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Abstract. GraphQL is a query language for APIs and a runtime to
execute queries. Using GraphQL queries, clients define precisely what
data they wish to retrieve or mutate on a server, leading to fewer round
trips and reduced response sizes. Although interest in GraphQL is on
the rise, with increasing adoption at major organizations, little is known
about what GraphQL interfaces look like in practice. This lack of knowl-
edge makes it hard for providers to understand what practices promote
idiomatic, easy-to-use APIs, and what pitfalls to avoid.
To address this gap, we study the design of GraphQL interfaces in practice
by analyzing their schemas – the descriptions of their exposed data types
and the possible operations on the underlying data. We base our study on
two novel corpuses of GraphQL schemas, one of 16 commercial GraphQL
schemas and the other of 8,399 GraphQL schemas mined from GitHub
projects. We make available to other researchers those schemas mined from
GitHub whose licenses permit redistribution. We also make available the
scripts to mine the whole corpus. Using the two corpuses, we characterize
the size of schemas and their use of GraphQL features and assess the use
of both prescribed and organic naming conventions. We also report that
a majority of APIs are susceptible to denial of service through complex
queries, posing real security risks previously discussed only in theory.
We also assess ways in which GraphQL APIs attempt to address these
concerns.
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1 Introduction

GraphQL is a query language for web APIs, and a corresponding runtime for
executing queries. To offer a GraphQL API, providers define a schema containing
the available data types, their relations, and the possible operations on that
data. Clients send queries that precisely define the data they wish to retrieve
or mutate. The server implementing the GraphQL API executes the query, and
returns exactly the requested data. Figure 1 shows, on the left, an example
query for GitHub’s GraphQL API [12]. It aims to retrieve the description of the
graphql-js repository owned by graphql. The query, in case that this owner is an
Organization, further requests the totalCount of all members of that organization,
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and the names of the first two of them. The right hand side of Figure 1 shows
the response produced by GitHub’s GraphQL API after executing that query,3

which contains exactly the requested data.

1 query {
2 repository(name: "graphql-js", owner: "graphql") {
3 description
4 owner {
5 ... on Organization {
6 membersWithRole(first: 2) {
7 totalCount
8 nodes {
9 name

10 }
11 } } } } }

1 { "data": {
2 "repository": {
3 "description": "A reference imple...",
4 "owner": {
5 "membersWithRole": {
6 "totalCount": 4,
7 "nodes": [
8 {"name": "Member 1"},
9 {"name": "Member 2"}

10 ]
11 } } } } }

Fig. 1. Example of a GraphQL query (left), and corresponding JSON response (right).

GraphQL is seeing adoption at major organizations thanks in part to its
advantages for performance and usability. In some use-cases, allowing users
to precisely state data requirements using GraphQL queries can lead to fewer
request-response roundtrips and smaller response sizes as compared to other
API paradigms, e.g., REST-like APIs [16]. GraphQL prescribes a statically typed
interface, which drives developer tooling like GraphiQL, an online IDE helping
developers explore schemas and write and validate queries [2], or type-based data
mocking for testing services [3]. Major organizations have begun to embrace it,
including GitHub [12], Yelp [10], The New York Times [11], or Shopify [13].

As any new technology is deployed, users begin to follow useful patterns and
identify best practices and anti-patterns. Our aim is to shed light on emerging
GraphQL uses and practices, in the spirit of similar studies for REST(-like)
APIs [18,22,23]. By studying technological practices in the GraphQL context, we
benefit the entire GraphQL community: Our study will help GraphQL providers
build idiomatic, easy-to-use GraphQL APIs, and avoid pitfalls others have ex-
perienced before. Our findings also inform tool developers about the practices
that are more (and less) important to support. Obviously GraphQL consumers
will benefit from the resulting well-designed GraphQL APIs and effective tool
support. And finally, our contributions may influence the evolution of GraphQL
itself, as we highlight challenges that the specification may eventually address.

Specifically, the contributions of this work are:

– We present two novel GraphQL schema corpuses, derived respectively from
commercial GraphQL deployments and open-source projects (§3). We make
parts of the open-source corpus – as permitted by schema licenses – publicly
available for other researchers [30], and also share the scripts to reproduce
the whole open-source corpus [29].

3 We anonymized the returned names.
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– We analyze our corpuses for common schema characteristics, naming con-
ventions, and worst-case response sizes, and describe practices that address
large responses (§4).

