Reactive Chatbot Programming

Guillaume Baudart
IBM Research
USA

Martin Hirzel
IBM Research
USA

Avraham Shinnar
IBM Research
USA

Louis Mandel
IBM Research
USA

Jérôme Siméon
Clause Inc.
USA

Abstract

Chatbots are reactive applications with a conversational interface. They are usually implemented as compositions of client-side components and cloud-hosted services, including artificial-intelligence technology. Unfortunately, programming such reactive multi-tier applications with traditional programming languages is cumbersome. This paper introduces wcs-ocaml, a new multi-tier chatbot generator library designed for use with the reactive language ReactiveML. The paper explains our library with small didactic examples throughout, and closes with a larger case-study of a chatbot for authoring event-processing rules.

CCS Concepts • Software and its engineering → Concurrent programming languages; • Human-centered computing → Natural language interfaces

Keywords Chatbot, reactive programming, synchronous programming

ACM Reference Format:

1 Introduction

A chatbot is a virtual conversational agent that communicates with users through natural-language dialog. Companies often find it beneficial to offer services to their customers or employees via chatbots, because they support diverse delivery channels (web pages, phone, messaging systems) and versatile applications (question answering, form filling).

Unfortunately, implementing good conversational agents requires a lot of programming effort, because they are typically multi-tier, repetitive, reactive, and multi-component.

Chatbots often use cloud-hosted runtimes to make them easier to scale and operate [20]. Figure 1 shows a typical architecture. The cloud tier uses a stateless runtime (here Watson Assistant [12]) for natural-language understanding and dialog interpretation. The application tier maintains the conversation state, interfaces with the delivery channel, and implements additional logic, such as calling a weather service or querying a database. Unfortunately, this multi-tier architecture often requires chatbot designers to keep separate programs written in multiple domain specific languages in-sync by hand. To ease this process, we propose wcs-ocaml, a library to program multi-tier chatbots in a single programming language. Our library generates the code for the runtime tier; this also provides an opportunity to generate repetitive code as needed.

The appeal of conversational agents is their ability to offer the services of a company to users via diverse delivery channels. That makes them naturally reactive: chatbots are stateful applications that interact asynchronously with external services and external delivery channels. Using a reactive language simplifies chatbot development; this paper demonstrates that with ReactiveML [17].

Like with any other software, the code base and the development team for a chatbot can grow large, so modularity is paramount. Chatbot composition often involves features such as dispatch among composable skills, dialog preemption or digression, and mixed-initiative dialog. It is not trivial to find suitable abstractions for these without a reactive language. This paper showcases how to use features of a reactive language for modular chatbot composition.
This paper makes the following contributions:

- wcs-ocaml, a strongly typed OCaml library for generating multi-tier chatbots (Section 2).
- Leveraging a general-purpose reactive programming language for chatbots orchestration (Section 3).
- RuleBot, a case-study using chatbot generation and reactive orchestration, that is itself used to author event processing rules (Section 4).

Overall, this paper suggests that chatbots are a fitting application of and for reactive and event-based technologies.

2 Generating Multi-tier Chatbots

This section shows how to generate a multi-tier chatbot following an approach inspired by multi-tier programming of web applications [6, 22]. Developers can thus program both Watson Assistant and the application in a single language using wcs-ocaml.\(^1\) As a running example, we generate KnockKnockBot, a simple chatbot that tells the following joke:

1. Bot: Knock Knock
2. User: Who’s there?
3. Bot: Broken Pencil
4. User: Broken Pencil who?
5. Bot: Never mind it’s pointless...

2.1 Programming Watson Assistant

In Watson Assistant, a program is called a workspace and is represented by a JSON object containing definitions of intents, entities, and the dialog (the right side of Figure 1).

Intents. Intents are the desired user actions. For instance, the user may ask who is knocking at the door. In Watson Assistant, intents are defined by a label and a set of examples that are used to train the intent classifier.

```ocaml
let who_intent =  
  Wcs.intent "Who"  
  ~examples: [ "Who's there?";  
    "Who is there?";  
    "Who are you?"; ] ()
```

The intent classifier is a machine learning model that is able to recognize similar utterances [26]. For instance the utterance: Who’s that stumbling around in the dark? will be successfully classified as a who_intent.

