
Interactive Programming of Reactive Systems (Draft)

Louis Mandel Florence Plateau

LRI, Université Paris-Sud 11

LIENS, École Normale Supérieure

INRIA

November 2010

Abstract

The language ReactiveML is an extension of the general purpose programming language OCaml

with synchronous reactive constructs. It is dedicated to program reactive systems such as video games

or simulators. This paper presents rmltop, the ReactiveML counterpart of the OCaml toplevel.

This toplevel allows a programmer to interactively write ReactiveML programs which are type-

checked, compiled and loaded on the fly. The user can then progressively run concurrent processes

and observe the interactions between them.

The main strength of rmltop is that all valid ReactiveML expressions are executed in the

toplevel with the same semantics and efficiency as in the compiler. This allows to use the ReactiveML

toplevel for design and debugging purposes. To illustrate the usefulness of this tool, we present some

experiments on dynamic reconfiguration, done with the help of the toplevel. We finally describe an

originality of rmltop: being itself a reactive system, it has been implemented in ReactiveML.

1 Introduction

ReactiveML is a programming language dedicated to the implementation of interactive systems as
found in graphical user interfaces, video games or simulation problems. The language is based on the
synchronous reactive model of Frédéric Boussinot [2] embedded in an ML language (here Objective

Caml [12]). The synchronous reactive model provides synchronous parallel composition and dynamic
features like dynamic creation of processes. ReactiveML is compiled into a purely sequential OCaml

code. Native-code or bytecode executables are then generated by the OCaml compiler.
We propose here an interactive mode for ReactiveML in a way similar to the interaction loop (or

toplevel) of OCaml. In this mode, ReactiveML programs can be defined and executed in an interactive
manner. The toplevel (rmltop) reads ReactiveML phrases on the standard input, compiles them and
executes them. Moreover it provides control directives to run a process, suspend the execution of the
running processes, execute only the next n reactions or resume the execution. Those directives are
directly launched in the toplevel. Additionally, the suspension directive can be launched by processes. It
allows to program an observer that decides to suspend the execution when a certain condition is verified.

All these features make this execution mode a convenient tool for prototyping reactive behaviors.
Contrary to sequential programs, reactive programs continuously interact with their environment. Mod-
ifying and programming the environment during the execution of the system is thus useful for testing
and debugging. The ReactiveML toplevel is also useful to study dynamic reconfiguration of reactive
programs. The addition of new processes during the execution can be used as a basic element to build
a framework for programming reconfigurable applications [4, 8]. Finally, interacting with the processes
behaviors improves the understanding of the reactive model. Hence the toplevel can help for teaching
purposes.

The implementation of rmltop reuses the ReactiveML compiler. It has two consequences: (1) the
implementation is small (about 500 source lines of code) and (2) the semantics of the two execution
modes (the compiled mode and the interactive mode) are the same by construction. Moreover, a
toplevel interpreter being itself a reactive system, one originality of rmltop is to be itself implemented

1



louis@machiavel> rmltop

ReactiveML version 1.07.08

Objective Caml version 3.11.2

# signal s;;

val s : (’_a, ’_a list) event

val s : (’_a, ’_a list) Implem.Lco_ctrl_tree_record.event = <abstr>

# let process p =

await s;

print_endline "Present";;

val p : unit process

val p : unit Implem.Lco_ctrl_tree_record.process = <fun>

# #run p;;

# emit s ();;

- : unit = ()

Present

Figure 1: An rmltop session.

in ReactiveML, making its implementation relatively elegant. rmltop is included in the distribution of
ReactiveML which is available at: http://rml.lri.fr.

The ReactiveML toplevel is based on the original idea of Reactive Scripts [6] by Frédéric
Boussinot and Laurent Hazard. Reactive Scripts is a scripting language first built on ReactiveC [5]
and Tcl-Tk. Then Jean-Ferdy Susini proposed a new implementation [18] of this language based
on SugarCubes [7] and Java. We will discuss the differences between our approach and Reactive

Scripts in Section 5.
This paper is an extended version of [13]. In the following, we first present the use of rmltop in

Section 2 through a collection of examples. Section 3 deals with reconfiguration aspects. Section 4
describes rmltop implementation. Section 5 is devoted to a comparison with related work and we conclude
in Section 6.

2 Interactive Programming in ReativeML
ReactiveML is based on the synchronous reactive model where time is defined as a succession of logical
instants. In this model, the parallel composition guaranties that all processes can react at each instant and
communications are made through instantaneous broadcasting of events. Hence, the language provides a
way to define processes as functions that can be executed through several instants. The body of a process
mixes OCaml code with reactive constructs a la Esterel [17]: parallel composition (|| operator),
emission of events (emit), etc. Moreover, as ReactiveML is an extension of OCaml,1 we can also
define data types and functions like in OCaml.

In the following, we assume that the reader has some notions of the OCaml language [12] and of
synchronous programming [1]. We will not present the ReactiveML language in details, but only what
is necessary for the following. A summary of ReactiveML constructs is available on annex A. For more
details on ReactiveML the reader can refer to [14, 15].

