
Simulation of Ad hoc Networks in ReactiveML

Farid Benbadis Louis Mandel Marc Pouzet Ludovic Samper

Abstract

This paper presents a programming experiment of complex network routing protocols for mobile ad
hoc networks within the reactive language ReactiveML.

Mobile ad hoc networks are highly dynamic networks characterized by the absence of any physical
infrastructure. In such networks, nodes move, evolve concurrently, and synchronize continuously with
their neighbors. Due to mobility, connections in the network can change dynamically and nodes can join
or leave at any time. All these characteristics — concurrency with many communications and the need
of complex data-structure — combined to our routing protocol specifications make the use of standard
simulation tools (e.g., NS-2, OPNET) inadequate. Moreover network protocols appear to be hard to
program efficiently in conventional programming languages.

In this paper, we show that the synchronous reactive model, as introduced in the pioneering work
of Boussinot, matters for programming such systems. This model provides adequate programming con-
structs — namely synchronous parallel composition, broadcast communication and dynamic creation —
which allow a natural implementation of the hard part of the simulation. This proposition is supported by
two concrete examples: the first one is a routing protocol in mobile ad hoc networks where the simulation
focuses only on the network layer. The second one is the power consumption in sensor networks. Here,
every single layer is faithfully simulated (hardware, MAC, and network layers). More importantly, the
physical environment (e.g., clouds) has also been integrated into the simulation using the tool Lucky.

The implementation has been done in ReactiveML, an embedding of the reactive model inside the
statically typed and strict functional language OCaml. ReactiveML provides reactive programming
constructs together with most of the features of OCaml. Moreover, it provides an efficient execution
scheme for reactive constructs which made the simulation of real-size examples (with thousands of nodes)
feasible.

1 Introduction

Ad hoc networks are highly dynamic networks characterized by the absence of any physical infrastructure.
In this paper, we study two kinds of ad hoc networks: mobile and sensor networks.

Mobile ad hoc networks consist of autonomous nodes that evolve concurrently. Nodes have to synchronize
continuously between each other. Among existing routing systems, age and position based protocols have
recently emerged because of their relatively simple and efficient policies: no location service is required, the
destination position discovery is achieved during the packets forwarding step where nodes take elementary
forwarding decisions based solely on the coordinates of their direct neighbors and the destination [18]. This
avoids the need for topology knowledge beyond one-hop.

A sensor networks is a constrained ad hoc network. It is composed of a large number of sensors (several
thousands). Those nodes are designed to be as small and cheap as possible. Sensor networks can be
deployed in situation with difficult access and/or no available energy. Thus, nodes are power-constrained.
The network has to achieve a certain service for the longest time possible. Because there is no or very few
infrastructure, and because of the size of the network, nodes running out of energy are not replaced. We
can notice that every element of a network has some influence on power consumption: nodes architecture,
radio access functionalities, communication protocols, application, and even network environment which
stimulates sensors.

These networks are typical examples of complex dynamic systems, that is, dynamic systems where both
the state of system and its internal structure evolve during the execution. Ensuring a correct behavior of

1

such a network is challenging, and the best way to tackle this problem is to build models which can be
simulated.

Characteristics of these networks — concurrency with many synchronizations and the need of complex
data-structures — make the use of standard simulation tools such as NS-2 [1] or OPNET [28] maladapted.
Indeed, NS-2 has been originally designed for wired networks and does not correctly handle wireless networks.
In particular, it can only simulate small networks (1000 nodes networks seems to be barely conceivable)
whereas we consider large scale networks.

In this paper, we show that the synchronous reactive model introduced by Boussinot [9, 10, 36] is an appro-
priate model for programming those systems. We argue that this model provides appropriate programming
constructs — synchronous parallel composition with a common global time scale, broadcast communication,
and dynamic creation — making the implementation of the hard part of the network surprisingly simple and
efficient.

The model provides language concurrency as opposed to run-time concurrency: reactive parallel programs
are translated into conventional single-thread, yet efficient programs [2, 8, 12, 39]. Even though a similar
formulation is possible in any conventional programming language using one run-time thread per node, it
would not allow to simulate large networks for clear efficiency reasons.

Network simulators detailed below have been written in ReactiveML (RML for short), an embedding
of the reactive model inside a statically typed, strict functional language [26, 24]. 1 ReactiveML provides
reactive programming constructs with most of the features of OCaml [23]. Reactive constructs give a
powerful way to describe the dynamic part of the system whereas the host language OCaml provides
data-structures for programming the algorithmic part. Moreover, ReactiveML also provides an efficient
execution scheme for reactive constructs which makes the simulation of real-size examples feasible.

The purpose of this paper is to convince of the adequacy of the reactive model for real-size simulation
problems. Ad hoc networks are such systems. As a side-effect, these systems are good examples to compare
the various implementations of the reactive model [2, 12, 39].

The remainder of this paper is organized as follows. Section 2 discusses the adequacy of the programming
model on which ReactiveML is based for programming network simulators. Section 3 presents briefly a
routing protocol and its ReactiveML implementation. This section is to be considered as a tutorial
introduction to the language through an example. In order to ease the presentation, this section provides a
survival kit which can easily be skipped and we only give samples of the code. People interested in the whole
implementation should follow hyperlinks. Section 4 presents the simulation of a complete protocol stack for
sensor networks, taking the physical environment into account. We discuss related works in section 5, and
conclude in section 6.

2 Why ReactiveML matters for programming simulators?

One first observation is that even if there exists many different network simulators, people continue sometimes
to develop their own simulator. Why? Creating your own simulator guaranties that this simulator will
perfectly fit your needs. Indeed, even if some simulators provide several levels of detail (see section 5), a
custom simulator can exactly address the faced problem.

The main point in our approach is to be able to quickly develop a problem specific simulator which is
efficient enough to obtain simulation results.

High level reactive language Writing a simulator from scratch is time consuming but avoids the cost
of learning another simulator. In order to reduce the time and effort needed to write his own simulator,
a high level language is required. ReactiveML, an ML-language, is a high level and formally defined
programming language. Since ReactiveML is an extension of OCaml, it takes advantages of the host
language strengths: 2 a powerful type system, user-definable algebraic data types and pattern matching

1The distribution can be accessed at: http://ReactiveML.org.
2http://caml.inria.fr/about/index.en.html

2

http://www.isi.edu/nsnam/ns
http://www.opnet.com
http://ReactiveML.org
http://caml.inria.fr
http://ReactiveML.org
http://caml.inria.fr/about/index.en.html

and automatic memory management. The expressiveness of the host language is important to manipulate
complex data structures such as nodes or packets.

Moreover, nodes of a network are components which run in parallel. Thus a language that already
contains that primitive of running in parallel is very useful. It is an advantage that ReactiveML have
above the classical programming languages or event driven libraries.

The synchronous approach – The synchronous model is a model of concurrency where there is a notion
of global logical time scale called instants. Parallel composition in this model guaranty that all components
reacts at each instant.

This model of concurrency offers a simple way to express the parallel execution of the network nodes.
We can remark that the synchronous model is not contradictory with the asynchronous aspect of ad hoc

networks. Synchrony only gives the ability to all nodes to react in a fair way like it could be done in an
imperative implementation. For instance, for the simulator presented in the section 4, it was easy to simulate
clock drift of nodes.

