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Abstract

Concurrent and reactive systems often exhibit multiple time scales. This
situation occurs, for instance, in the discrete simulation of a sensor network
where the time scale at which agents communicate is very different from the
time scale used to model the internals of an agent.

The paper presents reactive domains to simplify the programming of such
systems. Reactive domains allow for several time scales to be defined and
they enable time refinement, that is, the replacement of a system with a more
detailed version, without changing its observed behavior.

Our work applies to the ReactiveML language, which extends an ML
language with synchronous programming constructs à la Esterel. We pre-
sent an operational semantics for the extended language, a type system that
ensures the soundness of programs, and a sequential implementation. We
discuss how reactive domains can be used in a parallel implementation.

Keywords: Synchronous languages; Functional languages; Semantics; Type
systems

1. Introduction

The concept of logical time greatly simplifies the programming of con-
current and reactive systems. It is the basis of synchronous languages [1]
like Esterel [2]. Its principle is to see the execution of a reactive system
as a sequence of reactions, called instants, where all communications and
computations are considered to be instantaneous during one reaction. This
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(a) Sampling (b) Reactive domains

Figure 1: Sampling vs. Reactive domains (each vertical line or box represent one instant
of the corresponding clock, horizontal lines represent processes running in parallel)

interpretation of time is logical because it does not account for exact com-
putation time and the precise way all the computations are done during a
reaction. It has been originaly introduced for programming real-time em-
bedded controllers, but it is applicable for a wider range of applications, in
particular large scale simulations.

Consider, for example, the simulation of the power consumption in a
sensor network [3]. In order to precisely estimate the power consumption, we
need to simulate the hardware of certain nodes, in particular the radio. There
are now multiple time scales: for example, the time scale of the software (i.e.,
MAC protocol) is in milliseconds, while the time step of the hardware would
be in microseconds. The communication between these time scales must be
restricted. E.g., a slow process, whose time scale is in millisecond, cannot
observe all the changes of a faster process, whose scale is in microseconds.
Said differently, a signal that is produced by a fast process cannot be used
to communicate a value with a slower process. Furthermore, depending on
the level of precision required for the simulation, it makes sense to be able to
replace a precise but costly version of a process that may last several steps by
an approximated version, possibly instantaneous. Moreover, this replacement
should not impact the way the process interacts with other processes. Such a
feature has been called time or temporal refinement [4].

Synchronous data-flow languages provide a solution to this problem that
is based on sampling. A slower time scale is obtained by choosing a subset of
instants according to a boolean condition. In this paper, we propose reactive
domains, that allow doing the opposite. Instead of creating a new time scale
which is slower than an other one, a reactive domain creates a faster time scale
by subdividing an instant of the parent domain. The sequence of instants of a
reactive domain stay local to it, that is, they are un-observable from outside,
as shown in Figure 1. Reactive domains make time refinement easy as they
allow local computation steps to be hidden (Section 3).
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Our work is applied to the ReactiveML language [5], which augments ML
with synchronous programming constructs à la Esterel (Section 2).1 We show
how to extend the operational semantics of the language to incorporate reactive
domains (Section 4). The soundness of programs in the extended setting can
be checked using a type-and-effect system, called a clock calculus, since it is
reminiscent of the one in data-flow synchronous languages [1] (Section 5). Yet,
the clock calculus of ReactiveML applies to a language where synchronous
constructs are those of Esterel and with ML features. Then, we prove
the soundness of the type system with respect to the semantics (Section 6).
We also give an overview of the implementation of the extended language
and some ideas for parallel execution (Section 7). The article ends with a
discussion of several extensions (Section 8) and related work (Section 9).

2. The ReactiveML Language

ReactiveML2 [5, 6] is based on the reactive model of Boussinot which
first appeared in the ReactiveC language [7]. The reactive model applies to
general purpose languages the principles of the synchronous model found in
synchronous languages [1].

2.1. Examples

ReactiveML is a reactive extension of ML, so any ML program is also
a valid ReactiveML program. The concrete syntax of the language is the
one of OCaml,3 upon which ReactiveML is built. For example, we can
define a tree data type and the preorder iteration of a function on a tree by:

type ’a tree =
| Empty

| Node of ’a tree * ’a * ’a tree

let rec preorder f t = match t with
| Empty -> ()

| Node(l, v, r) -> f v; preorder f l; preorder f r

The type of trees, ’a tree, is parametrized by the type ’a of its labels. A
tree is either empty, or made of a left child, a label and a right child. The

1The compiler and the examples mentioned in the paper are available at http://
reactiveml.org/scp15

2http://www.reactiveml.org
3http://ocaml.org
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preorder traversal of the tree is implemented with a simple recursive function
that applies a given function to the label and recurses first on the left child
and then on the right one. We can almost as easily define the level-order
traversal of the tree in ReactiveML:

let rec process levelorder f t = match t with
| Empty -> ()

| Node (l, v, r) ->

f v; pause;
(run levelorder f l || run levelorder f r)

This example defines a recursive process named levelorder. Unlike regular ML
expressions, such as a call to preorder f t, which is said to be instantaneous,
the execution of a process can last several logical instants. Here, levelorder
awaits the next instant by using the pause operator and then recursively
calls itself on the left and right children in parallel. The || operator denotes
logical parallel composition. The run operator is used to launch a process. As
all processes share the same time scale, the two instances of the levelorder
process synchronize on the next pause. As a consequence, f is applied to all
the labels at the same depth during a given instant. It should be noted that
the order in which parallel processes are executed is unspecified.

Processes running in parallel can communicate using broadcast signals:
when a signal is emitted, it is seen by all the processes that observe it.
Moreover, all the processes have a consistent view of a signal at every instant.
It is either present or absent, henceforth unable to change for the rest of the
instant. Running the following process prints "Hello world" at the first instant.
The first branch of the parallel awaits for the presence of a signal go and the
second branch emits go. As the is signal is emitted, it is thus present and the
first branch of the parallel immediately executes the expression following the
waiting of the presence of the signal.

let process hello_world =
signal go in
await immediate go; print_string "Hello world"
||

emit go

A signal may also carry a value. Several processes can emit different values
on a signal during the same instant. This is termed multi-emission. These
values are combined using a function given in the definition of the signal. The
value of a signal at a given instant is obtained by folding this function across
emitted values, starting from a default value. In the following example, the
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value of the signal s is the sum of the emitted values:

let process sig_gather =
signal s default 0 gather (+) in
emit s 2 || emit s 4
|| await s(v) in print_int v

This process prints 6 (i.e. 0 + 2 + 4) on the second instant. Indeed, the
values 2 and 4 are emitted on s during the first instant. In order to be sure
that all the values of s has been emitted (and that no other value will be
emitted later during the same instant), trying to access the value of a signal
in delayed by one instant. await s(v) in ... intuitively means “await that all
the values of s have been emitted, then execute the continuation”. One can
react immediately to the presence of a signal, as illustrated in the previous
example, but it takes one instant to read its value.

Finally, a signal also stores its last value, that is the value that was carried
at the previous reaction. If a signal s is declared with a default value, last s
is this value until the first instant where s is emitted. last s can be used, for
example, to maintain a value across several instants:

let process hold s =
loop emit s (last s); pause end

2.2. Programming Agents in ReactiveML

Figure 2a shows an example of a node in a simulation of a sensor network
made of small low-cost sensors that collect and communicate environmental
data. A node receives messages on the signal me (line 10), decrements them
and then forwards them to all of its neighbors (line 6) (iter iterates a process
on all the elements of a list). The second part of the node (lines 13 to 18)
models the energy consumption: the energy of the node is decremented by
max_power at each time step, where each step corresponds to one millisecond
of simulation time. The node terminates when its energy crosses the e_min
threshold. This is achieved by using preemption through the do/until control
structure. Indeed, do e until dead done executes the body e until the emission
of the signal dead, then terminates in the instant following the emission.

Another simple example of simulation is the n-body problem, solved using
a fixed-step numerical integration in Figure 2b. The idea is to use a global
signal env, whose value is a force field, that is, a function mapping a position
to a force. Each body, characterized by its current position, velocity and
weight, is a process that, at each instant, sends its attraction by emitting on
env, receives the sum of all the forces emitted by other bodies, and uses this
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1 let process node me neighbors =
2 signal dead in
3 signal energy default e_0 gather (fun x _ -> x) in
4 let process send msg n = emit n msg in
5 let process forward_msg msg =
6 if msg>1 then run iter (send (msg-1)) neighbors
7 in
8 do
9 loop (* protocol *)

10 await me(msgs) in run iter forward_msg msgs
11 end
12 ||

13 loop (* power *)
14 if last energy < e_min
15 then emit dead
16 else emit energy (last energy -. max_power);
17 pause
18 end
19 until dead done

(a) A simple node in a sensor network

let dt = 0.01
signal env default (fun _ -> zero_vector) gather add_force

let rec process body (x_t, v_t, w) =
emit env (force (x_t, w));
await env(f) in
(* euler semi-implicit method *)

let v_tp = v_t ++. (dt **. (f x_t)) in
let x_tp = x_t ++. (dt **. v_tp) in
run body (x_tp, v_tp, w)

let process main =
for i = 1 to 100 dopar
run body (random_planet ())

done

(b) The n-body problem (++. and **. are operations on vectors)

Figure 2: Two examples
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force to compute its position dt later. The main process is made of several
bodies running in parallel using a parallel for loop.

