
Algorithms for Data Science
Web Advertising

Silviu Maniu
October 15th, 2021

M2 Data Science

1/33

Table of contents

Advertising on the Web

The Online Matching Problem

Adwords

2/33

Banner Ads

First iteration: banner ads (around 1995)

3/33

Banner Ads

First iteration: banner ads (around 1995)

• charging per 1,000 “impressions” (clicks)
• CPM – cost per thousand impressions (as in TV, print media)
• untargeted vs. demographically targeted
• low click through rates – low return on investment

4/33

Performance-Based Advertising

Second iteration: ads on search results (around 2001)

5/33

Performance-Based Advertising

Second iteration: ads on search results (around 2001)

• advertisers bid on search keywords
• on click – highest bidder ad is shown
• charging only if add is clicked
• adopted by Google around 2002 – Adwords

6/33

Performance-Based Advertising

Part of Web 2.0 – huge industry (several billion $)

Problem: what ads to show for a given query

• another related problem: which search terms should an
advertiser bid on, and for how much

• part of computational game theory

7/33

Table of contents

Advertising on the Web

The Online Matching Problem

Adwords

8/33

Online Algorithms

Data Streams: limited resources to process data as it comes

Online algorithms

• decision must be made immediately as data comes
• vs. offline – data is processed in its entirety

9/33

Greedy Algorithm for Online Optimization Problems

Optimization problem: maximizing or minimizing an objective
function on the data

Greedy algorithm: take decision locally, by optimizing only based on
the current element and the past

Not always optimal vs. offline algorithms:

• competitive ratio: the ratio between the offline solution and the
online solution over all inputs c = minG

|Mg|
|Mo|

10/33

Matching Problem

Bipartite Graph: a graph G(V1 ∪ V2, E) having two disjoint sets of
nodes V1 and V2 and edges only havins one endpoint in V1 and one in
V2, i.e., E ⊆ V1 × V2

300 CHAPTER 8. ADVERTISING ON THE WEB

4

1 a

b

c

d

2

3

Figure 8.1: A bipartite graph

8.3.2 The Greedy Algorithm for Maximal Matching

Off-line algorithms for finding a maximal matching have been studied for dec-
ades, and one can get very close to O(n2) for an n-node graph. On-line algo-
rithms for the problem have also been studied, and it is this class of algorithms
we shall consider here. In particular, the greedy algorithm for maximal match-
ing works as follows. We consider the edges in whatever order they are given.
When we consider (x, y), add this edge to the matching if neither x nor y are
ends of any edge selected for the matching so far. Otherwise, skip (x, y).

Example 8.5 : Let us consider a greedy match for the graph of Fig. 8.1. Sup-
pose we order the nodes lexicographically, that is, by order of their left node,
breaking ties by the right node. Then we consider the edges in the order (1, a),
(1, c), (2, b), (3, b), (3, d), (4, a). The first edge, (1, a), surely becomes part of the
matching. The second edge, (1, c), cannot be chosen, because node 1 already
appears in the matching. The third edge, (2, b), is selected, because neither
node 2 nor node b appears in the matching so far. Edge (3, b) is rejected for
the match because b is already matched, but then (3, d) is added to the match
because neither 3 nor d has been matched so far. Finally, (4, a) is rejected
because a appears in the match. Thus, the matching produced by the greedy
algorithm for this ordering of the edges is {(1, a), (2, b), (3, d)}. As we saw,
this matching is not maximal. !

Example 8.6 : A greedy match can be even worse than that of Example 8.5.
On the graph of Fig. 8.1, any ordering that begins with the two edges (1, a)
and (3, b), in either order, will match those two pairs but then will be unable
to match nodes 2 or 4. Thus, the size of the resulting match is only 2. !

11/33

Matching Problem

Matching: choosing a subset of the edges in the bipartite graph s.t.
no node has more than two edges in the matching

• perfect – every node is in the matching
• maximal – has the largest number of edges possible8.3. THE MATCHING PROBLEM 301

4

1 a

b

c

d

2

3

Figure 8.2: The only perfect matching for the graph of Fig. 8.1

8.3.3 Competitive Ratio for Greedy Matching

We can show a competitive ratio of 1/2 for the greedy matching algorithm of
Section 8.3.2. First, the ratio cannot be more than 1/2. We already saw that
for the graph of Fig. 8.1, there is a perfect matching of size 4. However, if
the edges are presented in any of the orders discussed in Example 8.6, the size
of the match is only 2, or half the optimum. Since the competitive ratio for
an algorithm is the minimum over all possible inputs of the ratio of what that
algorithm achieves to the optimum result, we see that 1/2 is an upper bound
on the competitive ratio.

