
Programming in JoCaml (Tool Demonstration)

Louis Mandel1 and Luc Maranget2

1
Lri, Univ Paris-Sud 11, cnrs, Orsay F-91405

Inria Futurs, Orsay F-91893
2 Inria Paris - Rocquencourt, Le Chesnay F-78153

{Louis.Mandel,Luc.Maranget}@inria.fr

Abstract. JoCaml is a language for concurrent and distributed pro-

gramming. The language is an extension of Objective Caml with concur-

rent features inspired by the join-calculus.

We here present the recent release of JoCaml, motivate our fundamental

design choices, compare the new release with previous ones, and give a

taste of JoCaml by means of a few examples.

1 Introduction

JoCaml is a language for programming concurrent and distributed systems. It
is based on ML for the computational part, and on the join-calculus for the
concurrent part.

The join-calculus is a name passing calculus. The purpose of such calculi is
to describe concurrent and distributed systems. Programming such systems is a
different, although related, issue, since a good model offers suitable abstractions
that help programmers.

Our language, JoCaml, is an extension of Objective Caml (OCaml), a popular
dialect of ML. By choosing to extend an existing language, and not to design one
of our own, we first intend to minimize our work. We also intend to benefit from
functional programming, from pre-existing code base, and from a population of
programmers open to innovation.

Up to three new keywords, JoCaml is a conservative extension of OCaml:
OCaml programs retain their type and behavior. But we understand compati-
bility in a stronger sense: JoCaml provides a concurrent extension of ML that
strictly adheres to the spirit of functional programming. Channel definitions
and synchronization behaviors are programmed concisely, by the high-level join-
definition concept, and declaratively, by the introduction of ML pattern match-
ing of messages in channel definitions. Moreover, channels are typed polymorphi-
cally, as functions are in ML, types being inferred. Channels are first class-values
that, amongst other things, can be passed as arguments to functions, sent as mes-
sages on channels, and occur as members of modules. This, with the polymorphic
typing of channels, is our way to code re-use for concurrent components.

JoCaml web site is http://jocaml.inria.fr/. The site offers a source re-
lease (dating June 2007), links to articles, and a 70 pages tutorial and reference



expression ::= ocaml-expression

| def x1(p1) & . . . & xn(pn) = process

. . .

or xk(p
′

k) & . . . & xm(p′

m) = process

in expression

join-definition

| spawn process process execution

process ::= x(expression) message sending

| reply expression to x reply to synchronous channel

| process & process parallel composition

| expression ; process sequential composition

| let . . . in process local value definition

| def . . . in process local channel definition

Fig. 1. JoCaml syntax

manual. We have programmed a few applications in the language ourselves.
Amongst those, a distributed ray tracer is the most mature. The ray tracer is
available on the web site and its source code amounts to about 7000 lines.

2 The new JoCaml

The new JoCaml system is a re-implementation from scratch of the previous
prototype. It focuses on compatibility with OCaml. Any OCaml source code is a
valid JoCaml source code and JoCaml can also call external OCaml libraries that
do not need to be re-compiled.

Briefly, we proceed by altering the OCaml compiler from parsing phase to
first intermediate code generation, and by enriching the thread library of OCaml

with specific support. Compiler alteration is justified by specific typing and pat-
tern matching compilation, which both need to be perform inside the compiler.
Compiler alteration is limited in the sense that we change or add a few thousand
lines in the compiler original source files, add a few source files, and retain the
OCaml formats for binary files.

Our focus over compatibility and limited alteration of OCaml, made us aban-
don the mobility features of the join-calculus. Nevertheless, there are useful dis-
tributed programs that can be written without code mobility.

Moreover, the new JoCaml extends the synchronization mechanism of the
join-calculus with pattern matching. It allows to define synchronization not only
on the presence of a message on a channel, but also on the value of the message.

3 A join-definition

JoCaml adds the new syntactical category of processes to OCaml syntax (Fig. 1).
In contrast to expressions processes yield no result and execute asynchronously.
Additionally, JoCaml slightly extends OCaml expressions. The spawn proc con-
struct introduces processes in expressions: proc is executed asynchronously and
spawn returns immediately.



