
Evolutionary Topological 
Optimum Design

Marc Schoenauer
Equipe-Projet TAO

INRIA Saclay Île-deFrance



Agenda
Evolutionary Algorithms
● Background                                           Optimization

● The algorithm
● Two viewpoints

– Evolution engine

– Variation operators

● Critical issues

Topological Optimum Design

Biological paradigm

Artificial Darwinism

Crossover and mutation



Agenda
Evolutionary Algorithms
● Background                                           Optimization

● The algorithm
● Two viewpoints

– Evolution engine

– Variation operators

● Critical issues

Topological Optimum Design

Biological paradigm

Artificial Darwinism

Crossover and mutation



Rough Objective Function
L. Taieb, CMAP and Thomson

● Search Space:  Continuous parameters     Interferometers

● Goal: Maximize tolerance, preserving accuracy

Objective function – 3 antennas



● Search Space: lists of pairs (material, thickness) 

● Goal: Fit the target response profile

High and Low frequency filter

Mixed Search Space
Schutz & Bäck, Dortmund U. - Martin et al., Optique PVI & CMAP



Digital circuits
Koza et al., Genetic Programming Inc. & Stanford 

● Search Space: Valued graphs 

● Goal: Target functionalities

Evolved cubic root extractor



Non-computable Objective Function
Herdy et al., Technische Univ. Berlin

● Search Space: Blend proportions 

● Goal: Find a target flavor

Expert knowledge



Optimization Algorithms
● Enumerative methods
● Gradient-based algorithms
● Hill-Climbing
● Stochastic methods

Comparison issues
● Nature of search space
● Smoothness of objective (constraints)
● Local vs global search

Meta-heuristiques
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From hill-climbing to meta-heuristics (1)

Simple Hill-Climbing

● Choose X
0
 uniformly in Ω, and compute F(X

0
)

● Loop

– y = ArgMax {F(x) ; x Є N (X
t
) } 

– Compute F(y)

– If F(y) > F(X
t
) then  X

t+1
= y 

else X
t+1

 = X
t
 

– t=t+1

e.g., until no improvement

assume maximization

neighborhood N 



Neighborhoods and EVE dilemma

Size matters

● N (X
t
) = Ώ  Monte-Carlo→

● N (X
t
) = Closest neighbors(X

t
)

Enhancements
● Generalize neighborhoods
● Relax selection
● Population-based algorithms

Purely local exploitation

Memoryless exploration

probabiliy distributions

accept worse points



From hill-climbing to meta-heuristics (2)

Stochastic Hill-Climbing

● Choose X
0
 uniformly in Ω, and compute F(X

0
)

● Loop

– y = U[N (X
t
)] 

– Compute F(y)

– If F(y) > F(X
t
) then  X

t+1
= y 

else X
t+1

 = X
t
 

– t=t+1

e.g., until no improvement

acceptation

uniform choice



From hill-climbing to meta-heuristics (3)

Stochastic Local(?) Search

● Choose X
0
 uniformly in Ω, and compute F(X

0
)

● Loop

– y = Move(X
t
) 

– Compute F(y)

– If F(y) > F(X
t
) then  X

t+1
= y 

else X
t+1

 = X
t
 

– t=t+1

e.g., until no improvement

operator==distribution

acceptation



From hill-climbing to meta-heuristics (4)

Stochastic Search (e.g. Simulated Annealing)

● Choose X
0
 uniformly in Ω, and compute F(X

0
)

● Loop

– y = Move(X
t
) 

– Compute F(y)

– X
t+1

 = Select ( y, X
t
 )

– t=t+1

e.g., until no improvement

selection

operator==distribution



From hill-climbing to meta-heuristics (5)

(1+λ)-Evolution Strategy

● Choose X
0 
uniformly in Ω, and compute F(X

0
)

● Loop
– For i=1, …, λ

● y
i
 = Move(X

t
) 

● Compute F(y
i
)

– X
t+1

 = Select ( y
1
, …, y

λ
 , X

t
 )

– t=t+1

e.g., until no improvement

selection

operator==distribution



Evolutionary Paradigm

● Natural selection
● Blind variations
● Individual “Objective”: survival and reproduction
● Result: adapted species

But
● Inspiration
● Explanation
● Not justification

bias toward fittest individuals

Parents → offspring by undirected 
variations (i.e. independent of fitness)

e.g. resistant bacteria



The Skeleton



Two orthogonal points of view

● Artificial Darwinism (selection steps) only depend on 
fitness

● Initialization and variation operators only depend on the 
representation (i.e. the search space)
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Artificial Darwinism
Two selection steps