Suppose Mo is a maximal matching, and Mg is the matching that the greedy
algorithm produces. Let L be the set of left nodes that are matched in Mo but
not in Mg. Let R be the set of right nodes that are connected by edges to any
node in L. We claim that every node in R is matched in Mg. Suppose not;
in particular, suppose node r in R is not matched in Mg. Then the greedy
algorithm will eventually consider some edge (!, r), where ! is in L. At that
time, neither end of this edge is matched, because we have supposed that neither
! nor r is ever matched by the greedy algorithm. That observation contradicts
the definition of how the greedy algorithm works; that is, the greedy algorithm
would indeed match (!, r). We conclude that every node in R is matched in
Mg.

Now, we know several things about the sizes of sets and matchings.

1. |Mo| ≤ |Mg|+ |L|, since among the nodes on the left, only nodes in L can
be matched in Mo but not Mg.

2. |L| ≤ |R|, because in Mo, all the nodes in L were matched.

12/33

Greedy Algorithm for Matching

Offline case: algorithms for finding maximal matchings are O(n2),
where n = |E|

Online case: can use the greedy algorithm:

1. consider the edges in the order they arrive
2. add edge (x, y) only if neither x nor y are endpoints

13/33

Example of Greedy Matching

Edges arrive in the order: (1,a), (1, c), (2,b), (3,b), (3,d), (4,a)
300 CHAPTER 8. ADVERTISING ON THE WEB

4

1 a

b

c

d

2

3

Figure 8.1: A bipartite graph

8.3.2 The Greedy Algorithm for Maximal Matching

Off-line algorithms for finding a maximal matching have been studied for dec-
ades, and one can get very close to O(n2) for an n-node graph. On-line algo-
rithms for the problem have also been studied, and it is this class of algorithms
we shall consider here. In particular, the greedy algorithm for maximal match-
ing works as follows. We consider the edges in whatever order they are given.
When we consider (x, y), add this edge to the matching if neither x nor y are
ends of any edge selected for the matching so far. Otherwise, skip (x, y).

Example 8.5 : Let us consider a greedy match for the graph of Fig. 8.1. Sup-
pose we order the nodes lexicographically, that is, by order of their left node,
breaking ties by the right node. Then we consider the edges in the order (1, a),
(1, c), (2, b), (3, b), (3, d), (4, a). The first edge, (1, a), surely becomes part of the
matching. The second edge, (1, c), cannot be chosen, because node 1 already
appears in the matching. The third edge, (2, b), is selected, because neither
node 2 nor node b appears in the matching so far. Edge (3, b) is rejected for
the match because b is already matched, but then (3, d) is added to the match
because neither 3 nor d has been matched so far. Finally, (4, a) is rejected
because a appears in the match. Thus, the matching produced by the greedy
algorithm for this ordering of the edges is {(1, a), (2, b), (3, d)}. As we saw,
this matching is not maximal. !

Example 8.6 : A greedy match can be even worse than that of Example 8.5.
On the graph of Fig. 8.1, any ordering that begins with the two edges (1, a)
and (3, b), in either order, will match those two pairs but then will be unable
to match nodes 2 or 4. Thus, the size of the resulting match is only 2. !

Result of greedy matching: (1,a), (2,b), (3,d) – not maximal
14/33

Competitive Ratio of Greedy Matching

Mo – maximal matching, Mg – greedy matching

L – left nodes matched in Mo but not in Mg

R – right nodes connected to any node in L

Claim: every node in R is matched in Mg

• prove by contradiction: assume it is not the case
• then there will exist edge (l, r), l ∈ L
• then, it should be matched (neither is added to the matching)
• contradiction!

15/33

Competitive Ratio of Greedy Matching

Claim: every node in R is matched in Mg

• |Mo| ≤ |Mg|+ |L| – only nodes in L can be matched in Mo

• |L| ≤ |R| – in Mo, all nodes in L are matched
• |R| ≤ |Mg| – every node in R in mateched in Mg

– this gives us |Mg| ≥ |Mo|
2 – lower bound on the competitive ratio

But 1/2 is also an upper bound – can find a counter example

Competitive ratio is then exactly 1/2

16/33

Table of contents

Advertising on the Web

The Online Matching Problem

Adwords

17/33

Adwords Problem

Problem: match queries in a search engines with advertisers

We have:

• a set of bids by advertisers for search queries
• click-through rate for each advertiser-query pair
• budget for each advertiser (time, money, etc.)
• limit on the number of ads to be displayed

18/33

Adwords Problem

Problem: match queries in a search engines with advertisers

Restrictions on the set of advertisers:

• the size is under the limit of number of ads
• each advertiser in the set has bid on the query
• each advertiser has enough budget left over

19/33

Adwords Setting

1. stream of queries arrives at search engines q1,q2,. . .
2. advertisers bid on each query
3. when qi arrives search engine picks a subset of advertisers

Objective: maximize search engine revenue

If we consider queries as being the “left” side and advertisers the
“right” side in a bipartite graph – online bipartite matching

• weighted case: the matching depends on the CTR and the budget

20/33

Adwords in Practice

In practice: combine CTR and bid – expected revenue

• value of an ad – expected revenue
• revenue to the search engine – sum of values of matched ads

Advertiser CTR Bid CTR × Bid

A 0.02 7.5 0.15
B 0.05 5.0 0.25
C 0.01 1.0 0.01

21/33

Measuring CTR

Value of an ad is directly linked to the CTR rate

• high bid is useless if the CTR is very low

Click-through rate is measured historically – difficult problem

• explore: do we try an ad to measure the CTR rate for future
campaigns?

