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Social Networks

Social networks are an abstract representation of the relationships
between human beings

They occur in multiple domains (example):

• in an organization, e.g., company, class, . . .
• in a professional domain, e.g., physics researchers
• on the Web, e.g., Facebook friends, Twitter followers
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Example: Organizations

from A.-L. Barábasi, “Network Science”
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Example: Karate Club

by CuneytAkcora, CC BY-SA 4.0 via Wikimedia Commons
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Example: Web Social Networks

by Michael Coghlan, CC BY-SA 2.0 via Flickr
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Structure of the Course

• we will study the models and measures used for graph analysis
• we will find the properties that distinguish social networks
• we will study some applications of social (graph) data: influence,

link prediction
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Graphs

The most intuitive model for representing social networks are graphs,
composed of:

• a set V, representing the nodes or vertices,
• a binary relation E composed of tuples {v1, v2} ∈ V × V,

representing the links or edges, and
• optionally, a function w : E→ representing the weight of each

link.

The resulting graph is represented by the tuple G = (V, E,w). In the
following we denote N = |V| and L = |E|.
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Types of Graphs

Depending on E and w, we can have several types of graphs:

• if {vi, vj} ∈ E and {vj, vi} ∈ E, for any vi, vj then the graph is
undirected, and directed otherwise,

• if w exists, then the graph is weigthed, and unweighted
otherwise.
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Representing Edges

Two data structures to represent E:

1. Adjacency Matrix. The adjacency matrix AG where aij = 1 (or
aij = w(i, j) if weighted graph) for {i, j} ∈ E, and aij = 0 otherwise.
Good for dense graphs, allows random access, but needs O(V2)

space to represent.
2. Adjacency List. The adjacency list LG(i) is a set of nodes j ∈ V

such that {i, j} ∈ E. Good for sparse graphs, takes only O(E)
space, but no random access.
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Example: Undirected Graph

3

2

1

4

V ={1, 2, 3, 4}
E ={(1, 2), (1, 3), (2, 1), (2, 3),

(3, 1), (3, 2), (3, 4), (4, 3)}

A =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0



L(1) = {2, 3}
L(2) = {1, 3}
L(3) = {1, 2, 4}
L(4) = {3}
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Example: Weighted Undirected Graph
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4
0.3

0.2
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V ={1, 2, 3, 4}
E ={(1, 2), (1, 3), (2, 1), (2, 3),

(3, 1), (3, 2), (3, 4), (4, 3)}

A =


0 0.3 0.2 0

0.3 0 0.8 0
0.2 0.8 0 1
0 0 1 0



L(1) = {2, 3}
L(2) = {1, 3}
L(3) = {1, 2, 4}
L(4) = {3}
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Example: Directed Graph
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2

1

4

V ={1, 2, 3, 4}
E ={(1, 2), (1, 3), (3, 2), (4, 3)}

A =


0 1 1 0
0 0 0 0
0 1 0 0
0 0 1 0



L(1) = {2, 3}
L(2) = ∅
L(3) = {2}
L(4) = {3}
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Example: Complete Graph

3

2

1

4

V ={1, 2, 3, 4}
E ={(1, 2), (1, 3), (1, 4), (2, 1), (2, 3),

(2, 4), (3, 1)(3, 2), (3, 4),
(4, 1), (4, 2), (4, 3)}

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



L(1) = {2, 3, 4}
L(2) = {1, 3, 4}
L(3) = {1, 2, 4}
L(4) = {1, 2, 3} 15/36
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Degree

The degree k(i) of a node i equals how many other nodes i connects
to via links:

k(i) = |{(i, j) | j ∈ V, (i, j) ∈ E}|

For directed graphs, we have to di�erentiate between the incoming
and outgoing degree:

kin(i) = |{(j, i) | j ∈ V, (j, i) ∈ E}|
kout(i) = |{(i, j) | j ∈ V, (i, j) ∈ E}|
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Degree Distribution

Denote by pi the probability that a node has degree i:

pi =
Ni
N ,

where Ni is the number of nodes of degree i, and N is the total
number of nodes in the graph.

This measure defines a distribution:
∞∑
i=0

pi = 1.

We can compute the average degree 〈k〉 =
∑∞

i=0 i · pi = L
N .
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Example: Degree Distribution

3

2

1

4

V ={1, 2, 3, 4}
E ={(1, 2), (1, 3), (2, 1), (2, 3),

(3, 1), (3, 2), (3, 4), (4, 3)}

k(1) = 2, k(2) = 2,
k(3) = 3, k(4) = 1

p0 = 0
p1 = 1/4 = 0.25
p2 = 2/4 = 0.5
p3 = 1/4 = 0.25

〈k〉 = 1× 0.25 + 2× 0.5 + 3× 0.25
= 2 19/36



Some Real-World Network Statistics

name nodes edges |V| |E| 〈k〉

LiveJournal users friendship 4,847,571 68,993,773 14.23
WikiTalk contributors communication 2,394,385 5,021,410 2.09
Enron workers emails 36,692 183,831 4.99
CondMat researchers collaboration 23,133 93,497 4.04

RoadCA locations roads 1,965,206 2,766,607 1.40
Web sites links 875,713 5,105,039 5.82

More networks and statistics available at
https://snap.stanford.edu/data/.
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Real Networks are Sparse

Our first indication that real networks are di�erent from arbitrary
graphs: all the above networks are sparse, with 〈k〉 � N− 1.

from Albert-László Barabási, “Network Science”
21/36



Paths in Graphs

A path is a sequence of nodes v1, v2, . . . , vk in V, where each node is a
neihbour of the next one.

