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Abstract. Synchronous functional languages such as Lustre or Lucid
Synchrone define a restricted class of Kahn Process Networks which can
be executed with no buffer. Every expression is associated to a clock in-
dicating the instants when a value is present. A dedicated type system,
the clock calculus, checks that the actual clock of a stream equals its ex-
pected clock and thus does not need to be buffered. The n-synchrony re-
laxes synchrony by allowing the communication through bounded buffers
whose size is computed at compile-time. It is obtained by extending the
clock calculus with a subtyping rule which defines buffering points.
This paper presents the first implementation of the n-synchronous model
inside a Lustre-like language called Lucy-n. The language extends Lustre
with an explicit buffer construct whose size is automatically computed
during the clock calculus. This clock calculus is defined as an inference
type system and is parametrized by the clock language and the algorithm
used to solve subtyping constraints. We detail here one algorithm based
on the abstraction of clocks, an idea originally introduced in [5]. The
paper presents a simpler, yet more precise, clock abstraction for which the
main algebraic properties have been proved in Coq. Finally, we illustrate
the language on various examples including a video application.
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1 Introduction

This paper focuses on programming models and languages for implementing
real time streaming applications as found in video systems. These applications
transform infinite streams of pixels through successive filters and are thus natu-
rally expressed as Kahn Process Networks [8]. In this model, processes execute
concurrently and communicate through unbounded FIFO buffers with blocking
reads when the buffer is empty and non blocking writes. The model is determin-
istic (a network defines a stream function) and is delay insensitive (computation
and communication time do not change the network semantics). Kahn networks
with bounded buffers can be implemented by adding a back pressure mechanism
in order to avoid writes into a full buffer. Nonetheless, this may introduce ar-
tificial blocking when the size of buffers have been underestimated. The size of
buffers can be increased dynamically [11] but this solution cannot be used for
real time applications where execution in bounded memory must be guaranteed
at compile time.
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To know whether a Kahn network is deadlock free or can be executed in
bounded memory is undecidable in the general case [1]. Synchronous Data Flow
(or SDF) [9] and its variants (Cyclo Static Data Flow [10] among others) are
restricted classes of networks where every node consumes and produces a fixed
number of tokens at every step. The size of buffers can be computed at compile
time and a periodic static schedule can be generated. This makes SDF a good
candidate for modeling and programming video intensive applications with pe-
riodic behavior [14].

Synchronous languages such as Lustre [2] or Lucid Synchrone [13] also de-
fine a restricted class of Kahn Networks [3] as they can be executed without
any implicit buffering (i.e., synchronously). They are not limited to periodic
behavior and ensure strong safety properties at compile-time such as determin-
ism and absence of deadlock. Moreover, they can be compiled into statically
scheduled executable code. Nonetheless, they do not offer the same flexibility as
SDF-like tools do. Buffers have to be inserted manually and their size computed
adequately which is both difficult and error-prone. We thus want to extend syn-
chronous languages with conveniences to communicate through bounded buffers,
like in SDF.

In synchronous languages, time is defined as the succession of discrete in-
stants. In a data-flow framework, every stream s is associated to a boolean
sequence or clock with value 1 at instants at which s is present and 0 otherwise.
Two streams can be composed (e.g., added) without any buffer when their clocks
are equal. The purpose of the clock calculus is to give sufficient condition for a
system to be executed synchronously. This is essentially a typing problem [3,6].
Every expression is given a clock type (or simply type) and must satisfy a typing
rule such as:

H ` e1 : ck1 | C1 H ` e2 : ck2 | C2

H ` e1 + e2 : ck3 | {ck1 === ck2 === ck3} ∪ C1 ∪ C2

This rule states that under the typing environment H, if e1 has type ck1 under
the constraints C1 and if e2 has type ck2 under the constraints C2, then e1 + e2

has type ck3 under the constraint that ck1 === ck2 === ck3 and the constraints C1

and C2. Equality of types ensures equality of clocks. Hence, the composition of
two flows of same type can be done without buffer. Synchronous languages only
consider equality constraints. The n-synchrony [4] relaxes these constraints by
allowing to compose streams whose type are not equal but can be synchronized
through the introduction of a bounded buffer. If a stream x with type ck can be
consumed later with type ck′ using a bounded buffer, we shall say that ck is a
subtype of ck′ and we write ck <:<:<: ck′. We extend the language with a buffer
construct which indicates the points where the subtyping rule should be applied.

H ` e : ck | C

H ` buffer e : ck′ | {ck <:<:<: ck′} ∪ C



In terms of sequences of values, buffer e is equivalent to e but it may delay its
input using a bounded buffer. The buffer construct gives more freedom to the
designer while preserving an execution in bounded memory.

The purpose of the extended clock calculus is to check that bounds exist for
buffer sizes and to compute them. To this aim, subtyping constraints have to be
solved. In order to reduce the algorithmic complexity of constraints resolution,
an abstraction of clocks has been introduced in [5]. It consists in reasoning on sets
of clocks (or envelopes) defined by an asymptotic rate and two shifts bounding
the potential delay with respect to this rate. Then, subtyping constraints can
be replaced by linear constraints on those rates and shifts and solved with a
tool such as Glpk. On several examples such as the Picture in Picture given at
the end of the paper, the over-estimation due to the abstraction is small with
respect to the exact solution.

