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Random Networks

We saw that the real networks are sparse: is that the only relevant
measure?

Objective of graph models: reproduce the complexity of real
networks via simple models

Assume we have only two parameters:

• the number of nodes N,
• the probability of an edge existing, p.

What is the graph model, and what properties does it have?
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Random Networks: Algorithm

Random Network models, discovered and studied by P. Erdős and A.
Rényi.

1. Start with N disconnected nodes.
2. For a node pair, add an edge between them with probability p.
3. Repeat this for all N(N− 1) node pairs.

Two possible models:

• G(N,p) model: a graph of N nodes, and each link is connected
with a probability p, or

• G(N, L) model: a graph of N nodes, where L links are chosen
randomly.
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Example: Random Networks (p = 0.5)
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Random Networks: Basic Measures

Expected number of links:

⟨L⟩ = pN(N− 1)
2

Average degree:
⟨k⟩ = p(N− 1)
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Random Networks: Degree Distribution

To compute the probability of a given degree k, we need:

• the probability that exactly k links are present: pk,
• the probability that the other N− 1 − k links are not present:
(1 − p)N−1−k, and

• the number of ways one can select k links for the N− 1 available:(N−1
k
)
.

This is exactly a binomial distribution:

pk =
(
N− 1
k

)
pk(1 − p)N−1−k.
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Random Networks: Degree Distribution

For very sparse networks, ⟨k⟩ ≪ N, the degree distribution is also well
approximated by the Poisson distribution:

pk = e−⟨k⟩ ⟨k⟩
k! .
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Real Networks Do Not Have Poisson Distributions

Predicted distribution (green) versus actual one
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Evolution of Random Networks

Depending on p, we have several regimes of random networks:

1. Subcritical regime, 0 < ⟨k⟩ < 1, p < 1/N: numerous tiny
connected components.

2. Critical point, ⟨k⟩ = 1, p = 1/N: the shifting point between a big
components (that dominates the others) and the subcritical
regime.

3. Supercritical regime, ⟨k⟩ > 1, p > 1/N: one connected component
that dominates other small ones.

4. Connected regime, ⟨k⟩ > lnN, p > lnN/N: one single connected
component.
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Evolution of Random Networks
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Real Networks are Supercritical

name |V| |E| ⟨k⟩ lnN

LiveJournal 4,847,571 68,993,773 14.23 15.39
WikiTalk 2,394,385 5,021,410 2.09 14.68
Enron 36,692 183,831 4.99 10.51
CondMat 23,133 93,497 4.04 10.04

RoadCA 1,965,206 2,766,607 1.40 14.49
Web 875,713 5,105,039 5.82 13.68

However, the random network predicts multiple connected
components in the supercritical regime – this does not occur in real
networks.
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Random Networks: Clustering Coefficient

We need to estimate the expected number of links Li of a node i’s ki
neighbors:

⟨Li⟩ = pki(ki − 1)
2 .

Then, the clustering coefficient Ci is:

Ci =
2⟨Li⟩

ki(ki − 1) = p =
⟨k⟩
N .

Two interpretations:

1. for a constant ⟨k⟩, the larger the network the smaller a node’s
clustering coefficient, and

2. the clustering coefficient for a node is independent of the degree.
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Random Networks Do Not Capture Clustering Coefficients

Predicted clustering coefficient (green) versus actual one 14/43
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Six Degrees of Separation
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Six Degrees of Separation

Small-world phenomenon (or six degrees of separation): choosing
any two persons, one can find a path of few acquaintances between
them.

Or: distance between any two nodes in a network is short

How can we justify this?
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Average and Maximum Distance

Given a graph with average degree ⟨k⟩ a node has on average ⟨k⟩d

nodes at distance d.

Number of nodes upto distance d is:

N(d) ≈ 1 + ⟨k⟩+ ⟨k⟩2 + · · ·+ ⟨k⟩d =
⟨k⟩d+1 − 1
⟨k⟩ − 1 .

Setting N(dmax) ≈ N and assuming ⟨k⟩ ≫ 1:

⟨k⟩dmax ≈ N,

and hence:
dmax =

lnN
ln⟨k⟩ .
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Small Worlds in Random Networks

For most networks, the previous equation offers a better
approximation for the average distance:

⟨d⟩ = lnN
ln⟨k⟩

Generally lnN≪ N, implying that distances are orders of magnitudes
smaller than the size of the graph.

The 1/ ln⟨k⟩ terms implies that the denser the network, the smaller
the distances are.

This estimator works also for real-world networks, with some small
corrections.
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Degree Distributions in Real Networks

Let us look again at the degree distribution:
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Degree Distributions in Real Networks

In real networks, we have hubs: a few extremely well-connected
nodes, pointing to many links.

These are effectively forbidden by random networks
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Degree Distributions in Real Networks

The degrees seem to (approximately) follow a power law distribution,
roughly of the form:

pk ∼ k−γ .