2.1 First ReativeML Interactive Session

Let us analyse the session given Figure 1. It is launched by the rmltop command and begins with the
following line:

# signal s;;

val s : (’_a, ’_a list) event

val s : (’_a, ’_a list) Implem.Lco_ctrl_tree_record.event = <abstr>

This expression declares a global signal s (the character # is the prompt). It is followed by two pieces of
information given by the toplevel: (1) the type inferred by the ReactiveML compiler for this declaration

1The current implementation of ReactiveML does not support objects, labels, polymorphic variants and functors.

2



and (2) the type of the corresponding OCaml code.2

Next, we define a process p (introduced by the keyword process) that prints Present when the signal
s is emitted:

# let process p =

await s;

print_endline "Present";;

val p : unit process

Then an instance of p is executed by means of the #run directive (as in OCaml, directives begin with
a # character):

# #run p;;

The instance of p now runs in background and the control is returned to the user.
Finally the signal s is emitted in the reactive machine:

# emit s ();;

Hence, the instance of the p process that is awaiting s reacts and the message Present is printed.

The main directive of rmltop is #run. This directive executes the process given as parameter. The
directive #exec is derived from #run. It executes a reactive expression. It is a shortcut for:

#exec e ≡ #run (process e)

2.2 A Complete Example

We illustrate the use of rmltop on the so-called n-body problem. The n-body problem is the simulation
of planets that obey the gravity laws of Newton. The entire code and a video presentation are available
at http://rml.lri.fr/rmltop.

We first define the data type of planets, benefiting from the expressiveness of OCaml data types.

# type planet =

{ id : int;

mass : float;

pos : float * float * float;

speed : float * float * float; } ;;

We now declare some useful constants and functions like the gravitational constant (g), the integration
step (dt) and a function (random_speed) that creates a random speed value using the Random module of
the OCaml standard library.

# let g = 6.67;;

val g : float

# let dt = 0.1;;

val dt : float

# let random_speed () =

((Random.float 100.0) -. 50.0,

(Random.float 100.0) -. 50.0,

(Random.float 100.0) -. 50.0) ;;

val random_speed : unit -> float * float * float

Some auxiliary OCaml functions are then defined but not detailed here.

A global signal env is declared. This signal will gather the position of all the planets in a list.

# signal env default [] gather (fun x y -> x::y);;

val env : (’_a, ’_a list) event

2In the following, for the sake of conciseness, we do not always display the OCaml type output.

3



(a) An empty window (b) A planet (c) The sun and some
other planets

Figure 2: Screenshots of the window process.

The gather function (here, fun x y -> x::y) defines how values emitted during the same instant are
combined to build the value of the signal. This function adds each emitted value to the list of values
that have already been emitted during the instant. This list is initialized with the default value [].3 The
env signal has type (’_a, ’_a list) event where ’_a will be instantiated with the type planet. It means
that the values emitted on this signal must be of type planet and the value associated to the signal has
type planet list.

The signal env is then used by the process window to display the planets.

# let update_display all = ... ;;

val update_display : planet list -> unit

# let process window =

Graphics.open_graph "";

Graphics.auto_synchronize false;

loop

await env (all) in update_display all

end ;;

val window : unit process

This process first initializes the graphical window and then enters into an infinite loop. The behavior
of the loop is the following. The expression “await env (all) in ...” waits for the emission of the env

signal, and binds all to the value associated to env. Then, at the instant following the emission of the
signal, the body of await/in construct is executed. The update_display function uses the all value to
draw all planets. Notice that there is no instantaneous loop since the await/in expression takes at least
one instant.

This process is then executed by writing:

# #run window;;

Its effect is to open an empty OCaml graphics window (Fig 2(a)). Since the env signal is not emitted,
the window process is stuck on its await expression.

Now the behavior of a planet is given by:

# let random_planet () = ... ;;

val random_planet : unit -> planet

# let compute_pos p all = ... ;;

val compute_pos : planet -> planet list -> planet

# let process planet =

let me = ref (random_planet()) in

loop

emit env !me;

await env (all) in

me := compute_pos !me all

end ;;

val planet : unit process

3We could have written signal env which is a shortcut for signal env default [] gather (fun x y -> x::y)

4



The process planet uses two previously defined functions: (1) random_planet that creates a new planet at
a random position with a random speed and (2) compute_pos that, given a planet p and a list of planets
all, computes the new position of the planet p submitted to the attraction of all other planets.

The process planet creates a new random planet and enters in an infinite repetition of three parts.
First it emits the position of the planet on the signal env to communicate it to other planets. Then it
waits for the value of this signal (the list of all planets) which is available at the next instant. Finally, it
uses this information to compute the new position of the planet.

To summarize, all the planets emit their position on the signal env. It is used by the window process
for display and by each planet to compute its position at the next instant.

We now run an instance of the process planet:

# #run planet;;

This directive launches the planet process in background, in parallel with already running processes (here
window). A new planet is created and appears on the graphical window (Figure 2(b)). As it is the unique
body of the system, its trajectory is not modified and it goes out of the window. The planet process can
be instantiated several times to create other planets.