Contribution and Organization of the Paper. This paper presents the de-
sign and implementation of an n-synchronous extension of Lustre called Lucy-n.
The clock calculus is generic in the sense that it is parametrized by the clock
language and the algorithm used to solve subtyping constraints. In this paper,
we present an algorithm using clock abstraction. The abstraction presented in [5]
has been improved in various ways: the formulae are simpler; the abstraction is
more precise and no restrictions are imposed anymore on clocks when computing
their abstraction. Moreover, the precision of abstract operators has been stud-
ied. Finally, the main algebraic properties and the correctness of the abstraction
have been proved in Coq (1800 lines of specification and 7000 lines of proof).

The paper is organized in the following way. The language is presented in
Section 2. Some algebraic properties on boolean sequences are stated in Section 3.
We present the basics of the clock calculus in Section 4. We then introduce the
improved version of clock abstraction in Section 5 followed by the constraint
solving algorithm in Section 6. The implementation is discussed in Section 7.
Finally, we illustrate the use of the language on a video application in Section 8.

All examples presented in the paper have been programmed in Lucy-n and
buffer sizes have been computed automatically. The prototype is available at
http://www.lri.fr/∼plateau/mpc10. Definitions and properties that have been
proved in Coq are marked with _ which is a link to the corresponding code. We
give a proof sketch for each property. Full proofs on paper are only available in
a French document [12].

2 The Language

We consider a first-order synchronous dataflow language reminiscent of Lustre
but extended with an explicit buffering operator. The syntax is given in Figure 1.
A program (d) is a sequence of definitions of stream functions called nodes and
definitions of clock names (c). The inputs of a node are described by a pattern
(pat) and its body is an expression (e). The operators are the basic ones of
Lucid Synchrone and their intuitive semantics is detailed later. e1 op e2 denotes

http://www.lri.fr/~plateau/mpc10
http://www.lri.fr/~plateau/mpc10/coq/


d ::= | let node f pat = e node definition
| let clock c = ce clock definition
| d d sequence of definitions

pat ::= x | (pat,...,pat) pattern

e ::= | i constant flow
| x flow variable
| (e,...,e) tuple
| e op e imported operator
| if e then e else e mux operator
| f e node application
| e where rec eqs local definitions
| e fby e initialized delay
| e when ce | e whenot ce sampling
| merge ce e e merging
| buffer e buffering

eqs ::= pat = e | eqs and eqs mutually recursive equations

Fig. 1. Language kernel.

the point-wise application of a binary operator; if e1 then e2 else e3 is the
point-wise application of a conditional; f e is the application of a node f to an
expression e; e1 fby e2 conses the head of e1 to e2 (and thus corresponds to an
initialized delay); e when ce samples a stream e according to a clock expression ce
whereas merge ce e1 e2 merges two streams with complementary clocks. Finally
buffer e buffers e. We write e where rec eqs for an expression defined by a
collection of mutually recursive equations (eqs). In this paper, we restrict the
clock language ce to define ultimately periodic boolean sequences only:

ce ::= c | u(v)
u ::= ε | 0.u | 1.u
v ::= 0 | 1 | 0.v | 1.v

It can be a variable name (c) or a periodic word (u(v)) made of a finite prefix (u)
followed by the infinite repetition of a binary word (v). For example, (10) defines
the half sequence 101010 . . .

A First Program. Let us write a node that sums the values taken by its input.
We depict the corresponding block diagram on the right and give the clock type
signature produced by the compiler.

let node sum x = o where
rec o = x + (0 fby o)

val sum :: forall ’a. ’a -> ’a

+
fby0

sum

x
o



At the first instant, 0 fby o is equal to 0 then it is equal to the previous value
of o. The type of sum means that for any clock c given to the input x, then the
output of sum x has the same clock c. Here is an example of the execution of
sum x on the input sequence x = 5, 7, 3, . . . set on clock (1):

flow values clock

x 5 7 3 6 2 8 . . . (1)

0 fby o 0 5 12 15 21 23 . . . (1)

o 5 12 15 21 23 31 . . . (1)

Sampling and Merging Streams. We now introduce two special operators
to remove and add values on a stream. The expression e when ce returns a
subsequence of e keeping the values of e at the instants where ce equals 1. For
example, the sum of elements of odd index is:

let node sum_odd x = o where
rec x_odd = x when (10)
and o = sum(x_odd)

val sum_odd :: forall ’a. ’a -> ’a on (10)

(10)

when
x odd sum

sum odd

x o

On the input sequence of the previous example, we get:

flow values clock

x 5 7 3 6 2 8 . . . (1)

(10) 1 0 1 0 1 0 . . . (1)

x_odd 5 3 2 . . . (10)

o 5 8 10 . . . (10)

We can observe that x is present at each instant and that x_odd and o are defined
one instant over two. Thus, the clock of x is (1) and the one of x_odd and o is
(10). The clock of x_odd is the clock of x when (10), it can be computed from
the clock of the flow x and the sampling condition (10). This is the result of the
operation (1) on (10) defined below.

Definition 1 (on Operator). _

0.w1 on w2
def
= 0.(w1 on w2)

1.w1 on 1.w2
def
= 1.(w1 on w2)

1.w1 on 0.w2
def
= 0.(w1 on w2)

In the previous example, we have considered an input flow on the base clock (1)
(true all the time) but this is not necessarily the case. Indeed, x could in partic-
ular be the result of a sampling and be on clock (110) for example. In that case,
the clock of x_odd would be (110) on (10) which is equal to (100) according

http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#on


to the definition of on . The diagram below illustrates what happen when several
sampling are composed.

flow values clock

x 5 7 3 6 . . . (110)

x when (10) 5 3 . . . (110) on (10)

The type signature for sum_odd, that is, ∀α.α→ α on (10) reflects the fact
that the clock of the output stream is a sub-clock of the input stream. It states
that for any clock c, if x has clock c then the result has clock c on (10). To
avoid any possible confusion, we write on purpose on for the type constructor
whereas on stands for its interpretation on boolean streams.