Entities. Entities are the objects the user is referring to. In our example, we define an entity for the name of the main character Broken Pencil. Entities are defined by a name and a list of synonyms (or, a regular expression).

```ocaml
let char_entity =  
  Wcs.entity "Characters"  
  ~values: [ "Broken Pencil",  
    "Damaged Pen"; "Fractured Pencil"] ()
```

The entity extractor detects an entity if one of the synonyms appear in the utterance (or if the regular expression matches).

Dialog. The dialog is specified by a finite state machine that reacts to the intents and entities or context information set by the application. For instance, the control logic of our joke is a three-states automaton: 1) knock starts the joke, 2) whoisthere answers the question with the name of the main character, 3) answer concludes with the punchline.

```ocaml
let knockknock who_intent char_entity answer =  
  let knock =  
    Wcs.dialog_node ("Knock")  
    ~conditions_spel: (Spel.bool true)  
    ~text: "Knock knock" () in  
  let whoisthere =  
    Wcs.dialog_node ("WhoIsThere")  
    ~conditions_spel: (Spel.intent who_intent)  
    ~text: (entity_value char_entity)  
    ~parent: knock () in  
  let answer =  
    Wcs.dialog_node ("Answer")  
    ~conditions_spel: (Spel.entity char_entity ())  
    ~text: answer  
    ~parent: whoisthere  
    ~context: (Assoc ["return", "Bool true"]) () in  
  [ knock; whoisthere; answer ]
```

The states of the automaton, called dialog nodes, are defined using the Wcs.dialog_node function. This builder function takes the name of the node and a set of options: the condition to enter the node (~condition_spel) expressed in SpEL [23], the response text (~text), and the parent node in the automaton (~parent). A node can also set information in the context object (~context). This object stores the state of the system, and can be used to pass information between conversation turns. In our example, the node answer sets return to true in the context, signaling the end of the joke.

The WCS refers to the former name Watson Conversation Service.

\(^1\)Available at https://ibm.github.io/wcs-ocaml/.

Figure 2. Watson Assistant User Interface.
utterance. However, only the first approach returns an error at compile time if the char_entity entity is not defined.

Notice also that we are using OCaml name binding and type checking to link elements. For instance, the ~parent argument is a dialog node instead of just a string as in the JSON format of a node.

Workspace. We now have all the elements of a workspace that can be run with Watson Assistant: a list of intents, a list of entities, and a list of dialog nodes.

```ocaml
let ws_knockknock = Wcs.workspace "Knock Knock"
~intents: [ who_intent ]
~entities: [ char_entity ]
~dialog_nodes: (knockknock who_intent char_entity "Never mind it's pointless") ()
```

The library can be used to programmatically manipulate and check workspaces. wcs-ocaml can also generate the corresponding JSON object, and the developer can load it into Watson Assistant using the REST API or the user interface. The workspace can then be used by an application or visualized in the Watson Assistant editor (Figure 2).

2.2 Programming the Application

The workspace is only one tier of the complete chatbot. As shown in Figure 1, Watson Assistant also requires an application tier. Therefore, wcs-ocaml also provides support to deploy workspaces and to invoke them.

Workspace invocation. The REST call `message` sends a request containing the user utterance and the current context to Watson Assistant and returns the corresponding response. The context contains all the information required to resume the conversation (e.g., the current dialog node), and additional data that can be used to communicate between the application and the chatbot. For instance, the node `answer` defines a context variable `return` to notify the application of the end of the joke (Section 2.1).

Using the `message` function, we can define an interpret function that executes a conversation turn with a workspace id and extracts the value of the context field `return`. The first argument of `message` denotes the service credentials `creds`.

```ocaml
let interpret creds id req =
    let resp = Wcs.message_request ~text:txt ~context:ctx ()
    in
    let txt = input_line stdin in
    let req = Wcs.message_request ~text:txt ~context:ctx ()
    in
    let rsp, return = interpret creds id req in
    print_output rsp;
    let resp, return = interpret creds id req in
    print_output rsp;
    let req = message_request ~text:txt ~context:ctx ()
    in
    let rsp, return = interpret creds id req in
    print_outputrsp;
```

The context is an arbitrary JSON object that can be defined in OCaml with the Yojson library. There are thus only limited type guarantees on the context variables used to communicate between the application and the workspace. However, when both the application and the workspace are programmed in OCaml it is possible to share data structures. In our example, we can define a new type `return` (defined by `return = { return: bool; }`) and use JSON serialization in node `answer` and deserialization in the `interpret` function to impose stronger type guaranties.

