
A Reactive Language for Analyzing Cloud Logs
Guillaume Baudart

IBM Research
USA

Louis Mandel
IBM Research

USA

Olivier Tardieu
IBM Research

USA

Mandana Vaziri
IBM Research

USA

Abstract
Log analysis is required in many domains, and especially in
the emerging field of cloud computing. Cloud applications
are often built by composing diverse services. When some-
thing goes wrong, finding the root cause of the problem can
be difficult. Many services are only reachable through their
Application Programming Interfaces (APIs) with no possi-
bility for live introspection. In this context, logs become an
essential tool for monitoring and debugging. Cloud services
typically generate very large quantities of log messages, with
formats that may not be well specified and may vary over
time. In this paper, we present CloudLens, a language for
the analysis of semi-structured textual data as found in logs,
and specify its formal semantics. CloudLens is a reactive lan-
guage and views logs as streams of objects. Our objective is to
facilitate exploring the contents of logs interactively and to
write reusable analyses succinctly, using familiar constructs.
We implemented an interpreter for the Apache Zeppelin
notebook to provide an interactive IDE. Our prototype im-
plementation is open source and we report on a detailed case
study using logs from the Apache OpenWhisk project.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages; Data flow languages;

Keywords Log analysis, Programming language, Reactive
programming
ACM Reference Format:
Guillaume Baudart, Louis Mandel, Olivier Tardieu, and Mandana
Vaziri. 2018. A Reactive Language for Analyzing Cloud Logs. In
Proceedings of the 5th ACM SIGPLAN International Workshop on
Reactive and Event-Based Languages and Systems (REBLS ’18), No-
vember 4, 2018, Boston,MA, USA.ACM,NewYork, NY, USA, 13 pages.
https://doi.org/10.1145/3281278.3281280

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
REBLS ’18, November 4, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6070-8/18/11. . . $15.00
https://doi.org/10.1145/3281278.3281280

1 Introduction
Log analysis is required in many domains, and especially
in the emerging field of cloud computing [7]. Cloud appli-
cations are often built by composing diverse services. For
example, consider a simple utility that notifies the user when
the temperature is below freezing. It might use a Location
service to locate the user, a Weather service to find out the
current temperature, then a notification tool to communicate
with the user. When something goes wrong, finding the root
cause of the problem can be difficult. Many services are only
reachable through their Application Programming Interfaces
(APIs) with no possibility for live introspection. In this con-
text, logs become an essential, maybe unique tool for moni-
toring and debugging applications. What Brian Kernighan
wrote in 1978 [14] remains surprisingly true today: “The most
effective debugging tool is still careful thought, coupled with
judiciously placed print statements.”

Cloud services typically generate very large quantities of
log messages. These often have some structure such as a
timestamp, a hostname, or a process identifier. But they also
contain plain text with diverse information in free form, e.g.,
error messages. While log sources can often be made to be
more or less verbose, developers typically have no control
over the format of the logs, which tend to vary from source
to source. Furthermore, these formats can change over time,
as the services evolve but continue to be used via the same
API. When a problem arises, developers may not know what
to look for in the logs, and even if they do, the shape of that
information can be elusive.

Traditionally, developers use grep or write ad-hoc scripts
(e.g., in Perl or Python) for log analysis. To help with this
arduous task, many different techniques have been proposed:
mining techniques to automatically detect patterns and anom-
alies in logs [5, 16, 17, 20–23], visualization techniques that
help browse or summarize logs more effectively [1, 4, 9, 18,
19], as well as specialized query and programming languages
[2, 10–12, 15]. These approaches complement one another:
mining and visualization techniques help to gain insights,
specialized languages allow investigating further and turn-
ing these insights into actionable knowledge. Despite many
advances however, log analysis remains difficult, time con-
suming, and repetitive.

https://doi.org/10.1145/3281278.3281280
https://doi.org/10.1145/3281278.3281280

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Mandel, Tardieu, and Vaziri

In this paper, we present CloudLens (https://cloudlens.
github.io), a reactive dataflow language for the analysis of
semi-structured textual data as found in logs. Our objective
is to facilitate exploring the contents of logs interactively
and to write reusable analyses succinctly, using familiar con-
structs. CloudLens is a stream language suitable for con-
suming logs, which are by nature streams of data. Its basic
premises are that (1) parsing and computation can be inter-
leaved arbitrarily, and (2) parsing needs not be exhaustive.
Traditional programming languages and tools insist on pars-
ing the entire input or sizable chunks of the input with great
precision before starting any computation. This monolithic
approach is inadequate for computing with streams of semi-
structured data. In contrast, a CloudLens script takes as input
a log stream and consumes one log entry at a time. Each log
entry is matched against a series of patterns to discover
structure and information (match construct) without any
attempt at building a complete schema for the log entry or
log stream. Matches can trigger actions (process construct) to
compute metrics, emit alerts, advance in a state machine, etc.
CloudLens is similar in spirit to the Awk programming lan-
guage [2] – a Unix text processing utility – but views logs as
streams of objects: each log entry gets parsed into an object
with fields corresponding to discovered structure. This ap-
proach facilitates building data in a hierarchical way, making
it easier to express analyses that need to group or correlate
different log entries. CloudLens differs from Splunk [6] – a
popular commercial log analysis tool – in that CloudLens is
imperative: intermediate results of analyses can be held in
state variables and do not need to be kept as artificial fields
inside the records extracted from log entries. This makes
it easier to express complex analyses in a natural way, es-
pecially those that require matching the start and end of a
related set of events (e.g. a transaction).
CloudLens allows encapsulation and reuse of scripts via

the definition and invocation of lenses. It is designed to han-
dle both finite and infinite streams as well as nested streams,
making it possible for example to analyze session logs embed-
ded inside server logs, includingmulti-pass analyses on finite
logs and slices of infinite logs. These features are facilitated
by the approach of viewing logs as object streams.
CloudLens is a domain-specific language built on top of

JavaScript. Top-level constructs of the language are novel,
but the programmer uses JavaScript to declare variables or
functions and implement CloudLens actions. This helps a
novice user to get started with CloudLens, and in reusing
existing libraries. Our design however is agnostic to the base
language, which could just as easily have been Python, Swift,
or OCaml. We picked JavaScript because it is commonly used
by cloud developers.

Our prototype implementation is open source and we re-
port on a detailed case study using logs from the Apache

OpenWhisk project1, which provides a serverless computing
service to execute application logic on the Cloud. OpenWhisk
has logs that are semi-structured, and are a good representa-
tive of logs found in typical cloud applications. OpenWhisk
developers implemented a Slack2 bot powered by CloudLens,
and incorporated it into their build system, which proved to
be very useful. Finally, we have implemented an interpreter
for the Apache Zeppelin3 notebook to provide an interactive
IDE for CloudLens.

Our contributions are the following:
• A novel language for analyzing log streams (Section 3).
• A formal semantics of the core language (Section 4).
• An open-source implementation (Section 5).
• An interactive IDE based on Apache Zeppelin (Section 2).
• A case study with Apache OpenWhisk (Section 6).
We discuss related work in Section 7.