Dynamic creation An ad hoc network is a highly dynamic computer system. Nodes can join or leave
the network. These changes in the network topology may depend on the simulation such that the size of the
network cannot be statically computed.

ReactiveML provides high level constructs to kill processes and it gives to the programmer the oppor-
tunity to create during the executions new processes that naturally interact with the other processes.

We present in section 3.4 examples of dynamic aspects. We define a process that dynamically creates
new nodes. We run a simulation that dynamically delete processes and print the memory usage (see fig. 7).
It shows that the OCaml garbage collector works well with ReactiveML programs and thus memory
deallocation is not a worry for the programmer.

Synchronous observers To give information about the behavior of a network simulation, the simulator
has to give outputs to the user. Those outputs can be trace files or graphic windows, for instance. Of course,
printing whatever kind of statistics in a file is easy to achieve in OCaml and thus in ReactiveML. As well,
a graphic library exists in OCaml and can be used in ReactiveML. But a key issue is, will the add of
an observer modify the behavior of the simulation? The synchronous model enables to run the observers in
parallel of the simulation and guaranties that adding one or several observers will not modify the execution
of the simulation.

Example: Viewer Authors of [11] insist on the importance of having a visualization tool that helps
users understand the complex behavior in network simulation. In our opinion, a visualization tool in a
network simulator is essential. It is not only useful in order to give intuition about protocols to develop but
also to aid in debugging both the simulator and the protocol stack.

It would be possible in a ReactiveML simulator to generate a trace file that is compatible with a
visualization tool like Nam [16] (Network Animator, the visualization tool of NS-2). However, the graphic
output of OCaml is very easy to use. It allows a dynamic display of the network.

Synchronous observer is a good design pattern to program a viewer. It does not modify the simulation:
with or without the viewer, the simulations will remain the same.

Moreover, the visualization tool is also self made within the same language as the simulator which lets
the user display just what he need on the graphic output. It can be the collisions, the emission of packets,
or whatever.

Interactive simulations The dynamic viewer presented before allows to build interactive simulations.
We can, for instance, stimulate a node with a mouse click that generates a packet to send.

3

Thanks to the dynamic aspects of ReactiveML, interactive simulations can also be used to add or
remove nodes in a network. For example, a function which creates a new node in the network with a
mouse-click is about ten lines long (see section 3.4).

The interaction between the user and the simulator can also be used for instance to dynamically manage
the observers. Indeed, the graphic window could be removed during execution (to speed up the simulation)
and then displayed again to monitor the simulation.

Simulating the environment: Lucky In wireless networks, data transmission impacts the behavior of
a network. To generate messages, simulators can use statistic laws on nodes. Poisson processes for instance
are often used. This environment modeling shows its limit, especially in the case of sensor networks. A
more accurate modeling of the environment is sometimes needed. Most of classical network simulators do
not integer a way to simulate the environment, in sensor networks a model of the environment appears to be
essential to perform realistic simulations ([34]). Thus people begin to integer environment models in their
simulators, see section 5.

It is possible to simulate the environment by a user interaction as we have seen before. Or it is possible to
describe an environment model directly in ReactiveML. An environment process will then run in parallel
with the rest. A better formalism to describe a non-deterministic environment is Lucky [22]. ReactiveML

provides an interface with Lucky, thus a Lucky process works as an ReactiveML process.
Lucky is described in further detail in the sensor network example, section 4.1.4.

Scalability We would like to emphasis on efficiency. First, a simulator that simulates exactly what is
needed is more efficient than a generic simulator. Second, simulator efficiency depends on the efficiency of
the programming language. ReactiveML is compiled into plain OCaml. Thus, it takes advantage of its
efficient native code compilers. The handling of the concurrency without run-time threads is also a reason
for the language efficiency. More information about ReactiveML implementation can be found in [24].
Last, the efficiency relies on the algorithmic. In section 3.2.3, we illustrate how expressiveness of the reactive
model allows to implement an efficient algorithm to compute the neighborhood of a node.

We illustrate these points on two examples: a mobile ad hoc network [25] and a sensor network [35].

3 Simulation of Mobile Ad hoc Networks

Our first example is a simulator made to evaluate dissemination methods for Age and Position Based (APB)
routing protocols in mobile ad hoc networks.

3.1 Age and Position Based Routing

The main principle of APB routing protocols is that each node may have an information about each other
node’s location. This information is stored in a position table and associated to an age that represents the
time elapsed since the last time the information has been updated. The position table is queried by a packet
to estimate destination’s position.

In this routing methods, destination location discovery is performed during packet transfer: a source node
does not know the destination’s location when it sends the packet, it only has an estimation about it. We
describe the EASE (Exponential Age SEarch) routing method, where a source node s needs to communicate
with a destination d, as follows:3

Set i := 0, age := ∞, a0 := s in
While ai 6= d do

search around ai a node ni such that age(ni, d) ≤ age/2;
age := age(ni, d);

3For more details about EASE, refer to [18]

4

pos(s,d)

s

a1

n1 a2
pos(n1,d)

pos(n2,d)

d

Figure 1: Routing a packet from s to d: anchor nodes a1 and a2 refine estimation of d’s position.

Set m := ai in
While m is not the closest node of pos(ni, d) do

m := next neighbor toward pos(ni, d)
done;
i := i + 1;
ai := m (* the closest node of pos(ni, d) *)

done

where each ai is an anchor node that searches for a better estimation of destination’s position than the
one included in the packet, pos(n1, n2) is n2’s position as known by n1, and age(n1, n2) is the age of this
information. An illustration of this algorithm is represented in Fig. 1.

Two different methods are used to update position tables in APB routing protocols. The first one, LE
(for Last Encounter), introduced in [18], uses encounters between nodes. Each node remembers the location
and time of its last encounter with other nodes. The second method, ELIP (Embedded Location Information
Protocol), uses also encounters between nodes, but disseminates nodes locations in data packets [6]. In this
method, a source node can include its current coordinates in every message it sends in such a way that all
the nodes that participate to the forwarding procedure update their knowledge about the source. The source
node does not always include its position in data packets to reduce the traffic overhead of this disseminating
method.

To simulate these two protocols, we have to represent a set of nodes that evolve in parallel. All of them
move, communicate, and update their local position tables, which contain estimations of all other nodes
coordinates, at every simulation instant.

Our simulator has been conceived in order to compare two dissemination methods to be used in an
APB ad hoc routing algorithm. We did not conceive a generic simulator which can be used for any routing
protocol. Moreover, we do not focus on the routing efficiency of EASE, which has been proven in [18], but
on the performance of ELIP and LE, two dissemination algorithms. The important point is that the two
dissemination algorithms are evaluated in the same conditions. For this reason, we do not consider the
physical and link layers and do not take into account the interferences and packets loss. We only focus on
the network layer, and consider that when a node broadcasts a packet, all its direct neighbors receive it.

3.2 Implementation in ReactiveML

We present here the structure of the simulator and detail some key points. The full implementation is
available at http://ReactiveML.org/spe.

3.2.1 Basic features

ReactiveML is built above OCaml. Every OCaml program (without objects, labels and functors) is a
valid ReactiveML program and ReactiveML code can be linked to any OCaml library. In the following,
we assume that the reader is familiar with functional programming in ML.