The basic constructs of ReactiveML have been introduced. We present
now the proposed extension.

3. Reactive Domains

A reactive domain introduces a notion of local instants, that is, instants
that are unobservable from the outside. This notion can be seen as a reification
of the execution engine attached to any ReactiveML program. A reactive
domain behaves as if its body was executed by a separate execution engine,
with its own notion of step.

3.1. Reactive Domains and Clocks

A reactive domain is declared by the keyword domain:

domain ck do e done

The name ck is the identifier of the domain, that we call a clock. It is bound
to the expression e, which is the body of the domain. The clock defines a
sequence of instants. That is why the pause operator now takes as argument
a clock: pause ck waits for the next instant of the domain of clock ck. For
instance, the following process prints "Hello " during the first instant of the
clock ck and "world" during the second instant of ck.

let process hello_world_ck =
domain ck do
print_string "Hello "; pause ck;
print_string "world"

done

ck are included in the first instant of the global clock, called global_ck.4 The
two local instants of ck can only be observed by processes inside the reactive
domain. Thus hello_world_ck is equivalent to:

let process hello_world_seq =
print_string "Hello ";

print_string "world"

as if the synchronization on the local clock ck was erased.

4global_ck is a global variable which is the global clock of the program.
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Reactive domains form a tree, called the clock tree, where one reactive
domain is a child of another if it is defined in the latter’s scope. A clock ck’
is said to be faster than ck if ck’ is a descendant of ck in the clock tree. The
global clock global_ck is the root of the clock tree, and is thus slower than
any other clock.

While the process hello_world_ck terminates instantaneously, it is possible
for the execution of a reactive domain to span several instants of its parent
domain. It is then necessary to relate the instants of the reactive domain to
those of its parent, that is, to know how many steps of the reactive domain
should be taken in each step of the parent reactive domain. The simplest
form of relation is given by periodic reactive domain. A periodic reactive
domain performs n local instants per instant of its parent reactive domain,
using the keyword by:

let process stutter msg =
domain ck by 6 do
loop print_string msg; pause ck end

done

The expression run stutter "a" prints six a’s at each instant of the global
clock. Instants of sibling reactive domains are unrelated. For instance,
run stutter "a" || run stutter "b" prints six a’s and six b’s at each instant
in an unspecified order.

Reactive domains can be created dynamically and nested arbitrarily. For
instance, the stutter process can be rewritten as follows:

let process stutter_nested msg =
domain ck1 by 3 do
domain ck2 by 2 do
loop print_string msg; pause ck2 end

done
done

3.2. Reactive Domains and Signals

The consequence of introducing reactive domains is that every signal is
now attached to a reactive domain, that is, it has one value for every instant
instant of the domain. This explains why we use the term clock for a domain’s
identifier. Indeed, in synchronous data-flow languages, a clock for a signal
defines the instant where the signal is present [1]. The semantics of a signal
defined inside a reactive domain is unchanged. For instance, if we run one of
the examples of Section 2.1 inside a reactive domain, the result is the same:
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sig_gather_ck prints 6 during the second instant of ck, but during the first
instant of the global clock:

let process sig_gather_ck =
domain ck do run sig_gather done

Emitting a value on a signal with a slower clock (that we will call a slow signal)
is not an issue thanks to multi-emission: all the values emitted during the
instant of the signal’s clock, including the multiple instants of child reactive
domains, are gathered to compute the value for the instant. It is also possible
to await the emission of a slow signal. The continuation of the await will
occur in the next instant of the emitted signal’s clock, as in the following
process:

let process slow_signal =
signal s default 0 gather (+) in
domain ck by 3 do
await s(v) in print_int v

done
||

emit s 4

A 4 is printed during the second instant of the global clock, as if there were
no reactive domain, but during the fourth instant of clock ck because there
where three instants of ck during the first instant of the global clock. The
result would have been the same if the emit statement had been inside the
reactive domain. Sibling reactive domains can thus communicate using signals
attached to a common ancestor in the clock tree.

While in ReactiveML, any process can use any signal, reactive domains
impose restrictions. First, as the instants of a reactive domain are unobservable
from the outside, it does not make sense to access a signal attached to a
reactive domain from outside of that domain where the different values of the
signal cannot be distinguished. The second restriction is that it is forbidden
to react immediately to the presence of a slow signal.

We illustrate the problem with the following process which is rejected by
the compiler:

let process immediate_dep_wrong =
signal s in
domain ck do
await immediate s; print_string "Ok"
||

pause ck; emit s
done
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In this example, s has clock global_ck. During the first instant of ck, we
suppose that s is not present, so the first branch of the parallel is blocked.
But in the second instant of ck —yet still in the first instant of global_ck— s

is emitted, which should trigger the printing of Ok because of the immediate
dependency. We reject this process because it makes two different assumptions
about the presence of s during the same instant of the clock of s, which goes
against the principle that all processes have the same view of a signal’s status
and value at an instant. The type system defined in Section 5 ensures that
these two kinds of errors never occur.

3.3. Automatic waiting of reactive domains

Consider the following process:

let process delayed_hello_world =
signal s default "" gather (ˆ) in
domain ck by 10 do
pause global_ck; emit s "Hello world"
||

await s(v) in print_string v
done

At the end of the first instant of ck, the first branch of the parallel is waiting
for the next instant of global_ck. The second branch is waiting for the signal s
of clock global_ck. If the reactive domain were executing another local instant,
its body would not evolve. It is not necessary to execute ten local instants:
the reactive domain can directly wait for the next instant of global_ck before
doing its next local instant. We can thus interpret the number given after by
as a bound on the number of instants that a reactive domain can do.

We could just treat this property as a run-time optimization, but we
believe it can be usefully incorporated in the semantics of the language so as
to accept more programs. Indeed, in most cases, as in the previous example,
it is clear that the body of the reactive domain will be blocked waiting for a
slower clock at some point. It is thus permitted to omit the bound (as was
done in the first examples). A reactive domain then not only decides when
its local instants are finished, but also when to wait for the next instant of
its parent clock. It does so automatically if all the processes it contains are
waiting for the next instant of a slower clock, either via an explicit pause or
by waiting for a signal with a slower clock.
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3.4. Clocks and Reactivity

Once we allow reactive domains to perform an unbounded number of
instants per instant of the parent clock, it becomes possible for a reactive
domain to be non-reactive, that is, to never wait for the next instant of the
parent clock, as in the following example:

let process nonreactive_domain =
domain ck do
loop pause ck end

done

This reactive domain never waits for the next instant of its parent clock and
behaves like an instantaneous infinite loop. A static analysis, based on the
extension of [8], warns the programmer that this program is problematic. But,
it means that it is no longer possible to use the hold process from Section 2 to
hold the value of a signal inside an unbounded reactive domain. To solve this
problem, we introduce a variant of the pause operator denoted quiet pause. A
call to quiet pause ck terminates in the next instant of ck, like for pause ck,
but if all the other parallel processes in the reactive domain are waiting for a
slower clock, the reactive domain synchronizes with the parent clock (another
local instant is not performed in the same instant). Using this operator, it is
possible to sustain a signal inside an unbounded reactive domain:5

let process quiet_sustain_v s ck =
loop emit s (last s); quiet pause ck end

let process hold_domain =
domain ck do
signal s default 0 gather (+) in
run quiet_sustain_v s ck
||

pause ck; emit s 3; pause global_ck; print_int (last s)
done

At the end of the first instant of ck, the second branch of the parallel asks for
another instant of ck by calling pause ck. During the next instant, it is stuck
waiting for the next instant of the global clock. As the first branch of the
parallel uses the quiet pause operator, it does not influence the choice of the
reactive domain of clock ck, which then awaits the next instant of the global
clock before executing its next local instant and printing the last value of s.

5You can notice in this example that clocks are first class citizens and thus can be
function arguments.
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Figure 3: Several patterns of programming with reactive domains

3.5. Using Reactive Domains

Reactive domains are useful for several typical patterns. The first is to
make a process instantaneous. For instance, one can hide the internal steps
used in the levelorder example of Section 2.1 (pause without any argument
waits for the next instant of the local clock, that can also be obtained using
the local_ck operator):

let process levelorder_inst f t =
domain ck do
run levelorder f t

done

Figure 3a illustrates the behavior of the reactive domain: it hides all internal
steps and behaves as an instantaneous process on the global clock. This
process could not have been written without the automatic waiting of reactive
domains (Section 3.3) as it executes an unbounded number of local instants,
equal to the depth of the tree.

The second pattern is for programming agent-based simulations. Reactive
domains allow each agent to perform an arbitrary number of internal steps
during each step of the simulation, that corresponds to one instant of the
global clock. One simply has to declare one reactive domain per agent, as in
Figure 3b. Agents only synchronize at the end of the instant of the global
clock. Signals for communication between agents remain attached to the
global reactive domain, and are thus buffered automatically.

