
MTurk

Statistics Manager Query Optimizer

Executor

Storage Engine

σ

BA

HIT Compiler

Task Model

Task 
Manager

Task4
Task5
Task6

Results

a1
a2

inA inB

b1

Co
m

pi
le

d
H

IT
s

H
IT results

Task Cache

Internal 
HIT Tasks

Results Results

Figure 1: A system diagram of Qurk.

2. SYSTEM OVERVIEW
Qurk is architected to handle an atypical database work-

load. Human computation workloads rarely approach hun-
dreds of thousands of tuples, but an individual operation on
a tuple, encoded in a HIT, can take several minutes. Compo-
nents of the system operate asynchronously, and the results
of almost all operations are saved to avoid re-running un-
necessary steps. We now discuss the details of Qurk, which
is depicted in Figure 1.

The Query Optimizer compiles the query into a query
plan and adaptively optimizes it during query execution.
Query selectivities for HIT-based operators are not known a

priori and user metrics may change mid-query. Additionally,
the optimization function must take into account monetary
cost, the number turkers to assign to each HIT, and the
overall query performance.

The Query Executor takes as input query plans from
the query optimizer, executes the plan, and generates a set
of tasks for humans to perform. There are two key dif-
ferences from traditional executors. First, due to the la-
tency in processing HITs, the query operators communicate
asynchronously through input queues, as in the Volcano sys-
tem [3]. The join operator in Figure 1 contains two input
queues from each child operator, and creates tasks that are
sent to the Task Manager. Second, in contrast to the pull
based iterator model, results are automatically emitted from
the top-most operator and inserted into a results table. The
user can periodically poll the table for new result tuples.

The Task Manager maintains a global queue of tasks that
have been enqueued by all operators, and builds an inter-
nal representation of the HIT required to fulfill a task. The
manager takes data from the Statistics Manager to de-
termine the number of HITs, HIT assignments, and the cost
of each task, each of which can di↵er across operators. As
an optimization, the manager can batch several tasks into a
single HIT. The task manager can feed batches of tuples to
a single operator (e.g., collecting multiple tuples to sort). It
can also generate HITs from a set of operators (e.g., group-
ing multiple filter operations over the same tuple).

The HIT Compiler generates the HTML form that a
turker will fill out when they accept the HIT (along with
MTurk-specific information), and sends it to MTurk. The
result is passed to the Task Manager, which enqueues the

result in the next operator of the plan. As an optimization,
Qurk caches results in the Task Cache. If Qurk is aware
of a learning model for the task, it trains this model with
HIT results with the hope of eventually reducing monetary
costs through automation (Task Model). Once results are
emitted from the topmost operator, they are stored in the
database, which the user can check on periodically.

3. DATA MODEL AND QUERY LANGUAGE
Qurk’s data model is close to the relational model, with a

key di↵erence: two turkers may provide di↵erent responses
to the same HIT. The current method to resolve this is to run
a HIT multiple times in order to improve result confidence.
It is di�cult to quantify the uncertainty of a HIT based on
a small sample of results. In our current implementation,
we don’t incorporate an uncertainty model. Instead, Qurk
returns multiple answers to a HIT in a list, which can be
reduced using user-defined aggregates.
We use a SQL-based query language with lightweight UDFs

to give turkers instructions on completing HITs. We intro-
duce the language using two examples.

MTurk-Provided Data
In this example we show how MTurk can be used to supply

data that is returned in the query answer. Query 1 finds the
CEO’s name and phone number for a list of companies.

Query 1

SELECT companyName, findCEO(companyName).CEO,
findCEO(companyName).Phone

FROM companies

Observe that the findCEO function is used twice, and that
it returns a tuple as a result. In this case, the findCEO
function would only be run on MTurk once per company.
We cache a given result to be used in several places (even
possibly in di↵erent queries).

Task 1
TASK findCEO(String companyName)
RETURNS (String CEO,String Phone):

TaskType: Question
Text: ‘‘Find the CEO and the CEO’s phone

number for the company %s’’, companyName
Response: Form((‘‘CEO’’,String),

(‘‘Phone’’,String))

The MTurk task for the findCEO function is in Task 1.
In our language, UDFs specify the type signature for the
findCEO function, as well as a set of parameters that control
the MTurk job that is submitted. On the MTurk website, a
job is an HTML form that the turker fills out. The TaskType
field specifies that this is a question the user must answer.
The Response field specifies that the user will provide two
strings as free-text inputs that will be used to produce the
return value of the function. The Text field shows the ques-
tion that will be supplied to the turker. We provide a simple
substitution language to parameterize the question.

Table-valued Join Operator
Query 2 uses MTurk to join two tables. Suppose we have

a celebrities table with pictures of celebrities, and a spot-