5

http://ReactiveML.org/spe/elip
http://ReactiveML.org/spe

A program is a collection of type definitions and values. For example, the following program defines
the type position of positions as a record, and a position pos of this type. Then, it defines the function
distance2 that computes the square of the Euclidean distance between two positions.

type position = { x: int; y: int }

let pos = { x = 4; y = 2 }

val pos : position

let distance2 p1 p2 =

(p2.x - p1.x) * (p2.x - p1.x)

+ (p2.y - p1.y) * (p2.y - p1.y)

val distance2 : position -> position -> int

As for OCaml, the compiler automatically infer types (printed in italic font).
ReactiveML adds to this functional language, the definition of a process. Processes are state machines

whose behavior can be executed through several instants as opposed to functions which are considered to be
instantaneous. Consider, for example, the process hello_world that prints “hello” at the first instant and
“world” at the second one (the pause statement suspends the execution until the next instant):

let process hello_world =

print_string "helloÃ";

pause;

print_string "world"

val hello_world : unit process

This process can be executed by typing: run hello_world.
The expression e1||e2 is the synchronous parallel composition. It executes the expressions e1 and e2 at

each instant. So the execution of the process hello_world_2 prints “hello hello ” at the first instant and
“worldword” at the second one.

let process hello_world_2 =

run hello_world

||

run hello_world

val hello_world_2 : unit process

The construct for/dopar is a parallel iterator. It executes the instances of its body in parallel. The
process hello_world_n executes n instances of hello_world in parallel.

let process hello_world_n n =

for i = 1 to n dopar

run hello_world

done

val hello_world_n : int -> unit process

Communication between parallel processes is made by broadcasting signals. A signal can be emitted
(emit) and awaited (await). There is also suspension (do/when) and preemption (do/until) constructs
that use signals. We illustrate these constructs with a ping_pong process that prints alternatively ping and
pong.

let process ping_pong =

6

signal s1, s2 in

loop

await s1;

print_string "ping";

emit s2

end

||

emit s1;

loop

await s2;

print_string "pong";

emit s1

end

val ping_pong : unit process

The construct signal/in declares the two signals s1 and s2. Then, two expressions are executed in parallel.
The first one prints ping and the other one prints pong. Synchronizations are made through the signals s1
and s2.

As it is the case in Esterel, a signal may carry some value and this call for a particular treatment in
case of multi-emission. For example, what is the value of x in the following example where the values 1 and
2 are emitted during the same instant?

emit s 1 || emit s 2 || await s(x) in ...

Several answers are possible. When a valued signal is declared, we have to define how to combine values in
the case of multi-emission on a signal during the same instant. This is achieved with the construct:

signal name default value gather function in expr

Thus, if we want to define the signal s such that it computes the sum of the emitted values, we can write:

signal s default 0 gather (+) in

emit s 1 || emit s 2 || await s(x) in print_int x

(* s : (int, int) event *)

The expression await s(x) in print_int x awaits the first instant in which s is emitted and then, at the
next instant, prints 3 which is the sum of the emitted values. The type (int, int) event of the signal s
states that the emitted values and the combined values are integers.

The type of emitted values on a signal s and the type of the combined value are not necessarily the
same. If τ1 is the type of the value emitted on s and τ2 the type of the combined value, then s is of type
(τ1,τ2) event. In this case, the default value must have type τ2 and the gathering function must have type
τ1 → τ2 → τ2.

In the following example, the signal s collects all the values emitted during the instant:

signal s default [] gather fun x y -> x :: y in

emit s 1 || emit s 2 || await s(x) in ...

(* s : (int, int list) event *)

Here, the default value is the empty list and the gathering function builds the list of emitted values. So the
value of x is the list [2; 1].4 The notation signal s in ... is a shortcut for this gathering function.

We stop this short introduction to ReactiveML here. Various examples of programs can be found at
http://ReactiveML.org.

4The order of the elements of the list associated to s is not specified.

7

http://ReactiveML.org

3.2.2 Data structures

We consider a node n. In order to use an age and position based routing protocol, n needs to know its
position. Global Positioning System (GPS) is the simplest way for a node to discover its location. Moreover,
n needs to continuously store its neighbors’ coordinates. For this purpose, it uses a local position table.
Each entry in this position table looks like this:

[IDa, pos(n, a), date(n, a)]

This entry concerns a node a. pos(n, a) is an estimation of a’s position, and date(n, a) indicates when n has
got this information. We assume here that n knows, thanks to it MAC layer, its immediate neighborhood
which is represented by the set of all the nodes under its radio range.

We then define the type of a node as a record:

type node =

{ id: int;

mutable pos: position;

mutable neighbors: node list;

mutable date: int;

pos_tbl_le: Pos_tbl.t;

pos_tbl_elip: Pos_tbl.t; }

where id is the unique identifier of a node, pos is its current position, represented by its coordinates on a grid
with squares of one meter square, neighbors the list of nodes that are under its coverage range, and date is
the current local date of the node, essentially used to compute the age of other nodes position information.
pos_tbl_le and pos_tbl_elip are the position tables used to simulate the LE and ELIP dissemination
protocols.

The record contains mutable fields which can be modified, and non-mutable fields which are fixed at the
creation of the concerned record. pos_tbl_le and pos_tbl_elip are not mutable because we implement
them as imperative structures in the module Pos tbl.

Packets for age and position based routing protocols contain the following fields: the source and destina-
tion identifiers, an estimation of destination position, the age of this information, and data to be transmitted.
When using ELIP, the packets also contain source node location.

In the simulator, packets do not contain data but contain other information used for statistics computa-
tion. This information is also useful for the graphical interface.

type packet =

{ header: packet_header;

src_id: int;

dest_id: int;

mutable dest_pos: position;

mutable dest_pos_age: int;

(* to compute statistics *)

mutable route: node list;

mutable anchors: node list; }

src_id, dest_id, dest_pos and dest_pos_age are used for routing. route is the list of nodes the packet
traveled through, and anchors is the list of anchor nodes. header indicates if the packet is a LER or an
ELIP packet.

type packet_header =

| H_LE

| H_ELIP of position option

The constructor H_ELIP is associated to a value of type position option such that ELIP packets can
contain the position of the source node or not. The protocol does not always include the position of the
sender in the packet to reduce the overload.

8

http://ReactiveML.org/spe/elip/global.rml.html
http://ReactiveML.org/spe/elip/pos_tbl.rmli.html

3.2.3 The behavior of a node

The simulator engine executes all the nodes in parallel. The behavior of each node is composed of three steps.
All the nodes execute the same step at the same instant. A node (1) moves, (2) discovers its neighborhood,
and (3) routes packets. These steps are combined in a process node which is parameterized by the initial
position of the node pos_init, a function move that computes its next position, and a function make_msg

that creates a list of destinations to reach.5

let process node pos_init move make_msg =

let self = make_node pos_init in

await immediate start;

loop

self.date <- self.date + 1;

(* Moving *)

self.pos <- move self.pos;

emit draw self;

(* Neighborhood discovering *)

...

update_pos_tbl self self.neighbors;

(* Routing *)

pause;

let msg = make_msg self in

...

pause;

end

This process creates a record of type node that represents the internal state of the node. Then, it awaits for
the global signal start to be synchronized with the other nodes. When the signal start is present, the node
enters in the permanent behavior which is executed through three instants. In the first one, a node updates
the local date, moves and emits its new position on the global signal draw for the graphical interface (a
screen-shot is given in Fig. 2). At the end of the first and during the second instant, the new neighborhood
is computed and the position tables are updated using encounters between nodes. The third and last instant
is for routing. By enclosing this part between two pause statements, we guarantee that topology changes
are not possible. We detail now the main steps of the process.

