
SELECT *
FROM professor p,
 department d
WHERE p.department = d.name
 AND p.university = d.university
 AND p.name = "Karp"

Professor Department

⋈
σ name="Karp"

p.dep=d.name

Professor

Department

⋈

σname=
 "Karp"

p.dep=d.name CrowdJoin
(Dep)

p.dep = d.name

CrowdProbe
(Professor)
name=Karp

(a) PeopleSQL query (b) Logical plan
before optimization

(c) Logical plan
after optimization

(d) Physical plan

Please fill out the professor data
 Karp

University

Name

Email

Submit
Department

Please fill out the missing
department data

University
Name

Phone
URL

Submit

Figure 3: CrowdSQL Query Plan Generation

quality control. In the current CrowdDB prototype, quality control
is carried out by a majority vote on the input provided by different
workers for the same HIT. The number of workers assigned to
each HIT is controlled by an Assignments parameter (Section 2.1).
The initial number of Assignments is currently a static parameter of
CrowdDB. As mentioned in Section 4.3, this parameter should be
set by the CrowdDB optimizer based on budget constraints set via
CrowdSQL.

The current version of CrowdDB has three Crowd operators:

• CrowdProbe: This operator crowdsources missing information
of CROWD columns (i.e., CNULL values) and new tuples. It
uses interfaces such as those shown in Figures 2a, 2d and 2e.
The operator enforces quality control by selecting the majority
answer for every attribute as the final value. That is, given the
answers for a single tuple (i.e., entity with the same key), the ma-
jority of turkers have to enter the same value to make it the final
value of the tuple. If no majority exists, more workers are asked
until the majority agrees or a pre-set maximum of answers are
collected. In the latter case, the final value is randomly selected
from the values most workers had in common.
In the case of newly created tuples it can happen that all workers
enter tuples with different primary keys, making finding a ma-
jority impossible. In this case, the operator re-posts the tasks by
leaving all non-confirmed attributes empty except the ones com-
prising the primary key. This allows CrowdDB to obtain more
answers for every key in order to form a majority quorum.

• CrowdJoin: This operator implements an index nested-loop join
over two tables, at least one of which is crowdsourced. For each
tuple of the outer relation, this operator creates one or more HITs
in order to crowdsource new tuples from the inner relation that
matches the tuple of the outer relation. Correspondingly, the in-
ner relation must be a CROWD table and the user interface to
crowdsource new tuples from the inner relation is instantiated
with the join column values of the tuple from the outer relation
according to the join predicates. The quality control technique
is the same as for CrowdProbe.

• CrowdCompare: This operator implements the CROWDEQUAL
and CROWDORDER functions described in Section 4.2. It in-
stantiates user interfaces such as those shown in Figures 2c and
2d. Note that CrowdCompare is typically used inside another
traditional operator, such as sorting or predicate evaluation. For
example, an operator that implements quick-sort might use Crowd-
Compare to perform the required binary comparisons. Quality
control is based on the simple majority vote.

6.2 Physical Plan Generation
Figure 3 presents an end-to-end example that shows how CrowdDB

creates a query plan for a simple CrowdSQL query. A query is
first parsed; the result is a logical plan, as shown in Figure 3b.

This logical plan is then optimized using traditional and crowd-
specific optimizations. Figure 3c shows the optimized logical plan
for this example. In this example, only predicate push-down was
applied, a well-known traditional optimization technique. Some
crowd-specific optimization heuristics used in CrowdDB are de-
scribed in the next subsection. Finally, the logical plan is translated
into a physical plan which can be executed by the CrowdDB run-
time system. As part of this step, Crowd operators and traditional
operators of the relational algebra are instantiated. In the example
of Figure 3, the query is executed by a CrowdProbe operator in or-
der to crowdsource missing information from the Professor table
and a CrowdJoin operator in order to crowdsource missing infor-
mation from the Department table. (In this example, it is assumed
that the Department is a CROWD table; otherwise, the CrowdJoin
operator would not be applicable.)

6.3 Heuristics
The current CrowdDB compiler is based on a simple rule-based

optimizer. The optimizer implements several essential query rewrit-
ing rules such as predicate push-down, stopafter push-down [7],
join-ordering and determining if the plan is bounded [5]. The last
optimization deals with the open-world assumption by ensuring
that the amount of data requested from the crowd is bounded. Thus,
the heuristic first annotates the query plan with the cardinality pre-
dictions between the operators. Afterwards, the heuristic tries to
re-order the operators to minimize the requests against the crowd
and warns the user at compile-time if the number of requests cannot
be bounded.

Furthermore, we also created a set of crowd-sourcing rules in or-
der to set the basic crowdsourcing parameters (e.g., price, batching-
size), select the user interface (e.g., normalized vs. denormalized)
and several other simple cost-saving techniques. For example, a
delete on a crowd-sourced table does not try to receive all tuples
satisfying the expression in the delete statement before deleting
them. Instead the optimizer rewrites the query to only look into
existing tuples.

Nevertheless, in contrast to a cost-based optimizer, a rule-based
optimizer is not able to exhaustively explore all parameters and
thus, often produces a sub-optimal result. A cost-based optimizer
for CrowdDB, which must also consider the changing conditions
on AMT, remains future work.

7. EXPERIMENTS AND RESULTS
This section presents results from experiments run with CrowdDB

and AMT. We ran over 25,000 HITs on AMT during October 2010,
varying parameters such as price, jobs per HIT and time of day. We
measured the response time and quality of the answers provided
by the workers. Here, we report on Micro-benchmarks (Section
7.1), that use simple jobs involving finding new data or making
subjective comparisons. The goals of these experiments are to ex-