2 Overview
Alice picked 4 apples

Bob picked 6 apples

Carol picked 7 oranges

Dan picked 3 apples

Figure 1. Simple log.

In this section, we give
a high-level overview of
CloudLens to introduce its
programming model and en-
vironment. We use a simple
log and sample script to il-
lustrate the idea informally.
Consider the log of Figure 1,
and suppose we wished to know the total number of ap-
ples picked. Notice that the log has some uniformity: each
number of apples is followed by a space and by the word
“apples”. We cannot simply grep for the total number, since
that information is not readily present in the log. However,
there is data that we can process and aggregate in order to
compute the desired result. Much of log analysis is about
deriving higher-level data from bits of information.

Figure 2 shows a CloudLens notebook. This is a web-based
interface used for data analytics. Notebooks are organized
in paragraphs, which are code editors with an associated
interpreter. Paragraphs can be executed independently, and
their results appear below the code. This interface enables
working with different languages and tools, and provides
a wide variety of visualizations. It helps writing a script
piece by piece and inspecting intermediate results. It is easily
shared between developers, and requires very little instal-
lation since it is web-based. We have extended the Apache
Zeppelin notebook with a CloudLens interpreter, and use it
as our Integrated Development Environment (IDE).

The first paragraph in the notebook of Figure 2 loads the
log. This gets displayed one line at a time. The content of
each log entry appears under the field message. The second
paragraph introduces a match section that contains a regular

1http://openwhisk.incubator.apache.org
2https://slack.com
3http://zeppelin.apache.org

https://cloudlens.github.io
https://cloudlens.github.io
http://openwhisk.incubator.apache.org
https://slack.com
http://zeppelin.apache.org

CloudLens REBLS ’18, November 4, 2018, Boston, MA, USA

Figure 2. A CloudLens notebook.

expression and is used to extract how many apples were
picked at each entry. The result of the second paragraph
is a log that has been augmented with additional structure:
some entries have a field appleNum. Notice that Carol picked
oranges instead, so that line does not include this field. Not
all entries need to have the same structure. Using match,
CloudLens iteratively parses just enough data needed for
a computation, and augments the existing data with more
and more structure. Notice how each log entry gets trans-
formed into an object with more and more fields iteratively.
In general, these objects can contain hierarchical structures
to represent nested streams and related groups of log entries.

The third paragraph in the notebook takes the augmented
log as input to compute the total number of apples.4 It in-
troduces a variable totalApples. The section starting with
process(entry) when(entry.appleNum) executes an action
for each log line that has an appleNum attribute, using the
variable name entry to refer to the line. For each entry, it ag-
gregates the total number of apples by updating totalApples.
The section after is executed when the processing is done
for the entire (finite) log. It simply prints out the result. If we
combine all the paragraphs into a single script and execute
it, then parsing and computing are interleaved. The log is
processed sequentially line by line. Every time a successful
match happens, it creates the appleNum field which triggers
4The input of a paragraph is the ouptut of the last executed paragraph.
Re-running the same paragraph may return a different output.

the process section. In general, process can also add more
fields to the log, which can trigger a chain of actions. Notice
how we did not need an additional field to represent the total
number of apples, which was simply represented as a state
variable in the background. This feature helps to keep the
parsed data separate from intermediate transient results, and
helps to write analyses in a natural way. Section 3 gives a
detailed description of the language.
CloudLens also has a command-line tool that supports

batch processing as well as online monitoring. It is typically
invoked with one CloudLens script and zero or more in-
put log files. If no log file is provided, the tool reads from
the standard input. UNIX pipes may be used to feed log
streams into the tool from arbitrary sources. The running
script can provide diagnostics on the standard output or in
any other way, leveraging a rich ecosystem of JavaScript
libraries. Code may be exported from the notebook for exe-
cution with the command-line tool, for instance for applying
the implemented analyses to live sources.

3 The CloudLens Language
CloudLens is a stream programming language. Programs are
executed on possibly infinite streams of log entries encoded
as JSON objects. Log streams may originate from various
sources including prerecorded log files or live sources such
as TCP/IP sockets or Unix pipes. When a log stream is con-
structed from unstructured text, each text line becomes an
entry in the log stream—a JSON object with a unique field
message that contains the text of the line.

We now illustrate the different functionalities of CloudLens
with a log file produced by Travis5 for the Apache Open-
Whisk project. Travis is a continuous integration service
available to GitHub users. When a user modifies the source
code of an application, Travis automatically starts a test suite
to make sure that the new modifications do not cause a re-
gression. OpenWhisk is an open source serverless cloud plat-
form that executes functions in response to events. The exam-
ple log file can be downloaded from the url: https://travis-ci.
org/apache/incubator-openwhisk/builds/327525198

All the code fragments in this section are paragraphs of a
notebook. They should be run in order as later paragraphs
build upon log transformations from the earlier paragraphs.
Together they form a log processing script comprising mul-
tiple analyses and diagnostics.

3.1 Match and Process
The first CloudLens script extracts the name of failed tests
from log.txt. Tests are logged in the following format:

name > description FAILED

For instance, the log contains the line:
system.basic.WskBasicTests > Wsk Action CLI should reject delete of

action that does not exist FAILED

5http://travis-ci.org

https://travis-ci.org/apache/incubator-openwhisk/builds/327525198
https://travis-ci.org/apache/incubator-openwhisk/builds/327525198
http://travis-ci.org

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Mandel, Tardieu, and Vaziri

The CloudLens script and its output are shown below.

match("(?<failure>.*) > .* FAILED");
process(entry) when(entry.failure) {

print("FAILED:", entry.failure);
}

FAILED: whisk.core.cli.test.WskBasicUsageTests

FAILED: system.basic.WskBasicTests

This script has two sections. A match section parses entries
using regular expressions possibly augmenting entry objects
with new fields. A process section executes actions written
in JavaScript for specific entries. In this example, the match

section identifies the log entries in the log stream with
a message matching the regular expression (?<failure>.*)

> .* FAILED. It adds to each matched entry object a field
failure that contains the name of the failed test. The process
section prints the names of the failed tests detected by the
match section.
The (?<failure>.*) > .* FAILED expression uses a fea-

ture of regular expressions called a named capture group
that makes it possible to identify by name a fragment of
the match. Concretely it matches the same messages as the
simpler expression .* > .* FAILED but, in addition, the sub-
string matching the parenthesized subexpression is given
the name failure. More generally, for each capture group
(?< ident > regex), the match section adds a field named ident
to each entry object with a matching message and sets the
field’s value to the substring of message matching regex. For
instance, the match section in our example mutates the log
entry: {message: "system.basic.WskBasicTests > ... FAILED"} to
{message: "system.basic.WskBasicTests > ... FAILED",

failure: "system.basic.WskBasicTests"}.
The process section applies a function to selected log en-

tries in the log stream. The function is specified as a block
of JavaScript code which takes the log entry as its single
argument. The parameter name of the function is specified
in parentheses after the process keyword and the activation
condition is specified in parentheses after the when keyword.
In this example, the log entry is bound to the name entry and
the function is to be executed only on log entries for which
the field failure is defined. It is also possible to list multiple
dependencies (e.g., when(entry.a entry.b)). In general, if no
condition is specified, a rudimentary dependency analysis
scans the section body for field accesses to ensures that a
process(entry) section is executed only when all the fields
on which it depends are defined in the entry being processed.
In this example, the condition could have been omitted and
we could write:

process(entry) { print("FAILED:", entry.failure); }

The following shorthand is also possible and preferred:

when(entry.failure) { print("FAILED:", entry.failure); }

In this form, the parameter name of the function is inferred
from the condition.
While process ... when is a primitive construct, match

is a built-in lens, i.e., a predefined CloudLens function. We
discuss lenses in Section 3.6.

