
Probabilistic Reactive Programming
Louis Mandel, Guillaume Baudart, Avraham Shinnar, Kiran Kate, Martin Hirzel

IBM Research

References:
Benveniste, Caspi, Edwards, Halbwachs, Le Guernic, Simone.
2003. The Synchronous 203 Languages 12 Years Later.
Mandel, Pasteur, Pouzet, 2015. ReactiveML 10 years later.
Goodman, Stuhlmüller, 2014. The Design and Implementation
of Probabilistic Programming Languages
Ritchie, Stuhlmüller, Goodman, 2016. C3: Lightweight
Incrementalized MCMC for Probabilistic Programs using
Continuations and Callsite Caching

Reactive Programming Languages: 
DSL to program reactive systems

Intuitive formalism
Dedicated analysis
Optimized code generation

Reactive Systems:  
Interaction with the environment

Non terminating processes
Can not be re-executed

WebPPL: Probabilistic programming
sample: draw a value from a distribution
factor: penalize execution path
infer: compute the distribution

Programming reactive
systems with uncertainty

ReactiveML: Reactive extension of OCaml
Synchronous model: logical time
||: parallel composition
signal/emit/await: communication
until/when: control structures

Challenges
Mixing deterministic and probabilistic parts

Probabilistic: observe external inputs
Deterministic: access inferred distributions 

Handle state in reactive control structures
Parallel composition
Internal communication  

Inference on non-terminating functions
Sequential Monte-Carlo

Real-time vs. non real-time applications
Relax the non-rollback constraint

Probabilistic Reactive Models  
Extend ReactiveML with probabilistic constructs

Possible Applications
Online time series prediction
Agent based systems
Infrastructure self-tuning

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Probabilistic Reactive Programming
Louis Mandel Guillaume Baudart Avraham Shinnar Kiran Kate Martin Hirzel

IBM Research

Abstract
Modeling reactive systems with uncertainty is challenging
because reactive systems typically run without terminating,
interact with an external environment, and evolve during
execution. To facilitate the modeling of such systems, we
propose a programming language that mixes features from
both probabilistic and reactive languages. It can express prob-
abilistic reactive models with complex dynamics.

1 Probabilistic Reactive Models
A reactive system is a system in continuous interaction with
its environment. Reactive programming languages are do-
main speci�c languages designed to facilitate the implemen-
tation of reactive systems, o�ering intuitive formalisms, ded-
icated analyses, and optimized code generation.
We propose to extend a reactive programming language

to allow probabilistic programming of reactive models. Ex-
amples of probabilistic reactive systems include online time-
series prediction, agent-based systems, or infrastructure self-
tuning. This paper proposes a probabilistic extension to Reac-
tiveML,1 which is itself a reactive extension of OCaml2 that
supports parallel composition of processes, communication
through signals, preemption, and suspension. ReactiveML is
based on the synchronous model [1] that provides a notion
of global logical time de�ned as a succession of instants. Fol-
lowing [7, 8], we add probabilistic constructs to ReactiveML:
sample, to draw a value from a distribution, factor, to pe-
nalize execution paths based on observations, and infer, to
compute the distribution de�ned by a process. We also add
the construct propose to expose the state of a model during
the inference.

Consider the example of a Hidden Markov Model (HMM)
that continuously tracks the positions pt of a moving object
from noisy observations ot (Figure 1).
1 let rec process hmm obs p_prev =

2 await obs([o_t]) in

3 let p_t = sample (sph_gaussian p_prev speed) in

4 factor (score (sph_gaussian p_t noise) o_t);

5 propose p_t;

6 run hmm obs p_t

A process is a function that runs over multiple time instants.
Line 1 de�nes a recursive process hmm with two arguments
obs and p_prev. A signal is a communication channel be-
tween processes. Line 2 waits to receive a new observa-
tion o_t (ot in Figure 1) from input signal obs. After re-
ception, Line 3 samples the current position p_t (pt) from
1h�p://reactiveml.org
2h�ps://ocaml.org

p0

o0

. . . pt�1

ot�1

pt

ot

pt+1

ot+1

. . .