A complete chatbot.

The `interpret` function only executes one conversation turn. We can now define a complete chatbot that loops over the `interpret` function while maintaining the context between conversation turns.

```ocaml
let exec creds id =
    let rec loop ctx =
        begin match return with
            | Some v -> v
            | None ->
                loop (message_request ~content:ctx ())
        end
    in
    loop Json.null
```

Deploying a chatbot. The wcs-ocaml library provides utility functions to deploy workspaces in Watson Assistant. These make it possible to integrate workspaces deployment in the application to avoid discrepancies between the two parts of the chatbot and use a version control system to manage the complete code. Programmers can thus frequently update and re-deploy the application to integrate user feedback and continuously improve the system [25].

3 Reactive Orchestration

Section 2 showed how to generate workspaces and invoke them in a simple chatbot application. This section demonstrates how to leverage reactive programming to build advanced chatbots by composing elementary ones. All the orchestration techniques presented here are generic and can be applied to any chatbot application.

3.1 ReactiveML

To illustrate our approach, we use ReactiveML [17], a reactive extension of OCaml. ReactiveML adds to OCaml the notion of processes that can be composed in parallel and communicate through signals. The language also provides some high-level reactive control structures like suspension and preemption (see [17] for more details on the semantics of the language and its implementation).

As a first example, we can lift the `exec` function of Section 2.2 to a ReactiveML process.

```ocaml
let process exec creds id input output =
    begin
        let rec process loop ctx =
            begin
                let req = message_request ~text:ctx ()
                in
                let rsp, return = interpret creds id req in
                emit output rsp;
            end
        end
    in
```
We now show how to use the control structures provided by do/until. The preemption is realized with the suspend_resume construct. The parallel composition is realized with the || operator. The two processes communicate through the signals bot_output and user_input, introduced with the signal/in construct.

3.2 Chatbot State Machines

We now show how to use the control structures provided by ReactiveML to orchestrate the execution of chatbots. **Restart.** First, consider a chatbot with a multi-modal interface with a reset button to restart the conversation from the beginning. This behavior can be implemented as follows:

```ml
let rec process exec_restart creds id input output restart =
  begin match return with
  | Some v -> v
  | None -> run loop_ Json.null
  end
  in run loop_ Json.null
```

The preemption is realized with the do/until construct. The execution of the exec process is interrupted when the signal restart is emitted, causing a recursive call to exec_restart.

Timeout. Consider now a security mechanism that checks if the user is still active. The controller is a two-state automaton. The first state runs the main chatbot. If the user remains silent for 10 seconds, the controller enters a second mode, where a second chatbot asks if the conversation should continue. The corresponding ReactiveML code is:

```ml
let process exec_timeout creds id confirm input output =
  let process simple_bot creds id =
    signal bot_output, user_input in
    run io bot_output user_input ||
    run exec creds id user_input bot_output
  in
  let continue = run confirm input output in
  begin match return with
  | Some v -> v
  | None -> run loop_rsp.msg_rsp_context
  end
  in run loop_rsp.msg_rsp_context
```

The process waits for a new user utterance to trigger a reaction using the await construct. It calls the cloud service using message_request and decodes the response with interpret. After the call to interpret, instead of directly printing the output text on the standard output, the response is emitted on the output signal using the emit construct. Then, depending on the value of the return variable, the code returns the corresponding value or launches the recursive call with the run construct.

Signals input and output can be used to delegate the interface with the user to dedicated processes which ease the composition with other chatbots. For example, we can build a simple chatbot by running in parallel exec with a process io that fetches user utterances (e.g., from the standard input) and prints the chatbot responses (e.g., on the standard output).

```
let process simple_bot creds id =
  signal bot_output, user_input in
  run io bot_output user_input ||
  run exec creds id user_input bot_output
```

The parallel composition is realized with the || operator. The two processes communicate through the signals bot_output and user_input, introduced with the signal/in construct.