3.2 Variables
CloudLens is an imperative programming language. Scripts
can mutate the log stream, like adding a failure field in
the previous example, or declare and mutate variables. The
log.txt file reports the beginning and the end of a test in
the following format:

Starting test description at date
Finished test description at date

The next script identifies tests that lasted more than 30s.

match("Starting test (?<desc>.*) at (?<start:Date[yyyy-MM-
dd' 'HH:mm:ss.SSS]>.*)");

match("Finished test (?<desc>.*) at (?<end:Date[yyyy-MM-dd
' 'HH:mm:ss.SSS]>.*)");

var start;
when(entry.start) { start = entry.start; }
when(entry.end) {

entry.duration = entry.end - start;
if(entry.duration > 30000) {

print(entry.duration, "\t", entry.desc);
}

}

53496 Wsk api should verify successful creation ...

61720 Whisk rules should not activate an action ...

68593 Wsk Sequence should execute a sequence in ...

60442 Wsk Action CLI should create, and invoke a...

This script leverages an extension of regular expressions to
specify the expected type and format of a capture group. E.g.,
the field start has the type Date and the expected format in
the log is yyyy-MM-dd HH:mm:ss.SSS.
The start variable is mutated every time the beginning

of a test is detected, that is, when the start field is defined.
At the end of the test, when the end field is defined, we add
a duration field to the log entry. If this duration is greater
than 30 seconds (30000ms), we print the description of the
test entry.desc.

3.3 Finite Streams
CloudLens is designed to handle both finite and infinite
streams. Live logs often embed finite sublogs that are key to
application monitoring, e.g., session logs in a server log. The
after section makes it possible to execute actions at the end
of the log stream. For instance, we can count the number of
failed tests as we detect them and report the final count.

var failed = 0;
when(entry.failure) { failed++; }
after { print(failed, "failed tests"); }

2 failed tests

CloudLens REBLS ’18, November 4, 2018, Boston, MA, USA

Obviously the after section is never executed if the log is
infinite. Like process sections, after sections are executed
in program order. Conceptually, a special EndOfStream entry
follows the last log entry, triggering after sections instead
of process sections.

3.4 Return
By default, a section does not add, remove, or replace entries
in the stream. It is possible to do so using return statements:
return e; replaces the current entry with ewhereas return;
removes the current entry. A section may also insert multiple
entries into the stream by returning an array. For instance,
the following script prunes entries with empty messages, i.e.,
blank log lines, and appends a couple of log entries at the
end of the log.

when(entry.message){if(entry.message.length == 0) return;}
after {

return [{message: failed+" FAILED"}, {message: "END"}];
}

If no return statement gets executed, the entry being pro-
cessed remains in the log, hence there is no need for an else

branch in the if statement above.

3.5 Order of Execution
CloudLens is a dataflow language. A CloudLens script de-
scribes a pipeline of stages that each log entry has to go
through. One log entry flows through the entire script before
processing starts on the next entry. For each entry, sections
are executed in program order. In particular, concatenating
the scripts of Section 3.1 and 3.2 into a single paragraph of the
notebook combines their analyses into a single processing
pass, interleaving their outputs:
53496 Wsk api should verify successful creation ...

FAILED: whisk.core.cli.test.WskBasicUsageTests ...

61720 Whisk rules should not activate an action ...

68593 Wsk Sequence should execute a sequence in ...

60442 Wsk Action CLI should create, and invoke a...

FAILED: system.basic.WskBasicTests

In other words, there is no implicit loop inside or around any
CloudLens section, but rather an implicit source and sink of
log entries around each notebook paragraph (cf. Section 4).

Variables are initialized on first traversal, i.e., the first time
a log entry reaches the program point for the declaration.
For instance, in the script of Section 3.3, the variable start is
initialized once with the first log entry.

If desired, it is possible to serialize analyses on finite logs
as illustrated in the next section.

3.6 Lenses
CloudLens scripts can encapsulate processing into lenses.
Lenses are declared using the lens keyword followed by the
name of the lens, the parameter list within parentheses, and
the body within curly braces. The body of a lens has the same

structure as a CloudLens script. For instance, the following
lens makes it possible to implement multi-pass analyses by
first buffering then replaying the (finite) stream.

lens rewind() {
var stream = [];
when(entry) { stream.push(entry); return; }
after { return stream; } // replay the log

}

We can use the rewind lens to print the description of tests
that took more than 9% of the total time.

var totalTime = 0;
when(entry.duration) { totalTime += entry.duration; }
after { print("Total Time:", totalTime/1000, "seconds"); }
rewind();
when(entry.duration entry.desc) {

entry.prop = entry.duration * 100 / totalTime;
if(entry.prop > 9) {

print(entry.prop.toFixed(2) + "%", entry.desc);
}

}

Total Time: 728.596 seconds

9.41% Wsk Sequence should execute a sequence in ...

In a first traversal of the log, we compute totalTime the total
test time. We then traverse the log again to compute the
proportion of time spent by each test.
Like after and when sections, lens invocations are not

executed all at once on the entire log stream. Log entries
flow one at a time through the script entering and leaving
lens instances accordingly.
A variable declared inside a lens is scoped to the lens in-

stance, e.g., in this example the stream variable is not visible
outside of the rewind lens, but more importantly multiple
instantiations of the lens get their own copy of the variable.

A lens can also be invoked inside a when section. It requires
then an array as additional argument which is the stream to
process by the lens. Finally, it is also possible to call a lens
recursively.

3.7 Structured Logs
So far we have been processing log.txt one line at a time.
But often logs have some structure. Modern logging frame-
works produce structured log entries instead of simple text.
Log messages may be split across multiple lines, etc. Navi-
gating these structures is easy with CloudLens.

In our example log, Travis includes a stack trace for each
failed test. Stack traces range over many lines but they logi-
cally belong to the most recent error message. Stack traces
are recognizable by their non-zero indentation. To rebuild
the logical structure of the log, we define a group lens that
appends a log entry to the previous one if it matches a spe-
cific regular expression. More precisely, it combines the log
entries matching the regular expression into a group array
that gets embedded into the most recent unmatched entry.

