end-of-
instant of that clock; or it reduces to a new expression,
in which case we modify the clock and signal environ-
ments to prepare for the next instant (ParentEoi).

5. CLOCK CALCULUS
Reactive domains induce restrictions on the use of signals.

As the local instants of a reactive domain are unobservable
from the outside, a signal attached to a reactive domain can-
not be used outside of that domain. Immediate dependencies
on slow signals are also forbidden.

We want to statically reject programs that could have an
incorrect behavior by using a standard type-and-effect system
that we call a clock calculus in reference to synchronous
languages [6]. This ability is one of the benefits of exposing
concurrency in the language, as opposed to introducing it
through a library. As usual, well-typed programs do not go
wrong, which means here that they do not access a signal
outside of its domain and do not depend immediately on
slow signals.

5.1 Motivation
A first example of the sort of program that we want to

reject is one where the result of a reactive domain contains
a local signal:

let process result_escape =
domain ck do
signal s in s

done

Such programs are rejected by including clocks in the type
of signals and checking that the return types of reactive
domains do not contain local clocks.

ct ≤ Γ(x)

Γ, ce ` x : ct | ∅
ct ≤ Γ0(c)

Γ, ce ` c : ct | ∅
Γ, ce ` e1 : ct1 | ∅ Γ, ce ` e2 : ct2 | ∅

Γ, ce ` (e1, e2) : ct1 × ct2 | ∅
Γ;x : ct , ce ` e : ct | cf

Γ, ce ` rec x = e : ct | cf

Γ;x : ct1, ce ` e : ct2 | cf

Γ, ce ` λx.e : ct1
cf−→ ct2 | ∅

Γ, ce ` e1 : ct2
cf−→ ct1 | ∅ Γ, ce ` e2 : ct2 | ∅

Γ, ce ` e1 e2 : ct1 | cf

Γ, ce ` e1 : ct1 | cf 1 Γ, ce ` e2 : ct2 | cf 2 Γ;x1 : gen(ct1, e1,Γ);x2 : gen(ct2, e2,Γ), ce ` e : ct | cf
Γ, ce ` let x1 = e1 and x2 = e2 in e : ct | cf 1 ∪ cf 2 ∪ cf

(ProcAbs)
Γ, ce′ ` e : ct | cf

Γ, ce ` process e : ct process{ce′|cf } | ∅
(ProcApp)

Γ, ce ` e1 : ct process{ce|cf } | ∅
Γ, ce ` run e1 : ct | cf

Γ, ce ` e1 : ct2 | ∅ Γ, ce ` e2 : ct1 −→ ct2 −→ ct2 | ∅ Γ;x : (ct1, ct2) event{ce}, ce ` e : ct | cf
Γ, ce ` signal x default e1 gather e2 in e : ct | cf ∪ {ce}

Γ, ce ` e1 : (ct1, ct2) event{ce′} | ∅ Γ;x : ct2, ce ` e2 : ct | cf 2
Γ, ce ` await e1(x) in e2 : ct | cf 2 ∪ {ce′}

Γ, ce ` e1 : unit | cf 1 Γ, ce ` e2 : (ct1, ct2) event{ce′} | ∅
Γ, ce ` do e1 until e2 : unit | cf 1 ∪ {ce′}

(When)
Γ, ce ` e1 : ct | cf 1 Γ, ce ` e2 : (ct1, ct2) event{ce} | ∅

Γ, ce ` do e1 when e2 : ct | cf 1 ∪ {ce}

(Domain)
Γ;x : {γ}, γ ` e : ct | cf Γ, ce ` e1 : int | ∅ γ 6∈ ftv(Γ, ct)

Γ, ce ` domain x by e1 do e : ct | cf \ {γ}

(In)
Γ, ck′ ` e : ct | cf

Γ, ce ` e in ck′ : ct | cf \ {ck′} Γ, ce ` local ck : {ce} | ∅

Figure 8: Typing rules

Signals are first-class values in the language, which means
that a signal can be put inside any data structure or emitted
on another signal. The consequence is that a signal can
escape its lexical scope and be used anywhere in the program.
We also have to make sure to reject programs where a signal
escapes its reactive domain through a slow signal, like this
one:

let process signal_escape =
signal slow in
domain ck do
signal fast default 0 gather (+) in
emit slow fast

done

To avoid this case, we should also check that the local clock
does not appear in the type of free variables when typing a
reactive domain. To ensure this, clocks are seen as abstract
data types as in [10]. However, signal accesses might not
appear in the type of an expression, as in the following
example:

let process effect_escape =
domain ck do
signal fast in
let f () = emit fast in f

done

The traditional solution to this problem is to associate an
expression with both a type and an effect [12, 20]. In our
case, the effect records the clocks of the signals accessed by
the expression.