As opposed to sampling, the expression merge ce e1 e2 allows to combine two
streams e1 and e2 on complementary clocks. When ce is true, the output of the
merge is the current value of e1 while e2 is not consumed; otherwise, the current
value of e2 is produced and e1 does not progress. For example, the following
node splits x in two subsequences, instantiates sum on each and finally merges
them.

let node sum_odd_even x = o where
rec x_odd = x when (10)
and x_even = x whenot (10)
and o =
merge (10) (sum x_odd) (sum x_even)

val sum_odd_even :: forall ’a. ’a -> ’a

(10)

when

(10)

whenot

(10)

m
e
r
g
e

sum

sum

sum odd even

x o

We get the following chronogram: 3

flow values clock

x 5 7 3 6 2 8 . . . (1)

(10) 1 0 1 0 1 0 . . . (1)

x_odd 5 3 2 . . . (1) on (10) = (10)

x_even 7 6 8 . . . (1) on not (10) = (01)

sum x_odd 5 8 10 . . . (10)

sum x_even 7 13 21 . . . (01)

o 5 7 8 13 10 21 . . . (1)

n-Synchronous Communication. As in Lustre, communication is synchronous.
As a consequence, the following program is rejected:

let node bad x = x + (x when (10))

File "bad.ls", line 1, characters 17-33:
Cannot unify clock ’a2 on (10) with clock ’a2

3 not ce is the point-wise application of the negation operator to ce.



Indeed, x and x when (10) have respectively type α and α on (10) whereas +
expects its two arguments to have the same type.

When the buffer primitive is used, communication is n-synchronous. That
means that it can be made synchronous through the insertion of a bounded
buffer which size is computed automatically. Even using this buffer construct,
the previous example cannot be accepted since it would need an infinite buffer
to synchronize x and x when (10). Here is an example of a perfectly valid n-
synchronous program.

let node good x = o where
rec x1 = x when (10)
and x2 = x when (01)
and o = (buffer x1) + x2

(10)

when
(01)

when

+

x1

x2

good

x o

The compiler outputs the type and the buffer size needed:

val good :: forall ’a. ’a -> ’a on (01)
Buffer line 4, characters 10-20: size = 1

As an example, we get:

flow values clock

x 5 7 3 6 2 8 . . . (1)

x1 5 3 2 . . . (10)

buffer(x1) 5 3 2 . . . (01)

x2 7 6 8 . . . (01)

buffer(x1) + x2 12 9 10 . . . (01)

Semantically, buffer is the identity function, it only delays its input. The use
of a buffer is accepted provided the input clock of the buffer is adaptable to the
output clock. The next section defines the adaptability relation between clocks.

3 Clock Adaptability

Here is the intuition of adaptability: a clock w1 is adaptable to clock w2 if any
stream with clock w1 can be consumed with clock w2 up to the insertion of a
bounded buffer.

To properly define this relation, we introduce the cumulative function of
a binary word: for any binary word w, Ow(i) counts the number of 1s up to
the index i. Figure 2 shows the cumulative functions of w1 = (11010) and
w2 = 0(00111).

Definition 2 (Elements and Cumulative Function of w). _
Let w = b.w′ with b ∈ {0, 1}. We write w[i] for the i-th element of w:

w[1]
def
= b

∀i > 1, w[i]
def
= w′[i− 1]

http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#ones
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Fig. 2. Cumulative functions for w1 = (11010) and w2 = 0(00111).

We write Ow for the cumulative function of w:

Ow(0)
def
= 0

∀i ≥ 1, Ow(i)
def
=

{
Ow(i− 1) if w[i] = 0
Ow(i− 1) + 1 if w[i] = 1

Adaptability is the conjunction of two relations: precedence and synchroniz-
ability. Precedence ensures that there is no read in an empty buffer, that is at
each instant, more values have been written than read in the buffer. Synchro-
nizability ensures that the number of values present in the buffer during the
execution is bounded.

Definition 3 (Synchronizability ./, Precedence �, Adaptability <:).

w1 ./ w2
def⇔ ∃b1, b2 ∈ Z,∀i ≥ 0, b1 ≤ Ow1(i)−Ow2(i) ≤ b2 _

w1 � w2
def⇔ ∀i > 0, Ow1(i) ≥ Ow2(i) _

w1 <: w2
def⇔ w1 � w2 ∧ w1 ./ w2 _

In Figure 2, w1 ./ w2 since the vertical distance between the two curves is
bounded and w1 � w2 since the curve Ow1 is always above the one of Ow2 .

Buffer Size. Consider a buffer with an input clock w1 and output clock w2.
For every instant i, the number of elements present in the buffer is:

sizei(w1, w2) = Ow1(i)−Ow2(i) _

http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#sync
http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#prec
http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#subtyping
http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#sizei


A negative value means that there were more reads than writes and this case
should not appear. A sufficient size for the buffer is the maximal number of
values present in the buffer during the execution:

size(w1, w2) = max
i≥1

(Ow1(i)−Ow2(i)) _

Thus, if w1 is adaptable to w2, a stream with clock w1 can be safely consumed on
the clock w2 by insertion of a bounded buffer. Otherwise, the size of the buffer
may be infinite.

