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1 INTRODUCTION
Synchronous languages were introduced 30 years ago for the design of real-time embedded systems.
They are based on the synchronous parallelismmodel [2]. Several synchronous languages have been
proposed, most notably Scade [7] an industrial language used to design and implement critical
real-time software (flight control, engine control, for example).

Scade is a data-flow language à la Lustre: input/output signals are infinite sequences (or streams),
a system (or node) is a function on streams, and all streams progress together, step by step, in a
synchronousmanner. This programming style is well-suited to express classical control blocks (relays,
filters, PID controllers, etc.), a discrete model of the environment, and interaction loops between
these two components. The following code implements a PID controller (proportional, integral,
derived) in Zelus, an academic language close to Scade [4].1

let node pid(r, y) = u where

rec e = r -. y

and u = p *. e +. i *. integr(0., e) +. d *. deriv(e)

The node pid defines a stream of commands u from a stream of setpoints r and a stream ofmeasures y.
The command is the weighted sum of three expressions (proportional, integral, and derivative)
applied to the error between the setpoint and the measurement. The weights p, i, and d are constants
and the calls to the node integr(0., e) and deriv(e) compute respectively the integral (initialized
to 0.) and the derivative of e.

Synchronous languages offer limited support for modeling of non-determinism and uncertainty
of the environment, which are ubiquitous in a real system. A controller often only has a partial,
noisy view of its surroundings, and the behavior of the system itself is often subject to disruption.

Probabilistic programming languages can describe probabilistic models and automatically infer
the distribution of latent (i.e., unobserved) parameters from observations (i.e., inputs). A common
approach [3, 8, 14, 18–20] is to extend a general-purpose programming language with three new con-
structs: (1) x = sample(d) introduce a latent random variable x of distribution d; (2) observe(d, y)

measures the likelihood of an observation y with respect to a distribution d; (3) infer m obs calcu-
lates the distribution of output values of a program or model m knowing the observations obs given
as input. Probabilistic programming languages offer a variety of automatic inference techniques
ranging from exact symbolic computation, to sampling approximations (Monte Carlo methods).
But none of these languages offers the support and the associated guarantees given by synchronous
languages to design embedded reactive systems (data-flow programming, execution with bounded
resources, and absence of deadlocks).
In this article, we present ProbZelus [1], a probabilistic extension of Zelus. ProbZelus allows

developers to combine the constructions of a synchronous reactive language and the constructions of

1www.zelus.di.ens.fr
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2

a probabilistic language — sample, observe and infer — to develop probabilistic reactive applications.
We illustrate with examples the advantages offered by ProbZelus:

(1) Programming reactive models: a trajectory detector from noisy observations (Section 2).
(2) Inference in the loop: a robot controller guided by the result of a probabilistic trajectory

detector (Section 3).
(3) Semi-Symbolic Inference: a more complex robot model, able to infer both its position and the

map of its environment (Section 4).

2 PROBABILISTIC REACTIVE PROGRAMMING
In ProbZelus, probabilistic models are special nodes introduced by the keyword proba. The con-
structs sample and observe can only be invoked within a probabilistic node. The operator infer
takes a probabilistic node and produces a deterministic result the posterior distribution defined
by the model. A type checker statically checks these constraints. The signatures associated with
probabilistic constructs are as follows:
val sample: 'a Distribution.t ~D~> 'a

val observe: 'a Distribution.t * 'a ~D~> unit

val infer: ('a ~D~> 'b) -S-> 'a -D-> 'b Distribution.t

The arrows indicate the nature of the functions: ~D~> indicates a probabilistic node, -D-> a deter-
ministic node, and -S-> indicates a static argument (a constant known at compilation). The first
argument of infer is static because ProbZelus limits higher-order operations to stream functions
(not flows of stream functions). The second argument of infer, and the arguments of sample and
observe, are streams of values.

. . . xt−1

yt−1

xt

yt

xt+1

yt+1

. . .

Fig. 1. A hidden Markov model. The variables are
latent (white) or observed (gray).

Example.Consider a robot that seeks to estimate
its current position from noisy observations. Fig-
ure 1 presents a possible model of this problem in
the form of a hidden Markov model (HMM). At
every moment, the current position xt is a latent
variable (white circle) that can not be observed
directly. The robot receives observations yt (gray
circle) produced by a noisy sensor, for example
a radar. Each arrow indicates a dependency be-
tween two random variables. The corresponding
ProbZelus code is:
let proba hmm(x0, y) = x where

rec x = sample (gaussian (x0 -> pre x, speed_x))

and () = observe (gaussian (x, noise_x), y)

let node main(x0) = display (y, x_dist) where

rec y = sensor ()

and x_dist = infer hmm (x0, y)

The main node illustrates the use of infer in a deterministic node. The body of main thus defines
streams: y, the noisy data sent by the sensor; and x_dist, the series of inferred position distributions
from the hmm, the initial position x0 and the observations y. The expression infer returns the stream
of distributions over the output values of a probabilistic node (here x). At each step, this yields the
current distribution given past observations. At every moment, the display function displays the
streams y and x_dist.
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Programming Reactive Probabilistic Applications 3

The probabilistic node hmm, introduced by the keyword proba, describes the model in Figure 1.
The first equation indicates that the current position x is normally distributed around the previous
position (the initialization operator -> in this context returns the initial value x0 at the first instant,
and then the previous position pre x). The second equation indicates that the current observation y

is normally distributed around the current position x. In both cases, the Gaussian variances speed_x
and noise_x are constants.