Figure 1. A simple Hidden Markov Model (HMM)

a Gaussian centered on the previous position p_prev (pt�1),
and Line 4 conditions on the current observation. The score
function returns the log-probability of a sample, which is
used here as a measure of how far the sample is from the
observation. The values speed and noise are parameters of
the hmm de�ned as global constants. Line 5 emits the position
on an implicit output signal for use as a distribution outside
of the hmm process. Line 6 re-launches the process for the
next step, creating an in�nite loop.

The main process drives the inference and manages com-
munication with the environment.
1 let process main =

2 signal obs in

3 signal p_dist in

4 run sensor obs ||

5 infer ~output:p_dist (hmm obs [0.;0.]) ||

6 run display p_dist

sensor

obs

infer hmm

p_dist

display

Lines 2–3 declare the communication channels and Lines 4–6
is the parallel composition of three processes. Line 5 launches
probabilistic inference on the hmm process. The �rst argu-
ment of infer (p_dist) is a signal on which the inferred
distribution of positions is emitted after each observation.
Lines 4 and 6 realize the interface with the environment via
two processes sensor and display running in parallel with
the inference. The process sensor emits noisy positions ob-
served from the environment on signal obs, and the process
display visualizes the distribution of inferred positions.

2 Design Choices
In the previous example probabilistic constructs are used
inside arbitrary ReactiveML code. Compared to other proba-
bilistic languages where inference is executed on terminating
functions without side e�ects, the main challenge is to run
the inference on non-terminating probabilistic processes that
communicate with the environment.

Instantaneous models. We initially designed a less expres-
sive version of probabilistic ReactiveML, but determined that
it was insu�cient. The previous version limited inference
to instantaneous functions, that is, pure OCaml code with-
out reactive constructs. Adding this feature to ReactiveML

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Probabilistic Reactive Programming
Louis Mandel Guillaume Baudart Avraham Shinnar Kiran Kate Martin Hirzel

IBM Research

Abstract
Modeling reactive systems with uncertainty is challenging
because reactive systems typically run without terminating,
interact with an external environment, and evolve during
execution. To facilitate the modeling of such systems, we
propose a programming language that mixes features from
both probabilistic and reactive languages. It can express prob-
abilistic reactive models with complex dynamics.

1 Probabilistic Reactive Models
A reactive system is a system in continuous interaction with
its environment. Reactive programming languages are do-
main speci�c languages designed to facilitate the implemen-
tation of reactive systems, o�ering intuitive formalisms, ded-
icated analyses, and optimized code generation.
We propose to extend a reactive programming language

to allow probabilistic programming of reactive models. Ex-
amples of probabilistic reactive systems include online time-
series prediction, agent-based systems, or infrastructure self-
tuning. This paper proposes a probabilistic extension to Reac-
tiveML,1 which is itself a reactive extension of OCaml2 that
supports parallel composition of processes, communication
through signals, preemption, and suspension. ReactiveML is
based on the synchronous model [1] that provides a notion
of global logical time de�ned as a succession of instants. Fol-
lowing [7, 8], we add probabilistic constructs to ReactiveML:
sample, to draw a value from a distribution, factor, to pe-
nalize execution paths based on observations, and infer, to
compute the distribution de�ned by a process. We also add
the construct propose to expose the state of a model during
the inference.