Theorem 1 (Communication Through a Buffer). _

w1 <: w2 ⇒ ∃b,∀i, 0 ≤ sizei(w1, w2) ≤ b

Proof : By definition of the synchronizability relation and the formula giving
the number of elements present in the buffer at each instant, we know that there
exists a value b such that ∀i, sizei(w1, w2) ≤ b. By definition of the precedence
relation, we have ∀i, sizei(w1, w2) ≥ 0. ut

As ultimately periodic words have a repetitive behavior after a certain in-
dex, checking adaptability relation and computing buffer sizes can be done stat-
ically [4].

4 Relaxed Clock Calculus

The purpose here is to check that programs can be evaluated using bounded
buffers and to find those bounds. As seen in Section 1, it is done using typing
techniques where types represents clocks. In this paper, we consider the following
type language:

σ ::= ∀α1, . . . , αn. (ck × ...× ck)→ (ck × ...× ck)
ck ::= α | ck on ce | ck on not ce

A type scheme (σ) represents the type of a node. It describes types of output
streams with respect to types of input streams. Types of streams (ck) can be ei-
ther a type variable (α) or the type of a sampled stream (ck on ce, ck on not ce).

Typing judgments are of the form: H ` e : ck |C meaning that under type
environment H, the expression e has the type ck provided type constraint C are
satisfied. An environment H associates type schemes, types, and clock expres-
sions respectively to node names, stream variables and clock variables:

H ::= ([ f1 : σ1, . . . , fm : σm ], [x1 : ck1, . . . , xp : ckp ], [ c1 : ce1, . . . , cn : cen ])

A set C of typing constraints contains equality constraints and subtyping con-
straints. It is of the form:

C ::= [ck1 === ck′1, ..., ckn === ck′n, ckn+1 <:<:<: ck′n+1, ..., ckm <:<:<: ck′m]

Typing constraints are gathered progressively during typing and this raises no
particular difficulty. We simply illustrate what is done on the example good given
in the previous section.

http://www.lri.fr/~plateau/mpc10/coq//ibw_def.html#size
http://www.lri.fr/~plateau/mpc10/coq//ibw_prop.html#communication_through_buffer


An example. The node good is rewritten as follows to make the typing deriva-
tion smaller.

let node good x = buffer (x when (10)) + x when (01)

We need to use the following typing rules in addition to the ones given in Sec-
tion 1:

H(x) = ck

H ` x : ck | ∅

H ` e : ck | C

H ` e when ce : ck on ce | C

Thereby, if we associate the type variable αx to the input of node good, the
typing of the left and the right branches of the + operator gives the following
two derivations:

A :

x : αx ` x : αx | ∅

x : αx ` x when (10) : αx on (10) | ∅

x : αx ` buffer (x when (10)) : αb | {αx on (10) <:<:<: αb}

B :
x : αx ` x : αx | ∅

x : αx ` x when (01) : αx on (01) | ∅

Now, using the typing rule of +, the body of good gives the following derivation:

A B

x : αx ` buffer (x when (10)) + x when (01) : αo | {αb === αx on (01) === αo,
αx on (10) <:<:<: αb}

The type of good is αx → αo provided the following system of constraints is
satisfied:

{αb === αx on (01) === αo, αx on (10) <:<:<: αb}

Constraint solving. There are two kinds of constraints in the system: equality
and subtyping constraints. In order to solve equality constraints, synchronous
languages such as Lustre or Lucid Synchrone use structural unification over clock
types. It means that two types of the form ck1 on ce1 and ck2 on ce2 can be
unified if and only if ce1 is equal to ce2 and if ck1 can be unified with ck2. Here,
since we use only ultimately periodic clocks, the on operator can be interpreted
and we can use a unification algorithm such as the one presented in [4]. None
of these two unification techniques is complete, and they may fail on different
cases. So, to be conservative over Lustre but more expressive, it is possible to
use interpreted unification only after structural simplification of the constraints.
We call this technique semi-interpreted unification.

In the example, if we choose the instantiation αx = α, αb = α on (10) and
αo = α on (10), then the constraint αb === αx on (01) === αo is always satisfied
and the set of constraints reduces to {α on (10) <:<:<: α on (10)}.



In order to solve subtyping constraints, we must find instantiations of type
variables such that constraints take the form α on w1 <:<:<: α on w2 with w1 <: w2.
This is simple to achieve with the example good since the constraint is
α on (10) <:<:<: α on (10) and then, already in this form. If this is not the case,
finding such a solution is computationally expensive. A first solution was ex-
perimented so as to convert adaptability constraints into a system of linear
inequations. Nonetheless, the number of linear inequations is proportional to
the number of 1s for each adaptability constraint. In order to overcome this
complexity, we propose in this paper not to consider exact periodic clocks but
their abstraction. The basic principles and algebraic properties of clock abstrac-
tions have been introduced in [5]. In this paper, we present an improved version.
Moreover, its algebraic properties have been proved in Coq.

5 Abstraction of Binary Words

The idea behind abstraction is to reason on sets of binary words. An abstraction
bounds the cumulative function of a set of words by two linear curves with
the same slope. Thus, the abstraction of an infinite binary word w keeps only
the asymptotic proportion r of 1s in w and two values b0 and b1 which give the
minimum and maximum shift of 1s in w compared to r. This abstract information
is called an envelope and noted 〈b0, b1〉 (r).

Definition 4 (Concretization). _

concr
(〈

b0, b1
〉
(r)

) def
=

{
w | ∀i ≥ 1, ∧

w[i] = 1 ⇒ Ow(i) ≤ r × i + b1

w[i] = 0 ⇒ Ow(i) ≥ r × i + b0

}
with b0, b1, r ∈ Q and 0 ≤ r ≤ 1.