Inference ProbZelus offers a set of black-box inference techniques to compute the posterior distri-
bution of reactive models. These techniques are adapted to the reactive settings where computations
never stop. The set of inference techniques includes classic sequential Monte-Carlo methods, or
particle filters; and delayed sampling, a recently proposed implementation of Rao-Blackwellized
particles filters [13] that combines partial exact symbolic computations with sampling methods.

Under delayed sampling, in addition to a score, each particle maintains a Bayesian network that
symbolically captures the conditional distributions associated with a subset of random variables.
Delayed sampling then exploits conjugacy relations between variables to analytically incorpo-
rate observations to the network whenever possible. Particles draw a sample only if analytical
computations fail, or if a concrete value is needed (e.g., for the condition of a if statement).

3 INFERENCE IN THE LOOP
ProbZelus allows you to arbitrarily mix deterministic Zelus code with probabilistic code (provided
that you follow the typing constraints above). The inference runs in parallel with the deterministic
processes. At each step, the deterministic components can use the results computed by inference
and vice versa. This is what we call inference in the loop.
To illustrate this approach, we use the example of a robot that can estimate its position from

its previous commands and observations from a GPS. At each step, the command depends on the
previous position estimation, that is, the result of the inference.

Modularity. The commands received by the robot are accelerations. To estimate the position of the
robot from these accelerations, we define a node tracker which computes a stream of positions p
and velocity v by integrating the acceleration stream a from the initial conditions p0 and v0.

let node tracker(p0, v0, a) = p where

rec p = integr(p0, v)

and v = integr(v0, a)

Due to factors such as engine friction, wheel adhesion or terrain inclination, the effect of the
control on the position of the robot is not deterministic. We can therefore consider these commands
noisy and use the probabilistic node hmm presented in Section 2 to take this noise into account.
We can thus model the position p, the velocity v and the acceleration a from the command u by
combining the probabilistic node hmm with the deterministic node tracker.

let proba acc_tracker(p0, v0, a0, u) = p where

rec a = hmm(a0, u)

and p = tracker(p0, v0, a)

Sporadic activation. Integrating the acceleration to estimate the position accumulates errors.
As time passes, the distribution over positions becomes increasingly spread out. To mitigate this
issue, the robot can additionally use a GPS. Since GPS measurements are expensive, the robot
only sporadically calls the GPS and relies on the acceleration to estimate its position between two
measurements. The following node adds (noisy) GPS observations to the previous model.
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let proba gps_acc_tracker(p0, v0, a0, u, gps) = p where

rec p = acc_tracker(p0, v0, a0, u)

and () = present gps(p_obs) -> observe(gaussian(p, p_noise), p_obs)

At every step, the acc_tracker node returns an estimate of the current position p. The entry gps is
a signal that is emitted when the GPS measures a new position. When a value p_obs is emitted on
the signal gps, the present construct executes its body and further conditions the model using this
new observation. The variance p_noise is a global constant.

Feedback loop. Now that we have a model that estimates the robot’s position given previous
commands and the GPS, we can use the inferred position distribution to update the command.
let node robot(p0, v0, a0, target) = (u, p_dist)

rec gps = geolocalizer()

and u = zero -> controller(pre (mean p_dist), target)

and p_dist = infer gps_acc_tracker (p0, v0, a0, u, gps)

The geolocalizer node generates the sporadic gps signal. The controller node computes the
command u from the mean (mean) of the estimated position distribution p_dist. This distribution
stream p_dist is inferred from the probabilistic node gps_acc_tracker defined above which takes
as input the initial conditions, the command u, and the signal gps. We thus have a feedback loop
between the controller and inference.

Control structures. ProbZelus offers numerous control structures: activation signals, modular
re-initialization, and hierarchical automata [6]. It is thus possible to program in a formalism close
to block diagrams [9], a classic notation for embedded systems.
The node gps_acc_tracker illustrates that control structures like present can be used inside

probabilistic nodes. These control structures can also be used externally to control inference. For
example, our robot can be used to perform a task when it reaches a certain position.
let node task_bot(p0, v0, a0, target) = cmd where

rec automaton

| Go -> do cmd, p_dist = robot(p0, v0, a0, target)

until (probability p_dist (target - epsilon) (target + epsilon) > 0.9)

then Task

| Task -> do cmd = task_controller() done

In the state Go, the command is the one computed by the controller robot, which also returns the
distribution of current positions. When the probability that the robot is close to the target (between
target - espilon, and target + epsilon) is greater than 0.9, the controller enters the state Task

where the command is computed by the node task_controller.

4 SEMI-SYMBOLIC INFERENCE
Sampling-based inference methods obtain good results for the preceding examples with a relatively
low number of particles (≤ 1000). Unfortunately, these methods may use prohibitively many
particles on more complex models where the semi-symbolic approach of delayed sampling can give
much better results.