In brief, we find that: (1) There are significant differences between commercial
and open-source schemas; (2) Schemas commonly follow naming conventions,
both documented and not; (3) A majority of schemas have large worst-case
response sizes, which schema developers and endpoint providers should consider;
and (4) Mechanisms to avoid these large response sizes are applied inconsistently.

2 Background

As sketched above, a schema describes the types of data offered by a GraphQL
API, the relations between those types, and possible operations on them. In this
section, we outline selected concepts related to GraphQL schemas. GraphQL
providers can define schemas either programmatically using libraries like graphql-
js [6], or they can define them declaratively using the Schema Definition Language
(SDL). Figure 2 shows an example schema defined in the SDL.

1 schema {
2 query: Query
3 mutation: Mutation
4 }
5 type Mutation {
6 createOffice(input: OfficeInput!): Office
7 }
8 type Query {
9 company(id: ID!): Company

10 }
11 type Company {
12 id: ID!
13 name: String
14 address: String
15 age: Int @deprecated(reason: "No longer relevant.")
16 offices(limit: Int!, after: ID): OfficeConnection
17 }

1 type OfficeConnection {
2 totalCount: Int
3 nodes: [Office]
4 edges: [OfficeEdge]
5 }
6 type OfficeEdge {
7 node: Office
8 cursor: ID
9 }

10 type Office {
11 id: ID!
12 name: String
13 }
14 input OfficeInput {
15 name: String!
16 }

Fig. 2. Example of a GraphQL schema in the Schema Definition Language (SDL).

The schema defines fields query and mutation, one of which forms the entry for
any valid query. Every GraphQL schema must contain a Query operation type,
which in this case is the Query object type. According to this schema, queries
can retrieve a company field that returns a Company identified by an id argument
of type ID (the character “!” indicates that the argument is required). The
returned Company again allows queries to retrieve its id, name, address, age, and/or
offices. The latter requires the user to limit the number of offices returned.
Offices, implementing the connections pattern for pagination [7], are related to a
company via an OfficeConnection, that contains information about the totalCount

of offices of that company, and grants access to them directly via the nodes field
or indirectly via the edges field. Querying for an OfficeEdge allows users to obtain
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a cursor that they can use (in subsequent queries) to precisely slice which offices

to retrieve from a Company via the after argument.

query { company(id: "n3...") { offices(limit: 10, after: "mY...") { edges: {
cursor
node { name }

} } } }

The schema further allows to mutate data via the createOffice field. The
data about the office to create is defined in a dedicated input object type called
OfficeInput and passed as an argument. A corresponding query may look like:

mutation { createOffice(input: { name: "A new office" }) {
id

} }

In GraphQL, basic types like String, Int, or Boolean are called scalars, sets of
predefined strings are called enums, and complex types that contain fields are
called object types (e.g., Company in Figure 2). GraphQL further allows developers
to define interfaces that can be implemented by object types or extended by
other interfaces, and unions which state that data can be of one of multiple
object types. For example, in line 5 of Figure 1, ... on Organization is a type
condition that queries fields on the interface RepositoryOwner returned by field
owner only if the owner happens to be an Organization. Beyond queries that
retrieve data, GraphQL schemas may also define a root Mutation operation type,
whose fields define possible mutations, e.g., to create, edit, or delete data. Input
for mutations is defined using arguments, which are (lists of) scalars, enums, or
input object types. Finally, GraphQL schemas may contain directives that define
metadata or behavioral changes associated with field, type, argument or even the
whole schema definitions. For example, in Figure 2 the field age in type Company

is marked with a directive as deprecated. This information could, for example,
be displayed by documentation tooling. Tools or clients can send an introspection
query to retrieve the latest schema from a GraphQL API.

After defining their GraphQL schema, to offer a GraphQL API a provider
must build a mapping between the data types defined in the schema and their
representation in the back-end storage system(s). The provider does this by
implementing a resolver function for each field defined in the schema, which can
retrieve or mutate the corresponding data. Resolver functions can, for example,
interact with databases, other APIs, or dynamically compute a result — GraphQL
is agnostic to their implementation. To execute a query, a GraphQL runtime
validates it against the schema, and then in sequence calls all resolver functions
required to fulfill the query.