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Mandel, Tardieu, and Vaziri

lens group(regex) {
var current = null;
match("(?<partOfGroup>)" + regex);
when(entry.partOfGroup) { // entry matches regex

delete entry.partOfGroup; // remove helper tag
if(current !== null) { current.group.push(entry); }
return; // suppress entry

}
when(entry) { // remaining entries do not match regex

var last = current;
current = entry;
current.group = [];
return last;

}
after {

if(current !== null) return current;
}

}

A slightly more flexible version of this lens is included
in the CloudLens library. Using the lens, we can look for
indented log lines and build structured log entries.

group("^\\s");

The log entries of interest are now of the form:
{message: "error message",

group: [{message: " stack trace element"},

{message: " stack trace element"}, ...]}.

Theses traces however have a lot of noise. Suppose we
wish to filter the traces to retain only the method calls as-
sociated with the OpenWhisk source code. We can define a
filter lens and invoke it on the group array. For each failed
test, the following CloudLens script prints a filtered stack
trace.

lens filter() {
match("at .*\((?<whisk>Wsk.*)\)");
when(line.whisk) { print(' at', line.whisk); }

}
when(entry.failure) {

print("FAILED", entry.failure);
filter(entry.group);

}

FAILED whisk.core.cli.test.WskBasicUsageTests

at WskBasicUsageTests.scala:1691

at WskBasicUsageTests.scala:1688

...

FAILED system.basic.WskBasicTests

at Wsk.scala:1046

at Wsk.scala:714

...

In general, lenses can be invoked (1) at the toplevel or
(2) inside of a process or after section. In the first case, as
illustrated with the group invocation, the lens is implicitly
applied to the log stream. In the second, the array argument
must be specified explicitly at the end of the parameter list,
as shown with the filter example. In both cases, the lens

gets to process a stream of entries, either the log stream or
the streamed array content.

4 Intuitive Semantics
We present here the intuition of the formal semantics of the
CloudLens language. The complete semantics is presented
in Appendix A.
To specify the evaluation of CloudLens scripts, we need

to represent concomitantly the script and the log being pro-
cessed. We do so by introducing the notion of a runtime
script. A runtime script simply interleaves script sections
and logs (i.e., sequences of log entries). Informally a log entry
appears after section s1 and before section s2 if and only if
it has already been processed by section s1 and should be
processed by s2 next. Consider the following runtime script
(ignoring the hollow dot ◦ and the filled dot • for now):
•·v3 ·v2process(e){f(e)} ◦·v1process(e){g(e)} process(e){h(e)}

This runtime script represents a point in the execution of
the script

process(e){f(e)} process(e){g(e)} process(e){h(e)}

Specifically, it represents a point where entry v1 is about
to be processed by g whereas entries v2 and v3 are about
to be processed by f. Logs are written right to left so as to
match the intuition that the rightmost entry is ahead. In this
example, v2 comes before v3 in the log. One can think of the
logs in a runtime script as the content of the buffers that an
implementation of CloudLens would maintain in-between
pipeline stages.

The ◦ terminator indicates an empty log. For instance, the
log ◦ ·v1 has a single entryv1. The • terminator indicates the
end of the log, i.e., the special log entry that triggers the exe-
cution of after sections. There is at most one • occurrence
in a runtime script, and it can only be the leftmost symbol
in the term since it will be the very last entry processed.
There may be none when looking at a subscript of a larger
script. Conversely, the ◦ terminator is not intended to be
the leftmost term in a runtime script, but it may be when
looking at a subscript of a larger script. Informally, • means
“the end” whereas ◦ means “to be continued” since there are
more entries to the left of ◦ (at the very least •).

The processing of an element by a runtime script is defined
by a relation of the following shape: rsc / M −→ rsc′ / M′.
This relation means that the runtime script rsc in the mem-
ory M reduces to rsc′ in the memory M′. For example, the
first rule of Figure 3 defines the behavior of a process section
when there is a log entry (v) to process. If the condition evalu-
ates to true, the body of the section is evaluated. We leverage
JavaScript functions for proper variable scoping. Relations
of the shape js/M ⇓ v/M′ represent the JavaScript semantics.
The evaluation of the body returns an array that is converted
to a ◦-terminated log (operator ⊙) which is transmitted to
the next section of the script .
The second rule of Figure 3 defines the behavior of an

after section when we reach the end of the log (•). We

CloudLens REBLS ’18, November 4, 2018, Boston, MA, USA

(function (x) { return c !== undefined })(v)/M ⇓ true/M (function (x) { js })(v)/M ⇓ a/M′ ℓ′ = ◦ ⊙ a
ℓ ·vprocess(x) when(c) { js } sc / M −→ ℓprocess(x) when(c) { js } ℓ′sc / M′

(function () { js })()/M ⇓ a/M′ ℓ′ = • ⊙ a
•after { js } sc / M −→ ℓ′sc / M′

Figure 3. Some reduction rules

execute the body of the section. The section is removed from
the runtime script. The returned array is converted to a •-
terminated log that progresses to the next section.

Determinism, Progress The CloudLens semantics is de-
terministic. The chain of reductions is unique (assuming
a deterministic JavaScript semantics): no two rules of the
semantics can apply to the same term.

Because the evaluation of JavaScript expressions may get
stuck, there is no guarantee of progress. The CloudLens
semantics intends to guarantee progress for well-formed
CloudLens scripts assuming no JavaScript evaluation gets
stuck. Well-formedness basically requires lenses to be de-
clared before use so that lens instantiation does not get stuck.
The intuition for the proof is simple: the rules of the seman-
tics cover all the possible runtime scripts that may be de-
rived from •sc /M. The proof of this result however requires
carefully specifying not just well-formed scripts but also
well-formed tuples rsc / M.

Infinite Logs While logs of arbitrary length can be triv-
ially obtained by constructing large arrays, our inductive log
definition does not permit infinite logs. Infinite logs could
be introduced for instance by switching to a co-inductive
interpretation. Alternatively, one could provide an infinite
source of entries, e.g.,

(function () { js })()/M ⇓ a/M′ ℓ = ◦ ⊙ a

•repeat { js } sc / M −→ •repeat { js } ℓsc / M′

Termination Assuming that 1) the log is finite, 2) every
JavaScript expression terminates and, 3) there is no recursive
lens definitions, the chain of reductions from •sc /M is finite.
We thus guarantee the termination of the script.

5 Implementation
Our implementation is open source.6 It follows the semantics
by implementing flows as iterators and sections as iterator
transformers. The interpreter chains sections invocations
according to the script source. Invoking it.hasNext() and
it.next() on the last iterator it of the chain implements the
semantics: pulling on the rightmost entry, while minimizing
memory footprint, since there is no buffering of log entries.
The Zeppelin notebook framework is primarily imple-

mented in Java. To facilitate integration we also implement
CloudLens in Java. We use the Nashorn scripting engine7

6https://github.com/cloudlens/cloudlens
7http://openjdk.java.net/projects/nashorn/

to evaluate JavaScript code in the Java Virtual Machine. For
better performance, JavaScript code and regular expressions
are compiled ahead of time using Nashorn and Java’s regular
expression library.

