Evolutionary Topological Optimum Design

Marc Schoenauer
Equipe-Projet TAO
INRIA Saclay Île-deFrance
Agenda

Evolutionary Algorithms
• Background
• The algorithm
• Two viewpoints
 – Evolution engine
 – Variation operators
• Critical issues

Topological Optimum Design

Optimization
Biological paradigm
Artificial Darwinism
Crossover and mutation
Agenda

Evolutionary Algorithms

• Background

• The algorithm

• Two viewpoints
 – Evolution engine
 – Variation operators

• Critical issues

Topological Optimum Design
Rough Objective Function
L. Taieb, CMAP and Thomson

- **Search Space:** Continuous parameters, Interferometers
- **Goal:** Maximize tolerance, preserving accuracy

Objective function – 3 antennas
Mixed Search Space
Schutz & Bäck, Dortmund U. - Martin et al., Optique PVI & CMAP

- **Search Space**: lists of pairs (material, thickness)
- **Goal**: Fit the target response profile

High and Low frequency filter
Digital circuits
Koza et al., Genetic Programming Inc. & Stanford

- **Search Space:** Valued graphs
- **Goal:** Target functionalities

Evolved cubic root extractor
Non-computable Objective Function
Herdy et al., Technische Univ. Berlin

- Search Space: Blend proportions
- Goal: Find a target flavor

 Expert knowledge
Optimization Algorithms

- Enumerative methods
- Gradient-based algorithms
- Hill-Climbing
- Stochastic methods

Comparison issues

- Nature of search space
- Smoothness of objective (constraints)
- Local vs global search
Agenda

Evolutionary Algorithms

- Background
- The algorithm
- Two viewpoints
 - Evolution engine
 - Variation operators
- Critical issues

Topological Optimum Design
From hill-climbing to meta-heuristics (1)

Simple Hill-Climbing

- Choose X_0 uniformly in Ω, and compute $F(X_0)$

- Loop

 - $y = \text{ArgMax} \{F(x) ; x \in \mathcal{N}(X_t) \}$

 - Compute $F(y)$

 - If $F(y) > F(X_t)$ then $X_{t+1} = y$

 - else $X_{t+1} = X_t$

 - $t = t+1$

 e.g., until no improvement
Neighborhoods and EVE dilemma

Size matters

- \(\mathcal{N}(X_t) = \Omega \rightarrow \text{Monte-Carlo} \)
 Memoryless exploration

- \(\mathcal{N}(X_t) = \text{Closest neighbors}(X_t) \)
 Purely local exploitation

Enhancements

- Generalize neighborhoods
 Probability distributions

- Relax selection
 Accept worse points

- Population-based algorithms
From hill-climbing to meta-heuristics (2)

Stochastic Hill-Climbing

- Choose X_0 uniformly in Ω, and compute $F(X_0)$
- Loop e.g., until no improvement
 - $y = U[\mathcal{N}(X_t)]$ uniform choice
 - Compute $F(y)$ acceptance
 - If $F(y) > F(X_t)$ then $X_{t+1} = y$
 - else $X_{t+1} = X_t$
 - $t = t + 1$
From hill-climbing to meta-heuristics (3)

Stochastic Local(?) Search

- Choose X_0 uniformly in Ω, and compute $F(X_0)$

- Loop
 - $y = \text{Move}(X_t)$
 - Compute $F(y)$
 - If $F(y) > F(X_t)$ then $X_{t+1} = y$
 - else $X_{t+1} = X_t$
 - $t = t + 1$

- e.g., until no improvement
- operator==distribution
- acceptation
From hill-climbing to meta-heuristics (4)

Stochastic Search (e.g. Simulated Annealing)

- Choose X_0 uniformly in Ω, and compute $F(X_0)$
- Loop
 - $y = \text{Move}(X_t)$
 - Compute $F(y)$
 - $X_{t+1} = \text{Select}(y, X_t)$
 - $t = t + 1$

 e.g., until no improvement operator==distribution selection
From hill-climbing to meta-heuristics (5)