• exploit: do we use the current known CTR rate, even if they could
be outdated?

22/33

Greedy Algorithm

Setting:

• there is one ad shown for each query
• all advertisers have the same budget B
• all ads have same CTR
• value is then the same

Greedy algorithm:

• pick any advertiser who has bid for that query
• same competitive ratio as in online matching – 1/2

23/33

Worst-case Greedy

Advertiser A: bids on query x, budget 4 Advertiser B: bids on queries x
and y, budget 4

Stream: x x x x y y y y

Greedy choice:

• worst case: B B B B
• optimal: A A A A B B B B
• competitive ratio: 1/2

24/33

BALANCE algorithm [Mehta et al., 2007]

BALANCE Algorithm:

• assign query to the bidder having the most budget left
• competitive ratio 3/4
• tie breaking: must be deterministic

Previous example:

• if A is preferred to B: A B A B B B . .
• establishes an upper bound on competitive ratio for 2 bidders

25/33

BALANCE – Lower Bound for 2 Bidders

Assumption: advertisers A1,A2 budget B (consumed by the optimal
algo), revenue 2B

A1 A2

B

xy

B

A1 A2

x

Not
used

xy

B

A1 A2

x

Not
used

BALANCE must exhaust the budget of at
least one bidder, e.g., A2

Case of assigned bids (x + y = B):

• at least half of the queries are assigned
to A1: y ≥ B/2, so y ≥ x

• more than half of the queries are
assigned to A2: remaining budget of A2 is
less than B/2, so x ≤ B/2, so y ≥ x

Minimal BALANCE revenue at x = y = B/2,
revenue 3B/2 competitive ratio 3B/2

2B = 3/4

26/33

BALANCE – Multiple Bidders

In the general case, BALANCE competitive ratio is not much lower
than the simple case:

• competitive ratio: 1 − 1/e = 0.63 . . .
• no online algorithm has a better competitve ratio

27/33

BALANCE – Worst Case for Multiple Bidders

Advertisers: N – A1, . . . ,AN, each having budget B > N

Queries: N rounds of B queries

Bids: round i - bidders Ai, . . . ,An

Optimum allocation: allocate round i queries to Ai

• revenue N · B

28/33

BALANCE – Worst Case for Multiple Bidders

BALANCE allocation

…

A1 A2 A3 AN-1 AN

B/N
B/(N-1)

B/(N-2)

• BALANCE assigns queries in round k to N− (k− 1) advertisers
• sum of allocation to each advertiser Ak, . . . ,AN: Sk =

∑k−1
i=1

B
N−(i−1)

• the smallest k at which Sk ≥ B is the point after which no
advertisers can be allocated k = N(1 − 1/e)

29/33

BALANCE – Worst Case for Multiple Bidders

BALANCE allocation

…

A1 A2 A3 AN-1 AN

B/N
B/(N-1)

B/(N-2)

• after k = N(1 − 1/e) we cannot get any revenue
• total revenue: B · N(1 − 1/e)
• upper bound on competitive ratio: 1 − 1/e

30/33

BALANCE with Arbitrary Bids

BALANCE works well when bids are 0 or 1

• if arbitrary bids, it can fail and have competitive ratio 0

Example:

• advertisers A1,A2, one query q arriving 10 times
• A1: bids 1, budget 110
• A2: bids 10, budget 100
• optimal: assign all queries to A2, revenue 100
• BALANCE: assigns all queries to A1, revenue 10

31/33

Generalized BALANCE

BALANCE can be generalized to arbitrary bids:

• bid xi, budget bi, amount spend so far mi

• fraction of leftover budget fi = 1 −mi/bi
• for a query q, use ψi(q) = xi(1 − e−fi)

Decision:

• allocate query q to bidder i having largest value of ψi(q)

Same competitive ratio: 1 − 1/e

32/33

Adwords Implementation

In practice

• advertisers bid of sets of words
• if a search query contains exactly those words – the advertiser

becomes a bidder
• can use distributed hash tables
• queries can be distributed on several machines also – multiple

streams

Another applications:

• Google also matches ads to emails – much harder problem
(mails are much larger)

33/33

Acknowledgments

The contents follows Chapter 8 of [Leskovec et al., 2020]. Figures in
slides 11, 12, 14, 26, 29, and 30 are taken from https://www.mmds.org/

https://www.mmds.org/

References i

Leskovec, J., Rajaraman, A., and Ullman, J. (2020).
Mining of Massive Datasets.
Cambridge University Press.

Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. (2007).
Adwords and generalized online matching.
J. ACM, 54(5):22–es.

	Advertising on the Web
	The Online Matching Problem
	Adwords
	Appendix