# #run planet;;

# #run planet;;

As the planets are of non null weights, their trajectories are modified by the interaction with the other
ones, but they still go out of the window. Nevertheless, as the value of the signal env is the list of the
planets, we can verify that all created planets are still running by observing the value of env. To observe
the value of the signal env in a stable state, we first use the #suspend directive. It asks for the suspension
of the simulation at the beginning of the next instant.

# #suspend;;

Planets stop their movement. We can now observe the environment by typing:

# pre env;;

- : bool = true

The evaluation of expression pre env returns the status (emitted or not) of the signal env at the preceding
instant. pre can also be used to ask for the value of the signal:

# pre ?env;;

- : planet list =

[{id = 1; mass = 1.;

pos = (25486.668, -30490.001, -3332.7650);

speed = (27.458270, -32.814312, -3.5462074)};

{id = 2; mass = 1.;

pos = (-17667.938, 18421.838, -12995.214);

speed = (-34.721283, 35.976223, -25.585873)};

{id = 3; mass = 1.;

pos = (-5691.3338, 8876.0819, 6907.2694);

speed = (-17.164963, 26.688011, 20.773542)}]

Observe that it is a list of three planets as expected and that their values at the preceding instant are
displayed.

Let us now run a new planet.

# #run planet;;

As the simulation is currently suspended, we can use the #step directive that executes one instant of the
system.

# #step;;

Displaying again the environment shows that a fourth planet has been added to the list, and that the
other ones have moved:

5



# pre ?env;;

- : planet list =

[{id = 1; mass = 1.;

pos = (25492.159, -30496.564, -3333.4747);

speed = (27.458270, -32.814312, -3.5462149)};

{id = 2; mass = 1.;

pos = (-17674.882, 18429.033, -13000.331);

speed = (-34.721283, 35.976220, -25.585873)};

{id = 3; mass = 1.;

pos = (-5694.7668, 8881.4195, 6911.4241);

speed = (-17.164961, 26.688011, 20.773546)};

{id = 4; mass = 1.;

pos = (-44.769087, -83.553279, -76.555396);

speed = (12.309124, -15.532798, 12.909834)}]

The directives #suspend and #step are helpful for debugging and understanding reactive systems.4

The directive #resume goes back to the sampled mode.

# #resume;;

We now define a new process sun that creates a star much heavier than the planets and which does
not move:

# let process sun =

let me =

{ id = 0;

mass = 30000.0;

pos = (0.0, 0.0, 0.0);

speed = (0.0, 0.0, 0.0) }

in

loop

emit env me;

pause

end ;;

val sun : unit process

Its behavior is to make its position available to the planets by emitting it at each instant on the env

signal and to wait for the following instant without updating its position. If we run the sun process, a
sun appears on the graphical window.

# #run sun;;

Several planets can be added at the same time using the for/dopar construct.

# #exec (for i = 1 to 50 dopar run planet done);;

The expression we execute here is a loop that runs 50 planets in parallel. Each new planet is attracted
by the sun and turns around it (Figure. 2(c)).

Suppose we want to observe an eclipse.

# let eclipse { pos = (x, y, z) } =

abs_float x < 10. && abs_float y < 10. && z > 0.;;

val eclipse : planet -> bool

The boolean function eclipse takes a planet as argument and tests if it is in front of the sun. We can
test if at least one planet was at an eclipse position at the preceding instant by evaluating the following
expression:

# List.exists eclipse (pre ?env);;

- : bool = false

4The directive #step n is also available. It allows to execute n instants of the system.

6



List.exists p l is a OCaml expression that returns true if an element of l satisfies the predicate p.
Here, the returned value is false, so there was no eclipse when the phrase has been evaluated.

It would be very difficult to suspend by hand the simulation exactly when a planet is in front of the
sun, and tedious to execute the system step by step until an eclipse occurs. Fortunately, the #suspend

directive can be launched by processes. We can thus define a process eclipse_observer that suspends
the simulation if a planet is at an eclipse position.

# let process eclipse_observer =

loop

await env (all) in

if List.exists eclipse all then #suspend

end;;

val eclipse_observer : unit process

# #run eclipse_observer;;

As soon as we run the eclipse observer, the simulation is suspended each time an eclipse occurs.
The process eclipse_observer is a synchronous observer [10]. This kind of processes observe dynamic

properties of a system without modifying its behavior. The combination of this feature with the possi-
bility to suspend the simulation allows to set semantic breakpoints. These breakpoints are defined by
arbitrarily complex conditions expressed in the language itself. This is an original and powerful way to
suspend the execution of a program.

We have shown through this example of the n-body problem that the ReactiveML toplevel is not
only useful to understand a reactive system, but also to test and debug it. We are now going to describe
how we can use the toplevel to do experiments about dynamic reconfiguration of reactive systems.