Consider the example of a Hidden Markov Model (HMM)
that continuously tracks the positions pt of a moving object
from noisy observations ot (Figure 1).
1 let rec process hmm obs p_prev =

2 await obs([o_t]) in

3 let p_t = sample (sph_gaussian p_prev speed) in

4 factor (score (sph_gaussian p_t noise) o_t);

5 propose p_t;

6 run hmm obs p_t

A process is a function that runs over multiple time instants.
Line 1 de�nes a recursive process hmm with two arguments
obs and p_prev. A signal is a communication channel be-
tween processes. Line 2 waits to receive a new observa-
tion o_t (ot in Figure 1) from input signal obs. After re-
ception, Line 3 samples the current position p_t (pt) from
1h�p://reactiveml.org
2h�ps://ocaml.org

p0

o0

. . . pt�1

ot�1

pt

ot

pt+1

ot+1

. . .

Figure 1. A simple Hidden Markov Model (HMM)

a Gaussian centered on the previous position p_prev (pt�1),
and Line 4 conditions on the current observation. The score
function returns the log-probability of a sample, which is
used here as a measure of how far the sample is from the
observation. The values speed and noise are parameters of
the hmm de�ned as global constants. Line 5 emits the position
on an implicit output signal for use as a distribution outside
of the hmm process. Line 6 re-launches the process for the
next step, creating an in�nite loop.

The main process drives the inference and manages com-
munication with the environment.
1 let process main =

2 signal obs in

3 signal p_dist in

4 run sensor obs ||

5 infer ~output:p_dist (hmm obs [0.;0.]) ||

6 run display p_dist

sensor

obs

infer hmm

p_dist

display

Lines 2–3 declare the communication channels and Lines 4–6
is the parallel composition of three processes. Line 5 launches
probabilistic inference on the hmm process. The �rst argu-
ment of infer (p_dist) is a signal on which the inferred
distribution of positions is emitted after each observation.
Lines 4 and 6 realize the interface with the environment via
two processes sensor and display running in parallel with
the inference. The process sensor emits noisy positions ob-
served from the environment on signal obs, and the process
display visualizes the distribution of inferred positions.

2 Design Choices
In the previous example probabilistic constructs are used
inside arbitrary ReactiveML code. Compared to other proba-
bilistic languages where inference is executed on terminating
functions without side e�ects, the main challenge is to run
the inference on non-terminating probabilistic processes that
communicate with the environment.

Instantaneous models. We initially designed a less expres-
sive version of probabilistic ReactiveML, but determined that
it was insu�cient. The previous version limited inference
to instantaneous functions, that is, pure OCaml code with-
out reactive constructs. Adding this feature to ReactiveML

1

Hybrid Application

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Probabilistic Reactive Programming
Louis Mandel Guillaume Baudart Avraham Shinnar Kiran Kate Martin Hirzel

IBM Research

Abstract
Modeling reactive systems with uncertainty is challenging
because reactive systems typically run without terminating,
interact with an external environment, and evolve during
execution. To facilitate the modeling of such systems, we
propose a programming language that mixes features from
both probabilistic and reactive languages. It can express prob-
abilistic reactive models with complex dynamics.

1 Probabilistic Reactive Models
A reactive system is a system in continuous interaction with
its environment. Reactive programming languages are do-
main speci�c languages designed to facilitate the implemen-
tation of reactive systems, o�ering intuitive formalisms, ded-
icated analyses, and optimized code generation.
We propose to extend a reactive programming language

to allow probabilistic programming of reactive models. Ex-
amples of probabilistic reactive systems include online time-
series prediction, agent-based systems, or infrastructure self-
tuning. This paper proposes a probabilistic extension to Reac-
tiveML,1 which is itself a reactive extension of OCaml2 that
supports parallel composition of processes, communication
through signals, preemption, and suspension. ReactiveML is
based on the synchronous model [1] that provides a notion
of global logical time de�ned as a succession of instants. Fol-
lowing [7, 8], we add probabilistic constructs to ReactiveML:
sample, to draw a value from a distribution, factor, to pe-
nalize execution paths based on observations, and infer, to
compute the distribution de�ned by a process. We also add
the construct propose to expose the state of a model during
the inference.

