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Market-Basket Model

We have a large set of items (things sold in shops, markets,
supermarkets)

Large set of baskets (people buying things all at the same time), each
having a small subset of items

We have two data mining tasks:

1. we want to find items that are frequently bought together
2. we want to find association rules (“people who buy X also buy Y”)
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Frequent Items in Practice
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Association Rules in Practice

Used in supermarket shelf placement
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Other Applications

Plagiarism: baskets are sentences, items are documents containing
the sentences

• items appearing together too often could be plagiarism

Side-e�ects in drug combinations: baskets are patients; items are
drugs and their side e�ects
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Frequent Itemsets

A set of items that appears in many baskets is said to be frequent

Set of items I , itemset I ∈ I , set of baskets B, basket B ∈ B

Support of itemset I: number of baskets containing all items in I:

supp(I) = |{B | I ⊆ B}|

Problem: given a support threshold s, we call itemset appearing in at
least s baskets – or having support s – frequent itemsets
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Example

Items I = {m, c,p,b, j}; baskets B

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {c, j}

B5 = {m,p,b}
B6 = {m, c,b, j}
B7 = {c,b, j}
B8 = {b, j}

Support of itemset I = {m,b}: supp(I) = 4 (appears in B1, B3, B5, B6)

For a support threshold of 3:

• frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b, c}, {c, j}
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Association Rules

Association rules – correlations in the contents of baskets

• written as {i1, i2, . . . , ik} → j – “if a basket contains {i1, i2, . . . , ik}
then it is likely to contain j also

There can be many rules, we only care about interesting ones:

• confidence of an association rule:

conf(I→ j) = supp(I ∪ {j})
supp(I)
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Association Rules

Association rules – correlations in the contents of baskets

• written as {i1, i2, . . . , ik} → j – “if a basket contains {i1, i2, . . . , ik}
then it is likely to contain j also

There can be many rules, we only care about interesting ones:

• interest of an association rule:

interest(I→ j) = conf(I→ j)− Pr[j] = conf(I→ j)− supp({j})
|B|
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Example

Items I = {m, c,p,b, j}; baskets B

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {c, j}

B5 = {m,p,b}
B6 = {m, c,b, j}
B7 = {c,b, j}
B8 = {b, j}

Association rule A: {m,b} → c

• confidence conf(A) = supp({m,b,c})
supp({m,b}) = 2/4 = 0.5

• interest interest(A) = conf(A)− supp({c})
|B| = 2

4 −
4
8 = 0 – not very

interesting (we want either high positive values or low negative
values)
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Mining Association Rules

Problem: find all association rules having support at least s and
confidence at least c

• the support of an association rule I→ j is equal to supp(I)
• means that finding the frequent itemsets is the main di�culty: if
I→ j has high confidence and support then both I and I ∪ j are
frequent itemsets!
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Mining Association Rules

1. Find all frequent itemsets I
2. Rule generation

• for every subset A ⊂ I generate rule A→ I\A: since I is frequent A
is also frequent, only have to compute the confidence

conf(A→ I\A) = supp(I)
supp(A)

• optimization: if ABC→ D is below confidence threshold, then so is
AB→ CD

3. Output all rules above confidence threshold
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Example

Items I = {m, c,p,b, j}; baskets B

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {c, j}

B5 = {m,p,b}
B6 = {m, c,b, j}
B7 = {c,b, j}
B8 = {b, j}

Support s = 3; Confidence c = 0.75

Frequent Itemsets:

• {m}, {c}, {b}, {j}, {m,b}, {b, c}, {c, j}

Rule Generation:

• m→ b (c = 4/5); b→ m (c = 4/6); . . .
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Computational Model

We assume that the data is kept in a disk file, basket by basket

• also most likely that data does not fit in main memory
• cost model: number of accesses on the disk

Read data in batches and check subsets in main-memory:

• for pairs of items, this is feasible: O(n2) via nested-loop
processing – dominated by the disk access

• for larger sets, not feasible O(nk/k!)
• in practice, frequent items are mostly pairs or triples

In the algorithms we discuss next, we analyze only the number of
passes over the data
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Counting Pairs

Pre-processing: transform item strings into ids (less space used)

Triangular Array - store the counts in an array only for pairs which
have i < j (lexicographic order)

• for pair (i, j) update count in a[k] where k = (i− 1)(n− i/2) + j− 1
– saves half the space

Store triples - store the (i, j, c) triple

• hash table on key i, j containing value c
• saves space when counts are sparse
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Monotonicity of Itemsets

Monotonicity of itemsets: if an set of items I is frequent, then so is
every subset of I

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {c, j}

B5 = {m,p,b}
B6 = {m, c,b, j}
B7 = {c,b, j}
B8 = {b, j}

Monotonicity:

• supp(m, c,b) = 2
• supp(m, c) = 2; supp(m,b) = 3; supp(c,b) = 3
• supp(m) = 5; supp(c) = 4; supp(b) = 6
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A-Priori Principles

We can focus on counting pairs – they are the main bottleneck of the
frequent items computations

A-Priori algorithm: designed to reduce the number of pairs we need
to count, at the expense of making two passes over the data
[Agrawal and Srikant, 1994]

Using monotonicity

• if item i does not have support at least s, then no super-set of i
can

• go from singletons, to pairs, to triples, etc.
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A-Priori – 2 Passes

1. read baskets and count support of each item, keep items having
support at least s

2. read baskets again and count only the pairs between frequent
items

• memory quadratic only in frequent items, along with a (linear) list
of frequent items
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A-Priori – 2 Passes

Item counts

Pass 1 Pass 2

Frequent items
M

ai
n 

m
em

or
y Counts of 

pairs of 
frequent items 

(candidate 
pairs)
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Going Beyond Pairs

For each size of the itemset k, we have two sets of k-tuples:

• Ck candidate tuples which may have support at least s using
information from pass k− 1

• Lk the truly frequent itemsets from Ck

One pass for each k – needs memory space for counts

• in practice, k = 2 requires the most memory
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Example

Support threshold s = 2

B1 = {m, c,b}
B2 = {m,p, j}
B3 = {m,b}
B4 = {m, j}

1. C1 = {m} {c} {b} {p} {j}
• L1 = {m} {b} {j}

2. C2 = {m,b} {b, j} {m, j}
• L2 = {m,b} {m, j}

3. C3 = {m,b, j} (use L2 and L1)
• L3 = ∅

Frequent itemsets: L1 ∪ L2

23/24



Optimizing A-Priori

Can optimize A-Priori to use the memory more e�ciently – use hash
tables on itemsets to prune sets that can be candidates:
Park-Chen-Yu algorithm [Park et al., 1995]

Fewer passes over the data:

• Random sampling: take only a part of the dataset (enough to fit
in memory) and check everything in-memory – have to update
the supports

• SON algorithm: mine batches of the dataset in-memory; compute
the real counts in the second pass – can also be use in
MapReduce [Savasere et al., 1995]
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