5.2 Notations
Types are defined by:

ct ::= T | α | {ce} | ct × ct (types)

| (ct , ct) event{ce}

| ct
cf−→ ct | ct process{ce|cf }

ce ::= γ | ck (clocks)

cf ::= φ | ∅ | {ce} | cf ∪ cf (effects)

cs ::= ct | ∀α. cs | ∀γ. cs | ∀φ. cs (type schemes)

Γ ::= [x1 7→ cs1; . . . ;xp 7→ csp] (environment)

A type is either a basic type T , a type variable α, a singleton
type {ce} corresponding to the clock ce, a product, a signal,
a function or a process. The type (ct1, ct2) event{ce} of
a signal is defined by the type ct1 of values emitted, the
type ct2 of the received value (and default value) and its
clock ce. A clock is either a clock variable or a clock name.
An effect cf is attached to functions and processes, and it
is a set of clocks or effect variables φ. Processes also have
an activation clock, which can however be omitted if it does
not appear in the return type or the effect of the process.
Types schemes generalize over the three kinds of variables.
Instantiation and generalization are defined classically by:

cs[α← ct] ≤ ∀α. cs cs[γ ← ce] ≤ ∀γ. cs
cs[φ← cf] ≤ ∀φ. cs

gen(ct , e,Γ) = ct if e is expansive

gen(ct , e,Γ) = ∀ᾱ.∀γ̄.∀φ̄. ct otherwise

if ᾱ, γ̄, φ̄ = ftv(ct) \ ftv(Γ)

where ftv(ct) returns the free type, clock and effect variables
in the type ct . As signals are mutable structures, we need
to distinguish expansive expressions [21] – for which types
cannot be generalized.

5.3 Typing Rules
A typing judgment is given by:

Γ, ce ` e : ct | cf

meaning that under the environment Γ and local clock ce,
the expression e has type ct and effect cf .

The initial typing environment Γ0 contains the signatures
of all primitives:

Γ0 , [global ck : {>ck}; pause : ∀γ. {γ} {γ}−→ unit;

last : ∀α1, α2, γ. (α1, α2) event{γ} {γ}−→ α2;

emit : ∀α1, α2, γ. (α1, α2) event{γ} ∅−→ α1
{γ}−→ unit;

true : bool; fst : ∀α1, α2. α1 × α2
∅−→ α1; . . .]

The typing rules are given in Figure 8:

• The rules of the functional kernel are the usual rules
in a type-and-effect system. The ProcAbs rule types
the body of the process using its activation clock as
the new local clock. Only a process on the local clock
can be run (rule ProcApp). Often, this is done by
instantiating a process whose activation clock is a clock
variable.

• In order to forbid immediate dependencies on slow
signals, the type system ensures that the clock of a
signal is equal to the local clock (evident in the typing
judgment as the ce next to the typing environment).
See, for instance, the When rule.

• A design choice made in ReactiveML is to separate
ML expressions from reactive expressions. For instance,
tuples can only contain ML expressions. It is enforced
in [13] by a separate syntactic analysis before typing.
In the case of our extended type system, we enforce an
even stronger separation, by forcing ML expressions to
have no effect. This does not reduce expressivity since
one can always use a let to isolate effectful expressions.

• The most important typing rule is Domain. It checks
that the local clock does not escape from its reactive
domain. This is done by using a fresh variable for the
clock type. The side condition prevents scope extrusion
of this fresh name by checking that it does not appear
free in the return type ct of the domain nor in the
typing environment Γ. It is similar to the typing of
let in [10] and let clock in Lucid Synchrone [6].