Although a schema definition does not tell us everything about a GraphQL
API (e.g., how its resolver functions are implemented), GraphQL schemas can
still tell us about GraphQL practices. For example, from a GraphQL schema we
can learn the characteristics of the corresponding GraphQL API, the nature of
possible queries to its API, and the conventions followed in designing it. Schema
definitions thus comprise useful research artifacts. In the next section we discuss
the schema definitions we sampled to understand these and other topics.
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3 Data: Two Novel GraphQL Schema Corpuses

We created two corpuses of GraphQL schemas: one from introspecting publicly
accessible commercial GraphQL APIs (§3.1), and the other from mining GitHub
for GraphQL schema definitions (§3.2). Figure 3 illustrates the GraphQL schema
populations we sampled to create these corpuses.

→ GitHub corpus
On GitHub

All GraphQL schemas
Defined in SDL

→ com
mer

cial
cor

pus

Com
mer

cial

Fig. 3. Schema corpuses used in this work. A subset of all GraphQL schemas is defined
using the SDL rather than programmatically. We mine the subset hosted on GitHub.
Schemas in our commercial corpus can be defined either way, and may be hosted
(privately) on GitHub.

In both corpuses, we included only schemas that are parsable (e.g., written in
valid SDL syntax) and complete (e.g., contains a query operation and definitions
of all referenced types). We checked these constraints using the parsing and
validation capabilities offered by the graphql-js reference implementation [6], thus
ensuring that schemas can be processed and analyzed without risking runtime
errors. We make available the schemas in the open-source corpus – considering
the constraints for redistributing them defined in their licenses [30]. We also make
available the scripts to collect the whole open-source corpus [29]. These scripts
contain the schema reconstruction logic described in §3.2.

3.1 Commercial Corpus (Schemas Deployed in Practice)

Our commercial corpus (16 schemas) represents GraphQL schemas written and
maintained by professional software developers for business-critical purposes.
This corpus allows us to reason about GraphQL practices in industry.

To identify commercial GraphQL APIs, we started with the community-
maintained list provided by APIs.guru [1].4 We manually assessed the docu-
mentation for all 33 of the “Official APIs” listed on May 1st 2019 to remove
demo interfaces and non-commercial APIs. We then used introspection to collect
these commercial GraphQL schemas. After discarding invalid schemas (validity
is defined in §3.2), we obtained our final corpus of 16 valid, unique GraphQL
schemas maintained by commercial websites. The corpus includes, among others,
schemas of prominent GraphQL APIs like GitHub, Shopify, Yelp, and BrainTree.

4 We submitted a pull request adding several public GraphQL APIs that were missing
from the APIs.guru list, but that we found using web searches. The APIs.guru
maintainers accepted the pull request and we included those schemas in this analysis.
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3.2 Open-Source Corpus (Schemas in GitHub Projects)

Our open-source corpus (8,399 schemas) provides another perspective on GraphQL
practices, depicting (ongoing) development efforts and privately-deployed APIs.
For this corpus, we aimed to collect schema definitions written in the SDL
(cf. §2) and stored in a GitHub project. Figure 4 summarizes the stages of our
data-collection methodology.

74,105 search result 
files

63,442 unique files

59,783 SDL files

55,306 pure 
schemas

-10,663 GitHub
URL duplicates

-3,659
unparseable files

-4,477
non-schema files

25,289 complete 
unmerged schemas

27,742 complete 
schemas

-30,017 incomplete
schemas

+2,453
recovered
schemas

19,379 valid 
schemas

8,399 valid, unique 
schemas

-10,980 AST
duplicates

-8,363 invalid
schemas

Fig. 4. Filters to construct the open-source schema corpus.

We used GitHub’s code search API to obtain search result files that likely
contain schemas on May 21st 2019 using this query:

type extension:graphql extension:gql
size:<min>..<max> fork:false

The pieces of this query have the following meaning. The search term type is
used in any non-trivial schema in the GraphQL SDL. The extensions .graphql

and .gql are common file suffixes for the GraphQL SDL. The file sizes <min> and
<max> partitioned the search space by file size in order to work around GitHub’s
limit on code search query results. We omitted project forks to avoid duplicates.

We removed duplicates by URL to obtain unique files. We filtered unparsable
files per the graphql-js [6] reference implementation to obtain SDL files. The
GraphQL SDL can describe not only schemas, but also executables like queries,
mutations, or subscriptions (e.g., the query in Figure 1) or a mixture of both.
Because we are only interested in schemas, we obtained pure schemas by
removing any files that contain executables, a.k.a. executable definitions [14].