(1+λ)-Evolution Strategy

- Choose X_0 uniformly in Ω, and compute $F(X_0)$

- Loop
 - For $i=1, \ldots, \lambda$
 - $y_i = \text{Move}(X_t)$
 - Compute $F(y_i)$
 - $X_{t+1} = \text{Select}(y_1, \ldots, y_\lambda, X_t)$
 - $t = t+1$

 e.g., until no improvement

operator==distribution

selection
Evolutionary Paradigm

- Natural selection
 - bias toward fittest individuals
- Blind variations
 - Parents → offspring by undirected variations (i.e. independent of fitness)
- Individual “Objective”: survival and reproduction
- Result: adapted species
 - e.g. resistant bacteria

But

- Inspiration
- Explanation
- Not justification
The Skeleton

- **Initialisation**
- **Evaluation**
- **Parents**
- **Survival Selection**
- **Evaluation**
- **Offspring**
- **Best individual**
- **Stop?**
- **Parental Selection**
- **Genitors**
- **Generation**
- **Crossover Mutation**

Legend:
- Stochastic operators: Representation dependent
- Darwinian Evolution Engine: (can be stochastic or deterministic)
- Main CPU cost
- Checkpointing: stopping criterion, statistics, updates, ...
Two orthogonal points of view

- **Artificial Darwinism** (selection steps) only depend on fitness
- Initialization and variation operators only depend on the representation (i.e. the search space)
Agenda

Evolutionary Algorithms

• Background
• The algorithm
• Two viewpoints
 – Evolution engine
 – Variation operators
• Critical issues

Topological Optimum Design
Artificial Darwinism

Two selection steps

- Parental selection can select an individual multiple times
- Survival selection selects or not each individual

Issues

- Bias toward fitter individual
 - Too large bias → pure local search
 - Too small bias → random walk
- Can be deterministic or stochastic

Premature convergence
No convergence
Tournament Selection

Stochastic selections

- **Deterministic tournament - size T**
 - Choose T individuals uniformly
 - Return best

- **Stochastic tournament – probability t ∈ [0.5,1]**
 - Choose 2 individuals uniformly
 - Return best with probability t (worse otherwise)

Advantages

- Comparison-based → invariance properties
- Easy parameterization from $t=0.5$ to $T=P$
Deterministic Survival Selection

Evolution Strategies: μ parents, λ offspring (historical)

- $(\mu+\lambda)$-ES: the μ best of μ old parents + λ offspring become next parents
 - Practical robustness
 - Premature convergence

- (μ,λ)-ES: the μ best of λ offspring become next parents
 - Can lose best individuals
 - Better exploration
Agenda

Evolutionary Algorithms

- Background
- The algorithm
- Two viewpoints
 - Evolution engine
 - Variation operators
- Critical issues

Topological Optimum Design
Variation Operators

Crossover: Two (or more) parents -> one offspring
- Exchange of information
- Start of evolution: exploration
- Close to convergence: exploitation

Mutation: One parent → one offspring
- Reintroduces diversity
- Ergodicity
- “Strong Causality”
- 'linearity' of fitness function
- 'continuity' of fitness function
Crossover

Standard examples

Exchange of 'genes' Crossover of real parameters

Five parents for a surrealist offspring

La foule subjuguée boira ses paroles enflammées
Ce plat exquis enchanta leurs papilles expertes
L’aube aux doigts de roses se leva sur un jour nouveau
Le cadavre sanguinolent encombrait la police nationale
Les coureurs assoiffés se jetèrent sur le vin pourtant mauvais
Mutation

Standard examples

- 'Gene' mutation

- Adding Gaussian noise to real-valued parameters

A surrealistic example

La terre est comme un orange bleue
La terre est bleue comme une orange
Gaussian mutations

Gaussian mutation

\[X \rightarrow X + \sigma \mathcal{N}(0, C) \]

- \(\sigma > 0 \) mutation step-size
- \(C \) covariance matrix (symmetric definite positive)

Adaptation of \(\sigma \) and \(C \)

- According to history of evolution: favor directions and step-size that produced fitness improvements
- \(\rightarrow \textbf{CMA-ES}, \) state-of-the-art algorithm
Agenda

Evolutionary Algorithms

• Background

• The algorithm

• Two viewpoints
 – Evolution engine
 – Variation operators

• Critical issues

Topological Optimum Design
Potential solutions are represented (encoded) in the **genotype space**, where evolution happens.