The join-definition is the distinctive feature of the join-calculus: it defines
several channels and their reception behavior at the same time. In JoCaml, join-
definitions are introduced by def and can occur both in processes and expressions.
We illustrate join-definitions by the example of a concurrent buffer based on the
two-lists implementation of functional FIFO queues.

type ’a buffer = { put: ’a -> unit; get: unit -> ’a }

let create_buffer () =

def state(xs,ys) & put(x) = state(x::xs,ys) & reply () to put

or state(xs,y::ys) & get() = state(xs,ys) & reply y to get

or state(_::_ as xs,[]) & get() =

state([], List.rev xs) & reply get() to get

in

spawn state([],[]) ;

{put=put; get=get;}

Our buffers are records, a pure OCaml concept, the novelty resides in the join-
definition (def. . . in above). Three channels are defined: state, put and get.
Channel state is asynchronous. Message sending on an asynchronous channel
is an elementary process, as illustrated by spawn state([],[]) above, for in-
stance. By contrast, put and get are synchronous channels. Message sending on
a synchronous channel yields a result, and thus is an expression. In fact, to the
sender, synchronous channels behave as functions and have functional types.

The behavior of the buffer is expressed by three reaction rules that compete
(or) for consuming messages. A reaction rule consists in a join-pattern and in
a guarded process (separated by =). The semantics is as follows: when there are
messages pending on all the channels in the join-pattern and they match the
patterns present as formal arguments, then the guarded process may be fired.
The guarded process is executed asynchronously, but may transmit return values
to the callers of synchronous channels (reply/to).

The idea of the buffer is to store the FIFO queue (implemented by a pair of
lists) as a message on the channel state. By the organization of join-patterns,
which all include state, and the fact that there is at most one message on this
channel, exclusive access to the internal state of the buffer is granted to the
callers of synchronous put and get.

The first join-pattern state(xs,ys) & put(x) is satisfied whenever there
are messages on both state and put. The behavior of the guarded process is
to perform two actions in parallel (& in processes): (1) send a new message on
state where the value x is added to the list xs and (2) return the value () to
the caller of put.

The second join-pattern state(xs,y::ys) & get() is satisfied when there
are messages on both state and put and that the message on state matches
the pattern (xs,y::ys). That is, the message is a pair whose second compo-
nent is a non-empty list. The process guarded by this join-pattern removes one
value from the buffer and returns it to the caller of get. The last join-pattern
state(_::_ as xs,[]) & get() is satisfied when there is a message on get and



a message on state that matches a pair whose first component is a non-empty
list and second component is an empty list. The corresponding guarded pro-
cess transfers elements from one end of the queue to the other and performs get
again. Notice that there is no join-pattern that satisfies state([],[]) & get().
As a consequence, a call to get is blocked when the buffer is empty.

To initialize the buffer, a message ([],[]) is sent on state. The spawn

construct is here necessary, since the message sending appears in expression
context (the body of the function create_buffer).

4 Distributed computation

The join-calculus provides a transparent model for distributed computation.
Guarded processes always execute on the site where they are defined but can be
fired from any site. More precisely given a channel c, the sending of a message
on c can be performed on any site (provided c is known), while the reception
on c can occur only on the site where c is defined. This is by design, and comes
in sharp contrast to the model of the π-calculus, where it is sufficient to know c

to perform emission and reception on c.
Obviously, the join semantics is much easier to implement than the π se-

mantics in a distributed setting. Basically, message sending to a remote site
decomposes into a transport phase and a synchronization phase (join-pattern
matching), the latter being performed locally on the receiving site.

However, performing the transport phase (and the related global naming of
sites and channels) does not upgrade concurrent JoCaml into distributed JoCaml

as if by magic. Two important issues arise that are not really expressed in the
join model: channel publication and failures. We addressed those pragmatically,
so as not to delay the release of the new JoCaml.