3.3 Chatbot Dispatch

In the previous example the switch between the two chatbots is triggered by an external event (timeout or termination). A common pattern is to do the switch based on the conversation flow (e.g., invoking the joke skill of a personal assistant).

Turn dispatch. A first solution is to add a dedicated dispatcher chatbot whose role is to explicitly call other chatbots. Such a dispatcher can be programmed in a generic way as follows:

```ml
let process exec_timeout creds id confirm input output =
  let process simple_bot creds id =
    signal bot_output, user_input in
    run io bot_output user_input ||
    run exec creds id user_input bot_output
  in
  let continue = run confirm input output in
  begin match return with
  | Some v -> v
  | None -> run loop_rsp.msg_rsp_context
  end
  in run loop_rsp.msg_rsp_context
```

2 interpret could be called asynchronously using Rml_async.
Let process exec_dispatch creds
 dispatch_id trigger_id_input_list input output =
let trigger_id_input_list =
 List.map
 (fun (trigger, id) -> (trigger, (id, new_signal())))
 trigger_id_list
in
Rml_list.par_iter
 (proc (_, (id, local_input)) ->
 run exec creds id local_input output)
 trigger_id_input_list
||
loop
 let trigger = run exec creds dispatch_id input output in
 let _, local_input =
 List.assoc trigger trigger_id_input_list
 in
 emit local_input (last ?input)
end

Besides the service credentials and the input and output
signals, the exec_dispatch process takes as arguments the id
of the dispatcher chatbot dispatch_id, and trigger_id_list,
a list of pairs (trigger, chatbot id). Whenever the dispatcher
terminates, its return value is matched against the list of trig-
gers to launch the corresponding chatbot. This architecture
supports a multi-turn conversation with the dispatcher to
trigger a chatbot, but the user must go through the dispatcher
for each conversation turn with the chatbot.

The first part of the process exec_dispatch turns the list
trigger_id_input_list into an association list indexed by the trig-
gers trigger_id_input_list, where chatbot ids are paired
with a unique local input signal (new_signal()). The second
part launches in parallel one exec process for each chatbot
using its local input signal. All the chatbots thus publish their
responses on the same output signal, but await inputs on their
own local signal. The last part executes the dispatcher
to get a trigger value. Based on this value, it retrieves the
corresponding local input signal in trigger_id_input_list
and emits the last received input on this signal, thus trigger-
ing the corresponding chatbot.

Note that the dispatcher maintains the states of all the
chatbots in parallel. The user can thus suspend and resume
multiple conversations at will.

Session dispatch. Instead of addressing the dispatcher be-
fore each conversation turn, the next example uses the dis-
patcher to start multi-turn conversations with the chatbots.
A first conversation determines which skill to trigger for the
next session. In addition, a supervisor provides high-level
controls during a session. At any time during the conversa-
tion, the user can express generic commands such as *stop* or
restart.

The process session_dispatch is a two-state automaton
implemented with two mutually recursive processes. State
dispatch_state determines the chatbot for the next session.

Afterwards state control_state launches a supervised con-
versation with the corresponding chatbot.

Let process session_dispatch creds
 dispatch_id controller_id trigger_id_list input output =
let rec process dispatch_state =
 let trigger = run exec creds dispatch_id input output in
 let _, id = List.assoc trigger trigger_id_list in
 run control_state id
and process control_state id =
 signal kill, restart in
 signal cmds, local_input in
 do
 run exec creds controller_id input cmds ||
 emit_commands cmds input kill restart local_input ||
 run exec_restart creds id local_input output restart;
 emit kill
 until kill -> run dispatch_state
done
in
run dispatch_state

State control_state launches in parallel: 1) one exec pro-
cess for the controller chatbot which reads the main input
signal and emits commands on the local signal cmds. 2) A
process emit_commands that controls the emission of signals
kill and restart based on the commands emitted by the
controller. If no command is received, emit_commands sim-
ply pipes the current input in local_input. 3) A process
exec_restart (Section 3.2) controlled by the restart signal
for the session chatbot, which reads the local_input signal
and publishes on the global output. These three processes
are executed inside a *do/unti*l construct controlled by kill.
The controller can thus terminate the conversation at any
moment to go back to dispatch_state.

The process emit_commands emits signals corresponding
to the commands detected on signal cmds.