5.4 Examples
The result_escape process is rejected by the type system

because the fresh clock variable associated to ck appears
in the result type of the reactive domain (denoting e ,
signal s in s):

Γ0;x : {γ}, γ ` e : (α, α list) event{γ} | {γ}
Γ0, ce ` domain x by∞ do e : (α, α list) event{γ} | ∅

In the case of the signal_escape example, this variable
appears in the type of the variable slow in the typing envi-
ronment:

slow : ((int, int) event{γ}, (int, int) event{γ}) event{>ck}

Finally, this variable also appears in the return type for the
effect_escape process, in the effect of the function:

f : unit
{γ}−→ unit

5.5 Soundness
We can now state the soundness theorem of the type sys-

tem, which is the same as that of ML: a well-typed program
either reduces to a value or can be reduced infinitely often:

Theorem 5.1 (Soundness of the type system).
If Γ0,>ck ` p : ct | cf with cf ⊆ {>ck}, then either :

• There exists v,H,S such that p̃/H0,S0 ⇒∗ v/H,S.

• For each p′,H′,S ′ such that p̃/H0,S0 ⇒∗ p′/H′,S ′,
there exists p′′,H′′,S ′′ such that p′/H′,S ′ ⇒ p′′/H′′,S ′′.

The proof is given in Appendix A and uses standard syntac-
tic soundness techniques [16]. Clocks and effects are treated
similarly to [5], where the proof is performed on a functional
language with regions and references. As there are two re-
duction relations, we need to prove that an expression that
cannot do any step reduction must be able to do an end-
of-instant reduction. The novelty compared to the proof of
soundness of ReactiveML is that we prove that signals are
never accessed unless their clocks are accessible.

6. DISCUSSION

6.1 Implementation
After typing, the ReactiveML compiler generates sequen-

tial OCaml code [13], that is linked to an OCaml library
providing the ReactiveML runtime, containing mainly the
execution engine that schedules the processes. Extending
the language with reactive domains is easy because they are
a reification of this execution engine. It means that every ac-
tion associated to reactive domains, like scheduling processes
or deciding the end of the instant, is already implemented
in the execution engine of ReactiveML. We have only to
make this execution engine modular so that multiple reactive
domains can be created and nested.

The automatic waiting of the parent clock, described in
Section 3.3, is easy to implement. It simply amounts to
checking that the local scheduling pool of the reactive domain
is empty, that is, that there is nothing left to do in the next
step. The main difficulty lies in maintaining the ability to
passively wait for signals, that is, a process waiting for a
signal should not cost anything in terms of execution time
while that signal is absent.

The extension of the type system is also reasonably straight-
forward. In particular, the side condition of the Domain rule
that prevents scope extrusion is easily implemented. Indeed,
checking that a variable does not appear free in the typing
environment is already necessary when generalizing types in
regular ML type inference.

6.2 Signals Clock
So far, all the signals we have used have been attached

to the reactive domain at the point of definition. It is often
desirable to be able to declare a signal attached to a slower
clock than the local one. For example, consider this process
that performs a blocking request :

let process send_query s =
signal tmp in
emit s tmp;
await tmp(v) in v

The process sends the local signal tmp on the input signal s,
and then awaits a reply on tmp. It is not possible to use
this mechanism to communicate between two sibling reactive
domains (e.g. two agents) as the signal tmp is attached to the
reactive domain of the sender and cannot escape it. This can
be solved by allowing a declaration of the clock of a signal:

signal tmp clock global_ck in ..

The semantics and type system are readily adapted to address
this extension. The basic signal declaration can then be
interpreted as a declaration on the local clock:

signal s in e , signal s clock local ck in e

6.3 Clocks and Reactivity
Once we allow reactive domains to perform an unbounded

number of instants per instant of the parent clock, it becomes
possible for a reactive domain to be non-reactive, that is, to
never wait for the next instant of the parent clock, as in the
following example:

let process nonreactive_domain =
domain ck do
loop pause ck end

done

An easy solution would be to always require the programmer
to give an explicit bound or to label unbounded reactive
domains as an unsafe feature that should only be used by
expert programmers. A more ambitious solution would be
to design a static analysis to detect when a reactive domain
is potentially non-reactive and to warn the programmer. An
interesting candidate for this purpose would be a causal
type-and-effect system in the spirit of [1].