The words w1 = (11010) and w2 = 0(00111) seen previously are respectively in
envelopes a1 =

〈
0, 4

5

〉 (
3
5

)
and a2 =

〈
− 9

5 ,− 3
5

〉 (
3
5

)
shown in Figure 3. In chrono-

grams, an abstract value 〈b0, b1〉 (r) is represented by two lines ∆1 : r × i + b1

and ∆0 : r × i + b0 that bound the cumulative functions of a set of binary words.
The definition states that any rising edge must be below the line ∆1 (solid line)
and any absence of a rising edge must be above the line ∆0 (dashed line).

For the set of words defined by an envelope to be non-empty, the line ∆1 must
be above the line ∆0. At each instant, there must be a discrete value between
the two lines. It is the case if the distance between them respects the following
constraint.

Proposition 1 (Non-empty envelope). _ _

∀a =
〈

k0

`
,
k1

`

〉 (n

`

)
,

k1

`
− k0

`
≥ 1− 1

`
⇒ concr (a) 6= ∅

http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#in_abstractionh
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#non_empty_test
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_prop.html#non_empty_test_correctness
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a1 =
〈
0, 4

5

〉 (3
5

)

a2 =
〈
−9

5 ,−
3
5

〉 (3
5

)

Fig. 3. Envelopes of w1 and w2.

Proof : The proof is based on the use of the words earlya and latea related to
the envelope a = 〈b0, b1〉 (r) and defined by:

earlya[i]
def
=

{
1 if Oearlya(i− 1) + 1 ≤ r × i + b1

0 otherwise _

latea[i]
def
=

{
0 if Olatea

(i− 1) + 0 ≥ r × i + b0

1 otherwise _

These words are such that concr (a) = {w | earlya � w � latea}. They are used
to prove most of the properties.

To prove that an envelope is non-empty, we have to prove that earlya �
latea. _ This can be done by arithmetic manipulation once we have noticed
that:

∀i, Oearlya(i) = max(0,min(i, br × i + b1c)) _ _
Olatea(i) = max(0,min(i, dr × i + b0e)) _ _

ut

The abstraction of a periodic binary word can be computed automatically.

Definition 5 (Abstraction of a Periodic Word).

Let p = u(v) a periodic binary word. We define abs (p)
def
= 〈b0, b1〉 (r) with:

r = rate(p) = |v|1
|v|

b0 = mini=1..|u|+|v| with p[i]=0 (Op(i)− r × i)
b1 = maxi=1..|u|+|v| with p[i]=1 (Op(i)− r × i)

where |u| is the length of u and |u|1 its number of 1s.

http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#ones_early
http://www.lri.fr/~plateau/mpc10/coq//abstraction_phd_def.html#ones_late
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The asymptotic rate r corresponds to the ratio between the number of 1s in
the periodic pattern and its length. To compute b0 and b1, the word must be
traversed. The shift b0 is the minimum difference when a 0 occurs between the
number of 1s seen at instant i and the ideal value r × i. The shift b1 is the
maximal difference between these values when a 1 occurs.

5.1 Abstract Operations and Relations.

The interest of the abstraction is to reduce the complexity of exact computations
and decisions on binary words by transforming them into arithmetic manipula-
tions on rational numbers. For example, the computation of on on envelopes
only needs three multiplications and two additions:

Definition 6 (on∼ Operator). _ Let b01 ≤ 0 and b02 ≤ 0.4 We define:

〈 b01 , b11 〉 ( r1 )
on∼ 〈 b02 , b12 〉 ( r2 )
def
= 〈 b01 × r2 + b02 , b11 × r2 + b12 〉 ( r1 × r2 )

The elements of w1 on w2 are the elements of w1 filtered by the elements
of w2. The rate of 1 in w1 on w2 is thus the product of the rate of w1 and the
one of w2. When w1 is sampled by w2, its shifts are multiplied by r2. The shifts
of w2 are added to those of w1. Consequently, this on∼ operator is correct:

Proposition 2 (Correctness of on∼). _ The following property holds:

∀w1 ∈ concr (a1) , ∀w2 ∈ concr (a2) , w1 on w2 ∈ concr (a1 on∼ a2)

Proof : Based on the computations of earlya1 on earlya2 , latea1 on latea2 and
early(a1 on∼ a2), late(a1 on∼ a2). ut

The negation of binary words can also be computed on envelopes.

Definition 7 (The Operator not∼). _ The following property holds:

not∼ 〈
b0, b1

〉
(r)

def
=

〈
−b1,−b0

〉
(1− r)

Proposition 3 (Correctness of not∼). _ The following property holds:

∀w ∈ concr (a) , not w ∈ concr (not∼ a)

Proof : By definition 4 and by noticing that Onot w(i) = i−Ow(i). ut

Now, we formulate definitions of Section 3 in the abstract domain. A relation
is satisfied on envelopes if it is satisfied on all couple of words of their respective
concretization sets.
4 We can always lose precision on the envelopes to satisfy this condition. More details

are given in [12]. The chapter about clock abstraction will be translated in English.
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Definition 8 (Abstract Synchronizability ./∼, Precedence �∼, Adapt-
ability <:∼ ).

a1 ./∼ a2
def⇔ ∀w1 ∈ concr (a1) , w2 ∈ concr (a2) , w1 ./ w2 _

a1 �∼ a2
def⇔ ∀w1 ∈ concr (a1) , w2 ∈ concr (a2) , w1 � w2 _

a1 <:∼ a2
def⇔ ∀w1 ∈ concr (a1) , w2 ∈ concr (a2) , w1 <: w2 _

These relations can be tested by arithmetic comparisons on rates and shifting.