Type command = Stop | Reset | Continue

Let process emit_commands cmds input kill
 restart local_input =
 loop
 await input(txt, ctx) in
 match get_command ctx with
 | Stop -> emit kill
 | Continue -> emit local_input (txt, ctx)
 | Reset -> emit restart
 end

This process is another illustration of how to share data
structures between the application and the Watson Assistant
workspace (see Section 2.2). The function get_command mar-
shals the JSON object returned by the controller workspace
into the OCaml command type. The function that generates
the workspace does the opposite operation, unmarshalling a
As a case study, we now present RuleBot, a chatbot for authoring business rules [5]. We target the event-processing engine ODM Insights (Operational Decision Manager: Decision Server Insigths) in which programs are expressed in a controlled natural language called BERL (Business Event Rule Language). The design of RuleBot was challenging for two main reasons. 1) The dialog is mixed-initiative, that is, both the chatbot and the user can lead the conversation. This desirable trait for conversational agents benefits from advanced composition techniques. 2) The dialog builds a recursive data structure, the AST of an event processing rule, which heavily relies on data sharing between the service and the application.

4.1 ODM Insights

Figure 3a shows an example of a BERL program for handling credit card transactions and authorization responses taken directly from the tutorial of the official product documentation [11]. The keywords when, if, and then introduce the event, condition, and actions clauses of the rule, respectively. BERL is a controlled natural language [14]. While users can intuitively read programs like the one presented in Figure 3a, programmers must follow the grammar of the language. Figure 4 shows a representative subset of the BERL grammar. A rule consists of an event (when-clause), a condition (optional if-clause), and actions (then-clause). There are four different kinds of actions: print a message, emit an event, define a variable, or set a field. A large portion of the grammar (everything after expr) is devoted to the syntax of expressions that resembles expression languages found in many conventional programming languages but with a syntax reminiscent of natural language.

The concepts, fields, and events used in the rules (e.g., account, transaction, and authorization response) are defined in a separate Business Model Definition (BMD) file. For instance, Figure 3b shows the BMD file used for the credit card transactions rules. This data model is also described in a controlled natural language.

4.2 RuleBot Overview

RuleBot provides a conversational interface with the goal to help non-programmer business users to author rules using the information provided in the BMD file. Presenting the authoring experience as a conversation enables RuleBot to guide and assist the human who does not need to learn how to program in the BERL language. For example, Lines 6-7 of Figure 3a can be generated with the following conversation:

1. Bot: What kind of action would you like to add?
2. User: Emit a new authorization response?
4. Bot: What is the account of the authorization response?
5. User: The value of the variable “the account”.
6. Bot: What is the message of the authorization response?
7. User: “R01: Out of country transaction greater than 1000”.
8. Bot: How about the amount? The amount is related to an account.
9. User: The value of the variable “the account”.
10. Bot: Ok, I’ve got it. When does the transaction occur? The country code is not “US”.
11. User: The value of the variable “the account”.
12. Bot: Ok, I’ve got it. What is the amount of the transaction? The amount is more than 1000.
13. User: The value of the variable “the account”.
14. Bot: Ok, I’ve got it. Email a new authorization response when the user does not trigger the controller, the account is the account, the message is “R01: Out of country transaction greater than 1000”, and the transaction is this transaction.

(a) Event rule

an account is a business entity identified by an id.
an account has a status (an account status).
an account status can be one of: Excellent, Good, Fair, Poor, Risky.
a transaction is a business event time-stamped by a date.
a transaction is related to an account.
a transaction has an amount (a number).
a transaction has a country code.
an authorization response is a business event time-stamped by a date.
an authorization response is related to an account.
an authorization response has a message.
an authorization response has a transaction.

(b) Data model

Figure 3. ODM credit card example [11].
4.4 Natural Language Understanding

RuleBot handles user input that can combine natural language text and BERL expressions. At each step of the conversation, the user can input BERL fragments to short-circuit RuleBot understanding. This ability provides for a smooth transition between free natural language and controlled natural language. BERL expressions are quoted in markdown style with back-ticks so the parser can identify them. The natural language part is processed using the entity extractor and intent classifier of Watson Assistant. The quoted expressions are parsed using the BERL grammar of Figure 4 to produce an AST fragment.