Consider the example of a Hidden Markov Model (HMM)
that continuously tracks the positions pt of a moving object
from noisy observations ot (Figure 1).
1 let rec process hmm obs p_prev =

2 await obs([o_t]) in

3 let p_t = sample (sph_gaussian p_prev speed) in

4 factor (score (sph_gaussian p_t noise) o_t);

5 propose p_t;

6 run hmm obs p_t

A process is a function that runs over multiple time instants.
Line 1 de�nes a recursive process hmm with two arguments
obs and p_prev. A signal is a communication channel be-
tween processes. Line 2 waits to receive a new observa-
tion o_t (ot in Figure 1) from input signal obs. After re-
ception, Line 3 samples the current position p_t (pt) from
1h�p://reactiveml.org
2h�ps://ocaml.org

p0

o0

. . . pt�1

ot�1

pt

ot

pt+1

ot+1

. . .

Figure 1. A simple Hidden Markov Model (HMM)

a Gaussian centered on the previous position p_prev (pt�1),
and Line 4 conditions on the current observation. The score
function returns the log-probability of a sample, which is
used here as a measure of how far the sample is from the
observation. The values speed and noise are parameters of
the hmm de�ned as global constants. Line 5 emits the position
on an implicit output signal for use as a distribution outside
of the hmm process. Line 6 re-launches the process for the
next step, creating an in�nite loop.

The main process drives the inference and manages com-
munication with the environment.
1 let process main =

2 signal obs in

3 signal p_dist in

4 run sensor obs ||

5 infer ~output:p_dist (hmm obs [0.;0.]) ||

6 run display p_dist

sensor

obs

infer hmm

p_dist

display

Lines 2–3 declare the communication channels and Lines 4–6
is the parallel composition of three processes. Line 5 launches
probabilistic inference on the hmm process. The �rst argu-
ment of infer (p_dist) is a signal on which the inferred
distribution of positions is emitted after each observation.
Lines 4 and 6 realize the interface with the environment via
two processes sensor and display running in parallel with
the inference. The process sensor emits noisy positions ob-
served from the environment on signal obs, and the process
display visualizes the distribution of inferred positions.

2 Design Choices
In the previous example probabilistic constructs are used
inside arbitrary ReactiveML code. Compared to other proba-
bilistic languages where inference is executed on terminating
functions without side e�ects, the main challenge is to run
the inference on non-terminating probabilistic processes that
communicate with the environment.

Instantaneous models. We initially designed a less expres-
sive version of probabilistic ReactiveML, but determined that
it was insu�cient. The previous version limited inference
to instantaneous functions, that is, pure OCaml code with-
out reactive constructs. Adding this feature to ReactiveML

1

(* Input from the environment *)

(* Publish a probabilistic value *)

Example: Hidden Markov Model

D
e
m
o
:
H
id
d
e
n
M
a
rk
o
v
M
o
d
e
l

l
e
t

r
e
c
p
r
o
c
e
s
s

h
m
m
n
o
i
s
y
_
p
o
s

p
_
p
r
e
v

=
a
w
a
i
t

n
o
i
s
y
_
p
o
s
(
[
o
_
t
]
)

i
n

l
e
t
p
_
t

=
s
a
m
p
l
e

(
s
p
h
_
g
a
u
s
s
i
a
n

p
_
p
r
e
v

s
p
e
e
d
)
i
n

f
a
c
t
o
r

(
s
c
o
r
e

(
s
p
h
_
g
a
u
s
s
i
a
n

p
_
t
n
o
i
s
e
)
o
_
t
)
;

p
r
o
p
o
s
e

p
_
t
;

r
u
n
h
m
m

n
o
i
s
y
_
p
o
s

p
_
t

l
e
t

p
r
o
c
e
s
s

m
a
i
n

=
s
i
g
n
a
l

n
o
i
s
y
_
p
o
s

i
n

s
i
g
n
a
l

p
o
s
_
d
i
s
t

i
n

r
u
n
s
e
n
s
o
r

n
o
i
s
y
_
p
o
s

|
|

i
n
f
e
r

~
o
u
p
u
t
:
p
o
s
_
d
i
s
t

(
h
m
m

n
o
i
s
y
_
p
o
s

[
0
.
;