6.4 Clocks and Parallelism
We have decided to forbid immediate dependencies on

slower signals, as this violates the assumption that a signal
has only one value per instant. This restriction has another
benefit: during each instant of its parent reactive domain,
a reactive domain can run independently of other processes
and reactive domains at the same level. In particular, it
can be run in parallel inside another thread of execution
and will only synchronize at the end of the instant of its
parent reactive domain, when all local instants have been
executed. This is not by chance as parallelism was one of the
motivations for developing reactive domains. Furthermore,
signals declared inside a reactive domain never escape, so
they can remain local to the thread and do not require any
mechanism (such as locks) to deal with concurrent accesses.

6.5 Limitations of the Type System
The type system as it was presented imposes restrictions

when writing combinators, as in this example:

let process run_domain q =
domain ck do run q done

This process is rejected because the activation clock of the
process q is equal to the local clock ck at the point where it is
run, and by consequence ck escapes the scope of its domain.

The source of the problem is that, in ML, the type of a
function argument is monomorphic: it is a type ct , not a

type scheme cs. In particular, the activation clock of the
process q cannot be universally quantified, as it is for most
processes declared at toplevel. Many solutions to add higher-
rank polymorphism to ML exist in the literature (see [9, 17]
for instance). Most of them require some form of typing
annotations from the programmer.

Another important limitation of the type system is that
functions or processes stored together must have exactly the
same effect. This restriction can be lifted using a simple form
of subtyping restricted to effects, often called subeffecting [15].

These two extensions are left to future work. As our type
system is standard, we believe that it should be possible to
adapt existing solutions.

7. RELATED WORK
Our work is related to the clock refinement [8] introduced

by Gemünde et al. in the synchronous language Quartz [19].
There, the main idea is also to introduce the ability to syn-
chronize on local rhythms. Our work enables more possibili-
ties for communication and synchronization between reactive
domains. In particular, Quartz does not permit awaiting
the emission of a signal within a domain as it would make
it non-reactive: the delayed_hello_world example could not
be written in Quartz, and this is also true for the sensor
node and n-body examples. This greatly reduces the expres-
sivity of the language as this construct is used in almost all
programs. We solve this problem by treating each reactive
domain as a separate entity that can decide to await the next
instant when its body is blocked or after a certain number of
local instants. Furthermore, the solution adopted in Quartz
cannot be applied to ReactiveML because the latter is a
dynamic language: an arbitrary number of processes and sig-
nals can be created at runtime using recursion and they can
be stored in data-structures and sent via signals (similarly to
mobility in the π-calculus). In this context, it is impossible
to determine the potential emitters of a signal and thus to
decide signal absence, which is a requirement of the clock
refinement described in [8].

Other related work includes SugarCubes [4], which shares
the same concurrency model as ReactiveML but which
uses Java as the base language. It allows the creation of
reactive machines, the equivalent of our reactive domains,
anywhere in the program, but does not offer many ways to
communicate and synchronize between machines. It is also
up to the programmer to manually schedule the machines,
by calling a react method as many times as necessary.

In other synchronous languages, time refinement is achieved
using oversampling, as in Lustre [14] or Signal (see ex-
ample 4 of [11]). However, oversampling is not as modular
as reactive domains: it allows going faster only by slowing
down everybody else. The parallel composition of processes
that oversample is problematic, especially if each has a dif-
ferent number of internal steps, as in Figure 3b. In Lustre,
such programs are rejected by the clock calculus. In Signal,
one can specify such behaviors but the compiler is not able
to generate sequential code (see the FWS example in [7]).
Furthermore, oversampling cannot turn a process taking n
instants into an instantaneous one. It can only reduce the
delay to one instant. The levelorder_inst example shows
that this is possible with reactive domains.

8. CONCLUSION
We have presented an extension to the synchronous model

of concurrency, called reactive domains, and applied it to
the ReactiveML language. It allows the creation of local
notions of instant, thereby improving the modularity of the
language and facilitating refinement. We have extended
the semantics of the language to include this feature and
formalized a type system that prevents the unsound use of
signals.