3 Dynamic Reconfiguration

We call dynamic reconfiguration the ability to add and remove processes to a system during its execution.
The ReactiveML toplevel provides good basic elements to study dynamic reconfiguration of reactive
systems. For example, it is easy to program a process killable that allows to kill each process p launched
by the command #run (killable p) when its identifier is sent on a global signal to_kill.5

# signal to_kill ;;

val to_kill : (ident, ident list) event

# let process killable p =

let id = gen_id () in print_id id;

do

let v = run p in Some v

until to_kill(ids) when List.mem id ids -> None done ;;

val killable : ’a process -> ’a option process

The killable combinator is a higher order process: it takes a process as argument. It associates a fresh
identifier to p using a gen_id function and prints it such that the user can know it. Then the body of the
process executes p under the supervision of the global signal to_kill: the execution terminates when the
identifier of the process belongs to the list of processes to kill (i.e. to the value associated to to_kill).

The behavior of the process killable is implemented using the ReactiveML do e1 until s(x) when

c -> e2 done construct. This construct executes e1 until the signal s is present and c is satisfied, then
it executes e2 (in c and e2, the variable x is bound to the value associated to the signal). Here, the
condition List.mem id ids tests if the identifier of the process (id) belongs to the list of the processes
to kill (ids). The value returned by the killable combinator is None if the execution of p is preempted.
Otherwise, it is Some v where v is the value returned by p. Note that this combinator is polymorphic, it
can be used to control the execution of a process that returns a value of any type.

5In the following, types may be specialized to simplify the reading. The type ident and the functions gen id and

print id are supposed to be previously defined.

7



Killing a process launched through the killable combinator simply consists in emitting its identifier
on the to_kill signal. Let us illustrate that on the example of previous section. We run a killable sun
by typing:

# #run (killable sun);;

[1]

The identifier 1 of the process is displayed on the standard output. Then we put a planet into orbiter:

# #run planet;;

Finally, we remove the sun by emitting its identifier on the signal to_kill:

# emit to_kill 1;;

We can observe that the sun disappears and the planet goes out of the window because the sun is no
more here to attract it.

3.1 Basic reconfiguration combinators

In this section, we present some simple combinators that provide a first step to reconfiguration. For
the sake of conciseness, we consider that combinators take as argument processes identifiers. Under this
hypothesis, the combinator killable becomes:

let process killable id p =

do

let v = run p in Some v

until to_kill(ids) when List.mem id ids -> None done ;;

val killable : ident -> ’a process -> ’a option process

In the same way, it is possible to define a combinator that allows to suspend and resume a process (and
only this one):

let process suspendable id p =

control

run p

with to_suspend_resume(ids) when List.mem id ids done ;;

val suspendable : ident -> ’a process -> ’a process

The construct control e with s(x) when c done switches between the execution of e and its suspension
when the signal s is present and c is satisfied. Note that using the combinator suspendable differs from
launching the #suspend directive. The former suspends one process, while the latter suspends the whole
simulation. If we launch a process sun under the supervision of this combinator, it is possible to suspend
it during a few instants in order to change the orbiter of the planets.

The resettable combinator allows to reset a process during its execution by the emission of its
identifier on a global signal to_reset:

let rec process resettable id p =

do

run p

until to_reset(ids) when List.mem id ids -> run (resettable id p) done ;;

val resettable : ident -> ’a process -> ’a process

Here, to reset the execution of the process p, it is first interrupted and then a new instantiation is
executed. It is done through recursion (introduced with the rec keyword).

3.2 More advanced combinators

In this section, we illustrate how the behavior of a process can be changed dynamically, thanks to
recursion and the ability to emit a process on a signal. A first useful reconfiguration combinator is the
replacement of the behavior of a running process. The replace process runs an initial process p_init

until the emission of a signal new_behavior. It then executes the process p carried by this signal. The
process p is launched by a recursive call to replace to give the opportunity to replace it again.

8



let rec process replace p_init new_behavior =

do

run p_init; halt

until new_behavior(p) -> run (replace p new_behavior) done ;;

val replace : ’a process -> (’b, ’a process) event -> ’c process

A design choice has been made here: the body of the do/until construct never dies (thanks to the halt

statement). Thus, a process can be replaced even after its termination. If we remove the halt statement,
the body of the do/until construct dies after the termination of the running process and thus the replace

process also dies. In this case, a process can be replaced only before its death.
Now, we define a process replaceable similar to the combinators of previous section. It filters the

replacement requests sent on a global signal to_replace and forwards to the process it manages the
requests addressed to it.

signal to_replace ;;

val to_replace :

(ident * unit process, (ident * unit process) list) event

let process replaceable id p_init =

signal new_behavior default process ()

gather (fun p q -> process (run p || run q))

in

run (replace p_init new_behavior)

||

loop

await to_replace(reqs) in

List.iter (fun (x,p) -> if x = id then emit new_behavior p) reqs

end ;;

val replaceable : ident -> unit process -> unit process

First, the process replaceable declares a local signal new_behavior dedicated to the collection of the
requests concerning the managed process. The gathering function of this signal is such that if several
requests are ordered at the same time, then the resulting new behavior will be the parallel composition
of all requested new behaviors.
Then, the process replaceable is composed of two parallel branches. On the one hand, it launches the
process p_init under the control of the replace process. On the second hand, it scans the global signal
to_replace and forwards to new_behavior the requests concerning the process it manages.

Hence, launching the process p of identifier id with the #run (replaceable id p) directive allows to
replace the behavior of p by the one of p’ by emitting the pair (id, p’) on the global signal to_replace.