These steps left us with parsable SDL files, but not all are complete.5 We
observed that some schemas contain reference errors, e.g., because they are
divided across multiple files for encapsulation. Supposing that a repository’s
complete schema(s) can be produced through some combination of its GraphQL
files, we used heuristics to try to reconstruct these partitioned schemas, thus

5 A complete schema (1) contains a query operation (a SchemaDefinition node [15] or
a Query object type [8]), and (2) defines all referenced types and directives.
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adding recovered schemas back to our data. For every schema that contains a
query operation but also reference errors, we searched for the missing definitions
in the repository’s other GraphQL files. When we found a missing type in another
file, we appended that file’s contents to the current schema.6 We repeated this
process until we obtained either a complete schema or an unresolvable reference.
Of the 30,017 incomplete schemas, there are 5,603 that contain an query
operation, meaning they can form the basis of a merged schema, and from these
schemas, we were able to recover 2,453 schemas (43.8% success rate). This success
rate suggests that distributing GraphQL schema definitions across multiple files
is a relatively common practice.

We obtained valid schemas by removing ones that could not be validated
by the graphql-js reference implementation, and finally valid, unique schemas
by removing duplicates by testing for abstract syntax tree (AST) equivalence. We
discarded about half of the remaining schemas during deduplication (Figure 4).
Inspection suggests many of these schemas were duplicated from examples.

Our final open-source schema corpus contains 8,399 valid, unique GraphQL
Schema Definition files, 1,127 of which were recovered through merging.7 Although
all of these schemas are valid, some may still be “toy” schemas. We take a
systematic approach to identify and remove these in the analysis that follows.

4 Schema Analysis: Characteristics and Comparisons

In this section, we analyze our GraphQL schema corpuses. We discuss schema
metrics, characterize the corpuses, and compare and contrast them. Specifically,
we analyze some general characteristics (§4.1), identify naming conventions (§4.2),
estimate worst-case query response sizes (§4.3), and measure the use of pagination,
a common defense against pathological queries (§4.4).

Because our purpose is to understand GraphQL practices in open-source and
in industry, we extracted a subset of the GitHub corpus called the “GitHub-large”
(GH-large) corpus that is comparable in complexity to the commercial corpus.
This distinction is useful for measurements that are dependent on the “quality”
of the schema, e.g., worst-case response sizes and defenses, though for studies like
trends in naming conventions we think it is appropriate to also consider the full
GitHub corpus. In future analyses, other measures of quality could be considered
to segment the data, for example the number of stargazers of the associated
GitHub repository.

We identified the GitHub-large corpus using a simple measure of schema
complexity, namely its number of distinct definitions (for types, directives, op-
erations etc.). As shown in Figure 5, the smallest commercial schema contains
8 definitions, while half of the GitHub corpus contains 9 or less definitions. To

6 If multiple possible definitions were found, we broke ties under the assumption that
developers will use the directory hierarchy to place related files close to each other.

7 We collected data in November 2018 using the same methodology, and found 5, 345
unique schemas, 701 of which resulted from merging. This reflects a growth of 57%
in half a year.



8 E.Wittern et al.

0 100 200 300 400 500 600

GitHub

Commercial

GitHub-large

1953

1953

662326122368

14 9
24

37 58 90 138

(8399 schemas)

(16 schemas)

(1739 schemas)

Fig. 5. Distributions of schema complexity (number of definitions) in the GitHub,
commercial, and GitHub-large schema corpuses. Whiskers show min and max values
and the boxes show the quartiles.

avoid a bias toward these toy schemas and to accommodate the small sample size
of the commercial corpus, we conservatively define a GitHub schema as large if it
is at least as complex as the first quartile of the commercial corpus (i.e., has more
than 36 definitions). We include separate measurements on this GitHub-large
corpus (1,739 schemas, 20.7% of the GitHub corpus, 10 of which were recovered
through merging). The complexity distribution of the GitHub-large corpus is not
perfectly aligned with the commercial corpus, but it is a better approximation
than the GitHub corpus and allows more meaningful comparisons of open-source
and industry GraphQL practices.

4.1 Schema Characteristics

First, we provide a reference for what GraphQL schemas look like in practice.
This snapshot can inform the design of GraphQL backends (e.g., appropriately
sizing caches) as well as the development of the GraphQL specification (e.g.,
more and less popular features). We parsed each schema using the graphql-js
reference implementation [6] and analyzed the resulting AST.