The most important future work is to evaluate the useful-
ness of reactive domains on bigger programs, including the ex-
isting sensor network simulations [18]. We are also currently
developing a parallel runtime for our extension using system
processes communicating via message passing, based on the
ideas presented in Section 6.4. Another interesting problem
is the one of non-reactive domains discussed in Section 6.3.
For instance, it remains an open question whether reactive
domains that loops should always be considered as bugs (for
instance writing pause ck instead of pause global_ck) or if
there exist useful processes that cannot be written without
such looping.

9. ACKNOWLEDGMENTS
We would like to thank Abdoulaye Gamatié for fruitful dis-

cussions on the subject and Timothy Bourke for his detailed
review.

10. REFERENCES
[1] T. Amtoft, F. Nielson, and H. Nielson. Type and Effect

Systems: Behaviours for Concurrency. Imperial College
Press, 1999.

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,
Paul Le Guernic, and Robert De Simone. The
synchronous languages twelve years later. In
Proceedings of the IEEE, pages 64–83, 2003.

[3] F. Boussinot. Reactive C: an extension of C to program
reactive systems. Software: Practice and Experience,
21(4):401–428, 1991.

[4] F. Boussinot and J.F. Susini. The SugarCubes tool box:
a reactive Java framework. Software: Practice and
Experience, 28(14):1531–1550, 1998.

[5] C. Calcagno, S. Helsen, and P. Thiemann. Syntactic
type soundness results for the region calculus.
Information and Computation, 173(2):199–221, 2002.

[6] J.L. Colaço and M. Pouzet. Clocks as First Class
Abstract Types. In Rajeev Alur and Insup Lee, editors,
Embedded Software, volume 2855 of Lecture Notes in
Computer Science, pages 134–155. Springer Berlin /
Heidelberg, 2003.

[7] A. Gamatié and T. Gautier. The signal synchronous
multiclock approach to the design of distributed
embedded systems. Parallel and Distributed Systems,
IEEE Transactions on, 21(5):641–657, 2010.

[8] M. Gemünde, J. Brandt, and K. Schneider. Clock
refinement in imperative synchronous languages.
SYNCHRON, 9:3–21, 2009.

[9] S.P. Jones, D. Vytiniotis, S. Weirich, and M. Shields.
Practical type inference for arbitrary-rank types.
Journal of Functional Programming, 17(1):1–82, 2007.

[10] K. Laufer and M. Odersky. An extension of ML with
first-class abstract types. In ACM SIGPLAN Workshop
on ML and its Applications, pages 78–91, 1992.

[11] P. Le Guernic, J.P. Talpin, and J.C. Le Lann.
Polychrony for system design. Journal of Circuits,
Systems, and Computers, 12(03):261–303, 2003.

[12] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’88, pages 47–57, New
York, NY, USA, 1988. ACM.

[13] L. Mandel and M. Pouzet. ReactiveML: a reactive
extension to ML. In Proceedings of the 7th ACM
SIGPLAN international conference on Principles and
practice of declarative programming, pages 82–93. ACM,
2005.

[14] J. Mikac and P. Caspi. Temporal refinement for Lustre.
In International Workshop on Synchronous Languages,
Applications and Programs, 2005.

[15] H. Nilsson, A. Courtney, and J. Peterson. Functional
reactive programming, continued. In Haskell ’02:
Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell, pages 51–64, New York, NY, USA, 2002. ACM.

[16] B.C. Pierce. Types and programming languages. The
MIT Press, 2002.

[17] D. Rémy. Simple, partial type-inference for System F
based on type-containment. In ACM SIGPLAN
Notices, volume 40, pages 130–143. ACM, 2005.

[18] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel.
GLONEMO: global and accurate formal models for the
analysis of ad-hoc sensor networks. In InterSense ’06:
Proceedings of the first international conference on
Integrated internet ad hoc and sensor networks, page 3,
New York, NY, USA, 2006. ACM.

[19] K. Schneider. The synchronous programming language
Quartz. Department of Computer Science, University of
Kaiserslautern, Kaiserslautern, Germany, 2009.

[20] J.-P. Talpin and P. Jouvelot. The type and effect
discipline. In Logic in Computer Science, 1992. LICS
’92., Proceedings of the Seventh Annual IEEE
Symposium on, pages 162 –173, jun 1992.