When they start, sites (JoCaml programs) have nothing in common. But, so
as to initiate communication, sites need to share at least a few channel names. To
that aim, JoCaml provides a name service that basically is a repository of channel
names, indexed by plain strings. In contrast to the JoCaml language, there is no
type safety at all. As to failures, our treatment is rather unsophisticated as we
rely exclusively over direct routing: communicating sites are connected by a bi-
directional link (a TCP socket). Then, the failure of the link, is interpreted by
one partner as the failure of the other partner. We plan to improve these two
points in future releases.

5 Conclusion

JoCaml is one amongst many recent language that offer serious support for con-
currency and distribution (Erlang, Cω, Alice, Scala to cite a few). In our view,
JoCaml main contribution resides in the programming style it favors: a smooth
integration of functional programming for concurrent and distributed applica-
tions. Our tool demonstration will focus on this point.



Tool demonstration





Introduction

Our presentation consists in running a non-trivial distributed application written
in JoCaml: a ray tracer. We shall describe the core component of the application,
a task pool structure. The task pool is concise, in the spirit of functional pro-
gramming, and offers a functional style interface (a “fold” function). We address
the issue of failures.

Ideally, if an Internet access is available, we can propose a demonstration with
about 40 machines taking part to the computation. Otherwise, a less ambitious
presentation on an ad-hoc network of two laptops is possible.

1 Ray Tracing

Ray tracing is a well known technique for producing (bitmap) images from 3d

scenes. The general principle of ray tracing is to cast light rays from the viewpoint
of an observer into the scene. To render a scene as a w × h bitmap image, one
casts the w × h rays defined by the observer viewpoint and the position of the
w × h picture elements (pixels) of the image plane, which stands in front of the
observer. One then computes the intersection of this primary ray with the scene.
Reflections on scene objects and the computation of illumination imply casting
more rays. The whole process involves much computation.

Our demonstration will start by first running the sequential ray tracer, and
then the distributed ray tracer (with about 40 participating computers, which
we call slaves). Our programs offer a demo mode that shows the images being
built (cf. Figure 2). The runs will immediately demonstrate that the distributed

Fig. 2. First runs

Sequential ray tracing Distributed ray tracing

ray tracer is much faster than the sequential one (about 20 sec. against several
minutes).

By considering the distributed ray tracer, it clearly appears that images are
computed on a line per line basis. In the sequential case (left image), lines are
computed sequentially. As a result, the image grows regularly. The distributed
ray tracer offers a more chaotic view of image construction. Namely, slaves per-
form their work concurrently, and they do not compute every line at the same
pace, due to varying complexity in images and slave heterogeneity. As a result,
the lines are not completed in enumeration order, as clearly shown by the right



image above. Obviously, such a change of computation order does not matter,
as long as image completion can be detected.

After the demonstration we shall briefly present the code of the sequential
ray tracer that uses a higher order fold-like function. We then present our ob-
jective of organizing slaves in a similar programming style.

2 Functional programming style

In a sequential implementations of ray tracing, pixel colors are computed one
after the other, by means of, for instance, two nested for-loops. However, we aim
at abstraction and generality. Thus, we divide an image as several sub-images.
We assume a function add_subimage of type subimage -> image -> image

that given a sub-image and a partially constructed image, extends the image
with the sub-image. Typically, image above is a matrix of pixel colors; subimage
is a smaller such matrix and a position; and add_subimage copies sub-image
colors to their final place.

Scenes are divided as images are. A sub-scene simply is a scene and a sub-
image description (for instance a line number). We assume a function subrender

of type subscene -> subimage that performs the rendering of a sub-scene by
casting rays through all the pixels of the corresponding portion of the image
plane.

The sub-scenes in a scene can be enumerated by means of the following
functional enumerator.

type enum (* left abstract *)

val start : scene -> enum

val step : enum -> (subscene * enum) option

Function start takes a scene as argument and returns an enumerator. Function
step applies to such an enumerator and returns either the next sub-scene and a
new enumerator, or None when enumeration is over.