Proposition 4 (Synchronizability, Precedence, Adaptability Tests).
Let the two envelopes a1 = 〈b01, b11〉 (r1) and a2 = 〈b02, b12〉 (r2). We have:

r1 = r2 ⇔ a1 ./∼ a2 _ _
b12 − b01 < 1 ⇒ a1 �∼ a2 if r1 = r2 _ _
a1 ./∼ a2 ∧ a1 �∼ a2 ⇔ a1 <:∼ a2 _ _

Proof : By the use of earlyai
and lateai

. ut

As shown in Figure 3, words in envelopes a1 and a2 navigate between their
two respective lines. If the lines have the same slope, all words stay at a bounded
distance from each other. They are thus synchronizable. If moreover the over-
lapping between the envelopes is small enough, the words of the first envelope
are always above the ones of the second one. Hence, the precedence relation is
satisfied. In Figure 3, the envelope a1 is adaptable to a2.

Definition 9 (Buffer Size). _
Let a1 = 〈b01, b11〉 (r1) and a2 = 〈b02, b12〉 (r2) two envelopes such that a1 <:∼ a2.

size∼(a1, a2) =
⌊
b11 − b02

⌋
The size of the buffer to communicate between an element of a1 and an element
of a2 is the size necessary to communicate between the earlier element of a1 and
the latest element of a2. That size can be over approximated by the distance
between the upper line of a1 and the lower line of a2. The floor function is used
since a buffer has an integral number of elements.

Proposition 5 (Correctness of size∼). _ The following property holds:

∀w1 ∈ concr (a1) ,∀w1 ∈ concr (a2) , size(w1, w2) ≤ size∼(a1, a2)

Proof : By the computation of size(earlya1 , latea2). ut

5.2 Precision of Abstract Operators and Tests

We characterize here the precision of abstract operators and tests on envelopes
that are in the normal form defined below.
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Definition 10 (Normal Form).

Let a = 〈b0, b1〉 (r). Its normal form is
〈

k0

`
, k1

`

〉 (
n
`

)
with

n

`
= r gcd(n, `) = 1 k0 = db0 × `e k1 = bb1 × `c

Intuitively, putting an envelope in normal form consists in moving the lines as
close as possible without changing the concretization set. To achieve this, if ` is
the denominator of the reduced form of the rational slope, b1 is decreased to the
biggest rational number with denominator ` and b0 is increased to the small-
est rational number with denominator `. Note that the movements are always
strictly less than 1

` .

If a is in normal form, the test given in proposition 1 to check whether a is
empty or not is not only correct, but also complete. It means that it succeeds
for all non-empty envelopes in normal form. The precedence test given in propo-
sition 4 is also correct and complete on envelopes in normal form. Finally, as
the synchronizability test is always correct and complete, the adaptability test
is correct and complete on envelopes in normal form.

The most precise result for a1 on∼ a2 is the smallest envelope that contains
the following set of words:

W = {w | w = w1 on w2 ∧ w1 ∈ concr (a1) ∧ w2 ∈ concr (a2)}

The formula that we proposed in definition 6 is not the most precise. Nonetheless,
if a1 and a2 are not empty, and such that b01 ≤ 0, b02 ≤ 0, r1 6= 0 and a1 is in
normal form, we are able to quantify its imprecision: the line ∆1 (resp. ∆0) that
we compute can be slightly above (resp. below) the most precise line, but at a
distance of less than one.

Finally, the most precise correct buffer size computed on envelopes a1 and
a2 is the minimal buffer size sufficient to communicate from every word of a1 to
every word of a2. The formula given in definition 9 doesn’t give the most precise
result, but overestimates it by at most one.

5.3 Comparison with previous abstractions

There are several important differences between the abstraction presented here
and the one introduced in [5]. Contrary to the previous abstraction, the new
one is able to consider binary words with null rates (i.e., composed by a prefix
followed by the infinite repetition of 0). The new abstraction is more precise on
binary words with a prefix starting by a bunch of 1s. The formula for abstraction
of the operator not is far simpler and also treats the case of words with rate
0 or 1. The precision of the abstraction has been established. Finally, the main
properties have been formally proved in Coq.



6 Solving subtyping Constraints

A subtyping constraint is introduced for every expression of the form buffer e.
subtyping constraints are all gathered and solved for every node definition. For
example, we have seen in Section 4 that the type of good is α → α on (10)
with the constraints system {α on (10) <:<:<: α on (01)} and that the constraint
is verified if and only if (10) <: (01). To solve it, we can go into the abstract
domain:

(10) <: (01) ⇐ abs ((10)) <:∼ abs ((01))

The abstractions of (10) and (01) are respectively
〈
0, 1

2

〉 (
1
2

)
and

〈
− 1

2 , 0
〉 (

1
2

)
.

Thus, by application of proposition 4, we get:

(10) <: (01) ⇐
(

1
2

=
1
2
∧ 0− 0 < 1

)
The subtyping constraint for the node good is always verified. Its type scheme
is thus: ∀α.α→ α on (10). On this example, the abstract method find the same
solution as the method on ultimately periodic words.