We can use this idea to better simulate the power consumption of the node
from Figure 2a, by modeling the fact that power consumption is related to the
number of messages sent. An abbreviated version of the resulting program
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let process node_with_energy me neighbors =
domain us by 1000 do
signal dead in
signal energy default e_0 gather (fun x _ -> x) in
signal power default 0.0 gather (+.) in
signal r_in default (0,me) gather (fun x _ -> x) in
signal r_ack in
let process send msg n =
emit r_in (msg, n);
await immediate r_ack

in
...

do
... (* protocol *) ||

loop (* radio *)
await r_in (msg, n) in
for i=1 to packet_send_time do
emit power send_power; pause us

done;
emit n msg; emit r_ack

end
||

loop (* power *)

emit power on_power;
if last energy < e_min
then emit dead
else emit energy (last energy -. (last power /. 1000.0));
pause us

end
until dead done
done

Figure 4: A node with refined power consumption
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let rec process body_heun env (x_t, v_t, w) =
emit env (force (x_t, w));
await env(f_t) in
(* step 1 *)

let f_t = f_t x_t in
let v_int = v_t ++. (dt **. f_t) in
let x_int = x_t ++. (dt **. v_t) in
(* step 2 *)

emit env (force (x_int, w));
await env(f_int) in
let f_int = f_int x_int in
let v_tp = v_t ++. ((dt /. 2.0) **. (f_t ++. f_int)) in
let x_tp = x_t ++. ((dt /. 2.0) **. (v_t ++. v_int)) in
(* next step*)

pause global_ck;
run body_heun env (x_tp, v_tp, w)

let process main =
domain computation_ck do
signal env default (fun _ -> zero_vector) gather add_force in
for i = 1 to 100 dopar
run body_heun env (random_planet ())

done
done

Figure 5: Two-step integration method (Heun’s method)
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is shown in Figure 4. The idea is to use a reactive domain to introduce
a new local time scale, corresponding to microseconds of simulation time.
The radio is represented by a process receiving a message to be sent and a
destination on the r_in signal. The sending of the message is modeled by
waiting packet_send_time microseconds, during which the power consumption
is raised by send_power. After that, the radio actually sends the message to
the destination and acknowledges the sending on the r_ack signal.

A similar use is to hide computation steps shared by many agents. The
fast clock is then shared by several processes as in Figure 3c, whereas in
Figure 3b each process has its own local clock. An example of this pattern
is an extension of the n-body simulation of Figure 2b to use multi-steps
integration methods, here Heun’s method. The resulting code is shown in
Figure 5. Each step of the computation corresponds to one instant of a
reactive domain, shared by all bodies. As these instants are unobservable
from the outside, it is easy to add processes such as the GUI on the global
clock (last line in Figure 3c) or to dynamically switch methods (e.g. from a
two-steps to a four-steps method) without any influence on the rest of the
program.

3.6. A Modularity Issue

We have seen that some communications take time because of multi-
emission. This can lead to modularity problems, as we will see on a few
examples, and makes it even more necessary to be able to hide local instants.
Let’s first define a higher-order process lift that turns a function on values
into a function on streams (like the arr combinator in FRP [9]). It awaits a
new value on a signal s_in, applies f to it and emits the result on another
signal s_out:

let process lift f s_in s_out =
loop
await s_in(v) in
emit s_out (f v)

end

We can now define a process fg1 that applies the composition of two
functions g and f:

let process fg1 s_in s_out =
run lift (fun v -> f (g v)) s_in s_out

15



global_ck

s_in

s_out

global_ck

s_in

tmp s_out

⇔global_ck ck

tmp

s_in

s_out

⇔
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Suppose that, for modularity reasons, we want to separate the computations of
f and g. We use a local signal tmp to communicate between the two processes:

let process fg2 s_in s_out =
signal tmp default 0 gather (+) in
run lift f s_in tmp || run lift g tmp s_out

The problem is that, while fg1 emits the result one instant after the emission
of a value on s_in, it takes two instants for fg2 to do the same. We can fix
this problem by running the process inside a reactive domain:

let process fg2_good s_in s_out =
domain ck do
run fg2 s_in s_out

done

The fg2_good process has the same behavior as the fg1 process: it takes two
instants of the local clock ck to compute the result, but only one on the global
clock. Figure 6 illustrates the behavior of these three processes.

4. Operational Semantics

In this section, we extend the ReactiveML operational semantics [5] to
support reactive domains. It is itself an extension of the small-step reduction
semantics of ML.

4.1. Language Abstract Syntax

We present the semantics on a core language, based on a call-by-value
functional kernel extended with synchronous primitives: defining and running
a process, waiting for the next instant of a clock (pause), quietly wait-
ing for the next instant (quiet pause), a parallel let, declaring a signal,
emitting a value, getting its last value, preemption (do/until) and suspen-
sion (do/when) control structures, declaring a reactive domain and accessing
the local clock (local ck):
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e ::= x | c | (e, e) | λx.e | e e | rec x = e

| process e | run e | pause e | quiet pause e | let x = e and x = e in e

| signal x default e gather e in e | emit e e | last e
| do e until e(x)→ e | do e when e
| domain x by e do e | local ck

The expression do e when s executes its body only when s is present. We
denote by variables that do not appear free in the body of a let and by ()
the unique value of type unit. Among others, it is possible to derive the
following constructs from this kernel:

e1 || e2 , let = e1 and = e2 in ()

let x = e1 in e2 , let x = e1 and = () in e2

e1; e2 , let = e1 in e2

domain x do e , domain x by∞ do e

loop e , run ((rec loop =

λx.process (run x; run (loop x))) (process e))

signal s in e , signal s default [] gather (λx.λy.x :: y) in e

emit e , emit e ()

pause , pause local ck

await immediate e , do () when e

await e1(x) in e2 , do (loop (quiet pause local ck)) until e1(x)→ e2

It should be noted that await e1(x) in e2 is encoded as the preemption of an
infinite loop, but it is important to use the quiet pause operator so that it
does not make the local reactive domain make an infinite number of instants.

Values are the regular ML values (constants, pairs and functions), plus
processes, signal names indexed by their clock and clock names:

v ::= c | (v, v) | λx.e | process e | nck | ck (values)
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k ` x k ` c
0 ` e1 0 ` e2
k ` (e1, e2)

0 ` e
k ` λx.e

0 ` e1 0 ` e2
k ` e1 e2

0 ` e
k ` rec x = e

1 ` e
k ` process e

0 ` e
1 ` run e

0 ` e
1 ` pause e

0 ` e
1 ` quiet pause e

k ` e1 k ` e2 k ` e
k ` let x1 = e1 and x2 = e2 in e

0 ` e1 0 ` e2 k ` e
k ` signal x default e1 gather e2 in e

0 ` e1 0 ` e2
k ` emit e1 e2

0 ` e
1 ` last e

1 ` e1 0 ` e 1 ` e2
1 ` do e1 until e(x)→ e2

1 ` e1 0 ` e
1 ` do e1 when e

0 ` e1 1 ` e
1 ` domain x by e do e1

1 ` e
1 ` e in ck′ k ` local ck

Figure 7: Well-formation rules

Finally, we add e in ck to the expressions of the language. It represents
the result of instantiating the expression domain x by e do e and cannot itself
be used directly in a program.

e ::= . . .

| e in ck (executing reactive domain)

4.2. Well-formation of expressions

A simple syntactic classification, called well-formation predicate and
denoted k ` e with k ∈ {0, 1}, is used to distinguish instantaneous and non-
instantaneous expressions. It was introduced in [5]. It allows for example to
separate pure ML expressions from reactive expressions, which is useful for
code generation. It is also used in Section 6 for the proof of soundness. The
rules defining this predicate are given in Figure 7.

An expression e is necessarily instantaneous (or combinatorial) if 0 ` e. It
is reactive (or sequential in classic circuit terminology) if 1 ` e. The predicate
k ` e means that 1 ` e or 0 ` e, that is, that e can be used in any context.
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This is true of any instantaneous expressions, as there is no rule with 0 ` e in
the conclusion.

The important point is that the body of functions must be instantaneous,
while the body of a process may be reactive. The design choices of this
analysis, like the fact that pairs must be instantaneous, are discussed in [5].

4.3. Notations

C is a denumerable set of clock names, denoted ck. The global clock is
denoted >ck ∈ C. N is a denumerable set of signal names, denoted n. A local
signal environment is a partial mapping from signal names to tuples (d, g, l,m)
where d and g are the default value and gather function, l the last value
and m the multiset of values emitted at an instant. A signal environment S
is a partial mapping from clock names to local signal environments. If
S(nck) = S(ck)(n) = (d, g, l,m), we write Sd(nck) = d (similarly for the g, l
and m) and Sv(nck) = fold g d m if m 6= ∅ (Sv(nck) is not defined otherwise).
We write nck ∈ S when n is present, that is, Sm(nck) 6= ∅, and nck 6∈ S
otherwise. We denote by S + [v/nck] the environment where v is added to the
multiset Sm(nck) and by next(S, ck) the environment where the last value of
any signal with clock ck is set to its current value Sv(nck) (if defined) and
Sm(nck) is set to ∅.