Mobility Nodes movements are parameterized by a mobility function move. This function computes the
new position of a node according to the current position. The move function must have the following
signature:

val move : position -> position

We can implement very simple mobility functions like random moves where a node can move to one of
its eight adjacent positions.

let random pos = translate pos (Random.int 8)

val random : position -> position

(Random.int 8) is the call of the function Random.int of the OCaml standard library and translate

which is a function that returns a new position.

5 http://ReactiveML.org/spe/elip/node.rml.html

9

http://ReactiveML.org/spe/elip/node.rml.html
http://ReactiveML.org/spe/elip/move.rml.html
http://ReactiveML.org/spe/elip/move.rml.html#random
http://ReactiveML.org/spe/elip/move.rml.html#translate
http://ReactiveML.org/spe/elip/node.rml.html

(a) Topology connectivity. Each green line rep-
resents two neighbor nodes, while the black circle
represents one node coverage region.

(b) An example of routing paths using ELIP (blue)
and LE (red) dissemination methods. The red cir-
cle represents the search performed by the anchor
node when using LE.

Figure 2: Screen-shots of the simulator graphical interface.

10

We can also implement more realistic mobility models like the random way-point one. With this mobility
model, a point is chosen randomly in the simulation area and the node moves up to this point. When it
reaches this point, a new one is chosen. This function is interesting because it needs to keep an internal
state.

let random_waypoint pos_init =

let waypoint = ref pos_init in

fun pos ->

if pos = !waypoint

then waypoint := random_pos();

(* move in the direction of !waypoint *)

...

val random_waypoint :

position -> position -> position

The partial application of this function with only one parameter:

random_waypoint (random_pos())

returns a mobility function that can be given as an argument to a node.

Neighborhood In real networks, the neighborhood of a node is obtained thanks to the link layer. By
contrast, in the simulator it has to be computed. Neighborhood discovery is the key point of the efficiency
of the simulator. We first give a simple method to compute the neighbors of a node, then we explain how it
can be improved.

To compute its neighborhood, a node needs to know the position of other nodes. In this first method,
we use a signal hello to gather all nodes coordinates. Each node emits its position on hello such that the
value associated to the signal is the list of all nodes. Thus the code of a node looks like the following (self
is the internal state of the node):

emit hello self;

await hello(all) in

self.node_neighbors <- get_neighbors self all;

The function get neighbors returns the all’s sublist that contains the nodes under the coverage range of
self.

This neighborhood discovery method is very simple but its drawback is that each node has to compute
its distance with all other nodes leading to a quadratic complexity in the number of nodes. To improve this
method, we split the simulation area in small areas and associate a hello signal to each area. That way, a
node has only to compute its distance with the nodes in the areas in which nodes could be under its range.
This is the areas that intersect its covering range.

We consider node n in Fig. 3. A hello signal is associated to each square. Node n sends its position
on the signals associated to the four squares touched by its radio transmission (the four gray squares in this
figure). In the same way, nodes a, b, and c emit their position on the signals associated to the squares that
intersect their coverage range. So, nodes a and c transmit their positions on the signal associated to the
square where n is. n receives the positions of a and c. Using this information, n computes its distance from
a and c and concludes that c is a neighbor while a is not. n does not consider node b because this node does
not emit its position on the signal associated to the square where n is located.

All the hello signals are stored in a two dimensional array hello_array. We define a function get areas

that returns the area of a node and the list of neighbor areas that are under its range.

val get_areas :

position -> (int * int) * (int * int) list

11

http://ReactiveML.org/spe/elip/move.rml.html#random_waypoint
http://ReactiveML.org/spe/elip/move.rml.html#random_waypoint
http://ReactiveML.org/spe/elip/node.rml.html
http://ReactiveML.org/spe/elip/node.rml.html#get_neighbors
http://ReactiveML.org/spe/elip/area.rml.html#get_areas

c

n

a
b

Figure 3: Topology split into multiple squares. Node n emits its position on the gray squares, while it
listens on the one it is located.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1000 2000 3000 4000 5000

tim
e

(s
)

number of nodes

area = 2*range
area = 1000

(a) Mean time for the simulation of one second of
the network in terms of the number of nodes for
two neighborhood discovery methods.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
)

area size

D = 10
D = 20
D = 30

(b) Mean time for the simulation of one second
of the network in terms of the areas size for the
improved method.

Figure 4: Simulation times for neighborhood discovery.

Now the behavior of a node is to emit its position in all the areas under its range and to compute its
distance with all the nodes which have emitted their positions in its area. So the code of the neighborhood
discovery becomes:

(* Compute areas under the coverage range *)

let (i,j) as local_area, neighbor_areas =

get_areas self.pos.x self.pos.y

in

(* Emit the position on each of these areas *)

List.iter

(fun (i,j) -> emit hello_array.(i).(j) self)

(local_area::neighbor_areas);

(* Get the nodes that emits their position *)

await hello_array.(i).(j) (all) in

self.neighbors <- get_neighbors self all;

Fig. 4 shows the effect of the area split on execution time. In Fig. 4(a), we compare the first method,
where all the nodes emit and listen on the same signal, to the second one, where each nodes emits only

12

on the areas under its radio range. Because, in the first method, each node computes its distance to every
other node, the neighborhood discovery procedure spends much more time than in the second method, where
each node computes its distance to the nodes that emit on its adjacent areas only. We observe that for the
simulation of 1500 nodes the second method is twice faster than the first one. Then for 2500 nodes it is 5
times faster and for 5000 nodes it is more than 10 times faster.

We focus now on the second method, which is more appropriate. As we can see in Fig. 4(b), the execution
time depends heavily on the area size. This figure represents the time required for the simulation of a 3000
nodes topology using three different densities (average number of neighbors per node). We observe that
dividing the topology in too many squares is not efficient. In this case, each node emits its position on a
large number of signals, which requires resources. On the other hand, dividing the topology in large squares
implies that a node receives a large number of nodes positions on its signal. It spends then long time to
compute distances with nodes placed far from it. Simulation results show that 2-ranges-sided squares seems
to be a good compromise for the three densities simulated.

Routing The last step in a node execution is the packets routing, which is described in section 3.16 The
important point is that we assume that routing is instantaneous, which means that the topology is fixed
during routing. This scenario is realistic because we assume that nodes move at human speed, while packets
travel at radio waves speed. Topology is then supposed to change at time scale of seconds or longer, while
packets spend at most tens of milliseconds from source to destination. We can then use OCaml functions,
which are supposed instantaneous, to implement the routing protocols.

In the simulator, we compare two location dissemination methods, both of them are combined with
the same forwarding algorithm. This algorithm computes the next node which will receive the packet.
We use a greedy geographical method. The packet is forwarded to the neighbor that is the nearest (for
the Euclidean distance) of the destination. The interesting point in the implementation of the forwarding
algorithm (function forward) is that a node can access without locks or mutex to the internal state of
other nodes executed in parallel to compute the distance between the neighbors to the destination. This
concurrent access to share memory is not a problem in ReactiveML (compare to the preemptive thread
model) because the forward function is instantaneous and nodes do not move during the routing step.