They are decoded back into the **phenotype space** for evaluation.

The same phenotype space can be encoded in several genotype space.

Find the best representation, and you're half way to the solution.
Critical Issues

- No Free Lunch Theorem
- **Success** criterion: Design vs Production
 - At least once an excellent solution
 - On average a good-enough solution
- Do not draw any conclusion from a single run!
- A population, not an individual
- Exploration vs Exploitation dilemma
- No strong theoretical results (yet)
 - but lessons from many successful applications

Diversity is critical
Agenda

Evolutionary Algorithms

Topological Optimum Design

- The fitness function
- The bitarray representation
- The Voronoi representation
- Multi-objective optimization
- Modularity and Scalability
Sample problem

- Find a shape in a given design domain
- Of minimal weight
- With constraints on the mechanical behavior

Example: The cantilever problem, bounds on the maximal displacement
Evolutionary Approach

Only requires a direct solver

What fitness?
What representation?
Agenda

Evolutionary Algorithms

Topological Optimum Design

- The fitness function
- The bitarray representation
- The Voronoi representation
- Multi-objective optimization
- Modularity
Fitness function

- A shape can be non-viable
 - Fitness = +∞
- Only connected parts are useful
 - Slightly penalize unconnected parts

Problem

\[
\text{Min } (W_{\text{connected}} + \varepsilon W_{\text{unconnected}})
\]

with \(D_{\text{max}}^i \leq D_{\text{lim}}^i \) for each loading \(i \)
Constraint handling

Penalization

Minimize \(W_{\text{connected}} + \varepsilon W_{\text{unconnected}} + \sum_{i} \alpha_i (D_{i\max} - D_{i\lim})^+ \)

Choice of \(\alpha_i \)?

Fixed penalty

- Too small: optimum unfeasible
- Too large: no exploration of unfeasible regions

Dynamic penalty

- Small at beginning of evolution, large in the end
- Difficult to correctly tune
Adaptive penalty

Penalty changes every generation:

$\tau(t)$: proportion of feasible individuals at generation t

$$
\alpha(t + 1) = \begin{cases}
\frac{\alpha(t)}{\beta} & \text{if } \tau(t) > \tau_0 \\
\beta\alpha(t) & \text{if } \tau(t) < \tau_0 \\
\alpha(t) & \text{otherwise}
\end{cases}
$$

τ_0 given threshold, typically 50%

- Based on the current state of the search
- Does not guarantee feasibility
- Searches the neighborhood of the feasible region
Agenda

Evolutionary Algorithms

Topological Optimum Design

- The fitness function
- The bitarray representation
- The Voronoi representation
- Multi-objective optimization
- Modularity and Scalability
Representation issues

- Search space: bi-partitions of the design domain
 - with some regularity
- Fitness computed using a Finite Element solver
 - Need to mesh all shapes
- Re-meshing introduces numerical errors
 - use the same mesh for the whole population
Bitarrays

- Given a mesh of the whole design domain,
- An element can be made of material (1) or void (0)
- Natural from FE point of view
- Used in all pioneering works

The complexity of the representation is that of the mesh
Bitarrays ...

