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Abstract

In this dissertation, we present our study regarding theenite of the topology
on the learning performances of neural networks with comfapologies. Three
different neural networks have been investigated : thesmak Self-Organizing
Maps (SOM) with complex graph topology, the Echo State Nekw&SN) and
the Standard Model Features(SMF). In each case, we begimparing the
performances of different topologies for the same task. héa try to optimize
the topology of some neural network in order to improve susfiggmance.

The first part deals with Self-Organizing Maps, and the tasthé standard
handwritten digits recognition of the MNIST database. Wevshhat topology
has a small impact on performance and robustness to neutore$a at least at
long learning times. Performance may however be increagednbost 10% by
artificial evolution of the network topology. In our expeemntal conditions, the
evolved networks are more random than their parents, bptagisa more broad
degree distribution.

In the second part, we proposes to apply CMA-ES, the stathes&rt method
in evolutionary continuous parameter optimization, togtelutionary learning of
the parameters of an Echo State Network (the Readout wegdlusurse, but also,
Spectral Radius, Slopes of the neurons active functiondt,Frstandard supervi-
sed learning problem is used to validate the approach angaant to the original
one. But the flexibility of evolutionary optimization allows to optimize not only
the outgoing weights but also, or alternatively, other ESkhameters, sometimes
leading to improved results. The classical double polertzittey control problem
is used to demonstrate the feasibility of evolutionary fiicement learning of
ESN. We show that the evolutionary ESN obtain results trmtamparable with
those of the best topology-learning neuro-evolution mesho

Finally, the last part presents our initial research of thdFS a visual ob-
ject recognition model which is inspired by the visual cerféwo version based
on SMF are applied to the PASCAL Visual multi-Object recoigmitChallenge
(VOC2008). The long term goal is to find the optimal topologytted SMF mo-
del, but the computation cost is however too expensive tionige the complete
topology directly. So as a first step, we apply an Evolutigridgorithm to auto-
select the features used by the systems. We show that, fga82008 challenge,
with only 20% selected feature, the system can perform alsasetith all 2000
randomly selected feature.
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Résumé

Nous sommes maintenant au 21éme siécle, et depuis les at®@@s!’Intelli-
gence Atrtificielle est devenue un sujet indépendant d’é&adesein des sciences
informatiques, et son influence sur notre vie quotidienece'ssé d’augmenter.

L'intelligence est le résultat de I'évolution via la sélect naturelle. Dans les
anneées récentes, I'étude de ce qu’on appelle les mécanlsim@sspirés qui
tentent d’'imiter les processus naturels, a soulevé beautmtérét en recherche.
En particulier, deux de ces volets de recherche ont att@édmip d’attention et
donné naissance a de nombreux travaux.

D’un point de vue macroscopique, la nature a produit un ebkenche et
diversifié d’espéces, et toutes les espéces ayant survatagoarues a la suite
de modifications aléatoires lors de la reproduction, et tihsélectionnées selon
le principe naturel de lasurvie du plus apte Les Algorithmes Evolutionnaires
Artificiels (AEs) sont des algorithmes puissants d’optatiisn inspirés par ces
mécanismes de variations aveugles et sélection natustllent été appliqués
avec succes dans de nombreux problemes du monde réel [231].

Du point de vue microscopigue, la base matérielle de lligizhce est basée
sur des ensembles de neurones, organisés en réseaux a goiedle. Les
réseaux neuronaux artificiels (RNAs) sont des modeles missaspirés par
leurs homologues biologiques pour le traitement des cesaaces et I'analyse de
données. Originaire du début des années 50 [182], la rduheians le domaine
des RNAs est encore trés active [105, 143, 93, 198].

Au carrefour de ces deux domaines, la recherche utilisasitatigorithmes
évolutionnaires pour optimiser les réseaux de neurondgiats est en cours
depuis de nombreuses années [230] : au-dela la “simplefhigation des poids
d’un réseau avec une topologie fixe, la flexibilité des athanes évolutionnaires
les a rendus attrayants quand il s’agissait égalementidicgar la topologie des
réseaux neuronaux pour une tache donnée.

Pendant la méme période, I'étude des réseaux complexdsferemment
développée et a vu émerger de nouvelles sources d'ingtpirat orientations
de recherche. Inspiré a la fois par les réseaux naturels (egréseaux de
régulation géneétiques, les réseaux d’interaction pretgiotéine, ...) et les
réseaux artificiels (e.g., le World Wide Web, les réseaux alenexions des



compagnies aériennes, les réseaux sociaux tels que lesixédes co-auteurs,
...), de nouvelles connaissances ont été acquises damptdsgies de réseaux.
Plus particulierement, les recherches sur les réseauk-fpende” [220] et les
réseaux a invariance d’échelle [19] ont apporté un nouvext ple vue pour
notre compréhension de la complexité des réseaux.