● Parental selection can select an individual multiple 
times

● Survival selection selects or not each individual

Issues 

● Bias toward fitter individual
Too large bias → pure local search
Too small bias → random walk

● Can be deterministic or stochastic

Premature convergence
No convergence



Tournament Selection
Stochastic selections

● Deterministic tournament - size T
– Choose T individuals uniformly

– Return best

● Stochastic tournament – probability t Є [0.5,1]
– Choose 2 individuals uniformly 

– Return best with probability t (worse otherwise)

Advantages

● Comparison-based → invariance properties

● Easy parameterization from t=0.5 to T=P



Deterministic Survival Selection

Evolution Strategies: μ parents, λ offspring (historical)

● (μ+λ)-ES: the μ best of μ old parents + λ offspring 
become next parents

– Pratical robustness
– Premature convergence

● (μ,λ)-ES: the μ best of λ offspring become next 
parents

– Can lose best individuals
– Better exploration
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Variation Operators

Crossover: Two (or more) parents -> one offspring

● Exchange of information 

● Start of evolution: exploration

● Close to convergence: exploitation

Mutation: One parent → one offspring

● Reintroduces diversity

● Ergodicity

● “Strong Causality” 

'linearity' of fitness  function

'continuity' of fitness  function



Crossover
Standard examples

Five parents for a surrealist offpsring
La foule subjuguée boira ses paroles enflammées
Ce plat exquis enchanta leurs papilles expertes
L’aube aux doigts de roses se leva sur un jour nouveau
Le cadavre sanguinolent encombrait la police nationale
Les coureurs assoiffés se jetèrent sur le vin pourtant mauvais

Exchange of 'genes' Crossover of real parameters



Mutation
Standard examples

● 'Gene' mutation

● Adding Gaussian noise to real-valued parameters

A surrealistic example

La terre est comme un orange bleue

La terre est bleue comme une orange



Gaussian mutations

Gaussian mutation

X → X + σ N (0,C)
● σ > 0 mutation step-size
● C covariance matrix (symmetric definite positive)

Adaptation of σ and C
● According to history of evolution: favor directions and 

step-size that produced fitness improvements
●  → CMA-ES, state-of-the-art algorithm
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Genotype vs phenotype

● Potential solutions are represented (encoded) in the 
genotype space, where evolution happens

● They are decoded back into the phenotype space for 
evaluation

● The same phenotype space can be encoded in several 
genotype space

● Find the best representation, and you're half way to the 
solution



Critical Issues
● No Free Lunch Theorem

● Success criterion : Design vs Production

– At least once an excellent solution

– On average a good-enough solution
● Do not draw any conclusion from a single run!

● A population, not an individual

● Exploration vs Exploitation dilemma

● No strong theoretical results
but lessons from many successful applications

Diversity is critical

(yet)
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Sample problem
● Find a shape in a given design domain

● Of minimal weight

● With constraints on the mechanical behavior

Example: The cantilever problem, 
bounds on the maximal displacement



Evolutionary Approach

Only requires a direct solver

What fitness?

What representation?
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Fitness function
● A shape can be non-viable

– Fitness = +∞

● Only connected parts are
useful

– Slightly penalize unconnected parts

Problem

Min (W
connected

 + ε W
unconnected

)

with Di

max 
≤ Di

lim
 for each loading i



Constraint handling
Penalization

Minimize W
connected

 + ε W
unconnected 

+ ∑
i
   

i
 (Di

max
 - Di

lim
)+ 

Choice of   
i
?

Fixed penalty
● Too small: optimum unfeasible

● Too large: no exploration of unfeasible regions

Dynamic penalty
● Small at beginning of evolution, large in the end

● Difficult to correctly tune

 







Adaptive penalty
Penalty changes every generation: 

τ(t): proportion of feasible individuals at generation t

● Based on the current state of the search

● Does not guarantee feasibility

● Searches the neighborhood of the feasible region

if τ(t) > τ
0

if τ(t) < τ
0

otherwise 

τ0 given threshold, typically 50%
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Representation issues

● Search space: bi-partitions of the design domain

– with some regularity
● Fitness computed using a Finite Element solver

– Need to mesh all shapes
● Re-meshing introduces numerical errors

– use the same mesh for the whole population



Bitarrays

● Given a mesh of the whole design domain, 

● An element can be made of material (1) or void (0)

● Natural from FE point of view

● Used in all pioneering works

The complexity of the representation is that of the mesh



Bitarrays ...
● … are not bitstrings, 

● even though an n by m array is formally equivalent to 
an n.m bitstring.