0
.
]
)

|
|

r
u
n
d
i
s
p
l
a
y

n
o
i
s
y
_
p
o
s

p
o
s
_
d
i
s
t

8

Inference: Particles filter on execution paths
Non terminating function
propose during execution
No rollback

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Probabilistic Reactive Programming
Louis Mandel Guillaume Baudart Avraham Shinnar Kiran Kate Martin Hirzel

IBM Research

Abstract
Modeling reactive systems with uncertainty is challenging
because reactive systems typically run without terminating,
interact with an external environment, and evolve during
execution. To facilitate the modeling of such systems, we
propose a programming language that mixes features from
both probabilistic and reactive languages. It can express prob-
abilistic reactive models with complex dynamics.

1 Probabilistic Reactive Models
A reactive system is a system in continuous interaction with
its environment. Reactive programming languages are do-
main speci�c languages designed to facilitate the implemen-
tation of reactive systems, o�ering intuitive formalisms, ded-
icated analyses, and optimized code generation.
We propose to extend a reactive programming language

to allow probabilistic programming of reactive models. Ex-
amples of probabilistic reactive systems include online time-
series prediction, agent-based systems, or infrastructure self-
tuning. This paper proposes a probabilistic extension to Reac-
tiveML,1 which is itself a reactive extension of OCaml2 that
supports parallel composition of processes, communication
through signals, preemption, and suspension. ReactiveML is
based on the synchronous model [1] that provides a notion
of global logical time de�ned as a succession of instants. Fol-
lowing [7, 8], we add probabilistic constructs to ReactiveML:
sample, to draw a value from a distribution, factor, to pe-
nalize execution paths based on observations, and infer, to
compute the distribution de�ned by a process. We also add
the construct propose to expose the state of a model during
the inference.

Consider the example of a Hidden Markov Model (HMM)
that continuously tracks the positions pt of a moving object
from noisy observations ot (Figure 1).
1 let rec process hmm obs p_prev =

2 await obs([o_t]) in

3 let p_t = sample (sph_gaussian p_prev speed) in

4 factor (score (sph_gaussian p_t noise) o_t);

5 propose p_t;

6 run hmm obs p_t

A process is a function that runs over multiple time instants.
Line 1 de�nes a recursive process hmm with two arguments
obs and p_prev. A signal is a communication channel be-
tween processes. Line 2 waits to receive a new observa-
tion o_t (ot in Figure 1) from input signal obs. After re-
ception, Line 3 samples the current position p_t (pt) from
1h�p://reactiveml.org
2h�ps://ocaml.org

. . . pt�1

ot�1

pt

ot

pt+1

ot+1

. . .

Figure 1. A simple Hidden Markov Model (HMM)

a Gaussian centered on the previous position p_prev (pt�1),
and Line 4 conditions on the current observation. The score
function returns the log-probability of a sample, which is
used here as a measure of how far the sample is from the
observation. The values speed and noise are parameters of
the hmm de�ned as global constants. Line 5 emits the position
on an implicit output signal for use as a distribution outside
of the hmm process. Line 6 re-launches the process for the
next step, creating an in�nite loop.

The main process drives the inference and manages com-
munication with the environment.
1 let process main =

2 signal obs in

3 signal p_dist in

4 run sensor obs ||

5 infer ~output:p_dist (hmm obs [0.;0.]) ||

6 run display p_dist

sensor

obs

infer hmm

p_dist

display

Lines 2–3 declare the communication channels and Lines 4–6
is the parallel composition of three processes. Line 5 launches
probabilistic inference on the hmm process. The �rst argu-
ment of infer (p_dist) is a signal on which the inferred
distribution of positions is emitted after each observation.
Lines 4 and 6 realize the interface with the environment via
two processes sensor and display running in parallel with
the inference. The process sensor emits noisy positions ob-
served from the environment on signal obs, and the process
display visualizes the distribution of inferred positions.