Scale-free network: a network whose degree distribution follows a
power law.

Power-laws have long tails, such as the hubs in the real networks.
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Degree Distributions in Real Networks

The degree distribution is of the form:

pk = Ck−γ .

Remember that
∑
pk = 1 so we need to set:

C =
1∑∞

k=1 k−γ
=

1
ζ(γ)

,

where ζ is Riemann-zeta function.

The final form is then:
pk =

k−γ

ζ(γ)
.

.
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Poisson versus Power-law

For small k, the power law is
above the Poisson function,
i.e., large number of
small-degree nodes.
For k around ⟨k⟩ the Poisson
distribution is above the
power law, indicating that a
random network has many
nodes around the mean.
For large k the power law is
again above the Poisson,
indicating the presence of
hubs.
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Poisson versus Power-law
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Why Scale-Free?

Scale-free: comes from an area of physics called phase transitions,
studying power-laws.

To understand it, we use the moments of a distribution
⟨kn⟩ =

∑
knpk, e.g.:

1. ⟨k⟩ is the mean of the distribution
2. ⟨k2⟩ allows to compute the variance σ2

k = ⟨k2⟩ − ⟨k⟩2, i.e., the
spread of the degrees

3. ⟨k3⟩ measures the skewness of the distribution, i.e., how
symmetric pk is
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Why Scale-Free?

There are major differences between random networks and scale-free
networks:

• Random networks have a scale: σk = ⟨k⟩1/2 < ⟨k⟩. This means
that the nodes in a random networks have comparable degrees.

• Scale-free networks do not have a scale: assuming γ < 3, ⟨k⟩ is
finite, but ⟨k2⟩ is infinite. That means that node degrees can be
arbitrarily tiny or arbitrarily large.
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Ultra Small-World Property

Average distance ⟨d⟩ depends on N and the exponent γ:

1. Anomalous Regime (γ = 2). The degree of the biggest hub grows
linearly with N, so ⟨d⟩ ∼ constant (hub-and-spoke).

2. Ultra-Small World (2 < γ < 3). ⟨d⟩ ∼ ln lnN, slower growth than
random networks. This is where most real networks are.

3. Critical Point (γ = 3). The moment when ⟨k2⟩ does not diverge
any more, i.e., the moment between scale-free and random
regime. Here ⟨d⟩ ∼ lnN

ln lnN .
4. Small World (γ > 3). This is the random network regime, when

⟨d⟩ ∼ lnN.
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The Role of the Degree Exponent
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Growth of Real Networks

The random network model assumes we have a fixed number of
nodes, whereas in real networks the graph grows continually.

Moreover, new nodes prefer to link to more connected nodes, e.g.,
following people on Twitter, books, movies, etc.
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Growth of Real Networks

We need two ingredients:

1. Growth: The model should allow adding nodes, and not only a
fixed number of nodes.

2. Preferential Attachment: New nodes should tend to link to more
connected nodes.
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Barabási–Albert Model

A model that generates scale-free networks. It takes a single
parameter, m.

We start with m0 nodes with links chosen arbitrarily.

Then, the process goes in two steps:

1. Growth At each step, we add a nodes to the network, with m links
to connect to other nodes.

2. Preferential Attachment Each of the m links can connect to node
i with probability P(i) = ki∑

j kj
.
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Example: Barabási–Albert Model (m0 = 2, m = 2)
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Example: Barabási–Albert Model (m0 = 2, m = 2)
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Example: Barabási–Albert Model (m0 = 2, m = 2)
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Example: Barabási–Albert Model (m0 = 2, m = 2)
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Example: Barabási–Albert Model (m0 = 2, m = 2)
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Degree Dynamics

We study next the time-dependent degree of a node i:

∂ki
∂t = mP(i) = m ki∑N−1

j=1 kj
.

By using the fact that
∑N−1

j=1 kj = m(2t− 1) and by integrating, we
obtain:

ki(t) = m
(
t
ti

)β

,

where β = 1/2 is called the dynamical exponent.
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Degree Distribution

The previous result leads us to the degree distribution:

pk ≈ 2m
1
β k−γ ,

where γ = 1
β + 1 = 3.

Interpretation:

1. for large k, pk ≈ k−3, resulting in a scale-free network,
2. the degree exponent γ is independent of m, in line with real

results, and
3. the model predicts the emergence of stationaly scale-free

network.
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Other Measures

Average distance:
⟨d⟩ ∼ lnN

ln lnN ,

i.e., the distances grow slower than in random networks, hence closer
to the real network prediction.

Clustering coefficient:

⟨C⟩ ∼ (lnN)2

N ,

meaning that the model predicts a network that is more locally
clustered than a random network.
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Shortcomings of the Model

1. The model predicts γ = 3 while the exponent in real networks
ranges from 2 to 5.

2. It only works for undirected networks.
3. Linking between already existing nodes and disappearance of

nodes is not modeled.
4. It does not allow to distinguish between nodes of different

characteristics.
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