● Using standard bistring crossover operators introduces 
a geometrical bias

1-point crossover 2-point crossover



Specific 2D crossover
● Diagonal-crossover

● Bloc-crossover

Sample experimental results



Mutation

● No geometrical bias for the standard bit-flip mutation

● But difficulties for adjusting the final bits

Problem-specific mutation

● Start with standard mutation

● As evolution proceeds, increase the probability to 
mutate the border elements



Bitarrays: results
C. Kane, 1997

Experimental conditions

● Population size 125

● Block crossover with probability 0.6

● Mutation with probability 0.2

● Stop after 1000 generations

● Around 80 000 FE computations



Linear elasticity

Typical results for different values of D
lim



Compliance minimization
Homogenization minimizes the compliance = ∫Fu

Evolutionary optimization of the compliance for 
different values of 



Homogenization vs EAs

Compliance optimization by homogenization for    =1

● EAs more flexible

● But 2 orders of magnitude slower!





Nonlinear elasticity
EAs only need a solver for the direct problem: can adapt 

to any mechanical model (e.g. large strains)

Disastrous results  F = 0.009 and D
Lim

 = 0.02285



Nonlinear elasticity revisited

Optimal results for F/FLim = Cst



Bitarrays: Conclusions
EAs are flexible

● Any mechanical model

● Loading on the unknown boundary

But

● Representation complexity = size of the mesh

● Accurate results require fine mesh

● Empirical and theoretical results suggest that pop. size 
should be proportional to number of bits 

e.g. large strains

not shown 

not to mention 3D

Need mesh-independent representations 
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Diagrammes de Voronoi
● Set of Voronoi sites S

1
, …, S

n
 in the design domain

● A Voronoi cell is associated to each site:
Cell(S

i
) = {M; d(M,S

i
) = min

j
 d(M, S

j
)}

Partition of the design domain in convex polygons



Shape representation

● Each site is labelled (0/1)

● Each cell receives its site label

● Genotype: Variable length unordered list of labeled sites
{n, (S

1
,c

1
), …, (S

n
,c

n
)}



Morphogenesis

● Still need to use the same mesh for a whole generation

Projection on a given mesh



Variation operators

Geometrical exchange of Voronoi sites



Mutations

● Gaussian mutation of site coordinates
possibly adaptive

● Label flip

● Addition of a Voronoi site

● Deletion of a Voronoi site

● Random choice of mutation 
from user-defined weights

with biased label

biased toward redundant sites



Experimental conditions

Cantilever 1 x 2 and 2 x 1

● Tournament(2) selection in (P+P)-ES engine

● P    80-120 → around 100 000 evaluations

● (0.6, 0.3, 0.1) weights for crossover, mutation, copy

● (½,⅙,⅙,⅙) weights for the mutations

● 21 independent runs for each test

● Averages (and standard deviations) 

≃



Typical results

DLim = 20, 
weight=0.215, 

35 sites   

DLim = 220, weight=0.35, 32 sites

● 10 x 20 and 20 x 10 meshes

● Less than 1mn per run (today!)



Complexity

● Cantilever 1x2, D
lim

=20, 

● Two meshes: 20 x 10 and 40 x 20

● CPU cost x 3.5

Fitness vs # fitness evaluations (FEAs)



Complexity (2)

● Same conditions, except D
lim

=10

● Best sol. on 20 x 10: W = 0.44, D
Max

 = 9.99738

● Projected on the 40 x 20 mesh:  W = 0.43125, D
Max

 = 11.2649



3D cantilever

● 10 x 10 x 16 mesh

● Out of reach of bitarray representation       (even today :-)

● Multiple quasi-optimal solutions 

weight=0.152, 
103 sites

weight=0.166, 
109 sites

weight=0.157, 
112 sites



Exploratory results
Coll. EZCT

Centre Georges Pompidou, 
Collection permanente

Concours Serousi, Nov. 2007



Voronoi Representation

● Outperforms bitarray by far
– Independence w.r.t. mesh complexity

● 3D, elongated cantilever (see later), …
● Opens the way toward Exploratory Design

But
● The problems are actually multi-objective

– Minimize weight and maximize stiffness

– … and those objectives are contradictory
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Multi-objective Optimization