2 Design Choices
In the previous example probabilistic constructs are used
inside arbitrary ReactiveML code. Compared to other proba-
bilistic languages where inference is executed on terminating
functions without side e�ects, the main challenge is to run
the inference on non-terminating probabilistic processes that
communicate with the environment.

Instantaneous models. We initially designed a less expres-
sive version of probabilistic ReactiveML, but determined that
it was insu�cient. The previous version limited inference
to instantaneous functions, that is, pure OCaml code with-
out reactive constructs. Adding this feature to ReactiveML

1

Fig: Graphical Model of the HMM

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PROBPROG’18, October 04–06, 2018, Boston, MA, USA Mandel, Baudart, Shinnar, Kate, Hirzel

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

is straightforward using inference techniques from classic
probabilistic languages [11].
1 let rec process hmm� obs p_dist last_dist =

2 await obs(o_t) in

3 let dist =

4 infer (fun () ->

5 let p_prev = sample (last_dist) in

6 let p_t = sample (sph_gaussian p_prev speed) in

7 factor (score (sph_gaussian p_t noise) o_t);

8 p_t)

9 in

10 emit p_dist dist;

11 run hmm� obs p_dist dist

This version explicitly triggered inference inside the process
(Line 4), putting additional burden on the programmer. Each
step computes the current position by �rst sampling the pre-
vious position from the distribution inferred at the previous
step (Line 5).

Hybrid applications. In our latest design, we focus instead
on hybrid applications where probabilistic reactive models
can be inferred in parallel with deterministic processes. We
thus make the following design choices to allow communi-
cation between the two parts of the application.

First, a probabilistic model must be able to receive inputs
from an evolving environment. We support that by letting
models receive values from a signal during inference (e.g.,
await obs([o_t]), in hmm Line 2).
Second, instead of awaiting the �nal result of the infer-

ence, deterministic processes running in parallel need access
to intermediate results. We thus introduce a new propose
construct (e.g., propose p_t, in hmm Line 5) to output a prob-
abilistic value. We forbid any other side e�ects (e.g. print
statements) within models. Emitting a signal whose scope is
outside of the inference is also a side e�ect. We can statically
reject such programs using the type system presented in [9].

Third, since probabilistic models communicate with reac-
tive processes during inference, they cannot rollback past
actions. We make this choice explicit by relying on the syn-
chronous model of execution on which ReactiveML is built.
Predictions at a given instant cannot be updated at subse-
quent instants. Since it is the programmer who determines
the granularity of instants, they specify when predictions
are committed. This choice of no rollback implies that there
is no need to store the unbounded input history across mul-
tiple instants to resample a trace. The application can thus
be executed in bounded memory.

Implementation. Our experimental implementation relies
on lightweight sampling inference methods à la WebPPL [7,
13]. Both the probabilistic and the reactive features are im-
plemented using a rewrite-based semantics, which rewrites
from a current state and a program into a new state and
the remainder of the program to-be-executed. Making the
remainder, or continuation, explicit enables the language

runtime to explore di�erent execution paths starting from
sample statements, and to resume execution from await
statements when a value is available on a signal.