Similarly, a clock environment H maps clock names ck to tuples (pck, r,m),
where pck is the parent clock of ck and r (resp. m) tracks the number of
steps remaining (resp. the maximum number of steps) in the current instant
of the parent clock (r,m ∈ N ∪ {∞}). The same notation is used to refer
to the individual fields (for instance Hr(ck)). We denote by H[ck ← i] the
environment where Hr(ck) is set to i and by Dom(H) the domain of H, that
is the set of clock names that are mapped to a tuple in H.

A clock environment induces a partial order �H, which is the smallest
reflexive, transitive and antisymmetric relation such that ck �H Hpck(ck).
Intuitively, ckF �H ckS means that ckS is slower than ckF . We write ck �H C
iff ∀ck′ ∈ C. ck �H ck′. C↑H denotes the upward closure of C, that is:

C↑H = {ck′ | ∃ck ∈ C. ck �H ck′}

4.4. Semantics

We define two reductions: the step reduction, denoted ck−→, and the end-
of-instant reduction C−→eoi. The step reduction is parametrized by the local
clock ck. The execution of a reactive domain consists in applying the step
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reduction with the local clock as many times as possible, to get a so-called
end-of-instant expression. Then, the end-of-instant reduction prepares the
execution of the next instant of the domain (where C is a set containing the
clock of the domain).

A program is executed inside the global reactive domain of clock >ck . The
variable global_ck is bound to this clock. This means that the semantics of a
program p is given by the reduction of the expression p̃ defined by:

p̃ , let global ck = local ck in p

A program step, denoted ⇒, is made of as many step reductions as possible
followed by one end-of-instant reduction in the local clock >ck :

e/H,S
>ck

−→∗ e′/H′,S ′ e′/H′,S ′���>ck−→ e′/H′,S ′ {>ck}−→ eoi e
′′/H′′,S ′′

e/H,S ⇒ e′′/H′′,S ′′

The reduction starts from e0 = p̃ and the initial clock and signal environments
are both empty: H0 , [] and S0 , [].

Automatic waiting of reactive domains. Before we can define the reductions,
we first have to define an auxiliary predicate that will implement the automatic
waiting of reactive domains. It will be used to know if the body of a reactive
domain wants to execute another local instant or is stuck waiting for a slower
clock. It is defined by:

S, C `next e

which means that during the end-of-instant of the clocks in the set C and in
the signal environment S, the expression e wants to execute another step of
the local clock.

The predicate is defined in Figure 8:

• There are two main cases where an expression wants to execute another
local instant: if it waits for the next instant by calling pause ck′ (Next-
Pause rule) or if the body of a do/until has been preempted (Next-
Until rule). In both cases, we have to check that it is the end-of-instant
of the clock ck′, that is, that it belongs to the set C.

• We see here the difference between the pause and quiet pause opera-
tors. Calling pause ck′ asks for another instant of the clock ck′. On the
other hand, a call to quiet pause is ignored by the reactive domain for
the decision to make another local instant, as no rule mentions it.
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NextPause
ck′ ∈ C

S, C `next pause ck
′

NextUntil
nck

′ ∈ S ck′ ∈ C
S, C `next do e1 until n

ck′(x)→ e2

NextIn
S, C ∪ {ck′} `next e

S, C `next e in ck
′

S, C `next e1

S, C `next do e1 until n
ck′(x)→ e2

nck ∈ S S, C `next e

S, C `next do e when n
ck

S, C `next e1

S, C `next let x1 = e1 and x2 = e2 in e

S, C `next e2

S, C `next let x1 = e1 and x2 = e2 in e

Figure 8: Automatic waiting predicate

• The other rules are structural. In the case of a reactive domain (NextIn
rule), we add the local clock of the domain in the set C of clocks at
the end of their instant. It means that the end of instant of a clock
implies the end of instant of its sub-clocks. There is no rule for the
do e when nck when nck ∈ S because waiting for a signal is like a
quiet pause. Finally, only one of the branches of a let/and has to
require a next instant for the complete expression.

Step reduction. The step reduction is expressed as:

e/H,S ck−→ e′/H′,S ′

meaning that under the local clock ck, the expression e reduces to e′ and
transforms the clock and signal environments H and S into H′ and S ′. The
rules are given in Figure 9, where the basic rules are adapted directly from
ReactiveML [5] and new rules are introduced for executing reactive domains:

• The expression local ck returns the clock of its evaluation context.

• A signal can only be accessed if its clock ck′ is accessible, that is, if
ck′ is slower than or equal to the local clock ck, denoted ck �H ck′.
Therefore, all expressions using signals have to add this condition.
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λx.e v/H,S ck−→ e[x← v]/H,S rec x = e/H,S ck−→ e[x← rec x = e]/H,S

local ck/H,S ck−→ ck/H,S run (process e)/H,S ck−→ e/H,S

let x1 = v1 and x2 = v2 in e/H,S ck−→ e[x1 ← v1;x2 ← v2]/H,S

NewSig
n 6∈ Dom(S(ck)) S ′ = S(ck)[n 7→ (vd, vg, vd, ∅)]

signal x default vd gather vg in e/H,S ck−→ e[x← nck]/H,S ′

ck �H ck′

emit nck
′
v/H,S ck−→ ()/H,S + [v/nck

′
]

ck �H ck′

last nck
′
/H,S ck−→ S l(nck′)/H,S

ck �H ck′

do v until nck
′
(x)→ e2/H,S ck−→ v/H,S

ck = ck′ nck
′ ∈ S

do v when nck
′
/H,S ck−→ v/H,S

Context

e/H,S ck−→ e′/H′,S ′

Γ(e)/H,S ck−→ Γ(e′)/H′,S ′

When

ck = ck′ nck
′ ∈ S e/H,S ck−→ e′/H′,S ′

do e when nck
′
/H,S ck−→ do e′ when nck

′
/H′,S ′

Inst
i > 0 ck′ 6∈ Dom(H) H′ = H[ck′ 7→ (ck, i− 1, i− 1)] S ′ = S[ck′ 7→ []]

domain x by i do e/H,S ck−→ e[x← ck′] in ck′/H′,S ′

Step

e/H,S ck′−→ e′/H′,S ′

e in ck′/H,S ck−→ e′ in ck′/H′,S ′
Term

v in ck′/H,S ck−→ v/H,S

LocalEoi

Hr(ck′) > 0 e/H,S��ck′−→ S, {ck′} `next e

e/H,S {ck
′}−→eoi e

′/H′,S ′ H′′ = H′[ck′ ← Hr(ck′)− 1] S ′′ = next(S ′, ck′)
e in ck′/H,S ck−→ e′ in ck′/H′′,S ′′

Figure 9: The step reduction
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• The Context rule applies a step reduction in any valid evaluation
context Γ, defined by:

Γ ::= [] | Γ e | e Γ | (Γ, e) | (e,Γ) | run Γ | pauseΓ

| let x = Γ and x = e in e | let x = e and x = Γ in e

| signal x default Γ gather e in e

| signal x default e gather Γ in e

| emit Γ e | emit e Γ | last Γ

| do Γ until v(x)→ e | do e until Γ(x)→ e

| do e when Γ | domain x by Γ do e

• We need to add a special rule for do e when n, as its body is an
evaluation context only if the signal n is present. The clock of the
signal must also be equal to the local clock as suspension represents an
immediate dependency.

• A reactive domain is initialized by first evaluating the bound on the
number of steps, initializing the clock environment and instantiating
the clock variable with a fresh clock (Inst rule).

• Then, local reduction steps (Step rule) are applied while possible. If
the body is reduced to a value, the reactive domain terminates (Term
rule), returning that value. Otherwise, a new local instant is started
if the steps remaining counter has not reached zero and work remains
to be done in the next local step (LocalEoi rule). Indeed, if the
end-of-instant relation leaves the body unchanged (here e = e′), doing
more local steps would not change anything, as the body is already
stuck with respect to the step reduction. The reactive domain is then
stuck waiting for the end-of-instant of its parent reactive domain, as
explained in Section 3.3.