Table 1. Characteristics & Features Used in Schema Corpuses.

Commercial (16) GitHub (8,399) GH-large (1,739)

Median object types (OTs) 60 6 35
Median input OTs 44 6 43
Median fields in OTs 3 3 3
Median fields in Input OTs 2 3 3

Have interface types 11 (68.8%) 2,377 (28.3%) 1,395 (80.2%)
Have union types 8 (50.0%) 506 (6.0%) 330 (19.0%)
Have custom directives 2 (12.5%) 160 (1.9%) 26 (1.5%)
Subscription support 0 (0.0%) 2,096 (25.0%) 1,113 (64.0%)
Mutation support 11 (68.8%) 5,699 (67.9%) 1,672 (96.1%)

Table 1 shows clear differences among all three corpuses. Not surprisingly,
commercial and GitHub-large schemas are larger, containing more object and
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input object types. The sizes of individual object and input object types, however,
look similar in all corpuses. In terms of feature use, commercial schemas apply
interface types, union types, and custom directives most frequently, followed
by GitHub-large schemas and then GitHub schemas. Conversely, GitHub-large
schemas have mutation and subscription8 support most frequently, followed by
GitHub schemas and then commercial schemas.

Analyzing multiple corpuses provides a fuller picture of GraphQL practices.
For example, suppose you were to propose changes to the GraphQL specification
based solely on one of these corpuses, e.g. to identify little-used features as dep-
recation candidates. Considering only commercial schemas, subscription support
appears to be unpopular (none of the commercial schemas offer subscriptions),
so subscriptions might be a deprecation candidate. But the GitHub-large cor-
pus tells a different story: subscriptions are offered in 64% of the GitHub-large
schemas. Considering only the GitHub-large corpus instead, you might conclude
that custom directives are a deprecation candidate (only 1.5% of GitHub-large
schemas use them), even though 12.5% of the commercial corpuses use them.
In both cases a single-corpus analysis is misleading, showing the value of our
multi-corpus analysis.

Finding 1: Commercial and GitHub-large schemas are generally larger
than GitHub schemas. Reliance on different GraphQL features (e.g., unions,
custom directives, subscription, mutation) varies widely by corpus.

4.2 Naming Conventions

Naming conventions help developers understand new interfaces quickly and
create interfaces that are easily understandable. In this section we explore the
prescribed and organic naming conventions that GraphQL schema authors follow,
e.g. common ways to name types, fields, and directives. Table 2 summarizes
our findings. We focus on the proportion of schemas that follow a convention
consistently, i.e., the schemas that use them in all possible cases.

Prescribed conventions. GraphQL experts have recommended a set of naming
conventions through written guidelines [4] as well as implicitly through the ex-
ample schemas in the GraphQL documentation [5]. These prescribed conventions
are: (1) Fields should be named in camelCase; (2) Types should be named in
PascalCase; and (3) Enums should be named in PascalCase with (4) values in
ALL CAPS.

We tested the prevalence of these conventions in real GraphQL schemas9.
As shown in Table 2, these prescribed conventions are far from universal. The
only prescribed convention that is frequently used in all three corpuses is (3)
PascalCase enum names, exceeding 80% of schemas in each corpuses and over

8 Subscriptions permit clients to register for continuous updates on data.
9 For simplicity, we tested for camelCase and PascalCase names using only the first

letter. A more sophisticated dictionary-based analysis is a possible extension.
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Table 2. The proportion of schemas that consistently adhere to prescribed (upper
part) and organic (lower part) naming conventions. In rows marked with a † we report
percentages from the subsets of schemas that use any enums, input object types, or
mutations, respectively.

Commercial (16) GitHub (8,399) GH-large (1,739)

camelCase field names 12.5% 53.9% 8.2%
PascalCase type names 62.5% 91.8% 82.1%
PascalCase enum names † 81.3% 96.8% 96.4%
ALL CAPS enum values † 56.3% 35.7% 12.1%

Input postfix † 23.1% 71.6% 68.2%
Mutation field names † 9.1% 49.3% 62.9%
snake case field names 0.0% 0.5% 0.1%

95% in the GitHub and GitHub-large corpuses. In contrast, (1) camelCase field
names are only common in GitHub schemas, (2) PascalCase type names are
common in GitHub and GitHub-large schemas and less so in commercial schemas,
and (4) ALL CAPS enum values appear in more than half of commercial schemas,
but are unusual in the GitHub and GitHub-large schemas.