6 Case Study
In this section, we report on a detailed case study using
CloudLens to analyze logs from Apache OpenWhisk: a dis-
tributed event-based programming service, which allows
the user to execute code on the cloud in response to an
event. It provides a serverless deployment environment hid-
ing infrastructural complexity. The service is available via
the command line, or through a graphical interface. When
the user starts an action, a transaction gets initiated that goes
through different steps, interacting with various services (e.g.
a database). A controller guides transactions through their
lifetime, logging different activities.
OpenWhisk is an industrial sized open-source project

(65kLoC, about 100 contributors). We applied CloudLens
to various aspects of OpenWhisk: to help developers get
useful insights when they commit and build new revisions of
the OpenWhisk codebase, as well as performance and usage
analysis. OpenWhisk’s logs are a good representative of the
logs that need to be analyzed in the cloud. They are semi-
structured, i.e., they contain some uniform data such as times-
tamps and transaction ids, but also a large part of unstruc-
tured messages. In our experience, cloud projects start by
having unstructured logs and evolve to semi-structured log-
ging to facilitate analysis. Even with better structure within
the logs, analysis can be an arduous task with existing tools.
CloudLens aims at facilitating this task.

6.1 Extracting Failures during Builds
OpenWhisk uses Travis, a continuous integration service
available to GitHub users. When a user modifies the source
code of an application, Travis automatically starts a test suite
to make sure that the new modifications do not cause a re-
gression. The build process generates large log files similar to
log.txt used in Section 3 A lot of different types of informa-
tion are logged and navigating the file manually is difficult.
For example, to obtain information about failed tests, it does
not suffice to search for the keywords “test” or “failed”. This
returns more than a hundred hits, many of which are not
related to test results.

https://github.com/cloudlens/cloudlens
http://openjdk.java.net/projects/nashorn/

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Mandel, Tardieu, and Vaziri

OpenWhisk developers built a bot powered by a CloudLens
script similar to the one presented in Section 3. When a build
runs to completion, the CloudLens script is automatically
executed to extract information about test failures and filter
stack traces. This data is then sent to the developer who initi-
ated the build, via a Slack message. The bot was integrated in
their build process, so no further action was required. We re-
ceived positive feedback from developers on the ease-of-use
and usefulness of this tool, compared to other industrial log
analysis tools they tried. CloudLens made it easy to extract
nested structures of unknown length, with just a few lines
of code.

6.2 Transaction Duration
To analyze anomalies in performance, we extracted the dura-
tion of transactions to detect long-running ones. Matching
log entries (such as start and end of a transaction) is typically
not an easy task. The controller logs transaction activity, and
for each event, it records a timestamp, a transaction id (tid),
as well as markers indicating different stages. For example,
the start of a transaction may be as follows:
[2017-10-16T09:48:34.948Z][INFO][#tid_59] GET /api/v1/namespaces/_/

actions/shootcontroller

The final event for the same transaction is the following:
[2017-10-16T09:48:34.951Z][INFO][#tid_59][BasicHttpService][marker:

http_get.200_count:3:3]

Log events from different transactions can appear inter-
leaved, so our task is to match the start and end of the same
transaction and compute the duration, printing it out, if it
surpasses a limit. Below is a script that achieves this task:

var transactions = {};
var limit = 10000;
match("(?<tid>tid_\d+)");
match("^\[(?<ts:Date[yyyy-MM-dd HH:mm:ss.SSS]>[^\]]+)\]");
process(e) when(e.tid) {

transactions[e.tid] = transactions[e.tid] || [];
transactions[e.tid].push(e);

}
after {

for(tid in transactions) {
var log = transactions[tid];
var dur = log[log.length - 1].ts - log[0].ts;
if(dur > limit) { print(tid, 'dur:', dur); }

}
}

This scripts matches tids and timestamps, enters them in
a data structure, and finally computes the duration of each
transaction, printing out the ones that take longer than 10s.
It can easily be extended to extract other information about
the long-running transactions, such as action type.

This script can be adapted for online monitoring of infinite
log streams. It cannot be used directly because the after sec-
tion only gets triggered at the end of a finite stream. We can
rewrite this script to compute durations on-the-fly provided
that the final event of each transaction can be detected.

The following script discovers the shape of final events:

after {
for(tid in transactions) {

var log = transactions[tid];
print(log[log.length - 1].message);

}
}

[2017-10-16T09:48:22.330Z] [INFO] [#tid_9] [BasicHttpService] [

marker:http_get.200_count:327:327]

[2017-10-16T09:48:22.961Z] [INFO] [#tid_11] [BasicHttpService] [

marker:http_get.200_count:13:13]

[2017-10-16T09:48:23.154Z] [INFO] [#tid_13] [LoadBalancerService]

received active ack for '7305cd5cccf8402285cd5cccf8e022a1'

[2017-10-16T09:48:24.065Z] [INFO] [#tid_15] [LoadBalancerService]

received active ack for 'c2f1e91c9e4649c1b1e91c9e4639c123'

...

It appears that most transactions end with http_get.200
or received active ack. This illustrates how the content
of the logs can make it easier or harder to write a desired
analysis. It would have been easier to have a single marker
to end all transactions. In general, a developer may not have
control over formats. We can still write a script to compute
durations on-the-fly, and try to cover all cases that mark the
end of a transaction:
var transactions = {};
var limit = 10000;
match("(?<tid>tid_\d+)");
match("^\[(?<ts:Date[yyyy-MM-dd HH:mm:ss.SSS]>[^\]]+)\]");
match("(?<finishMarker>http_get.200)");
match("(?<finishMarker>received active ack)");
process(e) when(e.tid) {

transactions[e.tid] = transactions[e.tid] || [];
transactions[e.tid].push(e);

}
process(e) when(e.finishMarker) {

var log = transactions[e.tid];
var duration = log[log.length - 1].ts - log[0].ts;
if(duration > limit) { print(e.tid, 'duration:',

duration); }
delete transactions[tid]; // to avoid a memory leak

}

The finishMarker triggers the second process section.
This script computes the duration of transactions on-the-fly
without requiring post-processing, so it is fully streaming. In
general, process sections can be arbitrarily chained to trig-
ger actions whenever a structure is discovered or computed.
Matching log entries (such as start and end of a transac-

tion) is not an easy task. A combination of streaming logs
and state greatly simplifies this task in CloudLens.

6.3 Database Operation Latency
OpenWhisk interacts with a database service, and wewrote a
CloudLens script to create a histogram of database operation
latency. This consists of identifying all matching start and
finish log entries for each instance of every type of database
operation, computing latencies, then aggregating results into
a histogram per operation type. We used our Zeppelin note-
book IDE to produce the histogram visualizations.

CloudLens REBLS ’18, November 4, 2018, Boston, MA, USA

Figure 4. Database operation histogram.

Figure 4 shows a sample histogram for a database put
operation. These are generated by printing data to the con-
sole with an appropriate format, and are built into Zeppelin,
along with other visualizations. Our results showed outliers
and pointed to a potential installation problem, which drove
OpenWhisk developers to take corrective action.
CloudLens’s Zeppelin IDE makes it easy for developers

to interact with logs, try scripts, and visualize the results of
their analyses.

