
Algorithms for Data Science
Frequent Itemsets and Association Rules

Silviu Maniu
September 10th, 2021

M2 Data Science

1/24

Table of contents

The Market-Basket Model

Mining Frequent Items

Computational Issues

A-Priori Algorithm

2/24

Market-Basket Model

We have a large set of items (things sold in shops, markets,
supermarkets)

Large set of baskets (people buying things all at the same time), each
having a small subset of items

We have two data mining tasks:

1. we want to find items that are frequently bought together
2. we want to find association rules (“people who buy X also buy Y”)

3/24

Frequent Items in Practice

4/24

Association Rules in Practice

Used in supermarket shelf placement

5/24

Other Applications

Plagiarism: baskets are sentences, items are documents containing
the sentences

• items appearing together too often could be plagiarism

Side-e�ects in drug combinations: baskets are patients; items are
drugs and their side e�ects

6/24

Frequent Itemsets

A set of items that appears in many baskets is said to be frequent

Set of items I , itemset I ∈ I , set of baskets B, basket B ∈ B

Support of itemset I: number of baskets containing all items in I:

supp(I) = |{B | I ⊆ B}|

Problem: given a support threshold s, we call itemset appearing in at
least s baskets – or having support s – frequent itemsets

7/24

Example

Items I = {m, c,p,b, j}; baskets B

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {c, j}

B5 = {m,p,b}
B6 = {m, c,b, j}
B7 = {c,b, j}
B8 = {b, j}

Support of itemset I = {m,b}: supp(I) = 4 (appears in B1, B3, B5, B6)

For a support threshold of 3:

• frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b, c}, {c, j}

8/24

Association Rules

Association rules – correlations in the contents of baskets

• written as {i1, i2, . . . , ik} → j – “if a basket contains {i1, i2, . . . , ik}
then it is likely to contain j also

There can be many rules, we only care about interesting ones:

• confidence of an association rule:

conf(I→ j) = supp(I ∪ {j})
supp(I)

9/24

Association Rules

Association rules – correlations in the contents of baskets

• written as {i1, i2, . . . , ik} → j – “if a basket contains {i1, i2, . . . , ik}
then it is likely to contain j also

There can be many rules, we only care about interesting ones:

• interest of an association rule:

interest(I→ j) = conf(I→ j)− Pr[j] = conf(I→ j)− supp({j})
|B|

10/24

Example

Items I = {m, c,p,b, j}; baskets B

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {c, j}

B5 = {m,p,b}
B6 = {m, c,b, j}
B7 = {c,b, j}
B8 = {b, j}

Association rule A: {m,b} → c

• confidence conf(A) = supp({m,b,c})
supp({m,b}) = 2/4 = 0.5

• interest interest(A) = conf(A)− supp({c})
|B| = 2

4 −
4
8 = 0 – not very

interesting (we want either high positive values or low negative
values)

11/24

Mining Association Rules

Problem: find all association rules having support at least s and
confidence at least c

• the support of an association rule I→ j is equal to supp(I)
• means that finding the frequent itemsets is the main di�culty: if
I→ j has high confidence and support then both I and I ∪ j are
frequent itemsets!

12/24

Mining Association Rules

1. Find all frequent itemsets I
2. Rule generation

• for every subset A ⊂ I generate rule A→ I\A: since I is frequent A
is also frequent, only have to compute the confidence

conf(A→ I\A) = supp(I)
supp(A)

• optimization: if ABC→ D is below confidence threshold, then so is
AB→ CD

3. Output all rules above confidence threshold

13/24

Example

Items I = {m, c,p,b, j}; baskets B

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {c, j}

B5 = {m,p,b}
B6 = {m, c,b, j}
B7 = {c,b, j}
B8 = {b, j}

Support s = 3; Confidence c = 0.75

Frequent Itemsets:

• {m}, {c}, {b}, {j}, {m,b}, {b, c}, {c, j}

Rule Generation:

• m→ b (c = 4/5); b→ m (c = 4/6); . . .