3 Related Work
There are two relevant kinds of related work: programming
languages with probabilistic and reactive features and prob-
abilistic inference techniques that may be applicable to prob-
abilistic reactive programming.
Lutin is a language for describing probabilistic reactive

systems for testing and simulation [10], but while Lutin
supports weighted sampling, it does not support inference.
Wasserkrug et al. extend a pattern-based event languagewith
probabilistic features [12], but the language cannot express
general probabilistic models. Probabilistic programming has
been used to implement agent-based models [6], but infer-
ence is only performed on terminating functions.
Sequential Monte Carlo methods [5] and streaming in-

ference in Bayesian parametric as well as nonparametric
models [3, 4] are suitable for reactive systems. But they are
not directly applicable because they expect the inferred func-
tion to terminate. They could be adapted to our setting by
using logical instants as “termination” points because we
forbid resampling across multiple instants. Online learning
handles non-terminating reactive systems, but, aside from
naive Bayes, it does not use probabilistic models [2].

4 Conclusion
This paper introduces the �rst reactive probabilistic program-
ming language, supporting online inference on streaming
data. Our language can be used to write hybrid applications
where the inference is executed on non-terminating func-
tions and runs in parallel with deterministic processes.

References
[1] Albert Benveniste, Paul Caspi, StephenA. Edwards, Nicolas Halbwachs,

Paul Le Guernic, and Robert de Simone. 2003. The Synchronous
Languages 12 Years Later. Proc. IEEE 91, 1 (Jan. 2003), 64–83. h�ps:
//doi.org/10.1109/JPROC.2002.805826

[2] Albert Bifet, Geo� Holmes, Richard Kirkby, and Bernhard Pfahringer.
2010. MOA: Massive Online Analysis. Journal of Machine Learning Re-
search (JMLR) 11 (May 2010), 1601–1604. h�p://www.jmlr.org/papers/
v11/bifet10a.html

[3] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson,
andMichael I. Jordan. 2013. Streaming Variational Bayes. In Conference
on Neural Information Processing Systems (NIPS). 1727–1735. h�p:
//papers.nips.cc/paper/4980-streaming-variational-bayes

[4] Trevor Campbell, Julian Straub, John W. Fisher, III, and Jonathan P.
How. 2015. Streaming, Distributed Variational Inference for
Bayesian Nonparametrics. In Conference on Neural Information
Processing Systems (NIPS). 280–288. h�p://papers.nips.cc/paper/
5876-streaming-distributed-variational-inference-for-bayesian-nonparametrics

[5] Arnaud Doucet, Simon J. Godsill, and Christophe Andrieu. 2000. On
Sequential Monte Carlo Sampling Methods for Bayesian Filtering.
Statistics and Computing 10, 3 (2000), 197–208. h�ps://doi.org/10.1023/
A:1008935410038

2

Alternative: Instantaneous Model
Explicit inference at each step
Sample from the previous distribution

C
la
ss
ic
a
l
a
p
p
ro
a
c
h

In
fe
re
nc
e
on

ly
on

te
rm

in
at
in
g
fu
nc
ti
on

s

l
e
t

r
e
c

p
r
o
c
e
s
s

h
m
m
’

n
o
i
s
y
_
p
o
s

p
o
s
_
d
i
s
t

l
a
s
t
_
d
i
s
t

=

a
w
a
i
t

n
o
i
s
y
_
p
o
s
(
o
_
t
)
i
n

l
e
t

d
i
s
t

=

i
n
f
e
r

(
f
u
n

(
)

-
>

l
e
t

p
_
p
r
e
v

=
s
a
m
p
l
e

(
l
a
s
t
_
d
i
s
t
)
i
n

l
e
t

p
_
t

=
s
a
m
p
l
e

(
s
p
h
_
g
a
u
s
s
i
a
n

p
_
p
r
e
v

s
p
e
e
d
)
i
n

f
a
c
t
o
r

(
s
c
o
r
e

(
s
p
h
_
g
a
u
s
s
i
a
n

p
_
t

n
o
i
s
e
)
o
_
t
)
;

p
_
t
)

i
n

e
m
i
t

p
o
s
_
d
i
s
t

d
i
s
t
;

r
u
n

h
m
m
’

n
o
i
s
y
_
p
o
s

p
o
s
_
d
i
s
t

d
i
s
t

9