3.2.4 The main process

The main process, which executes the simulation, starts with an initialization part to define simulation
parameters. Then it executes n nodes in parallel (for/dopar is a parallel iterator), the graphical interface
and others synchronous observers.

let process main =

(* Initialization part *)

...

(* Main part *)

begin

for i = 1 to n dopar

let pos = random_pos() in

run (node pos (Move.random_waypoint pos)

Msg.make)

done

||

run (draw_simul draw)

||

...

end

6 http://ReactiveML.org/spe/elip/routing.rml.html

13

http://ReactiveML.org/spe/elip/routing.rml.html
http://ReactiveML.org/spe/elip/routing.rml.html#forward
http://ReactiveML.org/spe/elip/routing.rml.html

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

tim
e

(s
)

number of nodes

D = 20

(a) Simulation times.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
em

or
y

(w
or

ds
)

number of nodes

D = 20

(b) Memory usage in terms of the number of nodes.
For a given number of nodes, the memory need is
constant for the whole simulation.

Figure 5: Simulations depending on the number of nodes with a topology density D=20.

val main : unit process

The structure of this process is the classical structure of the main process of a simulator.

3.3 Analysis

The simulation speed depends on the parameters: number of nodes, coverage range, number of emitted
packets, simulation area size, etc. These parameters are linked through the relative density, given by the
number of nodes per coverage zone, in order to get a realistic simulation environment.

The simulations have been done on the following computer:

PC Dual-PIV 3.2Ghz, RAM 2GB
running Debian Linux 3.1

First, we analyze the ability of our program to simulate large networks. Fig. 5(a) represents the mean
time for the simulation of one second of the life of the network in terms of the number of nodes. We observe
that at about 8000 nodes the execution time becomes suddenly more important. This is due to memory
usage. The memory needed increases with the number of nodes. When there is no more memory available,
the computer swaps. In Fig. 5(b), the memory usage looks like being quadratic in the number of nodes.
This result is natural because each node has a position table that contains positions of all other nodes. To
overcome this limitation, we can limit the number of destination nodes such that only a subset of nodes have
to be in the position tables.

Now, we compare our simulator with NAB (Network in A Box) [15]. NAB is a simulator developed by the
authors of EASE. It is designed to simulate wireless ad hoc and sensor networks. A distinguishing feature
of NAB is that it is written in OCaml.

Fig. 6(a) represents the execution time of one second of the network life. In this simulated network, each
node moves, and emits one packet per second.

Simulation times are longer with NAB than the ReactiveML implementation but this comparison is
unfair. Indeed NAB simulates the MAC layer such that routing a packet is much more time consuming than
in our simulator. Because neighborhood discovery is time consuming (about 25% of the simulation time
with the optimized version), an interesting comparison with NAB is, thus, the packet-free simulations. In
this case, we compare only the neighborhood discovery. The MAC layer does not affect the simulation such
that, the two simulators have to do exactly the same thing. The execution time is given in Fig. 6(b).

14

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

(m
s)

number of nodes

RML, D = 20
NAB, D = 20

(a) With packets emission.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim
e

(m
s)

number of nodes

RML, D = 20
NAB, D = 20

(b) Without packet emission.

Figure 6: Comparison of simulation times, between NAB and ReactiveML simulator, depending on the
number of nodes with a topology density D=20.

Moreover, our simulator uses less memory than NAB. For example, the memory usage for the simulation
of a 5000 nodes network without packet emission is about 550 MB in ReactiveML and 650 MB in NAB.

3.4 Dynamic Extension

In ad hoc networks, protocols must be robust to topology changes, which includes nodes join and leave.
Thus, nodes can be added or removed dynamically.

Preemptible nodes are defined using the construct do/until that executes its body until a signal is
emitted:

let process preemptible_node pos_init move make_msg kill =

do

run (node pos_init move make_msg)

until kill done

Here, when the signal kill is emitted, the node is removed from the simulation.
Fig. 7 gives the memory usage of a simulation where one node is removed at each instant. It shows that

the garbage collector works well and deallocate the memory used by the removed processes.
A more interesting point is the dynamic creation of processes. In ReactiveML, dynamic creation is

made through recursion. We define the recursive process add that creates new nodes as follows:

let rec process add new_node =

await new_node (pos) in

run (add new_node)

||

run (node pos

(random_waypoint (random_pos()))

make_msg)

This process is parameterized by the signal new_node. new_node is emitted (with an initial position)
when a new node has to be created.

15

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 0 1000 2000 3000 4000 5000 6000

M
em

or
y

(w
or

ds
)

Time (number of instants)

heap words
live words

Figure 7: Memory usage of a simulation where a node is removed at each instant.

4 Simulation of Sensor Networks

In this part, we detail the programming of another simulator in ReactiveML. This simulator is dedicated
to sensor networks and, this time, we design a finer simulation, where all the network layers are modeled.
We call it Glonemo (for global network model) [35].

In our example, the network has to warn when a toxic cloud is detected and the goal is to have a global
sensor network simulator that give an accurate estimation of the energy consumption.7

4.1 Structure of the Simulator

4.1.1 Hardware Model

In order to obtain an accurate energy consumption evaluation, a hardware model is needed. Indeed, without
this modeling, the energy would have to be evaluated using other observations (like the number of emitted
packets) and abstractions. The accurate model of the hardware is easily described in ReactiveML, it
contains several automata, one for each consuming part: radio, CPU, and memory.

4.1.2 Medium Access Control

The radio module is an important source of consumption for sensor nodes. To reduce that consumption,
there exists specific Medium Access Control (MAC) protocols for sensor networks. Those protocols usually
minimize the time the radio is alight [30, 14]. Thus, to analyze the energy consumption of a sensor network,
the MAC layer cannot be omitted.

The sensor networks MAC protocol that has been implemented here is a Preamble Sampling MAC
protocol (see Fig. 9 for details), like WiseMAC [14] and BMAC [30]. In the preamble sampling technique,
a preamble precedes each data packet for alerting the receiving node. All nodes in the network sample the
medium with a common period, but their relative schedule offsets are independent. If a node finds the
medium busy after it wakes up and samples the medium, it continues to listen until it receives a data packet
or the medium becomes idle again. The size of the preamble is set to be equal to the preamble sampling
period.

4.1.3 Routing

As for the MAC layer, the routing protocols are also specific in sensor networks. Two of these are flooding
and Directed Diffusion [21]. We implemented both. In flooding, each node receiving a packet repeats it by

7Screen-shot Fig. 8

16

http://ReactiveML.org/spe/glonemo

Figure 8: Screen-shots of the simulator graphical interface. The red disk represents a toxic cloud. Black
disks are nodes without energy.

Preamble DATA

Sleep Sleep Sleep

Carrier Sense, Listen B has a DATA packet to send

Receive

B

A

Figure 9: Medium Access Control: the preamble sampling technique.