An other useful reconfiguration combinator is to add new behaviors to a running process. First, we
define a extend process that executes a process p_init and awaits new processes to execute on a signal
new_behavior.

let rec process extend p_init new_behavior =

run p_init

||

await new_behavior(p) in

run (extend p new_behavior) ;;

val extend : ’a process -> (’b, ’a process) event -> unit process

Then, we have to program a process extensible that filters the adding requests send on a global
signal to_add.

signal to_add ;;

val to_add : (ident * unit process, (ident * unit process) list) event

The process extensible can be implemented similarly to the replaceable process. Hence, this code can be
factorized by the introduction of a process basic_requests_manager parametrized by the reconfiguration
combinator to apply (combinator) and the signal on which requests are sent (requests).

9



let process basic_requests_manager combinator requests id p_init =

signal new_behavior default process ()

gather (fun p q -> process (run p || run q))

in

run (combinator p_init new_behavior)

||

loop

await requests(reqs) in

List.iter (fun (x,p) -> if x = id then emit new_behavior p) reqs

end ;;

val basic_requests_manager :

(unit process -> (’a process, unit process) event -> ’b process) ->

(’c, (ident * ’a process) list) event -> ident -> unit process ->

unit process

With this manager, the processes replaceable and extensible are implemented as follows:

let replaceable = basic_requests_manager replace to_replace ;;

val replaceable : ident -> unit process -> unit process

let extensible = basic_requests_manager extend to_add ;;

val extensible : ident -> unit process -> unit process

A drawback of this implementation of these two combinators is that it does not allow to share
information between the processes. In the case of replaceable, we would like to transmit a state from
the running process to the new one. In the case of extensible, we would like the different behaviors to
have a common state. This two goals can be achieved by writing a new manager. This new manager is
very similar to basic_requests_manager except that the processes are parametrized by a state.

let process requests_manager combinator requests id p_init state =

signal new_behavior default process ()

gather (fun p q -> process (run p || run q))

in

run (combinator (p_init state) new_behavior)

||

loop

await requests(reqs) in

List.iter

(fun (x,p) -> if x = id then emit new_behavior (p state))

reqs

end ;;

val requests_manager :

(’a process -> (unit process, unit process) event -> unit process) ->

(’b, (ident * (’state -> unit process)) list) event ->

ident -> (’state -> ’a process) -> ’state -> unit process

An example illustrating the use of this manager is available at the address http://rml.lri.fr/rmltop/

reconfiguration.

3.3 Composing combinators

We have seen that programming reconfiguration combinators in ReactiveML is natural, thanks to
higher-order, polymorphism and recursion. An interesting point is that we are also able to combine
them in order to produce more powerful ones.

Consider we want to launch a process in such a way that it is not only “suspendable”, but also
“killable”. It can be done using the following combinator:

let killable_suspendable id p =

killable id (suspendable id p) ;;

val killable_suspendable : ident -> ’a process -> ’a option process

10



rmlc

rmltop

machine

controller

execution

OCaml

ReactiveML

OCaml

directives

ReactiveML

and directives

environment

OCaml toplevel

Figure 3: Structure of the implementation of the ReactiveML interactive mode.

This combinator allows to kill a process even while it is suspended. We could have done another
design choice by composing the combinators differently:

let suspendable_killable id p =

suspendable id (killable id p) ;;

val suspendable_killable : ident -> ’a process -> ’a option process

This later combinator does not allow to kill the process when it is suspended: the suspendable process
controls the killable one, so it also suspends the behavior that allows to kill.

3.4 Conclusion

We have shown through these examples that it is easy to program reconfiguration combinators in
ReactiveML. Trying to compose the different reconfiguration features raises many questions of de-
sign. What we argue here is that rmltop is a good tool to experiment the different choices and to
understand the differences between them.

Finally, note that dynamic reconfiguration of reactive systems does not only consists in modifying
behaviors but also in modifying data types. For this aspect of reconfiguration, ReactiveML does not
provides any facilities. In particular, it is not possible to change the type of a signal during the execution.
Nonetheless, this feature ensures the type safety of the system.

4 Implementation

The ReactiveML interactive mode consists of three parts: (1) a toplevel that reads the source code to
build the execution environment and record the directives, (2) a reactive machine that evaluates processes
launched by the #run directive and (3) a controller that supervises the execution of the reactive machine
with respect to the other directives (#suspend, #resume and #step).

4.1 The Toplevel

As the ReactiveML language is compiled into OCaml, it is natural that the ReactiveML toplevel uses
the OCaml toplevel to execute compiled ReactiveML phrases and to dynamically build an execution
environment.

The structure of the implementation is presented Figure 3. A Unix process rmltop coordinates the
parallel execution of a ReactiveML compiler rmlc and an OCaml toplevel ocaml.

• The ReactiveML compiler runs in an interactive mode. ReactiveML phrases are given as input
to the rmlc compiler. The compiler returns the corresponding OCaml code.

• The compiled code is then sent to the OCaml toplevel that executes it. This execution builds an
environment that contains the definition of the functions and processes.