P = {1, 2, 3, 4}
P = {(1, 2), (2, 3), (3, 4)}

In a directed graph, the path can only follow the direction of the
arrows.

22/36



Paths in Graphs

We can compute the number of paths of length l between two nodes i
and j, N(l)

ij using the adjacency matrix:

• for l = 1, N(1)
ij = Aij, i.e., the edge between the two nodes,

• otherwise N(l)
ij = [Al]ij.
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Distances in Graphs

The distance dij between two nodes i and j in a graphs is:

1. in an undirected graph, the number of edges in the shortest path
between two nodes, and

2. in a directed graph, the weight of the shortest path between two
nodes.
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Example: Distances

3

2

1

4

V ={1, 2, 3, 4}
E ={(1, 2), (1, 3), (2, 1), (2, 3),

(3, 1), (3, 2), (3, 4), (4, 3)}

d14 = 2

P = (1, 3), (3, 4)
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Distances in Graphs

Diameter of a graph dmax: the maximum distance between any pair of
nodes in the graph

Average distance in a graph:

〈d〉 = 1
N(N− 1)

∑
i,j

dij
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Example: Distances

3

2

1

4

V ={1, 2, 3, 4}
E ={(1, 2), (1, 3), (2, 1), (2, 3),

(3, 1), (3, 2), (3, 4), (4, 3)}

d =


0 1 1 2
1 0 1 2
1 1 0 1
2 2 1 0



dmax = 2

〈d〉 = 16
12 = 1.33
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Real Networks Have Low Diameter

For example, Livejournal has a diameter of only 38, despite having
several million vertices and edges.

This is known as the six degrees of separation principle – there are
not many links separating any two people in the world.
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Connectivity

In undirected graphs:

• a connected graph: any two vertices can be joined by a path
• a disconnected graph: made up by two or more connected

components

In directed graphs:

• strongly connected if there a path for any vertices i, j in both
directions i→ j and j→ i.

• weakly connected if there is a path between any vertices i, j
disregarding the direction of the edges.
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Clustering Coe�cient

For a node i, the clustering coe�cient Ci is the fraction of neighbors
that are connected:

Ci =
2ei

ki(ki − 1) ,

where ei is the number of between neighbors of i.

The average clustering coe�cient is the global measure:

〈C〉 = 1
M

∑
i

Ci.
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Example: Clustering Coe�cient
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2

1

4

V ={1, 2, 3, 4}
E ={(1, 2), (1, 3), (2, 1), (2, 3),

(3, 1), (3, 2), (3, 4), (4, 3)}

C1 =
2 · 1
2 · 1 = 1

C2 =
2 · 1
2 · 1 = 1

C2 =
2 · 1
3 · 1 =

1
3

C4 =
2 · 0
1 · 0 = 0

〈C〉 = 1 + 1 + 1/3
4 = 0.58
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Some Real-World Network Statistics

name nodes edges |V| |E| 〈C〉

LiveJournal users friendship 4,847,571 68,993,773 0.28
WikiTalk contributors communication 2,394,385 5,021,410 0.05
Enron workers emails 36,692 183,831 0.49
CondMat researchers collaboration 23,133 93,497 0.63

RoadCA locations roads 1,965,206 2,766,607 0.04
Web sites links 875,713 5,105,039 0.51

More networks and statistics available at
https://snap.stanford.edu/data/.
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Web and Social Networks Have High Clustering Coe�cient

Take CondMat: it has a clustering coe�cient of 0.63 – intuitively, over
60% of a researcher’s collaborators also collaborate between
themselves.

Generally, these kinds of networks have a clustering coe�cient that is
larger than one obtained by chance (more on this later).
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Node Centrality Measures

Degree and distances are also part of a class of measures called node
centrality measures:

1. vertex centrality is the node’s degree ki
2. closeness centrality is the inverse of the aggregated distances

from other nodes Cli = 1∑
j dji

3. betweennness centrality counts the number of times a nodes is
on a shortest path between two nodes

4. eigenvector centrality, e.g., PageRank of a node
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Summary

1. We studied some of the important measures in social network
analysis: average degree, degree distribution, diameter, and
clustering coe�ciet.

2. We discovered that they are sparse, with low diameter and high
clustering coe�cient.

3. Next: How do these properties emerge in social networks?
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