Intents are denoted with a hash-sigil (#). RuleBot has intents for BERL grammar non-terminals, such as #printAct, #emitAct, etc. These drive dialog choices. In addition, RuleBot has intents for mixed-initiative dialog, such as #fill, #help, and #reset. Intents are detected via classifiers trained from example utterances.

Entities are denoted with an at-sigil (@). RuleBot uses the following three kinds of entities:
- Built-in entities that are predefined in Watson Assistant, e.g., @number to extract numbers from user input.
- General-purpose entities, e.g., @yes and @no for yes/no answers from user input.
- Application-specific entities whose definition is based on the BMD file. Those correspond to schema or data model information and are specific to a given application domain. These entities are prepared by parsing the BMD file.

4.5 RuleBot Control

The dialog controller drives the conversation until the rule is ready to be deployed. We implemented RuleBot using ReactiveML for the orchestration part and Watson assistant for the conversation part. To present the whole application within a single formalism, we use hierarchical state machines [9], which are commonly used as a graphical representation of reactive programs. Figure 6 shows the ReactiveML controllers and Figure 7 shows the Watson Assistant workspaces. Workspaces are invoked in particular states of the controllers. The finite-state approach is a least common denominator of sorts for specifying conversational agents [18]. The user interface of Watson Assistant visualizes dialog logic as finite state machines (c.f. Figure 2), but where Figure 7 renders transition triggers on arrows, Watson Assistant renders transition triggers on nodes. We introduce hierarchical state machine concepts as they come up.

To enable natural interaction with the user, one key feature of RuleBot is mixed-initiative dialogs: the conversation flow can be directed by the application (filling AST nodes one after the other), but the human is also able to pick the part of the rule they want to work on (user initiative).

Process driver (Figure 6b) drives the construction of the AST based on both user instructions and its own control logic.
States are shown as rectangles with rounded corners labeled by their name, and transitions are shown as arrows labeled by their trigger. The start state, here build, has an incoming arrow that does not originate from another node. Final states, here also build, have a double border. The state machine is hierarchical in the dual sense that first, individual states in Figure 6b can contain state machines of their own (e.g., build is presented in Figure 6c), and second, the state machine itself constitutes a state in another one (driver in Figure 6a). In the start state build the chatbot keeps the initiative of the conversation. At any time during the conversation, the user can grab the initiative by requesting a change, which preempts the execution of build. Preemption transitions are indicated with a bullet. The controller then enters state change. When the execution of change terminates, the controller enters state build without further input (e transition) and takes the control back to complete the rule. The ReactiveML code corresponding to Figure 6b is:

```
let rec process driver =
  do run build
    until replace(focus, txt) ->
      run change focus txt;
      run driver
    done
```

The replace signal carries a pair (focus, text), so users can specify the focus for the next update. For space reasons, we only present the graphical representation of the code.

Process change (Figure 6d) handles user modification requests. The label of the get-focus state is written in the form state-name / action, meaning that the action gets executed upon entering the state, in the fashion of a Moore Machine. In this case, the action consists of calling a function, get_focus(), to select the AST node to focus on based on the user input. AST nodes are uniquely identified by a pair (focus, kind), where focus is an integer and kind denotes the syntactical category (e.g., event, cond, actions in Figure 6).

Process rule-fill (Figure 6e) is a loop that first selects the next AST node to fill (next-focus state) and then updates the rule (fill state). This is the counterpart of change when RuleBot takes control of the conversation. Here the node selection (function rule_next_focus()) is based on the current partial tree and the previous node that has been filled. We chose a heuristic to select the first undefined or rejected node that followed the previously filled one in the pre-order of the AST. If there is no node to fill behind the one which has been just filled, rule_next_focus() searches a node to fill from the beginning of the rule.

Process fill (Figure 6f) drives the conversation to the sub-dialog that produces an AST of the expected kind. Depending upon the selected node, RuleBot must construct different kinds of sub-AST to complete the partial tree. The kinds correspond to syntactic classes of the grammar. Each state of fill triggers a workspace to builds an AST of a different kind, and then uses a replace instruction to update the rule. For space reasons, we only present one of the workspace for constructing AST subtrees.

