
name addr rating cuisine

Subway SF 3.9 Sandwiches

Subway NY 3.7 Sandwiches

Bouchon LV 3.8 French

Bouchon LV 3.8 Continental

• • • • • • • • • • • •

⋈o

User
view

name addr

Subway SF

name addr rating name cuisine

resolution
rule

resolution
rule

RestA RestD1 RestD2

Subway SF

Subway NY

Bouchon LV

Limon SF

• • • • • •

Subway SF 3.9

Subway SF 4.1

Subway SF 3.7

Subway NY 3.6

Bouchon LV 4.7

Limon SF • • •

Subway Sandwiches

Bouchon French

Bouchon French

Bouchon Continental

Limon • • •

• • • FrenchAnchor

Dependent Dependentfetch rule
φ!name,addr fetch rule

name,addr!rating
fetch rule

cuisine!name
fetch rule

name!cuisine

Figure 1: Components of the Deco Data Model

The raw schema corresponding to this specification of Restau-
rant is shown in the lower half of Figure 1. These relations are the
ones actually stored as tables in the back-end RDBMS. There is one
anchor table (RestA) containing the anchor attributes, and one de-
pendent table for each dependent attribute (RestD1 and RestD2);
dependent tables also contain some anchor attributes. (In general,
both anchor and dependent attributes can be a group of attributes.)
Recall that we associate cuisines with the restaurant name, and rat-
ing with a name-address pair, since different branches of a restau-
rant (such as NY and SF in Figure 1—to save space, we use abbre-
viated addresses) can have different ratings, but all branches serve
the same kind of food. We will see in Section 2.5 how the raw
schema are generated.

The top of the figure shows the original conceptual relation, which
is the outerjoin of the raw tables with certain attribute values “re-
solved” (explained shortly).

Now let us consider how our database might be populated. Per-
haps we already have some restaurant name-address pairs, with or
without ratings and/or cuisines. If so, Deco might ask human work-
ers to specify ratings and/or cuisines given a restaurant name and/or
address. Alternatively, Deco might ask human workers to specify
restaurant names and addresses given a cuisine and/or rating, or
to provide restaurant names without regard to ratings or cuisines.
Referring to Figure 1, the designer can specify fetch rules that:

• Ask for one or more restaurant name-address pairs, inserting
the obtained values into raw table RestA.

• Ask for a rating given a restaurant name and an address (e.g.,
(Limon,SF) in the figure), inserting the resulting pair into
table RestD1; similarly ask for a cuisine given a restaurant
name (e.g., Limon in the figure), inserting the resulting pair
into RestD2.

• Ask for a restaurant name given a cuisine, inserting the re-
sulting restaurant into table RestA, and inserting the restaurant-
cuisine pair into RestD2 (e.g., French in the figure).

These fetch rules are depicted at the bottom of the raw tables in
Figure 1. There are many more fetch rules that may be used to
populate this database, we return to this point later on.

Now suppose we’ve obtained values for our raw tables, but we

have inconsistencies or uncertainty in the collected data. One de-
cision we made in Deco is to provide a conceptual schema that
does not have uncertainty as a first-class component, however meta-
data in both the raw and conceptual schemas (described later in
Section 2.7) can be used to encode information about confidence,
worker quality, or other aspects of collected data that may be use-
ful to applications. To obtain conceptual relations that are “clean”
from raw tables that may contain inconsistencies, we use resolu-
tion rules, specified by the designer. In Figure 1 we illustrate two
resolution rules:

• A resolution rule for attribute rating specifying that the con-
ceptual schema contains one rating for each restaurant name-
address pair, namely the average of the ratings stored in the
raw schema.

• A resolution rule for attribute cuisine specifying that the con-
ceptual schema contains all of the cuisines for each restaurant
name from the raw schema, but with duplicates eliminated.

The semantics of a Deco database is defined based on a Fetch-
Resolve-Join sequence. Every Deco database has a (typically in-
finite) set of valid instances. A valid instance is obtained by log-
ically: (1) Fetching additional data for the raw tables using fetch
rules; this step may be skipped. (2) Resolving inconsistencies using
resolution rules for each of the raw tables. (3) Outerjoining the re-
solved raw tables to produce the conceptual relations. Note that the
“intermediate” relations between steps (2) and (3) are not depicted
in Figure 1; in the figure we resolve and join in one step. Also it
is critical to understand that the Fetch-Resolve-Join sequence is a
logical concept only. When Deco queries are executed, not only
may these steps be interleaved, but typically no conceptual data is
materialized except the query result.

Note that valid instances could contain wildly varying amounts
of data, from no tuples at all to several million tuples, and they are
all valid. So, when a user poses a query to the database, the valid
instance used to answer his query may be the one with no tuples at
all. We therefore need a mechanism to allow the user to request that
at least a certain number of tuples are returned, discussed further in
Section 3.