End-of-instant reduction. The end-of-instant reduction is expressed as:

e/H,S C−→eoi e
′/H′,S ′

meaning that during the end-of-instant of the clocks in the set C, e reduces
to e′ and transforms the clock and signal environments H and S into H′ and
S ′. We also write:

e/H,S C
↪→eoi ⇔ e/H,S C−→eoi e/H,S
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ck ∈ C
pause ck/H,S C−→eoi ()/H,S

ck ∈ C
quiet pause ck/H,S C−→eoi ()/H,S

e1/H,S C−→eoi e
′
1/H′,S ′ e2/H′,S ′ C−→eoi e

′
2/H′′,S ′′

let x1 = e1 and x2 = e2 in e/H,S C−→eoi let x1 = e′1 and x2 = e′2 in e/H′′,S ′′

EoiValue

v/H,S C
↪→eoi

ck ∈ C↑H nck ∈ S e/H,S C−→eoi e
′/H′,S ′

do e when nck/H,S C−→eoi do e
′ when nck/H′,S ′

ck ∈ C nck ∈ S
do e1 until n

ck(x)→ e2/H,S C−→eoi e2[x← Sv(nck)]/H,S

ck ∈ C↑H ck 6∈ C ∨ nck 6∈ S e1/H,S C−→eoi e
′
1/H′,S ′

do e1 until n
ck(x)→ e2/H,S C−→eoi do e

′
1 until n

ck(x)→ e2/H′,S ′

ParentEoi

e/H,S��ck′−→ not
(
Hr(ck′) > 0 ∧ S, {ck′} `next e

)
e/H,S C∪{ck′}−→ eoi e

′/H′,S ′ H′′ = H′[ck′ ← Hm(ck′)] S ′′ = next(S ′, ck′)
e in ck′/H,S C−→eoi e

′ in ck′/H′′,S ′′

ck ∈ C↑H ck 6∈ C
pause ck/H,S C

↪→eoi

ck ∈ C↑H ck 6∈ C
quiet pause ck/H,S C

↪→eoi

ck ∈ C↑H nck 6∈ S
do e when nck/H,S C

↪→eoi

Figure 10: The end-of instant reduction
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The rules are given in Figure 10. As for the step reduction, the basic rules
are the same as in regular ReactiveML. The novelties are as follows:

• In several cases, we require the clock of signals to be in the upward
closure of C, denoted C↑H, which is the set of accessible clocks. The
relation is not defined if we try to access a clock that is not in this set.

• Expressions that await a signal only reduce during the end-of-instant of
the signal clock.

• There is only one rule for reactive domains (ParentEoi). It is applied
when the body of the domain cannot do a step reduction on the local
clock and is stuck waiting for a slower clock. We then do an end-of-
instant reduction of the body e1, adding the local clock ck′ to the set C
of clocks. Finally, we modify the clock and signal environments to
prepare for the next instant.

Comparison with PPDP 2013. Compared to [10], the LocalEoi rule has
been modified. The rule was:

Hr(ck′) > 0 e/H,S {ck
′}−→eoi e

′/H′,S ′ e′ 6= e
H′′ = H′[ck′ ← Hr(ck′)− 1] S ′′ = next(S ′, ck′)

e in ck′/H,S ck−→ e′ in ck′/H′′,S ′′

The modification is to take into account the new construct quiet pause.
In this article, to detect if a domain has to react, we have introduced the
predicate S, C `next e. In [10], this predicate was not necessary: to detect if a
domain had to react, we used the syntactic criterion e 6= e′. Here, this trick
cannot be applied because quiet pause reduces to () at the end-of-instant.
Hence, the body of a domain can change during the end-of-instant reaction,
but it does not mean that the domain needs to react again.

5. Clock Calculus

Reactive domains induce restrictions on the use of signals. As the local
instants of a reactive domain are unobservable from the outside, a signal at-
tached to a reactive domain cannot be used outside of that domain. Immediate
dependencies on slow signals are also forbidden.

We want to statically reject such programs which have an incorrect be-
havior. This is done by using a standard type-and-effect system that we
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call a clock calculus in reference to synchronous languages [11]. This ability
is one of the benefits of exposing concurrency in the language, as opposed
to introducing it through a library. As usual, well-typed programs do not
go wrong, which means here that they do not access a signal outside of its
domain and do not depend immediately on slow signals.

5.1. Motivation

A first example of the sort of program that we want to reject is one where
the result of a reactive domain contains a local signal:

let process result_escape =
domain ck do
signal s in s

done

Such programs are rejected by including clocks in the type of signals and
checking that the return types of reactive domains do not contain local clocks.

Signals are first-class values in the language, which means that a signal
can be put inside any data structure or emitted on another signal. The
consequence is that a signal can escape its lexical scope and be used anywhere
in the program. We also have to make sure to reject programs where a signal
escapes its reactive domain through a slow signal, like this one:

let process signal_escape =
signal slow in
domain ck do
signal fast default 0 gather (+) in
emit slow fast

done

To avoid this case, we should also check that the local clock does not appear
in the type of free variables when typing a reactive domain. To ensure this,
clocks are seen as abstract data types as in [12]. However, signal accesses
might not appear in the type of an expression, as in the following example:

let process effect_escape =
domain ck do
signal fast in
let f () = emit fast in f

done

The traditional solution to this problem is to associate an expression with
both a type and an effect [13, 14]. In our case, the effect records the clocks
of the signals accessed by the expression.
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5.2. Notations

Types are defined by:

ct ::= T | α | {ce} | ct × ct | (ct , ct) event{ce} (types)

| ct
cf−→ ct | ct process{ce|cf }

ce ::= γ | ck (clocks)

cf ::= φ | ∅ | {ce} | cf ∪ cf (effects)

cs ::= ct | ∀α. cs | ∀γ. cs | ∀φ. cs (type schemes)

Γ ::= [x1 7→ cs1; . . . ;xp 7→ csp] (environment)

A type is either a basic type T , a type variable α, a singleton type {ce}
corresponding to the clock ce, a product, a signal, a function or a process.
The type (ct1, ct2) event{ce} of a signal is defined by the type ct1 of values
emitted, the type ct2 of the received value (and default value) and its clock ce.
A clock is either a clock variable or a clock name. An effect cf is attached
to functions and processes, and it is a set of clocks or effect variables φ.
Processes also have an activation clock, which can however be omitted if it
does not appear in the return type or the effect of the process. Types schemes
generalize over the three kinds of variables. Instantiation and generalization
are defined classically by:

cs [α← ct ] ≤ ∀α. cs cs [γ ← ce] ≤ ∀γ. cs cs [φ← cf ] ≤ ∀φ. cs

gen(ct , e,Γ) = ct if e is expansive

gen(ct , e,Γ) = ∀ᾱ.∀γ̄.∀φ̄. ct otherwise, where ᾱ, γ̄, φ̄ = ftv(ct) \ ftv(Γ)

where ftv(ct) returns the free type, clock and effect variables in the type ct .
As signals are mutable structures, we need to distinguish expansive expres-
sions [15] – for which types cannot be generalized.

5.3. Typing Rules

A typing judgment is given by:

Γ, ce ` e : ct | cf

meaning that under the environment Γ and local clock ce, the expression e
has type ct and effect cf .
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The initial typing environment Γ0 contains the signatures of all primitives:

Γ0 , [ global ck : {>ck}; pause, quiet pause : ∀γ. {γ} {γ}−→ unit;

last : ∀α1, α2, γ. (α1, α2) event{γ}
{γ}−→ α2;

emit : ∀α1, α2, γ. (α1, α2) event{γ} ∅−→ α1
{γ}−→ unit;

true : bool; fst : ∀α1, α2. α1 × α2
∅−→ α1; . . .]

The typing rules are given in Figure 11:

• The rules of the functional kernel are the usual rules in a type-and-effect
system. The ProcAbs rule types the body of the process using its
activation clock as the new local clock. Only a process on the local
clock can be run (rule ProcApp). Often, this is done by instantiating
a process whose activation clock is a clock variable.

• In order to forbid immediate dependencies on slow signals, the type
system ensures that the clock of a signal is equal to the local clock (evi-
dent in the typing judgment as the ce next to the typing environment).
See, for instance, the When rule.

• A design choice made in ReactiveML is to separate ML expressions
from reactive expressions. For instance, tuples can only contain ML
expressions. It is enforced in [5] by a separate syntactic analysis before
typing. In the case of our extended type system, we enforce an even
stronger separation, by forcing ML expressions to have no effect. This
does not reduce expressivity since one can always use a let to isolate
effectful expressions.