In any functional language, it is routine to write a general purpose “fold”
function on scenes. Here is such a function in OCaml.

let fold work add y0 sc =

let rec fold_rec y enum = match step enum with

| Some (x,enum) -> fold_rec (add (work x) y) enum

| None -> y in

fold_rec y0 (start sc)

val fold : (subscene -> ’a) -> (’a -> ’b -> ’b) -> ’b -> scene -> ’b

As shown by its polymorphic type, fold is quite generic. Given a scene s whose
sub-scenes are x0, x1, . . . xn (following enumeration order), “fold w add y0 s”
computes add(w(xn−1), add(w(xn−2), . . . add(w(x0), y0))))). By supplying the right
arguments (add_subimage is add etc.), the rendering of a complete scene can be
made by calling the generic fold.

In the distributed implementation, the execution of the “worker” function w

is performed by a variety of slave computers that act under the control of a



distinguished master computer. The master is in charge of controlling slaves,
of performing add operations, of enumerating sub-scenes etc. Furthermore, we
wish to retain functional style, by having the master to call a fold-like function.
To that aim, we introduce a pool structure, whose type follows.

type (’a,’b) pool =

{ register: (subscene -> ’a) Join.chan;

fold: (’a -> ’b -> ’b) -> ’b -> scene -> ’b; }

The master creates the pool and then calls its fold component as follows.

let render sc =

pool.fold

add_subimage (make_white_image sc.width sc.height) sc

In contrast to the sequential fold, the master does not supply a worker function.
Instead, those are supplied by the slaves, which send a synchronous channel name
on the register component of the master’s pool. Such registered channels act
as a proxies for the slaves resident worker functions.

It is perhaps to be noticed that master and slaves are different programs
running on different computers. Slaves have access to the master’s pool by means
of JoCaml name-service, which we shall not describe. Instead, we shall focus on
the implementation of the pool.

3 Concurrent fold implementation

One key issue in the implementation of the concurrent fold is detecting that the
image is completed. In the following, a sub-task is the computation of a sub-image
from a sub-scene. It should be observed that the functional enumerator does not
allow us to know in advance how many sub-tasks will occur. The monitor collects
the results of sub-tasks and returns the image when all sub-tasks are completed.

type (’a,’b) monitor =

{ enter: unit -> unit; leave: ’a Join.chan;

wait: unit -> ’b; finished: unit Join.chan; }

let create_monitor add y0 =

def state(n,y) & enter() = state(n+1,y) & reply () to enter

or state(n,y) & leave(v) = state(n-1,add v y)

or state(0,y) & finished() & wait() = reply y to wait

in spawn state(0,y0) ;

{ enter=enter; leave=leave; wait=wait; finished=finished; }

During the presentation, we shall show the code above. The monitor is a typical
join-definition, with a hidden state expressed as a message (n,y) on the internal
channel state. One easily sees that channel state can hold at most one message,
which protects the monitor against concurrent access. For instance, a message
on enter is always consumed jointly with the message on state. Then, the



internal state is changed and re-emitted on state. As a result, the internal state
remains consistent.

Component y of the internal state is the image being built, it is managed as
in the sequential case : sub-images are added to it (add v y above), until the
image is completed and returned (reply y to wait above). Component n is new,
n is an integer that counts the number of active sub-tasks. More precisely, n is
the total number of messages received on enter minus the number of messages
received on leave (cf. n+1 and n-1 above).

The monitor exports all its other channels as fields of the monitor record.
The distributed fold will obey the following discipline: (1) send a message on
enter when starting a new sub-task; (2) send the result of any sub-task as a
message on leave; (3) send a message on finished when no more sub-tasks
are available. Then, the call on wait will be answered when no more sub-tasks
can be started and all active sub-tasks are completed, as neatly expressed by
“state(0,y) & finished() & wait() = reply y to wait” above.