14/24

Table of contents

The Market-Basket Model

Mining Frequent Items

Computational Issues

A-Priori Algorithm

15/24

Computational Model

We assume that the data is kept in a disk file, basket by basket

• also most likely that data does not fit in main memory
• cost model: number of accesses on the disk

Read data in batches and check subsets in main-memory:

• for pairs of items, this is feasible: O(n2) via nested-loop
processing – dominated by the disk access

• for larger sets, not feasible O(nk/k!)
• in practice, frequent items are mostly pairs or triples

In the algorithms we discuss next, we analyze only the number of
passes over the data

16/24

Counting Pairs

Pre-processing: transform item strings into ids (less space used)

Triangular Array - store the counts in an array only for pairs which
have i < j (lexicographic order)

• for pair (i, j) update count in a[k] where k = (i− 1)(n− i/2) + j− 1
– saves half the space

Store triples - store the (i, j, c) triple

• hash table on key i, j containing value c
• saves space when counts are sparse

17/24

Monotonicity of Itemsets

Monotonicity of itemsets: if an set of items I is frequent, then so is
every subset of I

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {c, j}

B5 = {m,p,b}
B6 = {m, c,b, j}
B7 = {c,b, j}
B8 = {b, j}

Monotonicity:

• supp(m, c,b) = 2
• supp(m, c) = 2; supp(m,b) = 3; supp(c,b) = 3
• supp(m) = 5; supp(c) = 4; supp(b) = 6

18/24

A-Priori Principles

We can focus on counting pairs – they are the main bottleneck of the
frequent items computations

A-Priori algorithm: designed to reduce the number of pairs we need
to count, at the expense of making two passes over the data
[Agrawal and Srikant, 1994]

Using monotonicity

• if item i does not have support at least s, then no super-set of i
can

• go from singletons, to pairs, to triples, etc.

19/24

A-Priori – 2 Passes

1. read baskets and count support of each item, keep items having
support at least s

2. read baskets again and count only the pairs between frequent
items

• memory quadratic only in frequent items, along with a (linear) list
of frequent items

20/24

A-Priori – 2 Passes

Item counts

Pass 1 Pass 2

Frequent items
M

ai
n

m
em

or
y Counts of

pairs of
frequent items

(candidate
pairs)

21/24

Going Beyond Pairs

For each size of the itemset k, we have two sets of k-tuples:

• Ck candidate tuples which may have support at least s using
information from pass k− 1

• Lk the truly frequent itemsets from Ck

One pass for each k – needs memory space for counts

• in practice, k = 2 requires the most memory

22/24

Example

Support threshold s = 2

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {m, j}

1. C1 = {m} {c} {b} {p} {j}
• L1 = {m} {b} {j}

2. C2 = {m,b} {b, j} {m, j}
• L2 = {m,b} {m, j}

3. C3 = {m,b, j} (use L2 and L1)
• L3 = ∅

Frequent itemsets: L1 ∪ L2

23/24

Optimizing A-Priori

Can optimize A-Priori to use the memory more e�ciently – use hash
tables on itemsets to prune sets that can be candidates:
Park-Chen-Yu algorithm [Park et al., 1995]

Fewer passes over the data:

• Random sampling: take only a part of the dataset (enough to fit
in memory) and check everything in-memory – have to update
the supports

• SON algorithm: mine batches of the dataset in-memory; compute
the real counts in the second pass – can also be use in
MapReduce [Savasere et al., 1995]

24/24

Acknowledgments

The contents and some figures taken from Chapter 6 of
[Leskovec et al., 2020]. https://www.mmds.org/

https://www.mmds.org/

References i

Agrawal, R. and Srikant, R. (1994).
Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB), page 487–499.

Leskovec, J., Rajaraman, A., and Ullman, J. (2020).
Mining of Massive Datasets.
Cambridge University Press.

Park, J. S., Chen, M.-S., and Yu, P. S. (1995).
An e�ective hash-based algorithm for mining association rules.
In Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data (SIGMOD), page 175–186.

References ii

Savasere, A., Omiecinski, E., and Navathe, S. B. (1995).
An e�cient algorithm for mining association rules in large
databases.
In Proceedings of the 21th International Conference on Very Large
Data Bases (VLDB), page 432–444.

	The Market-Basket Model
	Mining Frequent Items
	Computational Issues
	A-Priori Algorithm

	Appendix