• The most important typing rule is Domain. It checks that the local
clock does not escape from its reactive domain. This is done by using
a fresh variable for the clock type. The side condition prevents scope
extrusion of this fresh name by checking that it does not appear free
in the return type ct of the domain nor in the typing environment Γ.
It is similar to the typing of let in [12] and let clock in Lucid
Synchrone [11].
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ct ≤ Γ(x)

Γ, ce ` x : ct | ∅
ct ≤ Γ0(c)

Γ, ce ` c : ct | ∅
Γ, ce ` e1 : ct1 | ∅ Γ, ce ` e2 : ct2 | ∅

Γ, ce ` (e1, e2) : ct1 × ct2 | ∅

Γ;x : ct , ce ` e : ct | cf

Γ, ce ` rec x = e : ct | cf

Γ;x : ct1, ce ` e : ct2 | cf

Γ, ce ` λx.e : ct1
cf−→ ct2 | ∅

Γ, ce ` e1 : ct2
cf−→ ct1 | ∅

Γ, ce ` e2 : ct2 | ∅
Γ, ce ` e1 e2 : ct1 | cf

Γ, ce ` e1 : ct1 | cf 1 Γ, ce ` e2 : ct2 | cf 2
Γ;x1 : gen(ct1, e1,Γ);x2 : gen(ct2, e2,Γ), ce ` e : ct | cf

Γ, ce ` let x1 = e1 and x2 = e2 in e : ct | cf 1 ∪ cf 2 ∪ cf

ProcAbs
Γ, ce ′ ` e : ct | cf

Γ, ce ` process e : ct process{ce ′|cf } | ∅

ProcApp
Γ, ce ` e1 : ct process{ce|cf } | ∅

Γ, ce ` run e1 : ct | cf

Γ, ce ` e1 : ct2 | ∅ Γ, ce ` e2 : ct1 −→ ct2 −→ ct2 | ∅
Γ;x : (ct1, ct2) event{ce}, ce ` e : ct | cf

Γ, ce ` signal x default e1 gather e2 in e : ct | cf ∪ {ce}

Γ, ce ` e1 : ct | cf 1 Γ, ce ` e : (ct1, ct2) event{ce ′} | ∅
Γ;x : (ct1, ct2) event{ce ′}, ce ` e2 : ct | cf 2

Γ, ce ` do e1 until e(x)→ e2 : ct | cf 1 ∪ cf 2 ∪ {ce ′}

When
Γ, ce ` e1 : ct | cf 1

Γ, ce ` e2 : (ct1, ct2) event{ce} | ∅
Γ, ce ` do e1 when e2 : ct | cf 1 ∪ {ce}

Domain
Γ;x : {γ}, γ ` e : ct | cf

Γ, ce ` e1 : int | ∅ γ 6∈ ftv(Γ, ct)

Γ, ce ` domain x by e1 do e : ct | cf \ {γ}

In
Γ, ck′ ` e : ct | cf

Γ, ce ` e in ck′ : ct | cf \ {ck′} Γ, ce ` local ck : {ce} | ∅

Figure 11: Typing rules
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5.4. Examples

The result_escape process is rejected by the type system because the
fresh clock variable associated to ck appears in the result type of the reactive
domain (denoting e , signal s in s):

Γ0;x : {γ}, γ ` e : (α, α list) event{γ} | {γ}
Γ0, ce ` domain x by∞ do e : (α, α list) event{γ} | ∅

In the case of the signal_escape example, this variable appears in the type of
the variable slow in the typing environment:

slow : ((int, int) event{γ}, (int, int) event{γ}) event{>ck}

Finally, this variable also appears in the return type for the effect_escape
process, in the effect of the function, as f : unit

{γ}−→ unit.

6. Proof of Soundness

In this section, we prove the soundness of our type system using standard
syntactic soundness techniques [16]. Clocks and effects are treated similarly
to [17], where the proof is performed on a functional language with regions
and references. As there are two reduction relations, we need to prove that
an expression that cannot do any step reduction must be able to do an
end-of-instant reduction. The novelty compared to the proof of soundness of
ReactiveML is that we prove that signals are never accessed unless their
clocks are accessible.

As in [17], we introduce two new typing environments in order to demon-
strate the soundness of the type system: the signal typing environment,
denoted Σ, and the clock typing environment, denoted H. Whereas the typing
environment Γ maps variables x to types, Σ maps clock names to a partial
map from signal names n to signal types (ct1, ct2) event{ce ′}. It is thus used
to give the type of signal names, which appear during the rewriting of expres-
sions. H maps clock names to the type of their parent clocks and represents
the clock tree. We also denote Sig(S) = {n ∈ Dom(S(ck)) | ck ∈ Dom(S)}
the set of all signal names defined in a signal environment.

Clocking judgments are now Γ,Σ, H, ce ` e : ct | cf . There are two new
rules for typing signal names and clocks, which appear during reductions:

Γ,Σ, H, ce ` ck : {ck} | ∅ Γ,Σ, H, ce ` nck : Σ(nck) | ∅
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There is a new side-condition in the In rule: H(ck′) = ce. It links the clock
of the domain with the type of its parent clocks.

In
Γ, ck′ ` e : ct | cf H(ck′) = ce

Γ, ce ` e in ck′ : ct | cf \ {ck′}

Unlike the typing environment Γ, Σ and H are not populated by the
typing rules. They are left untouched by all typing rules and are only used
to type clock names nck for Σ and to access the clock tree for H. These
environments will be built during the proof of soundness, in particular for
type preservation. For instance, the signal typing environment Σ is enlarged
each time a new signal is created, which corresponds to the NewSig rule
of the step reduction (see Figure 9). The other crucial point is that in the
Domain rule, the side-condition that γ does not escape only applies to the
typing environment Γ, not the signal typing environment Σ.

We can first show two simple lemmas:

Lemma 1. If Γ,Σ, H, ce ` v : ct | cf , then cf = ∅.

Lemma 2. If Γ,Σ, H, ce ` v : ct | ∅, then Γ,Σ, H, ce ′ ` v : ct | ∅ for any ce ′.

Proof. The activation clock that appears in the typing rules is only used to type
processes. So the only difficult case is if v = process e, but then we replace the
activation clock by a fresh clock variable to type e, so the activation clock does not
matter.

We now link signal environments with the signal typing environments that
describe them, and similarly for clock environments:

Definition 1. We say that a signal environment S is well-typed in the signal
typing environment Σ, denoted Σ ` S if all the names in S appear in Σ, that
is, if nck ∈ Dom(S) ⇒ nck ∈ Dom(Σ), and for all n ∈ Sig(S), there exists
ct1, ct2 and ce ′ such that:

Σ(nck) = (ct1, ct2) event{ck}
Γ0,Σ, [],>ck ` Sd(nck) : ct2 | ∅
Γ0,Σ, [],>ck ` Sg(nck) : ct1

∅−→ ct2
∅−→ ct2 | ∅

Γ0,Σ, [],>ck ` Sm(nck) : ct1 multiset | ∅
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We do not put the clock in Σ ` S as the signal environment only contains
values, for which Lemma 2 shows that the activation clock does not matter.

Definition 2. We say that a clock environment H is well-typed in the clock
typing environment H, denoted H ` H, if they have the same domain and:

∀ck ∈ Dom(H).Γ0, [], [], γ ` Hck(ck) : H(ck) | ∅

We can now define the typing judgment of a configuration e/H,S:

Γ0,Σ, H, ce ` e : ct | cf Σ ` S H ` H
Dom(H) = Dom(Σ) ce �H cf

Σ, H, ce ` e/H,S : ct | cf

A configuration is well-typed if the expression is well-typed, the signal and
clock environments are well-typed and the effect of the expression is included
in the set of accessible clocks, which are the clocks slower than the local
clock ce.

The following lemmas are common in soundness proofs and can be proved
using usual techniques [16]:

Lemma 3. If Γ,Σ, H, ce ` e : ct | cf and Γ ⊆ Γ′ and Σ ⊆ Σ′ and H ⊆ H ′,
then Γ′,Σ′, H ′, ce ` e : ct | cf .

Lemma 4 (Value substitution). If Γ;x : ∀ᾱ.∀γ̄.∀φ̄. ct ′,Σ, H, ce ` e : ct | cf
and Γ,Σ, H, ce ` v : ct ′ | ∅ then Γ,Σ, H, ce ` e[x← v] : ct | cf .

Lemma 5 (Clock substitution). Let θ be a substitution that maps a clock
variable to a clock name (i.e. θ = {γ ← ck′}). If Σ, H, ce ` e/H,S : ct | cf ,
then Σ, H, θ(ce) ` e/H,S : θ(ct) | θ(cf ).

Proof. By induction on the typing rules, we can prove that
θ(Σ), θ(H), θ(ce) ` θ(e)/θ(H), θ(S) : θ(ct) | θ(cf ). e, S and H do not contain any
clock variables by definition, so they are left untouched. As Σ ` S, so does Σ
(similarly for H).

Before proving typing preservation for the step reduction, we first need to
prove that the end-of-instant relation preserves typing, as it is used by the
LocalEoi rule.
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Property 1 (Typing preservation for
C−→eoi). If Σ, H, ck ` e/H,S : ct | cf

and e/H,S C−→eoi e
′/H′,S ′ with ck ∈ C, then there exists Σ′, H ′ and cf ′ such

that:
Σ′, H ′, ck ` e′/H′,S ′ : ct | cf ′

Proof. By induction on the typing derivation.

Property 2 (Typing preservation for
ck−→). If Σ, H, ck ` e/H,S : ct | cf

and e/H,S ck−→ e′/H′,S ′, then there exists Σ′, H ′ and cf ′ such that:

Σ′, H ′, ck ` e′/H′,S ′ : ct | cf ′

Proof. By induction on the typing derivation of e.

Case domain x by v do e1: Then e′ = e[x ← ck′] in ck′ and S ′ = S[ck′ 7→ []],
where ck′ 6∈ Dom(H). From Domain, we deduce that Γ0,Σ, H, γ ` e1 : ct | cf 1
with γ 6∈ fcv(ct) and cf = cf 1 \ {γ} where fcv(ct) is the set of free clock
variables in ct . Let’s denote θ = {γ ← ck′}. By applying Lemma 5, we get
Γ0,Σ, H, θ(γ) ` e1 : θ(ct) | θ(cf 1). Then, we have θ(ct) = ct as γ 6∈ fcv(ct).
If we denote H ′ = H[ck′ 7→ ck] and Σ′ = Σ[ck′ 7→ []], then as H′(ck′) = ck
and H ′ ` H′, we have H ′(ck′) = {ck}. We can replace Σ with Σ′ and H
with H ′ in the previous typing judgment using Lemma 3. By applying In,
we then get that Γ0,Σ

′, H ′, ck ` e′ : ct | cf ′, where cf ′ = cf [γ ← ck′] = cf .