[21] M. Tofte. Type inference for polymorphic references.
Information and computation, 89(1):1–34, 1990.

APPENDIX
A. PROOF OF SOUNDNESS OF THE TYPE

SYSTEM
As in [5], we introduce two new typing environments in

order to demonstrate the soundness of the type system: the
signal typing environment, denoted Σ, and the clock typing
environment, denoted H. Whereas the typing environment Γ
maps variables x to types, Σ maps clock names to a partial
map from signal names n to signal types (ct1, ct2) event{ce ′}.
H maps clock names to the type of their parent clocks. We
also denote Sig(S) = {n ∈ Dom(S(ck)) | ck ∈ Dom(S)} the
set of all signal names defined in a signal environment.

Clocking judgments are now Γ,Σ, H, ce ` e : ct | cf . There
are two new rules for typing signals and clocks:

Γ,Σ, H, ce ` ck : {ck} | ∅ Γ,Σ, H, ce ` nck : Σ(nck) | ∅
There is a new side-condition in the In rule: H(ck′) = ce.

The signal environment is left untouched by all other typing
rules. The crucial point is that in the Domain rule, the side-
condition that γ does not escape only applies to the typing
environment Γ, not the signal environment Σ.

Definition 1. We say that a signal environment S is well-
typed in the signal typing environment Σ, denoted Σ ` S if
both contain the same clock and signal names, i.e. nck ∈
Dom(S) ⇔ nck ∈ Dom(Σ), and for all n ∈ Sig(S), there
exist ct1, ct2 and ce ′ such that:

Σ(nck) = (ct1, ct2) event{ck}

Γ0,Σ, [], γ ` Sd(nck) : ct2 | ∅

Γ0,Σ, [], γ ` Sg(nck) : ct1
∅−→ ct2

∅−→ ct2 | ∅

Γ0,Σ, [], γ ` Sm(nck) : ct1 multiset | ∅

We do not put the clock in Σ ` S as the signal environment
only contains values, for which lemma 3 shows that the
activation clock does not matter.

Lemma 1. If Σ ` S, then Σ ` next(S, ck).

Definition 2. We say that a clock environment H is well-
typed in the clock typing environment H, denoted H ` H, if
they have the same domain and:

∀ck ∈ Dom(H).Γ0, [], [], γ ` Hck(ck) : H(ck) | ∅

We can now define the typing judgment of a configuration
e/H,S:

Γ0,Σ, H, ce ` e : ct | cf Σ ` S H ` H
Dom(H) = Dom(Σ) ce �H cf

Σ, H, ce ` e/H,S : ct | cf

A configuration is well-typed if the expression is well-typed,
the signal and clock environments are well-typed and the
effect of the expression is included in the set of accessible
clocks, which are the clocks slower than the local clock ce.

Lemma 2. If Γ,Σ, H, ce ` v : ct | cf , then cf = ∅.

Lemma 3. If Γ,Σ,H, ce ` v : ct | ∅, then Γ,Σ,H, ce ′ ` v :
ct | ∅ for any ce ′.

Proof. The activation clock that appears in the typing rules
is only used to type processes. So the only difficult case is if
v = process e, but then we replace the activation clock by
a fresh clock variable to type e, so the activation clock does
not matter.

Lemma 4. If Γ,Σ, H, ce ` e : ct | cf and Γ ⊆ Γ′ and Σ ⊆ Σ′

and H ⊆ H ′, then Γ′,Σ′, H ′, ce ` e : ct | cf .

Lemma 5 (Value substitution). If Γ; x : ∀ᾱ.∀γ̄.∀φ̄. ct ′,Σ, H, ce `
e : ct | cf and Γ,Σ, H, ce ` v : ct ′ | ∅ then Γ,Σ, H, ce ` e[x←
v] : ct | cf .

Lemma 6 (Clock substitution). Let θ be a substitution that
maps a clock variable to a clock name (i.e. θ = {γ ← ck′}).
If Σ, H, ce ` e/H,S : ct | cf ,
then Σ, H, θ(ce) ` e/H,S : θ(ct) | θ(cf).