17

Sink

Source

Source

Source

(a) Broadcast interest

Sink

Source

Source

Source

(b) Setup gradient

Event

Sink

Source

Source

Source

(c) Send alarm

Figure 10: Routing: An example of directed diffusion.

init perm

T1

T2

Figure 11: The automaton described by Lucky.

broadcasting unless it had previously sent this packet. This mechanism is useful for the network management,
since some messages have to reach the whole network.

Directed diffusion is a data-centric routing used to collect data in sensor networks. In sensor networks,
one (possibly several) node, called “sink”, is usually used or dedicated to collect data from other nodes. This
routing protocol has three steps: (a) first, the sink floods an interest message, which is a task description
to the whole network, (b) the sensors set up gradients, and (c) when a source has data for the interest, it
sends the packet to the sink along the interest’s gradient path. Fig. 10 illustrates this routing protocol on
an example.

4.1.4 Application

A sensor network is dedicated to a particular application. The whole protocol stack depends on this appli-
cation. In our example, the network that we simulate has to send an alarm to the sink in case of a danger
(here that a toxic cloud is detected).

The environment is the source of (almost) all the activity that occurs in the network. It is not realistic to
have independent stimuli that activate the sensors [34]. A sensor network simulator has to include a model
of the environment. The model used here has been implemented using Lucky.

Lucky [22] is a programming language for the description of non deterministic reactive systems. It is a
part of the Lurette [32] tool box, an automatic testing tool for reactive programs.

A Lucky program defines a set of input variables, a set of output variables, and an automaton with
constraints on transitions. The outputs generated respect the constraints that may involve the inputs and
the previous values of the outputs. The execution of a Lucky program is a synchronous system. At each
step, the Lucky process reads the inputs, takes a transition where constraints can be satisfied, and generates
random outputs that satisfy the constraints.

Let us point out that the description of the whole network is in the same formalism. Indeed, Lucky is
actually a reactive language as ReactiveML.

In Glonemo, a toxic cloud moves according to the direction and speed of the wind. The model consists
in two processes, one for a two-dimensional wind, which does not vary a lot and another for a cloud.

The Lucky code for the wind process is the following:

inputs { }

outputs {

18

wind_x : float;

wind_y : float;

}

start_node { init }

transitions {

init -> perm // transition T1

~cond

wind_x = 0.0 and wind_y = 0.0;

perm -> perm // transition T2

~cond

abs (wind_x - pre wind_x) < 1.0 and

abs (wind_y - pre wind_y) < 1.0 and

abs wind_x < 5.0 and abs wind_y < 5.0

}

This Lucky program defines a two states automaton (see Fig. 11) with two output variables wind_x and
wind_y. The constraints on the outputs are defined at the transitions. For those conditions, the keyword of
the language in Lucky is ~cond. Here, transition T1 sets the initial values of wind_x and wind_y to 0.0.
The transition T2 guarantees that, at each activation, the values of the output variables are closed to their
previous values.

The cloud is a disk whose center has the coordinates cloud_x and cloud_y. Similarly, it is defined by
an automaton where wind_x and wind_y are the inputs and cloud_x and cloud_y the outputs.

inputs {

wind_x : float;

wind_y : float;

}

outputs {

cloud_x: float;

cloud_y: float;

}

start_node { init }

transitions {

init -> perm // transition T1

~cond

cloud_x = 0.0 and cloud_y = 0.0;

perm -> perm // transition T2

~cond

(if wind_x >= 0.0

then ((cloud_x - pre cloud_x) >= 0.0

and (cloud_x - pre cloud_x) <= wind_x)

else ((cloud_x - pre cloud_x) <= 0.0

and (cloud_x - pre cloud_x) >= wind_x))

and

(if wind_y >= 0.0

then ((cloud_y - pre cloud_y) >= 0.0

and (cloud_y - pre cloud_y) <= wind_y)

else ((cloud_y - pre cloud_y) <= 0.0

and (cloud_y - pre cloud_y) >= wind_y))

}

19

These Lucky programs can be imported into ReactiveML and turned into processes parameterized by
their input and output variables. Parameters become ReactiveML signals. The behavior of the process is
to read the value associated to the input signals and to emit the value computed by Lucky on the output
signal at each step.

We illustrate it with the following cloud example:

external.luc cloud_lucky

{wind_x : float; wind_y : float;}

{cloud_x: float; cloud_y: float;} = ["cloud.luc"]

val cloud_lucky :

(’a, float) event * (’b, float) event ->

(float, ’c) event * (float, ’d) event ->

unit process

Here, we create a process named cloud_lucky. The inputs wind_x and wind_y must be signals of type
(’a, float) event such that the value associated to the signals are floats. The outputs cloud_x and
cloud_y have type (float, ’a) event since the process emits values of type float. In the same way, we
can create the process wind_lucky.

To observe particular behaviors for the cloud without having to program them, it is useful for the user
to be able to modify the cloud position during the simulation.

When the simulator is executed with a graphical interface, the fan process reads keyboard inputs and
generates a particular wind. This process has the following interface:

val fan :

(float, ’a) event * (float, ’b) event ->

unit process

So, interactive simulations can simply be done by the parallel composition of the processes wind_lucky
and fan. Winds produced by the Lucky process and the fan are combined through the signals wind_x and
wind_y:

signal wind_x default 0.0 gather (+.) in

signal wind_y default 0.0 gather (+.) in

run (wind_lucky () (wind_x,wind_y))

||

run (fan (wind_x,wind_y))

The keyword gather at the declaration of a signal defines how to combine multiple emissions on a signal
at the same instant. Here (+.) means that the wind produces by the process wind_lucky and the wind of
the fan, fan, will be added.

4.2 Benchmarks and Scalability

Sensor networks are huge systems composed by thousands or even millions of nodes. Thus, a simulator
dedicated to sensor networks must be able to simulate such a high number of elements. In this section, we
discuss the capacity of Glonemo to execute such networks. We measure both the time of the simulation
and the memory usage.

Glonemo focuses on the energy consumption. That is why a fine grain simulation is needed. Indeed, to
model the energy consumption in an accurate way, a model of the hardware is introduced in the execution
of the simulator. The time scale for that is really small when compared to the time involved at the network
layers. In Glonemo, the execution of one logical instant represents 10−2 seconds. Thus, to simulate
the behavior of a network during one hour, we need 360000 instants. For a 10000 nodes network, such a
simulation takes about 11 hours. On Fig. 12(a), we print execution time of one single instant in terms of
number of nodes. This time appears to be linear with the number of nodes. For a 140000 nodes network, the

20

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20000 40000 60000 80000 100000 120000 140000

tim
e

(s
)

number of nodes

(a) Simulation times of one logical instant.

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 0 20000 40000 60000 80000 100000 120000 140000

M
em

or
y

(w
or

ds
)

number of nodes

(b) Memory usage.

Figure 12: Simulation times and memory as a function of number of nodes.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07

tim
e

(s
)

number of instants

(a) Simulation times of one logical instant.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07

M
em

or
y

(w
or

ds
)

number of instants

live words
heap words

(b) Memory usage.

Figure 13: Simulation of 10000 nodes during 20 days.

21

execution time of one instant takes about 1.4 second. This is a long simulation but regarding the memory
(Fig. 12(b)), this simulation takes only 700.