Organic conventions. Next we describe “organic” conventions10 that we ob-
served in practice but which are not explicitly recommended in grey literature
like the GraphQL specification or high-profile GraphQL tutorials.

Input postfix for input object types. Schemas in our corpuses commonly
follow the convention of ending the names of input object types with the word
Input. This convention is also followed in the examples in the official GraphQL
documentation [5], but the general GraphQL naming convention recommendations
do not remark on it [4]. In GraphQL, type names are unique, so the Input postfix
is often used to associate object types with related input object types (e.g., the
object type User may be related to the input object type UserInput).

Mutation field names. Developers commonly indicate the effect of the
mutation by including it as part of the field name. These names are similar to
those used in other data contexts: update, delete, create, upsert, and add.

snake case field names. Of the non-camelCase field names in the GitHub
corpus, 90.3% follow snake case (determined by the presence of an underscore:
“ ”), covering 30.6% of all field names and used in 37.3% of all schemas in
the GitHub corpus. However, barely any schema across all corpuses uses this
convention throughout.

In general, the observed organic conventions are much more common in
GitHub and GitHub-large schemas than in commercial schemas.

10 These conventions are “organic” in the sense that they are emerging naturally without
apparent central direction. There could, however, be some hidden form of direction,
e.g. many projects influenced by the same team or corporation.
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Finding 2: GraphQL experts have recommended certain naming conven-
tions. We found that PascalCase enum names are common in all three
corpuses, and PascalCase type names are common in the GitHub and
GitHub-large corpuses, but other recommendations appear less consistently.
In addition, we observed the relatively common practice of input postfix
and mutation field names in the GitHub and GitHub-large corpuses. We
recommend that commercial API providers improve the usability of their
APIs by following both recommended and “organic” conventions.

4.3 Schema Topology and Worst-Case Response Sizes

Queries resulting in huge responses may be computationally taxing, so practition-
ers point out the resulting challenge for providers to throttle such queries [24,25].
The size of a response depends on three factors: the schema, the query, and the
underlying data. In this section, we analyze each schema in our corpuses for the
worst-case response size it enables with pathological queries and data.

A GraphQL query names all the data that it retrieves (cf. Figure 1). Provided
a schema has no field that returns a list of objects, the response size thus directly
corresponds to the size of the query. On the other hand, if a field can return a
list of objects (e.g., nodes in Figure 1), nested sub-queries are applied to all the
elements of the list (e.g., name in Figure 1). Therefore, nested object lists can
lead to an explosion in response size.

From the schema we can compute K, the maximum number of nested object
lists that can be achieved in a query. For example, if Query contains a field
repos:[Repo], and Repo contains a field members:[User] then K = 2. Without
access to the underlying data, we assume that the length of all the retrieved
object lists is bounded by a known constant D.11

Polynomial response. For a query of size n, the worst-case response size
is O

(
(n−K) ×DK

)
— at worst polynomial in the length D of the object lists.

The proof is by induction over the structure of the query. As an illustration,
consider the worst-case scenario of a query with maximum number of nested
lists, K. Since the query must spend K fields to name the nested lists, each
object at the deepest level can have at most (n−K) fields and will be of size
at most (n −K). Each level returns D nested objects, plus one field to name
the list. The size of each level k starting from the deepest one thus follows the
relation: sk = D× sk−1 + 1 with s0 = (n−K). The response size is given by the

top level K: sK = (n−K) ×DK + DK−1
D−1 , that is, O

(
(n−K) ×DK

)
.12

Exponential response. If the schema includes a cycle containing list types
(e.g., a type User contains a field friends:[User]), the maximum number of
nested object lists is only bounded by the size of the query, i.e., K < n.13 In that
case the worst-case response size becomes O(Dn−1), that is, exponential in the

11 In practice, the size of retrieved object lists are often explicitly bounded by slicing
arguments (e.g., first: 2 in Figure 1). See also §4.4.

12 In Table 3, we use the slightly relaxed notion O(n×DK).
13 In GraphQL the first field is always query, and cannot be a list type.



12 E.Wittern et al.

size of the query. Consider for example the following query that requests names
of third degree friends (size n = 4 and nesting K = 3). If every user has at least
ten friends, the size of the response is 1 + 10 × (1 + 10 × (1 + 10 × 1)) = 1111.

query { friends(first: 10) { friends(first: 10) { friends(first: 10) { name } } } }

Table 3. Worst-case response size based on type graph analysis, where n denotes the
query size, and D the maximum length of the retrieved lists.