7 Related Work
Traditionally, developers use grep or write ad-hoc scripts
(e.g., in Perl or Python) for log analysis. To help with this ar-
duous task, many techniques have been proposed: mining to
automatically detect patterns and anomalies in logs, visual-
izations that help gain insights more effectively, monitoring
systems that take actions in response to log patterns, as well
as specialized query and programming languages.
There are many works on automated log mining either

in isolation or in combination with other techniques such
as source code analysis. Vaarandi describes a clustering al-
gorithm for mining patterns in log files [20]. Stearly uses a
pattern discovery algorithm originally developed for bioin-
formatics to mine syslogs [17]. Xu et al. apply log mining
techniques [21, 22] to a large volume of logs fromGoogle pro-
duction systems [23]. They use static analysis of source code
to extract all possible log printing statements, from which
they generate regular expressions to parse log messages. Us-
ing machine learning techniques, they identify patterns over
messages and can detect anomalies. Synoptic [5, 16] infers
graph-based models of systems by mining existing logs. Sta-
tistical anomaly detection has its shortcomings: when a set
of messages is detected to be an outlier, it is difficult to know
if it truly constitutes an anomaly. Further investigation is

necessary to validate the results. Our approach is comple-
mentary to these techniques in that we provide an expressive
programming language to further explore logs and produce
actionable insights.

Visualization techniques can help discover interesting pat-
terns of information in logs (e.g., [9, 18, 19]) or complement
log processing techniques to present results in more effec-
tive ways. ShiViz [1] visualizes a distributed log augmented
with vector clocks to capture ordering dependencies. CSight
[4] infers models in the form of communicating finite-state
machines visualized graphically. These can help in program
understanding and debugging. Visualization techniques and
CloudLens are complementary and can be combined.
Swatch [12] is an automated system for monitoring and

notification. It uses regular expressions to match against log
entries, which can trigger actions such as executing a script.
Logsurfer [15] is a rule-based tool for analyzing log files in
real-time. Each rule specifies regular expressions for match-
ing log messages. Upon a match an action is triggered that
can evaluate an external script, or create/delete new rules.
The rule-set can therefore change dynamically. In addition,
Logsurfer provides the ability to group messages together
via contexts, and triggering actions that take the context as
input. Our approach generalizes from Swatch and Logsurfer
in that it permits state that is carried over across actions. It
also permits to interleave pattern matching and computa-
tions arbitrarily, enabling conditional pattern matching and
gradual refinement.

Many languages can be used for log analysis, going back
to the Awk programming language [2], which was designed
for text processing and data extraction. It is a standard fea-
ture of most Unix-like operating systems. An Awk script
consists of a series of rules with a pattern to match each line
of the input text, and actions that are triggered when the pat-
tern is satisfied. More recently, Sun Microsystems developed
DTrace [10], a tracing framework inspired by Awk with min-
imal performance overhead for troubleshooting kernel and
application problems. Our approach borrows ideas from Awk
with some key differences. Like Awk, CloudLens has a spe-
cial pattern for the end of the stream. In contrast with Awk,
CloudLens views logs as streams of semi-structured objects.
Moreover, the structure of these objects can be progressively
refined over time. This approach facilitates building data in
a hierarchical way, making it easier to express analyses that
need to group or correlate different log entries. CloudLens
scripts can mutate the stream so that later patterns and ac-
tions can be affected by earlier ones. In particular, scripts
can restructure the log stream or buffer and replay it. Lenses
can encapsulate not only helper functions and procedures
but full-fledged log processing tasks.
CloudLens is inspired from dataflow languages [13]. A

script defines a sequence of operations that each log en-
try has to go through. Dataflow languages typically permit
these operations to be organized more freely into graphs

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Mandel, Tardieu, and Vaziri

and worry not only about scheduling but also about routing.
While the graph is elementary in CloudLens, the execution
model remains the same: data tokens flow along the edges
of the graphs from operation to operation according to a
scheduling policy, which in CloudLens essentially amounts
to a FIFO order. What CloudLens lacks in graph flexibility, it
compensates with activation conditions adopting a reactive
style of programming [3]. Operations can mutate the log
entries in order to satisfy the activation conditions of sub-
sequent operations and create chains of operations, but the
order of activations for any given entry is prescribed by the
program order. There are no back edges in the flow graph.
The PADS project is intended to “make it easier for data

analysts to extract useful information from ad-hoc data files”
[8]. PADS languages, e.g., PADS/ML, enable the declarative
specification of data formats. Supporting tools can generate
parsers, converters, checkers for particular formats. As with
CloudLens, PADS is meant for imperfect data. Tools gener-
ated from PADS descriptions can be made tolerant to incon-
sistencies in the actual data. In contrast with CloudLens, how-
ever, PADS assumes that the data is mostly self-consistent
and amenable to precise specification.
Sawzall [11] is a procedural domain specific language to

specify queries on very large data sets. It is implemented on
top of a map-reduce infrastructure and constrains expres-
sivity to maximize parallelism. A Sawzall program specifies
operations to be performed on each record and aggregates
the resulting values. Sawzall’s focus is on efficiently comput-
ing simpler queries. In contrast, our approach emphasizes
expressivity and enforces determinism via a total order of
execution. In principle, we could exploit pipeline parallelism
at the expense of determinism as side effects could occur out
of order.
Splunk [6] is a commercial tool for querying and visu-

alizing textual data including logs. Queries in the Search
Processing Language (SPL) allow pipelines of commands to
search and transform data. Users can create new fields by
parsing data with regular expressions entered in the query.
Arbitrary scripts may be embedded and evaluated inside
queries. CloudLens differs from SPL in that it is imperative:
intermediate results of analyses can be held in state vari-
ables and do not need to be kept as artificial fields inside the
records extracted from log entries. This feature helps to keep
the parsed data separate from intermediate transient results,
and helps to write analyses in a natural way.

8 Conclusion
In this paper, we presented CloudLens an imperative lan-
guage for log processing that views logs as object streams.
CloudLens does not require precise schemas, but enables
localized parsing that can be freely interleaved with com-
putation. CloudLens caters for both finite and infinite log
processing, offline log discovery and online log monitoring.

We focus here on expressivity and helping developers write
interesting analyses easily and with a few lines of code. In
the future, we plan to investigate performance, scalability
and usability. As a first step, we re-implemented CloudLens
as a Swift library.8

References
[1] J. Abrahamson, I. Beschastnikh, Y. Brun, and M. Ernst. 2014. Shedding

Light on Distributed System Executions. In ICSE’14.
[2] A. Aho, B. Kernighan, and P. Weinberger. 1988. The AWK Programming

Language. Addison-Wesley.
[3] E. Bainomugisha, A. L. Carreton, T. van Cutsem, Stijn M., and W. de

Meuter. 2013. A Survey on Reactive Programming. ACM Comput. Surv.
45, 4, Article 52 (Aug. 2013), 34 pages.

[4] I. Beschastnikh, Y. Brun, M. Ernst, and A. Krishnamurthy. 2014. Infer-
ring Models of Concurrent Systems from Logs of Their Behavior with
CSight. In ICSE’14.

[5] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. Ernst. 2011.
Leveraging Existing Instrumentation to Automatically Infer Invariant-
Constrained Models. In FSE’11.