- ... are not bitstrings,
- even though an n by m array is formally equivalent to an n.m bitstring.
- Using standard bitstring crossover operators introduces a geometrical bias

1-point crossover

2-point crossover
Specific 2D crossover

- Diagonal-crossover

- Bloc-crossover

Sample experimental results
Mutation

- No geometrical bias for the standard bit-flip mutation
- But difficulties for adjusting the final bits

Problem-specific mutation
- Start with standard mutation
- As evolution proceeds, increase the probability to mutate the border elements
Bitarrays: results
C. Kane, 1997

Experimental conditions

- Population size 125
- Block crossover with probability 0.6
- Mutation with probability 0.2
- Stop after 1000 generations
- Around 80 000 FE computations
Linear elasticity

Typical results for different values of D_{lim}

<table>
<thead>
<tr>
<th></th>
<th>D_{lim}</th>
<th>D_{Max}</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.463</td>
<td>2.439</td>
<td>0.2075</td>
</tr>
<tr>
<td></td>
<td>0.1293</td>
<td>0.129286</td>
<td>0.4675</td>
</tr>
<tr>
<td></td>
<td>0.133</td>
<td>0.133</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Compliance minimization

Homogenization minimizes the compliance $= \int F u$

$$\text{Fitness}_{\text{compliance}} = \frac{1}{\text{Area} + \alpha C}$$

$\alpha = 1$ $\alpha = 0.1$ $\alpha = 0.01$

Evolutionary optimization of the compliance for different values of α
Homogenization vs EAs

Compliance optimization by homogenization for $\alpha = 1$

- EAs more flexible
- But 2 orders of magnitude slower!
Nonlinear elasticity

EAs only need a solver for the direct problem: can adapt to any mechanical model (e.g. large strains)

\[
\begin{array}{|c|c|c|}
\hline
 & \text{Small strains.} & \text{Large strains.} \\
\hline
D_{\text{Max}} & 0.022607 & 0.0199 \\
\sigma_{\text{Max}} & 0.076 & 0.77 \\
\text{Area} & 0.41 & 0.20 \\
\hline
\end{array}
\]

Disastrous results $ F = 0.009 $ and $ D_{\text{Lim}} = 0.02285 $
Nonlinear elasticity revisited

\[
\min \left[\text{Area} + \alpha (D_{\text{Max}} - D_{\text{Lim}})^+ + \beta (\sigma_{\text{Max}} - \sigma_{\text{Lim}})^+ \right]
\]

<table>
<thead>
<tr>
<th></th>
<th>(F)</th>
<th>(D_{\text{Lim}})</th>
<th>(\sigma_{\text{Lim}})</th>
<th>(D_{\text{Max}})</th>
<th>(\sigma_{\text{Max}})</th>
<th>(\text{Area})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.009</td>
<td>0.22856</td>
<td>0.53</td>
<td>0.2143</td>
<td>0.550</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>0.018</td>
<td>0.457</td>
<td>1.0622</td>
<td>0.4504</td>
<td>0.9835</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>2.2856</td>
<td>5.3</td>
<td>1.687</td>
<td>4.379</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Optimal results for \(\frac{F}{F_{\text{Lim}}} = \text{Cst}\)
Bitarrays: Conclusions

EAs are flexible

- Any mechanical model
- Loading on the unknown boundary

But

- Representation complexity = size of the mesh
- Accurate results require fine mesh
- Empirical and theoretical results suggest that pop. size should be proportional to number of bits

Need mesh-independent representations
Agenda

Evolutionary Algorithms
Topological Optimum Design

• The fitness function
• The bitarray representation
• The Voronoi representation
• Multi-objective optimization
• Modularity and Scalability
Diagrammes de Voronoi

- Set of Voronoi sites S_1, \ldots, S_n in the design domain
- A Voronoi cell is associated to each site:
 \[\text{Cell}(S_i) = \{ M; \ d(M, S_i) = \min_j d(M, S_j) \} \]

Partition of the design domain in convex polygons
Shape representation

- Each site is labelled (0/1)
- Each cell receives its site label

Genotype: Variable length unordered list of labeled sites
\{n, (S_1, c_1), \ldots, (S_n, c_n)\}
Morphogenesis