Worst-case response Commercial (16) GitHub (8,399) GH-large (1,739)

Exponential O(Dn−1) 14 (87.5%) 3,219 (38.3%) 1,414 (81.3%)

Polynomial O(n×D6) 0 (0.0%) 6 (0.1%) 4 (0.2%)
Polynomial O(n×D5) 0 (0.0%) 9 (0.1%) 4 (0.2%)
Polynomial O(n×D4) 0 (0.0%) 34 (0.4%) 7 (0.4%)
Polynomial O(n×D3) 1 (6.3%) 186 (2.2%) 40 (2.3%)
Quadratic O(n×D2) 1 (6.3%) 785 (9.3%) 88 (5.1%)

Linear O(n×D) 0 (0.0%) 3,112 (37.1%) 182 (10.5%)
Linear O(n) 0 (0.0%) 1,048 (12.5%) 0 (0.0%)

Results. We implemented an analysis for schema topographical connectedness
based on the conditions for exponential and polynomial responses sizes outlined
above, and applied it to our schema corpuses. As shown in Table 3, the majority
of commercial (100.0%), GitHub (50.5%), and GitHub-large (89.5%) schemas
have super-linear worst-case response sizes. This finding is of course not altogether
surprising, as the key to super-linear response sizes is a particular and intuitive
relational schema structure, and the purpose of GraphQL is to permit schema
providers to describe relationships between types. However, the implication is
that GraphQL providers and middleware services should plan to gauge the cost
of each query by estimated cost or response size, or otherwise limit queries.

Finding 3: The majority of commercial, GitHub, and GitHub-large schemas
have super-linear worst-case response sizes, and in the commercial and
GitHub-large corpuses, they are mostly exponential. Providers need to
consider throttling requests to their APIs to avoid the negative consequences
of expensive queries, whether malicious or inadvertent.

4.4 Delimiting Worst-Case Response Sizes through Pagination

Queries with super-linear response sizes can become security threats, overloading
APIs or even leading to denial-of-service. For commercial GraphQL providers,
exponential response sizes pose a potential security risk (denial of service). Even
polynomial response sizes might be concerning — e.g., consider the cost of
returning the (very large) cross product of all GitHub repositories and users.

The official GraphQL documentation recommends that schema developers
use one of two pagination techniques to bound response sizes [7]: Slicing refers
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to the use of numeric arguments to index a subset of the full response set. The
connections pattern introduces a layer of indirection to enable more complex
pagination. The addition of Edge and Connection types allows schema developers
to indicate additional relationships between types, and to paginate through a
concurrently updated list (cf. schema described in Section 2).

Analysis. We used heuristics relying on names of fields and types to identify
the use of pagination patterns within schemas.

For slicing, we identify fields that return object lists and accept numeric slicing
arguments of scalar type Int. In our corpuses these arguments are commonly
named first, last, and limit, or size. We use the presence of arguments with
these names as an indication that slicing is in use. We differentiate schemas that
use such arguments for slicing consistently, for some fields, or not at all.

For the connections pattern, we check schemas for types whose names end in
Connection or Edge as proposed in the official GraphQL docs [7]. We again check
for the use of slicing arguments on fields that return connections.

Table 4. Use of Slicing Arguments and Connections Pattern.

Comm. (16) GitHub (8,399) GH-large (1,739)

Have fields returning object lists 16 (100.0%) 7,351 (87.5%) 1,739 (100.0%)
...with no slicing arguments 10 (62.5%) 5,335 (63.5%) 385 (22.1%)
...with slicing args. sometimes 6 (37.5%) 1,771 (21.1%) 1,265 (72.7%)
...with slicing args. throughout 0 (0.0%) 245 (2.9%) 89 (5.1%)

Have types with names matching
/Edge$/ and /Connection$/ 9 (56.3%) 2,073 (24.7%) 1,365 (78.5%)
...with no slicing arguments 1 (6.3%) 1,397 (16.6%) 1,073 (61.7%)
...with slicing args. sometimes 2 (12.5%) 48 (0.6%) 31 (1.8%)
...with slicing args. throughout 6 (37.5%) 628 (7.5%) 261 (15.0%)

Results. Using our heuristics, Table 4 summarizes the use of the pagination
patterns in our corpuses. In no corpus are these pagination patterns used consis-
tently, strengthening the threat of the worst-case responses discussed in §4.3. For
the schemas that do use pagination patterns, the commercial and GitHub-large
schemas tend to use the more complex yet flexible connections pattern, while
slicing alone is used inconsistently across all schemas.