We shall also show the rest of the JoCaml source code for the pool:

let create_pool () =

def loop(monitor,enum) & agent(worker) = match step enum with

| Some(x, next) ->

monitor.enter() ;

loop(monitor,next) & call_worker(monitor, x, worker)

| None -> monitor.finished() & agent(worker)

and call_worker(monitor,x,worker) =

let v = worker(x) in monitor.leave(v) & agent(worker) in

let fold add y0 sc =

let monitor = create_monitor add y0 in

spawn loop(monitor, start sc) ;

monitor.wait () in

{ fold=fold ; register=agent ; }

The definition of fold first creates a monitor, then starts the iteration, and finally
calls the wait function of the monitor. The loop/agent definition essentially
performs an iteration on the enumerator enum and organizes meetings between
available slaves (whose worker functions are messages on agent) and sub-scenes
(x above), as expressed by the join-pattern loop(...) & agent(worker). It
should be noticed that several images can be computed concurrently: it suffices
to call pool.fold several times concurrently.

4 Failures

To illustrate the impact of failures, we shall then start another run of the dis-
tributed ray-tracer. Figure 3 shows a screen capture of the final state of this run.
Two windows are of interest. In the shell window, we have launched a slave pro-
gram (client.opt) and then have killed it. The image window is under control



Fig. 3. Slave program killed, image delayed for ever

of the master program, it shows the allocation of sub-tasks with a color code (one
color per registered slave). The display demonstrates that image computation
does is not completed when some of the slaves fail.
Then, we show again the code that performs the remote call of a worker function.

and call_worker(monitor,x,worker) =

let v = worker(x) in monitor.leave(v) & agent(worker)

If a slave program is killed, as we did in Figure 3, the call to worker does not
return a sub-image v. As a consequence, no message on leave is sent and image
completion is delayed for ever.

However, the killing of a local process, certainly can be detected by the
underlying JoCaml runtime system. Such a slave failure is transmitted to user
programs by raising an exception. The code above simply ignores the exception,
and apart from a message on the console, nothing happens.

The following, corrected, code catches the exception, so as to take appropriate
measures.

def agent(worker) & loop(. . .) = . . .

or agent(worker) & compute(monitor,x) =

call_worker(monitor,x,worker)

and call_worker(monitor,x,worker) =

let v = try Some (worker(x)) with _ -> None in

match v with

| None -> compute(monitor,x)

| Some v -> monitor.leave(v) & agent(worker)

In case an exception is raised, the uncompleted sub-task x is simply put again
into the pool, as a message on the new channel compute. Such re-issued sub-tasks



are allocated to available slaves by means of a new join-pattern agent(. . .) &

compute(. . .), which competes (or) with the previous join-pattern agent(. . .) &

loop(. . .) for available slaves.
We then run the corrected program in the same conditions as the failure-

unaware program (Figure 4). The color code shows that the previously pending

Fig. 4. Slave program killed, image completed

sub-task is now completed by another slave.

5 Undetected failures

We shall complete the presentation by considering undetected failure.
We shall proceed to a second run of the failure aware program, but we shall

stop the local slave in place of killing it. Doing so, we produce an undetected
failure. This second run will show that an undetected failure delays image com-
pletion for ever (Figure 5).

We shall only give the principle behind our technique for tackling the issue,
which resides in the following master’s quote:

I’d rather have n slaves working on the same task, than one slave working

and n − 1 idle slaves looking at him.

More precisely, we shall sketch a refined monitor that records the list of active
sub-tasks, while the previous monitor recorded the count of active sub-tasks. The
new pool extends the previous one by querying the monitor for active sub-tasks
and allocating those to slaves that otherwise would be idle. We shall illustrate
the principle by a final run, first with sub-task granularity as before, and then
with sub-task granularity reduced, so as to minimize duplicated work. Figure 6
shows that the bottom lines of the image completed last have been processed by
up to three slaves. Performance figures show that this is a small price to pay for
guaranteed image completion.



Fig. 5. Slave program stopped, image delayed

Fig. 6. A serious run, four images at a time