- Still need to use the same mesh for a whole generation

Projection on a given mesh
Variation operators

Geometrical exchange of Voronoi sites
Mutations

- Gaussian mutation of site coordinates possibly adaptive
- Label flip
- Addition of a Voronoi site with biased label
- Deletion of a Voronoi site biased toward redundant sites
- Random choice of mutation from user-defined weights
Experimental conditions

Cantilever 1 x 2 and 2 x 1

- Tournament(2) selection in (P+P)-ES engine
- P 80-120 → around 100 000 evaluations
- (0.6, 0.3, 0.1) weights for crossover, mutation, copy
- (½, ⅙, ⅙, ⅙) weights for the mutations
- 21 independent runs for each test
- Averages (and standard deviations)
Typical results

- 10 x 20 and 20 x 10 meshes
- Less than 1mn per run (today!)

DLim = 20, weight=0.215, 35 sites

DLim = 220, weight=0.35, 32 sites
Complexity

- Cantilever 1x2, $D_{\text{lim}} = 20$,
- Two meshes: 20 x 10 and 40 x 20
- CPU cost x 3.5

Fitness vs # fitness evaluations (FEAs)
Complexity (2)

- Same conditions, except $D_{\text{lim}} = 10$

- Best sol. on 20×10: $W = 0.44$, $D_{\text{Max}} = 9.99738$

- Projected on the 40×20 mesh: $W = 0.43125$, $D_{\text{Max}} = 11.2649$
3D cantilever

- 10 x 10 x 16 mesh
- Out of reach of bitarray representation (even today :-)
- Multiple quasi-optimal solutions

weight=0.152, 103 sites

weight=0.166, 109 sites

weight=0.157, 112 sites
Exploratory results
Coll. EZCT

Centre Georges Pompidou, Collection permanente

Concours Serousi, Nov. 2007
Voronoi Representation

- Outperforms bitarray by far
 - Independence w.r.t. mesh complexity
- 3D, elongated cantilever (see later), …
- Opens the way toward Exploratory Design

But

- The problems are actually multi-objective
 - Minimize weight and maximize stiffness
 - … and those objectives are contradictory
Agenda

Evolutionary Algorithms

Topological Optimum Design

- The fitness function
- The bitarray representation
- The Voronoi representation
- Multi-objective optimization
- Modularity and Scalability
Multi-objective Optimization

- Several objectives to minimize \((F_1, \ldots, F_K)\)
- that are contradictory
- Need to re-define the idea of optimality
 - Nash equilibrium: each variable takes the best value given the other variables values
 - Pareto optimization: optimal trade-offs, based on the idea of Pareto dominance
Pareto optimization

- Pareto dominance: \(x \) dominates \(y \) if
 - \(F_i(x) \leq F_i(y) \) for all \(i \)
 - \(F_j(x) < F_j(y) \) for at least one \(j \)

- Pareto set: non-dominated points in search space
- Pareto front: same in objective space

Goal
- Identify Pareto Front
- Make an informed decision
A classical approach

Aggregation of objectives

- Minimize $\sum_i \lambda_i F_i$
 - $\lambda_i > 0$ iff F_i to be minimized
- Need to a priori fix λ_i
- One optimization per (λ_i)
- Concave parts of Pareto Front unreachable
Evolutionary approaches

- “Only” need to modify selection
- But Pareto dominance is only a partial order

Main criterion: Pareto Dominance
Secondary criterion: diversity preserving measure
An example: NSGA-II
K. Deb, 2000

- Pareto ranking
 - Non-dominated: rank 1
 - Remove and loop

- Crowding distance
 for each criterion \(c \)
 - Sort according to \(F_i \)
 - \(d_c(x_i) = d(x_i, x_{i-1}) + d(x_i, x_{i+1}) \)

\[
d_{\text{crowding}}(x) = \sum_c d_c(x)
\]
Cantilever 10 x 20
CPU cost ≈ 1.2 single objective run
Cantilever 10 x 20 (2)