Case v in ck′: Then e′ = v, S ′ = S and H′ = H. From In, we get that
Γ0,Σ, H, ck

′ ` v : ct | cf 1 with cf = cf 1 \ {ck′} and ck′ 6∈ fcv(ct). From
Lemma 1, we know that cf 1 = cf = ∅. We can apply Lemma 2 to get
Γ0,Σ, H, ck ` v : ct | ∅ and the other conditions are immediate.

Case e1 in ck
′ (Step): Then we have e1/H,S ck′−→ e′1/H′,S ′. From In, we de-

duce that Γ0,Σ, H, ck
′ ` e1 : ct | cf 1 with cf = cf 1\{ck′}. As H(ck′) = {ck}

and H ` H, we can deduce that Γ0, [], [], γ ` Hck(ck′) : {ck} | ∅, which means
that Hck(ck′) = ck, i.e. ck′ �H ck. As we also have ck �H cf from
the typing rule, it follows that ck′ �H cf 1. By induction, we have that
Γ0,Σ

′, H ′, ck′ ` e′1 : ct | cf ′1 with ck′ �H′ cf ′1. We can then apply the In rule
to get the desired result.

Case e1 in ck
′ (LocalEoi): We just have to apply Property 1 that shows that

the end-of-instant reduction preserves typing.
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Case signal x default v1 gather v2 in e1 : Then S ′ = S(ck)[n 7→ (v1, v2, ∅)]
and e′ = e[x← nck]. We get Γ0;x : (ct1, ct2) event{ck},Σ, H, ck ` e1 : ct | cf 1
from the typing rule, where cf = cf 1 ∪ {ck}.
Let’s denote Σ′ = Σ[n← (ct1, ct2) event{ck}]. By applying Lemma 3 and 4,
we get Γ0,Σ

′, H, ck ` e1[x← nck] : ct | cf 1 and we easily prove that Σ′ ` S ′.

Case emit nck
′
v : We have e′ = () and S ′ = S + [v/n]. We can easily prove that

Γ0,Σ, H, ck ` () : unit | ∅ and that Σ ` S ′ as Γ0,Σ, H, γ ` v : ct1 | ∅ where
Σ(ck′)(n) = (ct1, ct2) event{ck′}.

Definition 3. We say that e/H,S is an end-of-instant configuration for ck

if there exists e′, H′ and S ′ such that e/H,S {ck}−→eoi e
′/H′,S ′.

For the proof of the progress property, we use the well-formation rules
defined in Section 4.2. Stuck instantaneous expressions are values, whereas
stuck non-instantaneous expressions are end-of-instant expressions.

Property 3 (Progress for instantaneous expressions). If e is instantaneous
(i.e. 0 ` e) and Σ, H, ck ` e/H,S : ct | cf , then either:

• e is a value

• There exists e′, H′ and S ′ such that e/H,S ck−→ e′/H′,S ′

Property 4 (Progress for
ck−→). If Σ, H, ck ` e/H,S : ct | cf , then either:

• e is a value

• e/H,S is an end-of-instant configuration for ck

• There exists e′,S ′ such that e/H,S ck−→ e′/H′,S ′

Proof. By induction on the structure of e.

Case domain x by v do e1: Then e′ = e1[x← ck′] in ck′.

Case e1 in ck
′ : We can show that Σ, H, ck′ ` e1/H,S : ct | cf 1 like in the

proof of Property 2. By induction, either there exists e′1, H′ and S ′ such

that e1/H,S ck′−→ e′1/H′,S ′, in which case we can apply Step, or e1 is an
end-of-instant expression for ck′ and then:
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• Either we can apply LocalEoi to do a step reduction on ck

• Otherwise, e1 in ck′ is an end-of-instant expression for ck as the
ParentEoi rule necessarily applies.

Case emit e1 e2 : From the well-formation rules, we know that e1 and e2 are
instantaneous expressions, so we can apply Property 3. If e1 or e2 is not a
value, then we can reduce by using the context rule. Otherwise, we have
e1 = nck

′
and e2 = v. From the typing rule, we get that ck′ ∈ cf , so

ck �H ck′ as ck �H cf . We can thus reduce e to e′ = (). The proof is similar
for all actions on signals.

Property 5 (Soundness of the type system for
ck−→). If Σ, H, ck ` e/H,S :

ct | cf , then either :

• There exists e′, H′ and S ′ such that e/H,S ck−→
∗
e′/H′,S ′ and e′ is

an end-of-instant expression for ck (i.e. there exists e′′ such that

e′/H′,S ′ {ck}−→eoi e
′′/H′′,S ′′)

• For each e′/H,S such that e/H,S ck−→
∗
e′/H′,S ′, there exists e′′/H′′,S ′′

such that e′/H′,S ′ ck−→ e′′/H′′,S ′′.

The initial clock typing environment is H0 = []. We easily check that
H0 ` H0.

Theorem 6.1 (Soundness of the type system).
If [], H0,>ck ` p/H0,S0 : ct | cf , then either :

• There exists v,H,S such that p̃/H0,S0 ⇒∗ v/H,S.

• For each p′,H′,S ′ such that p̃/H0,S0 ⇒∗ p′/H′,S ′, there exists p′′,H′′,S ′′
such that p′/H′,S ′ ⇒ p′′/H′′,S ′′.

7. Implementation

In this section, we give an overview of the implementation of Reac-
tiveML [6] and its extension with reactive domains [18].
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7.1. Overview of ReactiveML implementation

After typing, the ReactiveML compiler generates sequential OCaml
code. The main transformation is a partial CPS (Continuation Passing Style)
transformation: at each point where a process can block, for instance when
calling pause or awaiting for the emission of a signal, the compiler creates a
continuation with the rest of the process. Instantaneous functions are left
untouched for better performance. The generated code is linked to an OCaml
library providing the ReactiveML runtime, containing mainly the execution
engine that schedules the processes.

This execution engine is a task scheduler that uses cooperative scheduling.
It means that, at the end of each instant, a process must cooperate with the
scheduler to let other processes execute. The list C contains continuations that
have to be executed in the current instant, where the scheduler picks tasks to
execute. Some combinators, like the parallel composition, add processes to
the list. A second list denoted next contains processes that should be executed
in the next instant. This is where the pause operator puts its continuation.
The execution of one instant of a program follows the algorithm below:

1. We execute one instant of the program. For that, we execute all the
processes in the list C until it is empty. This corresponds to the step
reduction of Figure 9.

2. We execute the end of instant (rules of Figure 10). We wake up all the
processes awaiting the value of a signal and then transfer the processes
from the list next into C to prepare the execution of the next instant.

Apart from this simple algorithm, the execution engine of ReactiveML
has two other important features:

• For an efficient execution, it is important to not busy wait for signals.
It means that a process awaiting a signal should only be awaken when
the signal is present. In order to achieve that, we associate to each
signal a list of the processes awaiting its emission. These continuations
are only awaken when the signal is emitted.

• The most complex part of the execution engine is the handling of
preemption (do/until) and suspension (do/when). By using a list of
continuations, we lose the structure of the program. We need another
control structure to deal with the fact that processes may not be active
at all instants. This data structure is called control tree, as it is a n-ary
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tree corresponding to the nesting of preemptions and suspensions in
the program. Each do/until and do/when construct in the program is
associated to a node in the tree and contains a list next of processes that
should be executed at the next instant where this execution context
is active. The root of the tree is associated with processes that are
launched outside of any control structure and are active each instant. It
contains the main next list that we have mentioned earlier. During the
end of instant, we only transfer processes from the next list of nodes
that will be active during the next step. In the case of a suspension, we
will only do that when the suspension signal is emitted.

Here is an example of a program and the associated control tree:

let process control_tree s p1 p2 =
emit s; pause; run p1
||

do
pause; run p2

when s done

Top

next = [p1]

when s
next = [p2]

At the end of the first instant, the next list of the root of the tree
contains p1, whereas the one associated with the suspension contains p2.
We then transfer p1 into C so that it is executed at the next instant,
but we wait for the next emission of s before transferring p2.

7.2. Implementation of reactive domains

A reactive domain is an instance of an execution engine. In order to
be able to create several reactive domains and nest them, it is necessary to
create a data structure holding the state of the engine. It contains the list C
of continuations to be executed in the current instant, the list of functions
awaiting the end of instant, the root of the control tree and the counter of the
number of instants executed during the current instant of the parent domain.
The continuations implementing the different constructs of the language are
then parametrized by the reactive domain they are running in.