Proof. By induction on the typing rules, we can prove that
θ(Σ), θ(H), θ(ce) ` θ(e)/θ(H), θ(S) : θ(ct) | θ(cf). e, S and
H do not contain any clock variable by definition, so they are
left untouched. As Σ ` S, so does Σ (similarly for H).

Before proving typing preservation for the step reduction,
we first need to prove that the end-of-instant relation pre-
serves typing, as it is used by the LocalEoi rule.

Property 1 (Typing preservation for
ck−→
eoi

). If Σ,H, ck `

e/H,S : ct | cf and e/H,S C−→eoi e
′/H′,S ′ with ck ∈ C,

then there exists Σ′, H ′ and cf ′ such that:

Σ′, H ′, ck ` e′/H′,S ′ : ct | cf ′

Property 2 (Typing preservation for
ck−→). If Σ,H, ck `

e/H,S : ct | cf and e/H,S ck−→ e′/H′,S ′, then there exists
Σ′, H ′ and cf ′ such that:

Σ′, H ′, ck ` e′/H′,S ′ : ct | cf ′

Proof. By induction on the structure of e.

Case domain x by v do e: Then we have e′ = e[x← ck′] in ck′

and S ′ = S[ck′ 7→ []], where ck′ 6∈ Dom(H). From Do-
main, we deduce that Γ0,Σ, H, γ ` e : ct | cf 1 with γ 6∈
fcv(ct) and cf = cf 1 \{γ}. Let’s denote θ = {γ ← ck′}.
By applying lemma 6, we get Γ0,Σ, H, θ(γ) ` e : θ(ct) |
θ(cf 1). Then, we have θ(ct) = ct as γ 6∈ fcv(ct). If we
denote H ′ = H[ck′ 7→ ck] and Σ′ = Σ[ck′ 7→ []], then
as H′(ck′) = ck and H ′ ` H′, we have H ′(ck′) = {ck}.
We can replace Σ with Σ′ and H with H ′ in the pre-
vious typing judgment using Lemma 4. By applying
In, we then get that Γ0,Σ

′,H ′, ck ` e′ : ct | cf ′, where
cf ′ = cf [γ ← ck′] = cf .

Case v in ck′: Then e′ = v, S ′ = S and H′ = H. From
In, we get that Γ0,Σ,H, ck

′ ` v : ct | cf 1 with cf =
cf 1 \ {ck′} and ck′ 6∈ fcv(ct). From lemma 2, we know
that cf 1 = cf = ∅. We can apply lemma 3 to get
Γ0,Σ,H, ck ` v : ct | ∅ and the other conditions are
immediate.

Case e in ck′ (Step): From In, we deduce that Γ0,Σ, H, ck
′ `

e : ct | cf 1 with cf = cf 1 \ {ck′}. As H(ck′) = {ck}
and H ` H, we have Γ0, [], [], γ ` Hck(ck′) : {ck} | ∅,
which means that Hck(ck′) = ck, i.e. ck′ �H ck. As
we also have ck �H cf from the typing rule, it fol-
lows that ck′ �H cf 1. By induction, we have that
Γ0,Σ

′,H ′, ck′ ` e′ : ct | cf ′1 with ck′ �H′ cf ′1. We can
then apply the In rule to get the desired result.

Case e in ck′ (LocalEoi): As in the previous case, we can
show that Σ,H, ck′ ` e/H,S : ct | cf 1. By applying
Property 1, we get Σ,H, ck′ ` e′/H,S : ct | cf ′1. We
can then deduce the expected result by using Lemma 1.

Case signal x default v1 gather v2 in e : Then
e′ = e[x/nck] and S ′ = S(ck)[n 7→ (v1, v2, ∅)]. From the
typing rule, we get that Γ0; x : (ct1, ct2) event{ck},Σ, H, ck `
e : ct | cf 1 where cf = cf 1 ∪ {ck}. Let’s denote Σ′ =
Σ[n ← (ct1, ct2) event{ck}]. By applying Lemma 4
and 5, we get Γ0,Σ

′,H, ck ` e[x ← nck] : ct | cf 1 and
we can easily prove that Σ′ ` S ′.

Case emit nck
′
v : We have e′ = () and S ′ = S + [v/n].