[6] D. Carasso. 2000. Exploring Splunk, Search Processing Language (SPL)
Primer and Cookbook. CITO Research.

[7] L. Columbus. 2016. 2016 Big Data, Advanced Analytics & Cloud
Developer Update: 5.4M Developers Now Building Cloud Apps.
Forbes (Oct. 2016). http://www.forbes.com/sites/louiscolumbus/
2016/10/16/2016-big-data-advanced-analytics-cloud-developer
-update-5-4m-developers-now-building-cloud-apps/.

[8] K. Fisher and D. Walker. 2011. The PADS Project: An Overview. In
ICDT ’11. 11–17.

[9] L. Girardin and D. Brodbeck. 1998. A Visual Approach for Monitoring
Logs. In LISA’98.

[10] B. Gregg and J. Mauro. 2011. DTrace: Dynamic Tracing in Oracle Solaris,
Mac OS X, and FreeBSD. Prentice Hall Professional.

[11] R. Griesemer. 2008. Parallelism by Design: Data Analysis with Sawzall.
In CGO’08.

[12] S. Hansen and T. Atkins. 1993. Automated System Monitoring and
Notification with Swatch. In LISA’93.

[13] W. Johnston, J. R. P. Hanna, and R. Millar. 2004. Advances in Dataflow
Programming Languages. ACM Comput. Surv. 36, 1 (March 2004),
1–34.

[14] B. Kernighan. 1978. UNIX for Beginners. Bell Laboratories.
[15] J. Prewett. 2003. Analyzing cluster log files using Logsurfer. In

ACLC’03.
[16] S. Schneider, I. Beschastnikh, S. Chernyak, M. Ernst, and Y. Brun. 2010.

Synoptic: Summarizing System Logs with Refinement. In SLAML’10.
[17] J. Stearley. 2004. Towards Informatic Analysis of Syslogs. In Cluster’04.
[18] T. Takada and H. Koike. 2002. Information Visualization System for

Monitoring and Auditing Computer Logs. In iV’02.
[19] T. Takada and H. Koike. 2002. Mielog: A Highly Interactive Visual Log

Browser Using Information Visualization and Statistical Analysis. In
LISA’02.

[20] R. Vaarandi. 2003. A Data Clustering Algorithm for Mining Patterns
from Event Logs. In IPOM’03.

[21] W. Xu, L. Huang, A., D. Patterson, and M. Jordan. 2009. Online System
Problem Detection by Mining Patterns of Console Logs. In ICDM’09.

[22] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. 2009. Detecting
Large-Scale System Problems by Mining Console Logs. In SOSP’09.

[23] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. 2010. Experience
Mining Google’s Production Logs. In SLAML’10.

8https://github.com/cloudlens/swift-cloudlens

http://www.forbes.com/sites/louiscolumbus/2016/10/16/2016-big-data-advanced-analytics-cloud-developer-update-5-4m-developers-now-building-cloud-apps/
http://www.forbes.com/sites/louiscolumbus/2016/10/16/2016-big-data-advanced-analytics-cloud-developer-update-5-4m-developers-now-building-cloud-apps/
http://www.forbes.com/sites/louiscolumbus/2016/10/16/2016-big-data-advanced-analytics-cloud-developer-update-5-4m-developers-now-building-cloud-apps/
https://github.com/cloudlens/swift-cloudlens

CloudLens REBLS ’18, November 4, 2018, Boston, MA, USA

A Formal Semantics
The semantics covers all the features discussed in Section 3
except for the syntactic shorthands—process without when
and when without process—and the simple inference of the
missing elements. To improve readability, we require that
process and after sections always return arrays (with zero,
one, or multiple elements) at no loss of expressivity, and
assume that lenses have a single parameter. Generalizing to
zero or multiple parameters is straightforward.

A.1 Syntax
The grammar of CloudLens is the following:

sc ::= ∅ | section sc
section ::= var x = js;

| lens f (x) { sc }
| process(x) when(path) { js }
| after { js }
| f (js)

path ::= x | path.x

A script (sc) is a sequence of sections. There are three kinds of
sections: declarations (var and lens), pipeline stages (process
and after), and lens invocations (f (js)). The ∅ symbol de-
notes the end of the script. Variable initializers, actions (i.e.,
bodies of pipeline stages), arguments of lens invocations
are all JavaScript expressions (js). Activation conditions in
process sections are paths in JSON objects. These conditions
can easily be extended to logic formulas over paths. Variable
names and field names are identifiers (x).
Formally, a log (ℓ) is a right-to-left sequence of values v

terminated by one of two terminators:

ℓ ::= ◦ | • | ℓ · v

The ◦ terminator indicates an empty log, that is, the current
log stream is empty but some more entries can come later.
The • terminator indicates the end of the log. Nomore entries
can come. In particulars, it triggers the execution of after
sections.

We define the operator ⊙ to append a JavaScript array to
a log:

ℓ ⊙ [v1, . . . ,vn−1,vn] = ℓ · vn · vn−1 · . . . · v1

A runtime script (rsc) is a script during its execution. It
contains both the program source and the logs to process by
each sections. Formally, it is:

rsc ::= ∅

| ℓsc
| ℓprocess(x) when(c) { js } rsc
| ℓafter { js } rsc

This definition does not allow for all possible interleavings of
logs and sections. Specifically, it forbids logs to appear to the
right of a variable declaration, a lens declaration, or a lens
invocation. Indeed, we will see below that the operational

semantics erases declarations and inlines lenses as they get
executed.

A.2 Semantics
JavaScript Semantics The semantics of JavaScript expres-
sions is assumed and denoted by the following big step rule
which means that the expression js evaluates in the mem-
ory M to the value v and the new memory state M′:

js/M ⇓ v/M′

CloudLens Semantics We formalize a small-step seman-
tics for CloudLens scripts denoted by the relation:

rsc / M −→ rsc′ / M′

This relation means that the runtime script rsc in the mem-
ory M reduces to rsc′ in the memory M′. It is defined in
Figures 5, 7 and 6 by means of inference rules. Figure 5 spec-
ifies reduction rules, i.e., how each kind of section processes
one log entry. Figure 7 specifies context rules, i.e., the exe-
cution schedule. Figure 6 defines some auxiliary predicates.
We will explain these rules later in the section.

Input log The semantics of the evaluation of a script sc
on the empty input log in the memory M is given by the
reflexive and transitive closure of the relation −→ where the
initial log is •:

•sc / M −→∗ rsc / M′

We only need to consider such logs because scripts can gen-
erate log entries by themselves using combinations of after
and return.

Reduction Rules We now discuss the rules in Figure 5.
Declarations of variables and lenses are handled in a similar
way. The name of the variable or the lens in the residue is
substituted with a reference to a fresh memory location (α).
This location contains for a variable the value obtained by
evaluating the initializer. For a lens, the memory location
contains a synthesized JavaScript function that implements
the lens behavior and an attribute that contains the lens defi-
nition (the packLens predicate is defined Figure 6 (rule 1) and
explained below). The common precondition ℓ , ◦ indicates
that the execution of a declaration is triggered when there
is an entry to process (ℓ = ℓ′ · v) or if this is the end of the
log (ℓ = •). The declarations are removed from the runtime
scripts upon execution. They execute only once.
The first two rules for process evaluate the activation

condition c given an entry to process v . If the condition
evaluates to true, the body of the section is evaluated. We
leverage JavaScript functions for proper variable scoping.
The evaluation of the body returns an array that is converted
to a ◦-terminated log which is transmitted to the next section
of the script. If the condition evaluates to false, the entry ad-
vances untouched. The evaluation of a condition simply tests
that the path mentioned in the condition is not undefined.