Finding 4: No corpus consistently uses pagination patterns, raising the
specter of worst-case response sizes. When pagination patterns are used,
commercial and GitHub-large schemas tend to use the connections pattern,
while slicing is not used consistently. Our worst-case findings from §4.3 urge
the wider adoption of pagination.
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5 Related Work

Our work is most closely related to that of Kim et al., who also collected and
analyzed GraphQL schemas [21]. They analyzed 2,081 unique schemas mined
from open-source repositories on GitHub. Our works are complementary. We
use different mining techniques and conduct different analyses. For mining, to
identify GraphQL schemas on GitHub, both works queried the GitHub API for
filenames with GraphQL-themed substrings. We additionally proposed a novel
schema stitching technique to repair incomplete schemas, which permitted us to
recover thousands of schemas that their methodology would discard (§3.2). In
analysis, we compared multiple corpuses, while they focused solely on schemas
obtained from GitHub and did not distinguish between the larger and smaller
schemas therein. Where our analyses overlap, our findings agree: in our GitHub
schema corpus we report similar proportions of schemas using mutations (we:
67.9%, they: 70%) and subscriptions (we: 25.0%, they: 20%). Similarly, in our
GitHub corpus we found a similar proportion of schemas with type cycles (we:
38.3%, they: 39.7%). Our analyses of naming conventions, worst-case response
sizes, and pagination are novel.

Our worst-case response size analysis (§4.3) benefits from the work of Hartig
and Pérez. They complemented the GraphQL specification [17] with a formal
description for key parts of GraphQL [19, 20]. They also proved the existence
of GraphQL schema-data (graph) combinations on which a query will have
exponential-sized results (cf. [20, Propositions 5.2 and 5.3]) and gave an upper
bound for the response size (cf. [20, Theorem 5.4]). In comparison, our analysis
in §4.3 explicitly identifies object lists as the cause of the response size explosion,
and we use this observation to provide a tighter upper bound.

The remaining academic literature on GraphQL focuses on the challenges of
creating a GraphQL API. Several research teams have described their experiences
exposing a GraphQL API or migrating existing APIs to GraphQL [16, 27, 28].
Others have described automatic techniques for migration [31] and testing [26].

Our work is similar in spirit to studies of REST(-like) APIs, which have
focused on API design best practices [22,23] or assessed API business models [18].
Because of the paradigmatic differences between GraphQL and REST (single
endpoint, typed schema, queries formed by clients, etc.), this work complements
existing ones.

6 Threats to Validity

Construct validity. In §4.3 we assume that response size is the primary measure
of query cost. We leave to future work a more fine-grained analysis dependent on
backend implementation details (e.g. resolver function costs).

Internal validity. Our name-based analyses depend on heuristics which could
be inaccurate, although they are grounded in the grey literature where possible.

External validity. Our corpuses may not be representative of the true state
of GraphQL schemas in practice, affecting the generalizability of our results.
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The commercial corpus contains the 16 public commercial GraphQL APIs we
could identify, well short of the 100+ companies that use GraphQL (presumably
internally) [9]. We restricted the open-source corpus to statically defined schemas
stored in GitHub. By analyzing the “GitHub large” schemas separately, we
provide a better understanding of both (1) methodologically, the risks of treating
all GitHub schemas alike, and (2) scientifically, the properties of larger schemas.

7 Conclusions

GraphQL is an increasingly important technology. We provide an empirical
assessment of the current state of GraphQL through our rich corpuses, novel
schema reconstruction methodology, and novel analyses. Our characterization of
naming conventions can help developers adopt community standards to improve
API usability. We have confirmed the fears of practitioners and warnings of
researchers about the risk of denial of service against GraphQL APIs: most
commercial and large open-source GraphQL APIs may be susceptible to queries
with exponential-sized responses. We report that many schemas do not follow
best practices and thus incompletely defend against such queries.

Our work motivates many avenues for future research, such as: refactoring
tools to support naming conventions, coupled schema-query analyses to estimate
response sizes in middleware (e.g. rate limiting), and data-driven backend design.
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