The execution of a reactive domain follows the following algorithm, which
is very similar to the operational semantics of Section 4:

• We execute one instant of the domain by launching all continuations in
the list C until it is empty.

• We execute the end of the instant of the domain, by waking up processes
that await the value of a signal on the local clock.
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• The reactive domain then has to decide whether to execute another
local instant or not, which corresponds to the `next predicate defined in
Figure 8. In the implementation, it amounts to checking whether there
exists a process in the next list of an active control tree node. In that
case, it means that there is a process that wants to be executed at the
next local instant. If all the next list are empty or the instant counter
of the domain has reached its maximum value, then the domain awaits
the next instant of its parent domain.

• We then prepare the execution of the next instant by transferring
processes from the next lists into the C list. If the reactive domain
awaits its parent domain of clock ck, it is important to do this last
step after the end of instant of the parent domain. Indeed, a process
calling pause ck inside the local domain will be awaken during the end
of the instant of the parent domain, but we have to make sure it is put
in C list of the local domain before starting its next local instant.

The implementation of the quiet pause operator is also simple. Just
like in the operational semantics, it differs from the pause operator only
with respect to the automatic waiting of reactive domains. The idea is to
associate with each node of the control tree another list called next control .
Processes that ask for another local instant, like pause, are put in the next
list. On the other hand, processes that do not influence the automatic waiting,
like quiet pause are put in the next control list. The reactive domain only
checks next lists to decide whether to do another local instant or not. But
processes in next and next control lists are transferred into the C list when
preparing the next instant.

7.3. Reactive Domains and Parallelism

Apart from the gains in terms of expressivity and modularity, reactive
domains are also useful for an efficient parallel execution of ReactiveML
programs. This is not by chance as parallelism was one of the motivations for
developing reactive domains. Indeed, by creating local time scales, we can
separate local synchronizations from global synchronizations. Furthermore,
we have decided to forbid immediate dependencies on slower signals, as this
violates the assumption that a signal has only one value per instant. This
restriction has another benefit: during each instant of its parent reactive
domain, a reactive domain can run independently of other processes and
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reactive domains at the same level. In particular, it can be run in parallel
inside another thread of execution and will only synchronize at the end of
the instant of its parent reactive domain, when all local instants have been
executed. A possible execution scheme is to execute each reactive domain
sequentially, as usual, and to use work stealing [19] to balance the load
between the different threads. Furthermore, signals declared inside a reactive
domain never escape, so they can remain local to the thread and do not
require any mechanism, such as locks, to deal with concurrent accesses.

8. Discussion

8.1. Signals Clock

So far, all the signals we have used have been attached to the reactive
domain at the point of definition. It is often desirable to be able to declare a
signal attached to a slower clock than the local one. For example, consider
this process that performs a blocking request:

let process send_query s =
signal tmp in
emit s tmp;
await tmp(v) in v

The process sends the local signal tmp on the input signal s, and then awaits
a reply on tmp. It is not possible to use this mechanism to communicate
between two sibling reactive domains (e.g. two agents) as the signal tmp is
attached to the reactive domain of the sender and cannot escape it. This can
be solved by allowing a declaration of the clock of a signal:

signal tmp clock global_ck in ..

The semantics and type system are readily adapted to address this extension.
The basic signal declaration can then be interpreted as a declaration on the
local clock:

signal s in e , signal s clock local ck in e

8.2. Limitations of the Type System

The type system as it was presented imposes restrictions when writing
combinators, as in this example:

let process run_domain q =
domain ck do run q done
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This process is rejected because the activation clock of the process q is equal
to the local clock ck at the point where it is run, and by consequence ck
escapes the scope of its domain.

The source of the problem is that, in ML, the type of a function argument
is monomorphic: it is a type ct , not a type scheme cs. In particular, the
activation clock of the process q cannot be universally quantified, as it is
for most processes declared at toplevel. Many solutions to add higher-rank
polymorphism to ML exist in the literature (see [20, 21] for instance). Most
of them require some form of typing annotations from the programmer.

Another important limitation of the type system is that functions or
processes stored together must have exactly the same effect. This restriction
can be lifted using a simple form of subtyping restricted to effects, often called
subeffecting [9].

As our type system is standard, these two extensions can be realized by
adapting existing solutions [18].

9. Related Work

Our work is related to the clock refinement [22, 23] introduced by Gemünde
et al. in the synchronous language Quartz [24]. There, the main idea is
also to introduce the ability to synchronize on faster local clocks. However,
their semantics is based on a transition system that defines the values of all
the variables of the program and checks that it does not introduces causality
issues. The solution adopted in Quartz cannot be applied to ReactiveML
because the latter is dynamic: an arbitrary number of processes and signals
can be created at runtime using recursion and they can be stored in data-
structures and sent via signals (similarly to mobility in the π-calculus). In this
context, it is impossible to determine the potential emitters of a signal and
thus to decide signal absence, which is a requirement for the clock refinement
described by Gemünde et al.

Furthermore, our work enables more possibilities for communication
and synchronization between reactive domains. In particular, Quartz
does not permit waiting for the emission of a signal within a domain: the
delayed_hello_world example (page 10) could not be written in Quartz, and
this is also true for the sensor node and n-body examples (Figures 4 and 5).
This greatly reduces the expressivity of the language as this construct is used
in almost all programs. In Quartz, the await expression can be encoded:

await e1(x) in e2 , do (loop (pause local ck)) until e1(x)→ e2
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whereas ReactiveML uses a quiet pause instead of pause. The consequence
is that a reactive domain in Quartz that uses an await is not reactive (it
executes an infinite number of local steps). We solve this problem by treating
each reactive domain as a separate entity that decides to wait the next instant
when its body is blocked or after a certain number of local instants as explained
in Section 3.3 and formalized by the LocalEoi rule in Figure 9. Note that
it is the automatic waiting of the reactive domain which is important and
not the presence of the quiet pause expression: we could have defined directly
the semantics of await as in [10].

Finally, reactive domains can be created dynamically and nested arbitrarily.
This is not the case in Quartz: the clock tree must be known at compile
time.

Other related works include SugarCubes [25], which shares the same
concurrency model as ReactiveML but uses Java as the base language.
SugarCubes allows the creation of reactive machines, the equivalent of our
reactive domains, anywhere in the program, but does not offer any ways
to communicate and synchronize between machines. It is the responsibility
of the programmer to manually schedule the machines, by calling a react
method as many times as necessary.

In other synchronous languages, time refinement is achieved using over-
sampling, as in Lustre [4] or Signal (see example 4 of [26]). However,
oversampling is less modular than reactive domains: it makes a subpro-
gram go faster by slowing down everybody else. The parallel composition of
processes that oversample is problematic, especially if each has a different
number of internal steps, as in Figure 3b. In Lustre, such programs are
rejected by the clock calculus. In Signal, one can specify such behaviors but
the compiler is not able to generate sequential code (see the FWS example
in [27]). Furthermore, oversampling cannot turn a process taking n instants
into an instantaneous one. It can only reduce the delay to one instant. The
levelorder_inst example shows that this is possible with reactive domains.

The discussion on the correctness of the immediate_dep_wrong process in
Section 3.2 is reminiscent of the causality problems of Esterel [2]. Indeed,
this process is logically correct, as we can give one and only one status to the
signal s. But it is not constructively correct as the effect, that is the reaction
to the presence of s, happens before the cause, that is the emission of s. We
have decided here to follow the same approach as ReactiveC and restrict
the expressivity of the language so that causality problem are eliminated by
construction. In the case of ReactiveC and ReactiveML, it means that
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one can react to the absence of a signal only at the next instant. In our case,
it means forbidding immediate dependencies on slow signals.

10. Conclusion

We have presented an extension to the synchronous model of concurrency,
called reactive domains, and applied it to the ReactiveML language. It
allows the creation of local notions of instant, thereby improving the mod-
ularity of the language and facilitating refinement. We have extended the
semantics of the language to include this feature and formalized a type system
that prevents the unsound use of signals.

The most important future work is to evaluate the usefulness of reactive
domains on bigger programs, including the existing sensor network simula-
tions [3]. We are also currently developing a parallel runtime for our extension
using system processes communicating via message passing, based on the
ideas presented in Section 7.3.
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[27] A. Gamatié, T. Gautier, The signal synchronous multiclock approach
to the design of distributed embedded systems, IEEE Transactions on
Parallel and Distributed Systems 21 (2010) 641–657.

44


	Introduction
	The ReactiveML Language
	Examples
	Programming Agents in ReactiveML

	Reactive Domains
	Reactive Domains and Clocks
	Reactive Domains and Signals
	Automatic waiting of reactive domains
	Clocks and Reactivity
	Using Reactive Domains
	A Modularity Issue

	Operational Semantics
	Language Abstract Syntax
	Well-formation of expressions
	Notations
	Semantics

	Clock Calculus
	Motivation
	Notations
	Typing Rules
	Examples

	Proof of Soundness
	Implementation
	Overview of ReactiveML implementation
	Implementation of reactive domains
	Reactive Domains and Parallelism

	Discussion
	Signals Clock
	Limitations of the Type System

	Related Work
	Conclusion