Workspace action (Figure 7c) builds an action subtree. It uses four intents for the four action types in the BERL grammar (print, emit, define, and set). The states not understood and help display some messages and loop back to prompt.
without further input (ε transitions). Transitions labeled true succeed for any user input: the input serves as a field or variable name and is not subjected to natural-language understanding. This workspace also illustrates a design decision we made: RuleBot does not allow defining a variable or setting a field without immediately giving the name of the variable or field, because separating that step would be confusing.

Process rulebot (Figure 6a), the top-level controller of the complete chatbot, executes the driver process in parallel with the dispatch workspace to gather user instructions. Parallel composition is indicated by a dashed line. This process is an advanced version of session_dispatch presented in Section 3.3. A reset instruction preempts and restarts the execution of driver, and the execution of the two parallel processes ends when the user validates the rule (accepted).

Workspace dispatch (Figure 7a) analyzes each user input and can trigger events that change the conversation flow. It detects the input #fill and generates a reset event after confirmation by the user. Finally, it also handles top-level help.

5 Related Work
A popular survey on chatbot technologies identifies three main approaches to chatbot programming and orchestration: finite-state based, frame-based, and agent-based [18]. The finite-state based approach is the most low-level, giving the programmer fine-grained control but also forcing them to specify a lot by hand. The frame-based approach is more high-level, letting the programmer specify slots to be filled in, but ceding control over which slots are filled in when to the system [3]. The agent-based approach is even higher-level by leaving even more of the dialog control to be planned and optimized by the system, and has been the subject of much research over the years [18]. The VoiceXML standard for chatbots supported both finite-state and frame-based approach as well as subdialogs [16], but did not adopt the agent-based approach. Similarly, the recent surge in commercial platforms for authoring and hosting chatbots has been adopting finite-state and frame-based approaches but not agent-based approaches [20], perhaps to retain more control over dialog flow. Most commercial chatbot platforms are programmable via libraries in general-purpose programming languages such as JavaScript, causing control to be rather low-level. In contrast, our work uses a reactive language, a more natural fit for the kind of control needed in a chatbot. Watson Assistant targets low-code users by offering graphical authoring [12]. Our work complements this with an alternative code-based authoring approach. The RuleBot case study in Section 4 drives the dialog from a grammar, following a vision we sketched in earlier work [10]. For chatbot orchestration, consumer platforms often dispatch among libraries of skills implemented as third-party subdialogs [1]. In contrast, since our work focuses more on enterprise platforms, it provides more expressive composition.
This paper shows that using a reactive language, namely ReactiveML, simplifies the programming of advanced chatbot composition. ReactiveML is based on the reactive synchronous model [4], providing a well-defined semantics of concurrency and expressive control structures. Dataflow languages [8, 21] are reactive languages with explicit information flow that could be useful to thread chatbot responses to compose multiple skills. Orchestration languages like Flapjax [19], ORC [13], and Elm [7] might also be good candidates to program chatbots compositions; this paper uses a reactive synchronous language, and leaves applying those languages on chatbots to future work.

Our case study uses a chatbot as an authoring interface for event-processing rules. There has been some earlier work in using controlled natural language [14] to author event-processing rules [15]. In fact, the Operational Decision Manager also adopts this approach [11]. In contrast, since chatbots have a natural-language module, our work does not require the natural language to be “controlled”. There has been substantial work on natural language interfaces to databases [2], but that focuses on batch queries, not event-processing rules. Besides natural language, another approach to making event-processing rules easier to author by low-code, non-technical users is spreadsheets [24].

6 Conclusion

This paper demonstrates that leveraging existing programming languages can help to program advanced chatbot applications. We present wcs-ocaml, a lightweight embedding of the Watson Assistant API in OCaml. Based on this library, we show how to program advanced chatbot orchestration in a general purpose reactive language, ReactiveML. We can then program generic chatbot combiners as well as ad-hoc components. To make these ideas more concrete, we describe RuleBot, a conversational interface for authoring event-processing rules programmed in ReactiveML with wcs-ocaml.

The RuleBot case study showcases two main advantages of our approach. First, in RuleBot, the application and Watson Assistant frequently exchange complex data structures. Using a single strongly typed programming language to program both tiers of the application ensures the coherence of the two tiers. Second, the RuleBot architecture relies on parallel and hierarchical compositions of multiple chatbots that are typically difficult to program from scratch but can be easily expressed in ReactiveML.

References