● Several objectives to minimize (F
1
, …, F

K
) 

● that are contradictory
● Need to re-define the idea of optimality

– Nash equilibrium: each variable takes the best 
value given the other variables values

– Pareto optimization: optimal trade-offs, based on 
the idea of Pareto dominance



Pareto optimization

● Pareto dominance: x dominates y if

– F
i
(x) ≤ F

i
(y) for all i

– F
j
(x) < F

j
(y) for at least one j

● Pareto set: non-dominated 
points in search space

● Pareto front: same 
in objective space

Goal
● Identify Pareto Front
● Make an informed decision



A classical approach

Aggregation of objectives

● Minimize Σ
i
 λ

i
 F

i

– λi > 0 iff Fi to be minimized

● Need to a priori fix λ
i

● One optimization per (λ
i
)

● Concave parts of Pareto Front unreachable



Evolutionary approaches
● “Only” need to modify selection

● But Pareto dominance is only a partial order

● Main criterion: Pareto Dominance

● Secondary criterion: diversty preserving measure



An example: NSGA-II
K. Deb, 2000

● Pareto ranking

– Non-dominated: rank 1

– Remove and loop

● Crowding distance

for each criterion c

– Sort according to F
i
  

– d
c
(xi) = d(x

i
,x

i-1
)+d(x

i
,x

i+1
)

d
crowding

(x) = Σ
c
 dc(x)



Cantilever 10 x 20
CPU cost ≈ 1.2 single objective run



Cantilever 10 x 20 (2)

● O

3 independent Pareto Fronts

 300 individuals, 400 generations



Cantilever 20 x 10



Cantilever 20 x 10 (2)

2 independent Pareto Fronts

 300 individuals, 400 generations



Multi-objective vs single-objective

Zoom on Pareto Front, around D
Max

=220

 Top: multi-objective – Bottom: single-objective



Voronoi Representation

Pros
● More compact than enumerative bitarray 
● Complexity is evolvable

– Not imposed by technical considerations

Cons: lacks 
● Scalability 

and modularity
Evolve large structures

Re-use parts
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Manual Modularity

 



Best results
200 x 20 mesh, Dlim=12

 

1-genotype: Weight = 0.445, D
max

 = 11.99, 105 sites

3+1 genotype: Weight = 0.428, D
max

 = 11.98, 60 sites

9+1 genotype: Weight = 0.432, D
max

 = 11.99, 40 sites



Evolution of Scene Graphs
Marc Ebner, Univ. Würzburg - 2003

● VRML: Virtual Reality Markup Language

● A scene is a hiearchical list of nodes

– i.e., a tree, similar to Genetic Programming trees
● Nodes are 

– Elementary shapes

– Geometrical transformations

– Grouping of elements
● Evolved turbine shapes using GP techniques



Evolution of Scene Graphs
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Artificial Embryogeny

● Evolve the program that computes the solution
rather than the solution itself

Most popular approaches

● Genetic Programming applied to some embryo
e.g., to evolve digital circuits (Koza, 1998)

● Cellular automata (e.g., Conway's game-of-life) 
to mimick cell growth

– Different cell types

– Evolution modifies the update rules



Embryogeny for planar trusses
T. Kowaliw et al., Concordia U., Montreal - 2007

● Space of cells, originally empty except the central one
● All cells share update rules (c, h

1
, …, h

nc
, a)

– c is a color
– h

1
, …, h

nc
 are “hormone levels”

– Action a: Nothing, Die, Divide, Elongate, Specialize(x)
Developement
● For a given number of time step, and for each non-empty cell

– Find the best matching rule
– Apply corresponding action

● Tranform cells into joints and beam according to their colors

Evolved



Embryogeny for planar trusses
T. Kowaliw et al., Concordia U., Montreal - 2007

Optimized for

● height, weight, load on 
top

● height, weight, load at 
random locations

● height, weight, minimal 
base



Embryogeny with constraints
Kowaliw - 2008

Similar objectives + geometrical constraints



Scalability and robustness
Kowaliw - 2008

Increasing development 
time after evolution

From the environment where 
evolution took place to an 

un-seen one 



Conclusions

● EAs can solve hard optimization problems

– Including Topological Optimum Design
● But EAs are also fantastic exploration tools 

– Giving hints toward surprising solutions
● Hybrids of EAs and classical methods are still to be built



Toward Artificial Creativity?
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