We can easily prove that Γ0,Σ,H, ck ` () : unit | ∅
and that Σ ` S ′ as Γ0,Σ,H, γ ` v : ct1 | ∅ where
Σ(ck′)(n) = (ct1, ct2) event{ck′}.

Definition 3. We say that e/H,S is an end-of-instant con-
figuration for ck if there exists e′, H′ and S ′ such that

e/H,S {ck}−→eoi e
′/H′,S ′.

For the proof of the progress property, we need to dis-
tinguish instantaneous expressions and non-instantaneous
expressions. For that, a very simple syntactic classification
is used, called well-formation rules and denoted k ` e in [13]
(it extends easily to the new language). Stuck instantaneous
expressions are values, whereas stuck non-instantaneous ex-
pressions are end-of-instant expressions.

Property 3 (Progress for instantaneous expressions). If
Σ, H, ck ` e/H,S : ct | cf and e is instantaneous (i.e. 0 ` e),
then either:

• e is a value

• There exists e′, H′ and S ′ such that e/H,S ck−→ e′/H′,S ′

Property 4 (Progress for
ck−→). If Σ,H, ck ` e/H,S : ct |

cf , then either:

• e/H,S is an end-of-instant configuration for ck

• There exists e′,S ′ such that e/H,S ck−→ e′/H′,S ′

Proof. By induction on the structure of e.

Case domain x by v do e: Then e′ = e[x← ck′] in ck′.

Case e in ck′ : We can show that Σ,H, ck′ ` e/H,S : ct |
cf 1 like in the proof of Property 2. By induction, either

there exists e′,H′ and S ′ such that e/H,S ck′−→ e′/H′,S ′,
in which case we can apply Step, or e is an end-of-
instant expression for ck′ and then:

• Either we can apply LocalEoi to do a step reduc-
tion on ck

• Otherwise, e in ck′ is an end-of-instant expression
for ck (one of StuckDomain or ParentEoi neces-
sarily applies)

Case emit e1 e2 : From the well-formation rules, we know
that e1 and e2 are instantaneous expressions, so we can
apply Property 3. If e1 or e2 is not a value, then we
can reduce by using the context rule. Otherwise, we

have e1 = nck
′

and e2 = v. From the typing rule, we
get that ck′ ∈ cf , so ck �H ck′ as ck �H cf . We can
thus reduce e to e′ = (). The proof is similar for all
actions on signals.

Property 5 (Soundness of the type system for
ck−→). If

Σ, H, ck ` e/H,S : ct | cf , then either :

• There exists e′, H′ and S ′ such that e/H,S ck−→
∗
e′/H′,S ′

and e′ is an end-of-instant expression for ck (i.e. there

exists e′′ such that e′/H′,S ′ {ck}−→eoi e
′′/H′′,S ′′)

• For each e′/H,S such that e/H,S ck−→
∗
e′/H′,S ′, there

exists e′′/H′′,S ′′ such that e′/H′,S ′ ck−→ e′′/H′′,S ′′.

The initial clock typing environment is H0 = []. We easily
check that H0 ` H0.

Theorem A.1 (Soundness of the type system).
If [], H0,>ck ` p/H0,S0 : ct | cf , then either :

• There exists v,H,S such that p̃/H0,S0 ⇒∗ v/H,S.

• For each p′,H′,S ′ such that p̃/H0,S0 ⇒∗ p′/H′,S ′,
there exists p′′,H′′,S ′′ such that p′/H′,S ′ ⇒ p′′/H′′,S ′′.

	Introduction
	The ReactiveML Language
	Examples
	Programming Agents in ReactiveML

	Reactive Domains
	Reactive Domains and Clocks
	Reactive Domains and Signals
	Relating Clocks
	Using Reactive Domains
	A Modularity Issue

	Operational Semantics
	Language Abstract Syntax
	Notations
	Semantics

	Clock Calculus
	Motivation
	Notations
	Typing Rules
	Examples
	Soundness

	Discussion
	Implementation
	Signals Clock
	Clocks and Reactivity
	Clocks and Parallelism
	Limitations of the Type System

	Related Work
	Conclusion
	Acknowledgments
	References
	Proof of Soundness of the Type System

