Programming reactive systems with uncertainty

Reactive Systems: Interaction with the environment

- Non terminating processes
- Can not be re-executed

Reactive Programming Languages: DSL to program reactive systems

- Intuitive formalism
- Dedicated analysis
- Optimized code generation

ReactiveML: Reactive extension of OCaml

- Synchronous model: logical time
- I : parallel composition
- signal/emit/await: communication
- until/when: control structures

WebPPL: Probabilistic programming

- sample: draw a value from a distribution
- factor: penalize execution path
- infer: compute the distribution

References:

- Benveniste, Caspi, Edwards, Halbwachs, Le Guernic, Simone. 2003. The Synchronous 203 Languages 12 Years Later.
- Mandel, Pasteur, Pouzet, 2015. *ReactiveML 10 years later.* Goodman, Stuhlmüller, 2014. *The Design and Implementation*
- of Probabilistic Programming Languages
- Ritchie, Stuhlmüller, Goodman, 2016. C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching

Probabilistic Reactive Programming

Louis Mandel, Guillaume Baudart, Avraham Shinnar, Kiran Kate, Martin Hirzel IBM Research

Probabilistic Reactive Models

Extend ReactiveML with probabilistic constructs

Possible Applications

- Online time series prediction
- Agent based systems
- Infrastructure self-tuning

Example: Hidden Markov Model

let rec process hmm obs p_prev = await obs([o_t]) in (* Input from the environment *) let p_t = sample (sph_gaussian p_prev speed) in factor (score (sph_gaussian p_t noise) o_t); (* Publish a probabilistic value *) propose p_t; run hmm obs p_t

Inference: Particles filter on execution paths

- Non terminating function
- propose during execution
- No rollback

Hybrid Application

sensor obs, infer hmm p_dist display

run display p_dist

Fig: Graphical Model of the HMM

Mixing deterministic and probabilistic parts Probabilistic: observe external inputs Deterministic: access inferred distributions

Handle state in reactive control structures Parallel composition Internal communication

Inference on non-terminating functions Sequential Monte-Carlo

Real-time vs. non real-time applications Relax the non-rollback constraint