11



The reactive machine and its controller run in a separate thread of the OCaml toplevel. This soft-
ware architecture allows the reactive machine to access to the environment of the OCaml toplevel.
The communication between the two threads is made through shared memory. So we use a lock
Rmltop_global.mutex to prevent data races. This lock is taken during the execution of compiled ReactiveML

phrases.
The execution of a directive sets a global reference in the execution environment. There is one

reference by directive, defined in the module Rmltop_global. The controller inspect the values of the
references to take into account the executed directives.

Let us now present the reactive machine.

4.2 The Reactive Machine

The reactive machine executes the processes launched by the #run directive. It is implemented by the
function Rmltop_reactive_machine.rml_react that computes the reaction of one instant of the machine.

val rml_react: unit Rmltop_global.rml_process list -> unit

It takes as argument a list of processes to execute in parallel with the processes that are already running
in the machine. This function is the interface between the reactive machine and the controller.

The body of rml_react takes the lock Rmltop_global.mutex during its execution. It ensures that it is
not executed in parallel with a ReactiveML phrase in the toplevel.

4.3 The Reactive Machine Controller

The controller makes the reactive machine react: it controls when the machine must compute a new
instant. In particular, the controller interprets the following directives: #suspend, #resume and #step.

As shown in [11], the control of the execution of a reactive program is itself a reactive program.
Thus, the control of the reactive machine can be programmed by a process written in ReactiveML.
The core of the controller is a process machine_controller. It determines when the reactive machine
must compute a new instant. It is composed of two modes: (1) the sampled mode and (2) the step by
step mode. It must switch from the first one to the second one when the signal suspend is emitted, and
from the second one to the first one when resume is emitted. When the machine is in the second mode,
if the signal step is emitted, then a fix number of instants (given by the value associated to step) is
computed. This computation can be interrupted if the signal suspend is emitted.

let process sampled =

loop

Rmltop_reactive_machine.rml_react(get_to_run());

pause

end

let process step_by_step =

loop

await step(n) in

do

for i = 1 to n do

Rmltop_reactive_machine.rml_react(get_to_run());

pause

done

until suspend done

end

let process machine_controller =

loop

do run sampled until suspend done;

do run step_by_step until resume done

end

12



suspend

1 2

resume

Figure 4: machine controller automaton.

The process machine_controller implements the two states Moore automaton of Figure 4. We recall that
the expression do e until s done executes its body (e) until signal s is present. The first do/until is the
first state, and the second do/until is the second one. The condition to go from the first state to the
second one is the presence of signal suspend. Respectively, the condition to go from the second state to
the first one is the presence of signal resume. Let’s now detail the code of each state.

In the sampled mode, an infinite loop periodically calls the reaction function of the machine.6 In
the step by step mode, each time the signal step is emitted with the value n, n instants of the reactive
machine are executed. The do/until interrupts this sequence of reactions if the signal suspend is emitted.

The controller is also in charge of the translation of directives into ReactiveML signals. We have
seen in Section 4.1 that the reactive machine and the controller communicate through shared variables
(suspend, resume and step) defined in the Rml_global module. The controller monitors these global
variables and emits the corresponding signal when the status of a variable changes. This behavior is
implemented by the following generate_signals process.

let ref_to_sig ref s =

match !ref with

| None -> ()

| Some v -> ref := None; emit s v

let process generate_signals =

loop

Mutex.lock Rmltop_global.global_mutex;

ref_to_sig Rmltop_global.suspend suspend;

ref_to_sig Rmltop_global.resume resume;

ref_to_sig Rmltop_global.step step;

Mutex.unlock Rmltop_global.global_mutex;

pause;

end

Finally, the behavior of the controller is to execute the two processes machine_controller and generate_signals

in parallel.

let process controller =

run machine_controller || run generate_signals

4.4 Conclusion

Due to the software architecture of rmltop, any valid ReactiveML expression is accepted by the toplevel
and has the same semantics and efficiency as the compiled version (with a small overhead due to directive
management). Indeed, the same ReactiveML compiler is used for the two versions of the language and
the OCaml toplevel is as efficient as the compiler. Moreover this software architecture results in a light
implementation.

5 Related Work

Though ReactiveML is largely inspired from Esterel, it would be much more difficult to implement
a reactive toplevel for this language. In Esterel, adding dynamically processes to a running program

6The function get to run returns the list of processes to add to the machine and resets the list.

13



can introduce causality loops (logical inconsistency concerning presence and absence of signals). Indeed,
the parallel composition of two causal expressions can be not causal. Here is an example:

signal s1, s2 in

present s1 then emit s2 else ()

|| present s2 then () else emit s1

According to Esterel semantics, if we suppose that s1 is absent we can deduce that it is emitted in the
same instant. If we suppose that it is present, we can deduce that it is not emitted. Hence, this program
is absurd.

One strength of ReactiveML is to rely on the Boussinot semantics that delays the reaction to
absence. According to this semantics, if we suppose that s1 is absent then we can deduce that it will be
emitted at the next instant: there is no causality loop. Thanks to this feature, all programs are causal
by construction. So, contrary to Esterel, it is always possible to add a process to a running machine.