This example was particularly simple because the constraint was on the very
same variable α. This is not always the case as in:

let node f (x, y, z) =
buffer (x when (11010))
+ y when 0(00111)
+ buffer (z when (01))
+ buffer (z when 0(1100))

The type of the node is α1 × α2 × α3 → α2 on 0(00111) with the following
constraints system C:

C =

 α1 on (11010) <:<:<: α2 on 0(00111)
α3 on (01) <:<:<: α2 on 0(00111)
α3 on 0(1100) <:<:<: α2 on 0(00111)


Depending on the instantiation of type variables α1, α2 and α3, these constraints
can be verified or not. Solving C consists in finding a substitution for those
variables such that the constraints are always satisfied. For that, we have to
express all related constraints according to the same type variable. Let α1 =
α on c1, α2 = α on c2, α3 = α on c3 where c1, c2 and c3 fresh unknown variables
such that the following system is satisfied:

C ⇔

 c1 on (11010) <: c2 on 0(00111)
c3 on (01) <: c2 on 0(00111)
c3 on 0(1100) <: c2 on 0(00111)


We have translated the subtyping constraints into adaptability constraints. In
order to solve them, we look for a solution in the abstract domain:

C ⇐

 abs (c1) on∼ abs ((11010)) <:∼ abs (c2) on∼ abs (0(00111))
abs (c3) on∼ abs ((01)) <:∼ abs (c2) on∼ abs (0(00111))
abs (c3) on∼ abs (0(1100)) <:∼ abs (c2) on∼ abs (0(00111))





Consider the second constraint. Let abs (c2) = 〈b02, b12〉 (r2) and abs (c3) =
〈b03, b13〉 (r3). We compute values of the abstractions abs ((01)) =

〈
− 1

2 , 0
〉 (

1
2

)
and abs (0(00111)) =

〈
− 9

5 ,− 3
5

〉 (
3
5

)
. Then, by definition of on∼, the constraint

can be rewritten into:5〈
b03 × 1

2 −
1
2 , b13 × 1

2 + 0
〉 (

r3 × 1
2

)
<:∼

〈
b02 × 3

5 −
9
5 , b12 × 3

5 −
3
5

〉 (
r2 × 3

5

)
Then, by proposition 4, it can be decomposed into a synchronizability constraint
(r3× 1

2 = r2× 3
5 ) and a precedence constraint ((b12× 3

5 −
3
5 )− (b03× 1

2 −
1
2 ) < 1).

If we apply these transformations to the other constraints, we can transform
abstract adaptability constraints into a set of synchronizability constraints:

r1 × 3
5 = r2 × 3

5

r3 × 1
2 = r2 × 3

5

r3 × 1
2 = r2 × 3

5


and a set of precedence constraints:

(b12 × 3
5 −

3
5 )− (b01 × 3

5 + 0) < 1
(b12 × 3

5 −
3
5 )− (b03 × 1

2 −
1
2 ) < 1

(b12 × 3
5 −

3
5 )− (b03 × 1

2 −
1
2 ) < 1


In the synchronizability constraints, we look for correct rates. The ri must be
between 0 and 1 according to definition 4. To solve the system, we rewrite every
constraint ri × qi = rj × qj into ri = qj

qi
× rj with qj

qi
≤ 1. Then, we saturate

the system by expressing all constraints in terms of a common variable. Finally,
we choose the rate 1 for this variable so as to maximize the throughput of the
system. In the example above, we obtain r1 = 5

6 , r2 = 5
6 and r3 = 1.

The precedence constraints allow to determine values of b0i and b1i. In or-
der to find non-empty envelopes, we add non-vacuity constraints as defined in
proposition 1. Since we have computed the on∼ operator, we also have to add the
constraints that b0i ≤ 0. Thus, the system reduces to a set of linear inequations
which can be solved using a standard tool such as Glpk [7]. We find the following
solution to the abstract adaptability constraints:

abs (c1) =
〈
− 5

6 , 0
〉 (

5
6

)
abs (c2) =

〈
0, 10

6

〉 (
5
6

)
abs (c3) = 〈0, 0〉 (1)

By definition of the relation <:∼ , every word in the computed envelope is a
solution of the original adaptability constraints system. Thus, we can take, for
example c1 = (011111), c2 = (111110) and c3 = (1) as a solution. Applying
the substitution: {α1 ← α on c1, α2 ← α on c2, α3 ← α on c3} in the type of f,
we get a correct type for any instantiation of α. The final type signature for f
is:

f : ∀α. α on (011111)× α on (111110)× α→ α on (111110) on 0(00111)

Once the system of constraints is solved, we know input and output clocks of the
buffers. Hence, we can compute their size. Concerning node f, buffers on line 2,
4 and 5 are respectively of size 2, 1 and 2.
5 To apply the definition, we have to suppose that b02 ≤ 0 and b03 ≤ 0.
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Fig. 4. Picture in Picture. The inputs are two flows of pixels representing High
Definition videos. The size of the first video is reduced using a Downscaler. Some
pixels from the second image are eliminated by sampling. Then the two images
are merged.

7 Implementation

All the presented material has been implemented in OCaml. A distinctive fea-
ture of the implementation is to be generic: the clock calculus is a functor
parametrized by the basic clock language (the one defining ce). It can accept
any clock language provided the following functions are given:

Equality: A function equal to test the equality of two clocks and a function
unify that takes as input two clock expressions ce1 and ce2 and returns two
expressions ce′1 and ce′2 such that ce′1 on ce1 = ce′2 on ce2.

Adaptability: A function adaptable to test the adaptability of two clocks and
a function solve that returns an instantiation of variables that satisfies an
adaptability constraints system.

Buffer size: A function buffer_size to compute the size of a buffer provided
its input and output clocks.

In the Lucy-n compiler, the clock expressions, unification algorithm and con-
straints solving algorithm can be chosen using respectively the options -ce,
-unif and -solver. The examples given in the present paper have been typed
using the following command line:

lucync -ce pbw -unif semii -solver abs file.ls

It means that clock expressions are made of periodic binary words (pbw), that
unification is semi-interpreted (semii) and that the solver of subtyping con-
straints uses abstraction (abs).