REBLS ’18, November 4, 2018, Boston, MA, USA Baudart, Mandel, Tardieu, and Vaziri

ℓ , ◦ α = fresh(M) js[x ← α]/M[α ← undefined] ⇓ v/M′

ℓvar x = js; sc / M −→ ℓsc[x ← α] / M′[α ← v]

ℓ , ◦ α = fresh(M) packLens(lens(x) { scf [f ← α] })/M[α ← undefined] ⇓ p/M′

ℓlens f (x) { scf } sc / M −→ ℓsc[f ← α] / M′[α ← p]

(function (x) { return c !== undefined })(v)/M ⇓ true/M (function (x) { js })(v)/M ⇓ a/M′ ℓ′ = ◦ ⊙ a
ℓ ·vprocess(x) when(c) { js } sc / M −→ ℓprocess(x) when(c) { js } ℓ′sc / M′

(function (x) { return c !== undefined })(v)/M ⇓ false/M
ℓ ·vprocess(x) when(c) { js } sc / M −→ ℓprocess(x) when(c) { js } ◦·v sc / M •process(x) when(c) { js } sc / M −→ •sc / M

ℓ ·vafter { js } sc / M −→ ℓafter { js } ◦·v sc / M

(function () { js })()/M ⇓ a/M′ ℓ′ = • ⊙ a
•after { js } sc / M −→ ℓ′sc / M′

ℓ , ◦ M(f).def = lens(x) { scf } instantiateLens(lens(x) { scf }, js)/M ⇓ sc′f /M
′

ℓ f (js) sc / M −→ ℓsc′f sc / M′

Figure 5. Reduction rules.

The last rule for process handles •. It simply removes the
section from the runtime script as there are no entries left
to process.

The next two rules define the behavior of after. The first
of the two shows that log entries traverse after sections
unchanged. The second rule executes the body of the section
when the end of the log is reached. The section is removed
from the runtime script and • progresses to the next section.
The returned array is converted to a •-terminated log.

The last rule of Figure 5 takes care of lens invocations. As
with declaration rules, the precondition ℓ , ◦ ensures late
instantiation.

Lens Declaration and Invocation Lenses can be invoked
in two different contexts: either as a toplevel section of a
CloudLens script or inside a JavaScript expression to execute
the entire lens on the content of an array. In order to invoke a
lens at toplevel, we need to access its definition. On the other
hand in order to be invoked from JavaScript code, a lens must
present itself as a JavaScript function. This function takes as
arguments the argument of the lens and the array on which
the lens must be applied (see for example the lens filter,
Section 3.7). To be able to have this dual view of a lens, we
use the ability in JavaScript to add fields to functions. It is the
role of packLens in the rule for lens declarations (Figure 5).
The predicate packLens(lens(x) { sc }) is defined in Figure 6.
It creates the following function:

function (x, a) { evalLens(lens(x) { sc }, x, a) }

and adds to this function a field def that contains the lens
definition: lens(x) { sc }.9
The predicate evalLens reifies the CloudLens semantics

inside JavaScript giving the ability to evaluate a CloudLens
script from JavaScript. The definition of evalLens is given
in Figure 6 (rule 2). It instantiates the lens to gets its body,
turns the JavaScript array a into a •-terminated log. Then

9lens(x) { sc } denotes a lens encoded as a JavaScript object. It does not
matter if it is a string, an abstract syntax tree, etc, as long as there exists a
way to evaluate the encoded lens.

it reduces the script on the log until all the elements are
processed. The evaluation of a CloudLens script does not
accumulate the processed log. The result of the evaluation is
null but side effects on the memory are performed.
The predicate instantiateLens defined in Figure 6 (rule 3)

creates a variable x local to the script sc whose initial value
is the result of the evaluation of the expression js. The in-
stantiation returns the body of the lens where the parameter
has been instantiated.
Finally, we return to the lens invocation rule in Figure 5.

This rule uses the def field of the lens to access its defini-
tion and the same instantiateLens predicate for instantiation.
While a lens invocation in JavaScript evaluates the lens on
the array to completion, i.e., on all the array elements at once,
a lens invoked at toplevel in a CloudLens script is simply
inlined into the surrounding script. The inlined sections are
evaluated like any other.

Context Rules We now discuss the rules in Figure 7. The
first two rules state that in a runtime script with multiple log
terms, the execution proceeds with the rightmost log first. In
other words, they define the execution schedule. Combined
with the rules in Figure 5 they specify that the most advanced
entry in a runtime script—rightmost entry—is the first one
to advance.
The last three rules purge useless rightmost log terms

from a runtime script so that the execution can move to the
next log to the left. First, if the rightmost log is empty, it can
be erased. Second, entries that have been through the whole
script can be erased.

CloudLens REBLS ’18, November 4, 2018, Boston, MA, USA

f = function f(x, a) { evalLens(lens(x) { sc }, x, a) } (function (x) { f ; f.def = lens(x) { sc }; return f })()/M ⇓ p/M′

packLens(lens(x) { sc })/M ⇓ p/M′

instantiateLens(lens(x) { sc }, js)/M ⇓ scf /Mf ℓ = • ⊙ a ℓscf / Mf −→
∗ ∅ / M′

evalLens(lens(x) { sc }, js, a)/M ⇓ null/M′
js/M ⇓ v/M ′ α = fresh(M ′)

instantiateLens(lens(x) { sc }, js)/M ⇓ sc[x ← α]/M′[α ← v]

Figure 6. Auxiliary predicates.

rsc / M −→ rsc′ / M′

ℓprocess(x) when(c) { js } rsc / M −→ ℓprocess(x) when(c) { js } rsc′ / M′
rsc / M −→ rsc′ / M′

ℓafter { js } rsc / M −→ ℓafter { js } rsc′ / M′

ℓprocess(x) when(c) { js } ◦section sc / M −→ ℓprocess(x) when(c) { js } section sc / M′

ℓafter { js } ◦section sc / M −→ ℓafter { js } section sc / M′ ℓ∅ / M −→ ∅ / M

Figure 7. Context rules.

	Abstract
	1 Introduction
	2 Overview
	3 The CloudLens Language
	3.1 Match and Process
	3.2 Variables
	3.3 Finite Streams
	3.4 Return
	3.5 Order of Execution
	3.6 Lenses
	3.7 Structured Logs

	4 Intuitive Semantics
	5 Implementation
	6 Case Study
	6.1 Extracting Failures during Builds
	6.2 Transaction Duration
	6.3 Database Operation Latency

	7 Related Work
	8 Conclusion
	References
	A Formal Semantics
	A.1 Syntax
	A.2 Semantics