Reactive Scripts [6, 18] is a scripting language based on the reactive model and mixed with the
Reactive Object Model [3]. It provides some powerful features like freezing an object such that it can be
serialized and migrated to another reactive machine.

Reactive Scripts is implemented as “macros” that are expanded into another reactive language (Re-

activeC or SugarCubes) which is then interpreted. Conversely, the ReactiveML toplevel has a lan-
guage approach in which programs are typed and compiled. It allows to define specific type systems and
optimisations and provides a more efficient implementation. Another advantage of the ReactiveML

toplevel is that it accepts as input the whole ReactiveML language, whereas Reactive Scripts

imposes some limitations on the host language.

Icobjs [4, 8] is a graphical programming language also based on the reactive model of Boussinot.
It was first implemented on top of Reactive Scripts and is now directly implemented in Java. This
language is built around the notion of icobj that can be seen as a basic behavior that can be killed,
suspended, extended and serialized. A new icobj is built by the composition of the behavior of predefined
ones.

Compared to the ReactiveML toplevel, it is not possible to define dynamically new basic behav-
iors in Icobjs. However, Icobjs provides a powerful introspection mechanism that does not exist in
ReactiveML since it is not available in OCaml. One of the main differences is that Icobjs is a com-
plete framework where many design choices have been made whereas the ReactiveML toplevel is much
more flexible. It would be possible to implement a kind of Icobjs in ReactiveML by the composition
of the combinators killable, suspendable, etc.

The ReactiveML toplevel can also be compared to functional reactive programming (Fran [9] and
its successor Frp [19, 16]). Fran and Frp are two programming languages embedded into Haskell as
libraries. Thus, they can be executed in an Haskell toplevel.

In the context of interactive definition of reactive systems, the main difference comes from the pro-
gramming model. Frp is a data flow language, whereas ReactiveML is much more imperative. We
believe that it is more natural to extend an imperative program with new parallel processes than to ex-
tend a data flow network. Indeed, the communication model of ReactiveML is based on broadcasting
and signals do not do any assumption on the number of events sources, thanks to their combination
function.

6 Conclusion

We have presented rmltop, an interactive mode for the ReactiveML language. It can be helpful to
design and debug reactive systems and for teaching purposes. It provides a way to execute a program in
a sampled mode or step by step and to dynamically modify the behavior of a system. An originality of
this toplevel lies in the fact that it is itself coded in ReactiveML. It results in a light and quite elegant
code.

This experience has highlighted the usefulness of higher order and polymorphism of ReactiveML

for the definition of reconfiguration combinators. These combinators are meaningful beyond the scope
of the toplevel: they can be useful in any ReactiveML program.

14



Acknowledgements

We would like to thank Jean-Ferdy Susini for motivating us in taking advantage of the OCaml toplevel
to implement rmltop, Marc Pouzet for his conclusive ideas of improvement and Frédéric Boussinot for
its proofreading and advices.

References

[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The syn-
chronous languages twelve years later. Proceedings of the IEEE, Special issue on embedded systems,
91(1):64–83, January 2003.

[2] F. Boussinot and R. de Simone. The SL synchronous language. Software Engineering, 22(4):256–266,
1996.

[3] F. Boussinot, G. Doumenc, and J-B Stefani. Reactive objects. Annales des Télécommunications,
51(9-10):459–473, 1996.

[4] F. Boussinot, J-F. Susini, F. Dang Tran, and L. Hazard. A reactive behavior framework for dynamic
virtual worlds. In Proceedings of the sixth international conference on 3D Web technology, 2001.

[5] Frédéric Boussinot. Reactive C: An extension of C to program reactive systems. Software Practice
and Experience, 21(4):401–428, April 1991.

[6] Frédéric Boussinot and Laurent Hazard. Reactive scripts. In Proceedings of the Third International
Workshop on Real-Time Computing Systems Application (RTCSA’96), pages 267–274, 1996.

[7] Frédéric Boussinot and Jean-Ferdy Susini. The SugarCubes tool box : A reactive java framework.
Software Practice and Experience, 28(4):1531–1550, 1998.

[8] Christian Brunette. Construction et simulation graphiques de comportements: le modèle des Icobjs.
Thèse de doctorat, Université de Nice-Sophia Antipolis, 2004.

[9] Conal Elliott and Paul Hudak. Functional reactive animation. In International Conference on
Functional Programming, pages 163–173, June 1997.

[10] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous observers and the verifi-
cation of reactive systems. In AMAST ’93: Proceedings of the Third International Conference on
Methodology and Software Technology, pages 83–96, London, UK, 1994. Springer-Verlag.

[11] Grégoire Hamon and Marc Pouzet. Un simulateur synchrone pour Lucid Synchrone. In Journées
Francophones des Langages Applicatifs (JFLA’99), Morzine-Avoriaz, February 1999. INRIA.

[12] Xavier Leroy. The Objective Caml system release 3.10. Technical report, INRIA, 2007.

[13] Louis Mandel and Florence Plateau. Interactive programming of reactive systems. In Proceedings
of Model-driven High-level Programming of Embedded Systems (SLA++P’08), April 2008.