In this section, we illustrate this situation with a robot controller that can infer both its current
position and a map of its environment. This is a classic problem of simultaneous location and
mapping (SLAM) [12].

SLAM. Consider the simple case where the robot evolves in a discrete one-dimensional world
and each position corresponds to a black or white cell. A robot can move from left to right and
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(a) For each screenshot, the top line shows the true
map, and the blue circle the exact position of the
robot. The lower line represents the inferred map
where the gray level indicates the probability for the
cell to be black and the size of the red dots indicates
the probability of the robot’s presence in the cell.
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PF DS

(b) Precision according to the number of particles.
The dots represent the median of 100 executions, the
error bars the 90% and 10% quantiles.

Fig. 2. Execution of SLAM with particle filter (PF) and delayed sampling (DS)

can observe the color of the cell on which it stands with a sensor. There are two sources of
uncertainty: (1) The robot’s wheels are slippery, so the robot can sometimes unknowingly stay at
the same position. (2) The sensor is imperfect and can misread the colors. The controller tries to
infer the map (cell color) and the current position of the robot (Figure 2a).

The robot maintains a map where each cell is a random variable that represents the probability of
being black or white (gray level in the Figure 2a). The prior distribution of these random variables
is a Beta(1,1) distribution:

let proba beta_priors _ = sample (beta (1., 1.))

The robot starts from the position x0 and receives at each step a command Right or Left. It then
moves to the left or right following the command with a 10% probability of staying at the same
place (modeled by a Bernoulli distribution of parameter 0.1).

let proba move (x0, cmd) = x where

rec slip = sample (bernoulli 0.1)

and xp = x0 -> pre x

and x = match cmd with

| Right -> min max_pos (if slip then xp else xp + 1)

| Left -> max min_pos (if slip then xp else xp - 1)

end

At each instant, the robot computes its position x and retrieves the value of the map for this
position c. We assume that the observation o follows a Bernoulli distribution parameterized by c.

let proba slam (obs, cmd) = (map, x) where

rec init map = Array.init (max_pos + 1) beta_priors

and x = move (0, cmd)

and c = Array.get map x

and () = observe (bernoulli (c, obs))



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6

Evaluation. As we can see from the top of Figure 2a, SLAM is a particularly difficult model for
the particle filter. The results are much more accurate on the bottom part of Figure 2a which uses
delayed sampling.

Quantitatively, Figure 2b presents the accuracy of the estimated position and the map after 2000
steps for a robot that moves from left to right on a map of size 11 (as in section 3, the controller
uses the estimated position to compute the command). Precision is defined as the sum of the mean
squared errors (MSE) of each of the random variables in the model.

Compared to the particle filter, delayed sampling exploits the conjugacy relation between the prior
distribution of the map cells (Beta), and the observations (Bernoulli) to update the cell distribution
using the observations. For instance, if p(c) = Beta(α, β) and p(o |c) = Bernoulli(c), depending on
the observation o we have: p(c |o = true) = Beta(α + 1, β), and p(c |o = false) = Beta(α, β + 1).
On the other hand, delayed sampling cannot exploit any conjugacy relation to compute the

position distribution and falls back on a estimation based on sampling a set of particles. This is
reflected in Figure 2b where the delayed sampling graph (DS) only reaches its maximum precision
after 400 particles. The SLAM example thus illustrates the semi-symbolic approach combining
exact calculations and sampling.

5 RELATEDWORK

Probabilistic programming. In recent years, probabilistic programming languages have attracted
increasing interest. Some languages like BUGS [11], Stan [5] or Augur [10] offer optimized inference
techniques for a constrained subset of models. Others like WebPPL [8], Edward [19], Pyro [3] or
Birch [14] allow to specify arbitrarily complex models. With respect to these languages, ProbZelus
can be used to program reactive parallel models that do not terminate, and where inference is
performed in interaction with deterministic components.
Non-determinism in Reactive Languages Lutin is a language for describing and simulating
non-deterministic reactive systems [17] but does not allow to infer parameters from observations.
ProPL [15] is a language to describe probabilistic processes that evolve over time. Compared to
ProbZelus, ProPL focuses on a restricted class of Bayesian dynamic networks (DBN) models and
uses standard inference techniques for DBNs. CTPPL [16] is a language for describing probabilistic
processes in continuous time. The time required for a subprocess can be specified by a probabilistic
model. These models can not be expressed in ProbZelus which is based on the discrete synchronous
time model.

6 CONCLUSION
Modeling non-deterministic behaviors is a fundamental aspect of embedded systems that evolve
in noisy and uncertain environments. Synchronous languages, introduced for the design of such
systems, have until now offered little support to take into account probabilistic uncertainty.
In this article, we have illustrated the advantages offered by ProbZelus, the first probabilistic

synchronous language. ProbZelus allows to write probabilistic reactive models able to infer latent
parameters from observations. Inference runs in interaction with deterministic components, which
makes it possible to program systems with inference in the loop. Finally, ProbZelus offers several
methods of automatic inference that combine symbolic computations and particle filtering.
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