3 independent Pareto Fronts
300 individuals, 400 generations
Cantilever 20 x 10

<table>
<thead>
<tr>
<th>71.26 100</th>
<th>87.37 74.5</th>
<th>110.06 60</th>
<th>188.8 0.54</th>
</tr>
</thead>
<tbody>
<tr>
<td>218.1 35</td>
<td>224 34.5</td>
<td>465.11 25</td>
<td>584.7 24</td>
</tr>
<tr>
<td>2112.6 21.5</td>
<td>5810 16.5</td>
<td>18487 13</td>
<td>39050 10.5</td>
</tr>
</tbody>
</table>
Cantilever 20 x 10 (2)

2 independent Pareto Fronts

300 individuals, 400 generations
Multi-objective vs single-objective

Zoom on Pareto Front, around $D_{\text{Max}} = 220$

Top: multi-objective – Bottom: single-objective
Voronoi Representation

Pros

● More compact than enumerative bitarray
● Complexity is evolvable
 – Not imposed by technical considerations

Cons: lacks

● Scalability and modularity
 Evolve large structures
 Re-use parts
Agenda

Evolutionary Algorithms

Topological Optimum Design

- The fitness function
- The bitarray representation
- The Voronoi representation
- Multi-objective optimization
- Modularity and Scalability
Manual Modularity

1 genotype

3 + 1 genotype

9 + 1 genotype
Best results
200 x 20 mesh, Dlim=12

1-genotype: Weight = 0.445, $D_{\text{max}} = 11.99$, 105 sites

3+1 genotype: Weight = 0.428, $D_{\text{max}} = 11.98$, 60 sites

9+1 genotype: Weight = 0.432, $D_{\text{max}} = 11.99$, 40 sites
Evolution of Scene Graphs
Marc Ebner, Univ. Würzburg - 2003

- VRML: Virtual Reality Markup Language
- A scene is a hierarchical list of nodes
 - i.e., a tree, similar to Genetic Programming trees
- Nodes are
 - Elementary shapes
 - Geometrical transformations
 - Grouping of elements
- Evolved turbine shapes using GP techniques
Evolution of Scene Graphs

Example of a VRML Scene Graph
Agenda

Evolutionary Algorithms

Topological Optimum Design

- The fitness function
- The bitarray representation
- The Voronoi representation
- Multi-objective optimization
- Modularity and Scalability
Artificial Embryogeny

- Evolve the program that computes the solution rather than the solution itself

Most popular approaches

- Genetic Programming applied to some embryo e.g., to evolve digital circuits (Koza, 1998)
- Cellular automata (e.g., Conway's game-of-life) to mimic cell growth
 - Different cell types
 - Evolution modifies the update rules
Embryogeny for planar trusses
T. Kowaliw et al., Concordia U., Montreal - 2007

- Space of cells, originally empty except the central one
- All cells share update rules \((c, h_1, \ldots, h_{nc}, a)\) Evolved
 - \(c\) is a color
 - \(h_1, \ldots, h_{nc}\) are “hormone levels”
 - Action \(a\): Nothing, Die, Divide, Elongate, Specialize\(x\)

Development
- For a given number of time step, and for each non-empty cell
 - Find the best matching rule
 - Apply corresponding action
- Transform cells into joints and beam according to their colors
Embryogeny for planar trusses
T. Kowaliw et al., Concordia U., Montreal - 2007

Optimized for

- height, weight, load on top
- height, weight, load at random locations
- height, weight, minimal base
Embryogeny with constraints
Kowaliw - 2008

Similar objectives + geometrical constraints
Scalability and robustness
Kowaliw - 2008

Increasing development time after evolution

From the environment where evolution took place to an un-seen one
Conclusions

- EAs can solve hard optimization problems
 - Including Topological Optimum Design
- But EAs are also fantastic exploration tools
 - Giving hints toward surprising solutions
- Hybrids of EAs and classical methods are still to be built
Toward Artificial Creativity?