[14] Louis Mandel and Marc Pouzet. ReactiveML, a reactive extension to ML. In Proceedings of 7th
International conference on Principles and Practice of Declarative Programming (PPDP’05), 2005.

[15] Louis Mandel and Marc Pouzet. ReactiveML : un langage fonctionnel pour la programmation
réactive. Technique et Science Informatiques (TSI), 2007. Accepted for publication.

[16] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued.
In Proceedings of the Haskell Workshop, September 2002.

[17] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling Esterel. Springer,
2007.

[18] Jean-Ferdy Susini. L’approche réactive au dessus de Java : sémantique et implémentation des
SugarCubes et de Junior. Thèse de doctorat, Ecole des Mines de Paris, 2001.

15



[19] Zhanyong Wan and Paul Hudak. Functional reactive programming from first principles. In In ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 242–252, 2000.

16



A ReativeML expressions

We present here the set of ReactiveML expressions that has been added to OCaml.
Terminal symbols are set in typewriter font. Non-terminal symbols are set in italic font. Square

brackets [] denote optional components. Curly brackets {} denote zero, one or several repetitions of the
enclosed components. Parentheses () denote grouping and | denotes alternatives.

Process definitions

let process <id> { <pattern> } = <expr> in <expr>

process <expr>

Process definitions are introduced by the process keyword. A process can be named (let process id...)
or anonymous (process <expr>).

Basic statements

nothing

pause

halt

run <process>

nothing is equivalent to (). pause suspends the execution until next instant. halt suspends the
execution forever. run executes a process.

Compositions

<expr> ; <expr>

<expr> || <expr>

let <pattern> = <expr> { and <pattern> = <expr> } in <expr>

In ReactiveML, expressions can be composed in sequence or in parallel. The let/and/in construct
computes several expressions in parallel and gets their values. Then it computes the body.

Signal declarations

signal <id> { , <id> } in <expr>

signal <id> default <value> gather <function> in <expr>

These constructs declare new signals. When a signal is declared, we can define how to combine the
values emitted during an instant with the signal/gather construct. If no combination function is
given, the behavior of the signal is to collect all emitted values in a list.

Signal emission

emit <signal> [ <value> ]

Signal emissions are instantaneous broadcasting. Hence, a signal is present or absent during an in-
stant but it cannot have both status. The notation emit <signal> is a shortcut for emit <signal> ().

Signal status

present <signal> then <expr> else <expr>

await [ immediate ] <signal>

pre <signal>

The expression present tests the status of a signal. If the signal is present, the then branch is
executed instantaneously, otherwise the else branch is executed at the following instant.

The expression await s waits s to be emitted and terminates at the following instant. Whereas
the expression await immediate s waits s to be emitted and terminates instantaneously.

17



Like in Esterel, the non-immediate version of await is the default one such that await s; await s

waits two occurrences of s, while the expression await immediate s; await immediate s is equiva-
lent to await immediate s.

The expression pre s evaluates to true if the signal s has been emitted at the preceding instant.
Otherwise, it evaluates to false.

Signal value

await <signal> (<pattern>) [ when expr ] in <expr>

await [ immediate ] one <signal> (<variable>) in <expr>

pre ?<signal>

last ?<signal>

default ?<signal>

The await/in waits the emission of a signal. At the instant following the emission, the body is
executed in an environment where the pattern is bind to the value of the signal (the combination
of the values emitted at the preceding instant). Notice that the await/in keeps waiting when the
value of the signal does not match the pattern or if the condition specified after the when keyword
is not satisfied.

The await/one/in construct waits the emission of a signal to bind the pattern with one of the
emitted values. In case of multiple emission during an instant, the choice of the value is not
specified. Like await, the body of the expression is executed at the instant following the reception
of the signal (except if there is the immediate keyword). To be causal by construction, there is no
immediate version of the await/in construct.

The expression pre ?s evaluates to the value associated to s at the preceding instant. If s has not
been emitted at the preceding instant, pre ?s is equal to the default value given at the declaration
point of the signal. last ?s has a slight different behavior. It evaluates to the last value associated
to s when it was emitted. While s has never been emitted, pre ?s and last ?s both evaluates to
the default value of s.

The default function returns the default value of a signal.

Iterators

loop <expr> end

while <expr> do <expr> done

for <id> = <expr> ( to | downto ) <expr> do <expr> done

for <id> = <expr> ( to | downto ) <expr> dopar <expr> done

loop is an infinite loop. while and for/do are the classical loops. They execute their body several
times in sequence. Contrarily, the for/dopar loop executes its body several times in parallel.

Control structures

do <expr> when <signal> done

control <expr> with <signal> [ (<pattern>) [ when <expr> ] ] done

do <expr>

until <signal> [ (<pattern>) [ when <expr> ] ] [ -> <expr> ] done

do/when and control/with allows to suspend the execution of an expression. The do/when executes
its body only when the signal is present. The control/with switches between an active mode and
a suspended one each time that the signal is present.

The preemption construct do/until stops the execution of its body at the end of instant when the
signal is emitted. An handler executed in case of preemption can be associated to this construct.

As in the await/in construct, additional constraints can be put on the suspension and preemption,
through the pattern and when clause that impose conditions on the value of the signal.

18