Le ChapitreContexte de cette thése passera en revue ces trois domaines de
recherche plus en détail, mettant en évidence les diff@paradigmes qui ont été
utilisés dans le cadre de cette thése. Dans ce contexte&idemirtravail est centré
autour de la relation (éventuellement complexe) entregaltmie d’'un réseau de
neurones donné et ses performances en tant qu’unité dd. démx approches
seront envisagées et expérimentées dans différents desrdiapplication.

Le probleme direct consiste en I'étude de la performance d'un type de
réseau de neurones, dans un environnement donné, en fodetisa topologie.
Considérant une classe donnée de topologies paramétréssmesurerons soi-
gneusement les performances des réseaux en fonction desgiegs controllant
la topologie et en dégagerons quelques tendances contiimfarence de tel ou
tel parametre de description de la topologie sur le compuate du réseau.

Nous examinerons ensuite f@obleme inverse qui consiste a optimiser
la topologie afin de maximiser la performance du réseau deones. Loutil
d’optimisation sera les Algorithmes Evolutionnaires, @ttion sur les topologies
se fera soit au travers de certains paramétres macrosespigoit directement
en laissant 'AE gérer la topologie lui-méme (e.g., en agisxau niveau des
connexions).

Le premier domaine d’application est celui des Cartes de Keh¢124] (ou
Self-Organizing Map§SOMSs)), détaillé dans I€hapitre SOMs. Les SOMs sont
principalement utilisées pour I'apprentissage non-suipéy pour lequel la topo-
logie ordinaire standard (grille réguliére) est la plutisde. Cependant, il n’existe
pas de mesure de performance universellement reconnuetta@nbtde comparer
la performance des algorithmes d’apprentissage non-ggpeNous avons donc
opté pour une mesure de la performance d’une topologie SOMéaau travers
de I'exactitude du classement pour un probléme d’appreades supervisé, la
reconnaissance de chiffres manuscrits de la célebre bas8 MDMe probleme in-
verse sera abordé ici en manipulant directement les comm&rntre les neurones.

Le deuxieme domaine d’application, présenté dans le CleapiBNs est
celui desEcho State NetworkgLO5] qui rentre dans le paradigme récent du
“Reservoir Computing”. Les ESNs sont généralement utilisgsr mles taches



de régression, et le probleme se raméne alors a un probleoptindisation
guadratique des poids sortants. Par contre, pour autamaygele sachions, les
ESNs n’ont pratiquement pas encore été utilisés pour degsatapprentissage
par renforcement. Nous allons utiliser dans ce cadre urriligte évolution-
naire, le célebre CMA-ES (Covariance Matrix Adaptation Eviolu Strategy)
[88, 86], afin de pallier 'absence de gradient pour I'opsation des poids de
sortie du réseau. Un effet secondaire de ce choix est que reenaggorithme
peut étre utilisé pour optimiser simultanément le poids oeies et quelques
hyper-parametres définissant la topologie du réservoiasNalons ainsi étudier
l'influence des différents hyper-parametres définissambpalogie du réservoir
sur une des taches de référence en apprentissage par eemémitg I'équilibre du
double pdle.

Enfin, le ChapitréSMFs présentera une premiere étude impliquant un modele
de reconnaissance d'objet inspiré par le cortex visuel J[LE8 particulier,
nous analyserons si, en utilisant seulement un sous-ébbamtes nombreuses
fonctionnalités concues par I'algorithme original, nousuyons améliorer le
taux de reconnaissance global, tout en accélérant la phagerentissage. Les
résultats seront démontrés sur les données du Challenge \08C20

Comme d’habitude, le Chapiti@onclusion conclura cette thése et donnera
quelques pistes pour de nouvelles recherches. Nous allangenant donner
un peu plus de détails sur les trois types de réseaux de resugue nous avons
étudiés.

Self-Organizing Maps (SOM)

Dans cette partie, nous utilisons les réseaux de KohonerS@M, Self
Organizing Maps) pour la reconnaissance des chiffres necatgisLes SOMs
sont des réseaux de neurones dont les relations de voiserdge neurones
sont définis par un réseau complexe, La théorie de la Seblstampg Map
(SOM) a été introduite par Kohonen [122, 123]. Il décrit urrejgction d’un
espace d’entrées de grande dimension sur un espace de d®rtienension
bien inférieure. Cela rend possible I'utilisation de SOMsupta visualisation
des données de grandes dimensions [162]. Le but utilisé camsavail est la
reconnaissance / classification de chiffres manuscritsytgisant la base de
données bien connue MNIST. Le MNIST [130] a un ensemble d&apgssage
de 60 000 exemples, et un ensemble de test de 10 000 exemgdeshiffres ont
été normalisés en fonction de leur taille, centrés dansailte fixe (28x 28), et
représentés par 2828 pixels sur 256 niveaux de gris. Les SOMs seront donc
utilisés ici en apprentissage supervisé. Les neuronegé&paittis dans un espace



2D, et a chaque neurone est associé un vecteur de poidsld®8ail 28 (w;) qui
sont initialisés aléatoirement et seront ajustés pendastidse d’apprentissage.