On Fig. 13, we plot the speed and memory of a given simulation with a fixed number of nodes. The
memory needed to run the simulation is constant (see Fig. 13(b)). This ensures that a simulation will not
swap during an execution. Moreover, the time spent to execute one instant is constant during the whole
simulation (see Fig. 13(a)). Glonemo, written in ReactiveML, is able to simulate in an accurate way
more than 100000 nodes.

5 Related Works

Network simulators are extensively used in the network community research thus many relevant simulators
have been developed. We describe now the distinguishing features of some of them.

Network simulators In 2000, Breslau et al. [11] defend the need for a single simulator for the research
community. This was the VINT project leading to the NS-2 simulator [1]. Indeed, NS-2 is one of the
most popular simulator in the research community. It is a packet-level simulator, initially designed for
wired networks. NS-2 is a discrete event simulator. The interest of having one single simulator is to enable
comparison between different protocols without the need to implement the protocol we want to compare with.
Indeed, NS-2 offers a large protocol library. However, even if NS-2 provides several levels of abstraction (four
according to [11]), it is more effective to implement the needed exact level of abstraction. This is why
some people still write stand-alone simulators. Moreover, NS-2 is not really scalable and is convenient for
simulating a few hundred of nodes only.

To overcome the scalability limitation of NS-2, people propose Parallel Discrete Event Simulation [17]
where the simulator is distributed among several machines. GTNetS [33] is developed with this paradigm.
This is a complementary approach to a centralized implementation as provided in ReactiveML. The two
dedicated simulators implemented in ReactiveML appear to be scalable enough to run on a single machine.

NAB [15] is a network simulator written in ML. The arguments for using ML instead of C are the same
as ours, but ReactiveML provides parallelism as a primitive construct.

Network simulators for sensor networks Sensor networks are a new kind of ad hoc networks that
interest the research community. Those networks have different characteristics and new constraints, thus
new simulators are needed. Because one of the key issue in sensor networks is the power consumption, people
began to develop simulators that take into account the energy consumption. Avrora [40] and Atemu [31] are
cycle-accurate simulators (RTL level). With that level of details, scalability is probably hopeless.

Environment simulators for wireless sensor networks The classical network simulator do not have
realistic environment models. People from the field of sensor network simulation are faced with the issue
of having a model of the physical environment that activates the sensors. We present in this section the
existing approach.

Sridharan et al [38] propose to link a Matlab environment simulator with the sensor network simulator
TOSSIM. Their approach suits their problem: the example taken is the monitoring of the health of a
building structure. This is modeled as a state-space system which follows a differential equation. Matlab is
appropriate for that application because it is dedicated to solve differential equations.

The analogy consists in assuming that phenomena that sensors have to detect propagate as the radio
waves. Of course, phenomena are not relayed by nodes as radio packets could be relayed. For example, if the
network has to warn in case of earthquake, the phenomenon to detect is the earth tremor. Earth tremors
propagate, thus to model this environment, we need the position of the earthquake’s focus (or epicenter) and
a model of propagation for the seismic waves.

Several sensor network simulators (SensorSim [29], J-Sim [37] and an extension of NS-2 by Downard [13])
implement a sensor channel.

22

In this case it is ok but for other environments we cannot always assume that phenomena propagate. For
instance, a cloud does not propagate, it moves.

Some approaches define new propagation models: Seismic and Acoustic in J-Sim. Others use the radio
propagation model of their simulator to model the propagation of the phenomenon. This modeling is even
less precise.

In our approach, with Lucky, we can be more general, we manage to model different kind of environment.

Reactive and Synchronous Languages Compared to other implementations of the reactive model such
as SugarCubes [10] or FairThreads [36] that propose a “library” approach, ReactiveML proposes a
language approach. Reactive library gives access to all the features of the host language and is relatively light
to implement. Nonetheless, this approach can lead to confusions between values from the host language used
for programming the instant and reactive constructs. This can lead to re-entrance phenomena which are
usually detected by run-time tests. Moreover, signals in the reactive model are subject to dynamic scoping
rules, making the reasoning on programs hard.

Even if the reactive model is based on the synchronous one as it can be found in Lustre [20], Signal [19]
or Esterel [7], it would be difficult to implement a simulator in these languages. They are designed for the
programming of safety critical applications. They must guaranty execution in bounded time and memory.
So, dynamic creation is forbidden. This is a strong limitation for dynamic systems simulation such as ad
hoc networks. Moreover the use of complex data structures that are shared between the reactive part and
the computational one would be difficult.

6 Conclusion and Perspectives

From the observation that generic network simulators are not always satisfactory and that users still develop
their own simulators from scratch, we propose the use of the reactive model to program them. This model
is dedicated to the programming of systems with a large number of parallel processes and communications.
This is typically the case of network simulators.

Two different simulators have been considered: a coarse-grained one (ELIP) and a fine-grained one
(Glonemo). Both simulators, with the graphical interface, were defined in less than 2000 lines of Reac-

tiveML. It is easy to define data structures describing nodes and packets. Moreover, the reactive model
appeared to be well adapted for both the description of mobility in ELIP and to the modular description of
the different network layers in Glonemo. Finally, the underlined model of concurrency of reactive programs
states that every node of the network reacts synchronously during an instant. This makes the correspondence
between the logical time and the simulation time.

The link between ReactiveML and Lucky allowed to simulate the physical external environment in
Glonemo. This point is particularly important for sensor networks since a naive model of the environment
does not give relevant simulation results.

Simulators were efficient enough and robust to obtain useful simulation metrics [4, 5, 6]. It is clearly
possible to develop more efficient simulators than ELIP and Glonemo but it appears that there was a good
compromise between the development time and the simulators efficiency.

This work offers several perspectives, some concerning the simulators by themselves and some concerning
ReactiveML. For the Glonemo simulator, it would be interesting to have several levels of simulation: a
fine-grained simulator in order to obtain an accurate estimation of the energy consumption, and a faster
simulator which gives information about higher layers. Understanding how to write such a multi-level
simulator is a challenging direction.

Another direction is the use of formal validation techniques and tools for reactive programs. Technically,
this means extracting models in a form usable by the validation tools. In Glonemo, for example, we would
like to prove two kinds of properties. The first one is the validation of the abstractions that are needed for the
model to be of a reasonable complexity. For instance, we think that we should never include a full description
of the hardware to the model, at the abstraction level which is needed for precise energy evaluations, i.e.,
the RTL (Register Transfer Level) level. But if we include an abstraction of it, we should prove that: (a) an

23

abstraction of the real hardware is required, and (b) the composition with the rest of the model preserves
this abstraction. The second kind is the verification of global properties such as: after time T, the system
still has more than x % of nodes alive. Verifying reactive programs with dynamic creation of processes is
still largely an open problem. Establishing close relations between the reactive model and process algebra
could give some useful insight [3].

The key perspective is to use ReactiveML not only to simulate ad hoc networks but also other embedded
systems. There is a first experiment with the simulation of a gyroscopic system. This example is taken from
the avionic industry. It deals with the treatment of position variations of an airplane [27]. An interesting
point here is how to extract the embedded (real-time) software from the ReactiveML program.

References

[1] The Network Simulator - ns-2.

[2] Raúl Acosta-Bermejo. Rejo - Langage d’Objets Réactifs et d’Agents. PhD thesis, Ecole des Mines de
Paris, 2003.