8 Application: the Picture in Picture

We illustrate the language on the example of a Picture in Picture. It is depicted
in Figure 4 and is programmed in the following way:

let clock encrust_end =
(0^(1920 * (1080 - 480)) {0^1200 1^720}^480)

let node pip_end (p1, p2) = o where
rec small = buffer(downscaler p1)
and big = (p2 whenot encrust_end)
and o = merge encrust_end small big

The boolean sequence encrust_end controls the merge operation: when it is
true, the small image is emitted, otherwise, the big one is emitted. The notation
{0^1200 1^720}^480 is a shortcut for repeating 480 times the pattern 012001720.
The small image is obtained by application of the node downscaler. It consists
of an horizontal and a vertical filter. The horizontal filter applies a convolution
and a sampling to reduce the size of lines from 1920 to 720. Similarly, the vertical
filter applies a convolution and a sampling to reduce the size of columns from
1080 to 480. For the convolution, the vertical filter needs the pixels above and
below every pixel. This means that the first output can be produced only after
the consumption of one line of input (720 pixels). The signature inferred for node
downscaler is:

val downscaler :: forall ’a. ’a -> ’a on hf on 0^720 (1) on vf

Since downscaler output is connected to the merge through a buffer, the type
of node pip end is (α6 × α10) → α10 with the following constraint (as emitted
by the compiler):

’a6 on hf on 0^720 (1) on vf <: ’a10 on encrust_end

It remains to find envelopes abs (c6) and abs (c10) which satisfy the following
constraint:

abs (c6) on∼ 〈
−720, 481

3

〉 (
1
6

)
<:∼ abs (c10) on∼ 〈−192200, 0〉

(
1
6

)
The values computed for abs (c6) and abs (c10) are the envelopes 〈0, 0〉 (1) and
〈−4315,−4315〉 (1). As their concretization sets contain respectively the words
(1) and 04315(1), the inferred type is:

val pip_end ::
forall ’a. (’a * ’a on 0^4315 (1)) -> ’a on 0^4315 (1)

Buffer line 56, characters 13-34: size = 192240

This means that if the input image to be reduced arrives at the very first instant,
the big image should arrive after a delay of 4315 cycles and the resulting image
is produced after this delay which is approximately two lines of high definition
images.



We saw that the node downscaler introduces a delay while the merge doesn’t.
The inferred type is correct but overestimates by one line the necessary delay
before the production starts. This is due to the abstraction. Nonetheless, we
believe it to be reasonable considering that the existing resolution method with
no abstraction needs one day of computation. Finally, the size of the buffer is
also satisfactory: 192 240 instead of 191 970 for the value with no abstraction,
that is, less than one extra line of the small image.

9 Conclusion

This paper has presented the implementation of the n-synchronous model inside
a Lustre-like language. It is achieved by defining an extended clock calculus and
introducing a subtyping rule. The implementation is modular in the sense that
it can be instantiated for any clock language ce for which ce1 = ce2, ce1 <: ce2

and size(ce1, ce2) are defined.
The language is conservative with respect to Lustre in the sense that if the

program is synchronous and no buffer e construct is used, then the program is
accepted by the clock calculus. Though the size of buffers is computed automat-
ically, the places at which to insert them is still explicit.
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A Downscaler Code
1 (* convolutions *)

2 let node convo (c0, c1, c2) = (c0 + c1 + c2) / 3

3

4 let node convolution (p0, p1, p2) = p where

5 rec p = (r,g,b)

6 and r = convo (p0r, p1r, p2r)

7 and g = convo (p0g, p1g, p2g)

8 and b = convo (p0b, p1b, p2b)

9 and p0r, p0g, p0b = p0

10 and p1r, p1g, p1b = p1

11 and p2r, p2g, p2b = p2

12

13 (* horizontal filter *)

14 let clock hf = (10100100)

15

16 let node horizontal_filter p = o where

17 rec p0 = p fby p1

18 and p1 = p fby p2

19 and p2 = p

20 and o = (convolution (p0, p1, p2)) when hf

21

22 (* vertical sliding_window *)

23 let clock first_sd_line = 1^720 (0)

24 let clock first_line_of_img = (1^720 0^(720*1079))

25 let clock last_line_of_img = (0^(720*1079) 1^720)

26

27 let node my_fby_sd_line (p1,p2) =

28 merge first_sd_line (p1 when first_sd_line) (buffer(p2))

29

30 let node reorder p = ((p0,p1,p2)::’a) where

31 rec p0 =

32 merge first_line_of_img

33 (p1 when first_line_of_img)

34 ((my_fby_sd_line (p1, p1)) whenot first_line_of_img)

35 and p1 = buffer(p)

36 and p2 =

37 merge last_line_of_img

38 (p1 when last_line_of_img)

39 ((p whenot first_sd_line) whenot last_line_of_img)

40

41 (* vertical filter *)

42 let clock vf = (1^720 0^720 1^720 0^720 0^720 1^720 0^720 0^720 1^720)

43

44 let node vertical_filter p = o where

45 rec (p0,p1,p2) = reorder p

46 and o = (convolution (p0, p1, p2)) when vf

47

48 (* downscaler *)

49 let node downscaler p = vertical_filter (horizontal_filter p)


	Lucy-n: a n-Synchronous Extension of Lustre 
	Louis Mandel 1, Florence Plateau 1 and Marc Pouzet 1 2

