
Network Analysis Lab

Social and Graph Data Management

November 5th, 2021

The goal of this lab session is to analyse the basic properties of a social graph, using Python and
the networkx package, by using a Jupyter notebook.

Documentation to support this lab can be found at:

• NetworkX: https://networkx.github.io/documentation/stable/,

• Matplotlib: https://matplotlib.org/,

• Tutorial on how to use NetworkX and Matplotlib in Jupyter: https://github.com/networkx/
notebooks.

1 Installation and First Steps

1. If not present, install Jupyter and the NetworkX and Matplotlib Python packages.

2. Download the Jupyter notebook called network_analysis_lab.ipynb and the graph karate.
The files must be in the same folder.

3. Run the Jupyter notebook, and check that all cells are executed correctly.

4. Using the examples already present in the notebook and the Networkx documentation, compute
the diameter of the graph and the average distance in the graph. How do they compare?

5. Plot the distribution of the PageRank values in the graph. How does it compare to the distribu-
tion of the degrees (already plotted)?

2 Comparing karate to Random Networks

In this exercise, we aim to compare the results of the average distance and assortativity values in the
graph with those of a random network having the same characteristics.

1. From the average degree of karate and its number of nodes, compute the corresponding values
of p in a random network having the same characteristics.

2. Generate a random graph with the same p and N , using the function networkx.gnp_random_graph
(or an equivalent one) and plot it.

3. Compare the values of the average distance, assortativity, and clustering coefficient with the ones
predicted in expectation in random graphs with the above p and N parameters.

1

https://networkx.github.io/documentation/stable/
https://matplotlib.org/
https://github.com/networkx/notebooks
https://github.com/networkx/notebooks


3 Counting Triangles in Graphs

An important measure in graph analysis is the number of triangles it contains. A triangle of a graph
G is a connected subgraph of G having 3 nodes, or a 3-clique.

Your task is to count the number of triangles in the graph, without using the NetworkX implemen-
tation. Proceed in two steps:

1. Compute the number of triangles in which each node is involved. The output should be a
dictionary containing the node as a key and the number of triangles as a value.

2. For testing, compare your output with that of the networkx.triangles method.

3. Using the dictionary from step 1, output the total number of triangles in the graph.

4. Compute the expected number of triangles in a random graph having the same average degree.
How does it compare to the one found in reality?

4 Community Detection

Implement the divisive community detection (Ravasz) as presented in the course slides. In short, the
following steps should be followed, starting from a single community, i.e., the connected graph:

1. Centrality computation: in this lab we will use the betweenness centrality of each edge; use
the NetworkX implementation as exemplified in the notebook.

2. Clustering: remove the edge having the highest centrality, and recompute the betweenness.

3. Communities: the communities correspond to the connected components of the graph; these
should be output at every step.

4. Repeat steps 2 and 3 until every node is in its a different community.

At every step, compute the resulting modularity. Output only the partition corresponding to the
maximal modularity.

On the original graph, draw the communities corresponding to the maximum modularity, by using
per-community colors on each node.

2


	Installation and First Steps
	Comparing karate to Random Networks
	Counting Triangles in Graphs
	Community Detection