[3] R.M. Amadio and F. Dabrowski. Feasible reactivity for synchronous cooperative threads. In Extended
abstract presented at the workshop Expressiveness in Concurrency, San Francisco, September 2005.

[4] F. Benbadis, M. Dias de Amorim, and S. Fdida. 3P: Packets for positions prediction. In Proceedings of
IEEE INFOCOM students workshop’05, Miami, FL, USA, 2005.

[5] F. Benbadis, M. Dias de Amorim, and S. Fdida. Dissémination prédictive des coordonnées pour le
routage géographique basé sur l’âge. In Proceedings of CFIP 2005 Conference, Bordeaux, France, 2005.

[6] F. Benbadis, M. Dias de Amorim, and S. Fdida. ELIP: Embedded location information protocol. In
Proceedings of IFIP Networking 2005 Conference, Waterloo, Canada, 2005.

[7] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language,
and Interaction: Essays in Honour of Robin Milner, pages 425–454. MIT Press, 2000.

[8] Frédéric Boussinot. Concurrent programming with Fair Threads: The LOFT language, 2003.

[9] Frédéric Boussinot and Robert de Simone. The SL synchronous language. Software Engineering,
22(4):256–266, 1996.

[10] Frédéric Boussinot and Jean-Ferdy Susini. The SugarCubes tool box : A reactive java framework.
Software Practice and Experience, 28(4):1531–1550, 1998.

[11] Lee Breslau, Deborah Estrin, Kevin R. Fall, Sally Floyd, John S. Heidemann, Ahmed Helmy, Polly
Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in network simulation.
IEEE Computer, 33(5):59–67, 2000.

[12] Christian Brunette. Construction et simulation graphiques de comportements: le modèle des Icobjs.
PhD thesis, Université de Nice-Sophia Antipolis, 2004.

[13] Ian Downard. Simulating sensor networks in ns-2, 2005.

[14] Christian C. Enz, Amre El-Hoiydi, Jean-Dominique Decotignie, and Vincent Peiris. Wisenet: An
ultralow-power wireless sensor network solution. IEEE Computer, 37(8):62–70, 2004.

[15] EPFL. Network in A Box.

[16] Deborah Estrin, Mark Handley, John Heidemann, Steven McCanne, Ya Xu, and Haobo Yu. Network
visualization with nam, the vint network animator. Computer, 33(11):63–68, 2000.

24

[17] Richard M. Fujimoto, Kalyan S. Perumalla, Alfred Park, Hao Wu, Mostafa H. Ammar, and George F.
Riley. Large-scale network simulation: How big? how fast? In MASCOTS, page 116. IEEE Computer
Society, 2003.

[18] Matthias Grossglauser and Martin Vetterli. Locating nodes with EASE: Last encounter routing in ad
hoc networks through mobility diffusion. In Proceedings of IEEE Infocom, March 2003.

[19] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Lemaire. Programming real-time applications with
signal. Proc. of the IEEE, 79(9):1321–1336, September 1991.

[20] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow programming language
lustre. Proc. of the IEEE, 79(9):1305–1320, September 1991.

[21] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In MOBICOM, pages 56–67, 2000.

[22] Erwan Jahier and Pascal Raymond. The lucky language reference manual. Technical report, Unité
Mixte de Recherche 5104 CNRS - INPG - UJF, 2004.

[23] Xavier Leroy. The Objective Caml system release 3.09. Documentation and user’s manual. Technical
report, INRIA, 2006.

[24] Louis Mandel. Conception, Sémantique et Implantation de ReactiveML : un langage à la ML pour la
programmation réactive. PhD thesis, Université Paris 6, 2006.

[25] Louis Mandel and Farid Benbadis. Simulation of mobile ad hoc network protocols in ReactiveML. In
Synchronous Languages, Applications, and Programming (SLAP’05), Edinburgh, Scotland, April 2005.
ENTCS.

[26] Louis Mandel and Marc Pouzet. ReactiveML, a reactive extension to ML. In ACM International
conference on Principles and Practice of Declarative Programming (PPDP’05), Lisbon, Portugal, July
2005.

[27] Lionel Morel and Louis Mandel. Executable contracts for incremental prototypes of embedded systems.
Submitted to publication, 2006.

[28] OPNET Modeler. http://www.opnet.com.

[29] Sung Park, Andreas Savvides, and Mani B. Srivastava. Sensorsim: a simulation framework for sensor
networks. In MSWIM ’00: Proceedings of the 3rd ACM international workshop on Modeling, analysis
and simulation of wireless and mobile systems, pages 104–111, New York, NY, USA, 2000. ACM Press.

[30] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access for wireless sensor
networks. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 95–107, New York, NY, USA, 2004. ACM Press.

[31] Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan Rusk, and John S. Baras. ATEMU: A
Fine-grained Sensor Network Simulator. Secon, 2004.

[32] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive systems. In 19th
IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.

[33] George F. Riley. The georgia tech network simulator. In MoMeTools ’03: Proceedings of the ACM
SIGCOMM workshop on Models, methods and tools for reproducible network research, pages 5–12, New
York, NY, USA, 2003. ACM Press.

25

http://www.opnet.com

[34] Ludovic Samper, Florence Maraninchi, Laurent Mounier, Erwan Jahier, and Pascal Raymond. On the
importance of modeling the environment when analyzing sensor networks. In Proceedings of Interna-
tional Workshop on Wireless Ad-Hoc Networks 2006 (IWWAN 2006), page 7, New York, United States,
June 2006.

[35] Ludovic Samper, Florence Maraninchi, Laurent Mounier, and Louis Mandel. GLONEMO: Global and
accurate formal models for the analysis of ad-hoc sensor networks. In Proceedings of the First Inter-
national Conference on Integrated Internet Ad hoc and Sensor Networks (InterSense’06), Nice, France,
May 2006.

[36] Manuel Serrano, Frédéric Boussinot, and Bernard Serpette. Scheme fair threads. In Proceedings of the
6th ACM SIGPLAN international conference on Principles and practice of declarative programming,
pages 203–214. ACM Press, 2004.

[37] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan Kung, Ning Li, Hyuk Lim, Hung-Ying
Tyan, and Honghai Zhang. J-sim: A simulation environment for wireless sensor networks. In Annual
Simulation Symposium, pages 175–187, 2005.

[38] Avinash Sridharan, Marco Zuniga, and Bhaskar Krishnamachari. Integrating environment simulators
with network simulators. Technical report, University of Southern California, 2004.

[39] Jean-Ferdinand Susini. L’approche réactive au dessus de Java : sémantique et implémentation des
SugarCubes et de Junior. PhD thesis, Ecole des Mines de Paris, 2001.

[40] Ben L Titzer, Daniel K Lee, and Jens Palsberg. Avrora: Scalable Sensor Network Simulation with
Precise Timing. Proceedings of IPSN, 2005.

26

	Introduction
	Why ReactiveML matters for programming simulators?
	Simulation of Mobile Ad hoc Networks
	Age and Position Based Routing
	Implementation in ReactiveML
	Basic features
	Data structures
	The behavior of a node
	The main process

	Analysis
	Dynamic Extension

	Simulation of Sensor Networks
	Structure of the Simulator
	Hardware Model
	Medium Access Control
	Routing
	Application

	Benchmarks and Scalability

	Related Works
	Conclusion and Perspectives