Expérience : Dans l'algorithme classique de SOM, les neurones sont dispo
sés sur une grille réguliére en 2 dimensions. Mais deuxrdista peuvent étre
définies entre les neurones : la distance euclidienne estardie liée au graphe
de voisinnages (le nombre minimal de neurones qu’il fauterigour joindre
les 2 neurones donnés. Ces 2 distances sont équivalentasesgrilie réguliere.
Toutefois, lorsque la topologie se détourne de la grillauliége (par exemple,
des liens sont ajoutés ou supprimeés), la situation chargjeatament. Comme
le but ici est d’évaluer I'influence de la topologie du réssauses performances
d’apprentissage, la distance entre deux neurones serditance 'graphique’,
définie par le graphe des connexions). L'apprentissagereptacessus itératif.
Quand un exemplHt) est présentée au réseau, pour chaque neiyrsaelistance
di &l(t) est calculé par di = Z’j\/l:l(lj —W;)2. La Meilleure Unité Adéquate
(MUA) est le neurone dont le vecteur des poids est le plush@den norme
L?) del(t). Les poids de la MUAK sont mis & jour et rapprochés de ceux de
I'exemple courant par wi(t + 1) = wi(t) + n(t) x (I(t) —wg(t)),, ot n est
le taux d’apprentissage défini par l'utilisateur. Le poids de toes Voisins de
la MUA sont mis a jour de facon similaire, mais le taux d’apyigsagen
diminue selon une fonction gaussienne de la distance a la Mi$Aprocessus
est répété pour chaque exemple des données d’apprentigsag&n nombre
(généralement grand) de cyclBsax Les clusters des données d’apprentissage
s’auto-organisent progressivement sur la carte. Dansdeeade I'apprentissage
supervisé, des étiquettes peuvent de plus étre attachéesarones, et le SOM
peut étre utilisé pour classer les exemples de test. Laifomobjectif utilisée est
alors classiguement le taux d’erreur de classificationomiveent de noter que le
but d’'ici n'est pas d’atteindre le meilleur rendement pbkspour le probléme
MNIST (SOM ne rivalise pas avec les meilleurs résultats igsta ce jour) mais
de comparer les performances relatives des différentedomies sur le méme
probleme.

Probléme direct : Le but des premieres expériences est de comparer
performances de classification de SOM construites sur gedamies différentes,
allant des topologies régulieres aux topologies aléatare suivant le modele
de Watts et Strogatz. Les résultats montrent que pour ureapgsage long, la
performance du réseau est clairement indépendante dedbogip Cela n'est
pas surprenant puisque le rble de la topologie diminue awe@yonR. En
effet, le nombre des voisins dans un rayRrd’'un neurone augmente lorsque
la probabilité de recablage augmente. Toutefois, cette difféerence disparait
guandR diminue. Des différences importantes sont évidentes pautemps
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d’apprentissage court ou moyen : plus le réseau est aléatoioins efficace
il sera pour ces échelles de temps. Plus aléatoire est laugéphkis petite est
le chemin le plus court moyen. Par conséquent, une intatétpossible est
que, pour de grandes valeurs gel'influence d’'un neurone pour une période
d’apprentissage courte s’étend sur la totalité de I'esgabe a presque tous
les autres neurones. Ainsi, pour des échelles de tempsesppresque tous les
neurones sont mis a jour chaque fois qu'une nouvelle imag@résentée, ce
qui interdit effectivement tout apprentissage dans leaés€ette interprétation
est validée par des expériences dans le cas ou le rayohesitiging fois moindre.

Probléme inverse :Les algorithmes évolutionnaires [46] ont été choisis pour
optimiser la topologie de SOM, ceci étant motivé par leurilfiéixé et leur ro-
bustesse face aux minima locaux. Le but de la deuxieme exypériest de savoir
si 'optimisation aura tendance a pousser la topologie gessréseaux aléatoires,
ou vers d’autres topologies, en dehors des modeéles de WaBsagatz. La
performance du taux de reconnaissance peut étre augmenpreside 10% par
I'optimisation évolutionaire de la topologie du réseawerteur de classement
de la meilleure topologie dans la population diminue au salg I'évolution, a
partir de 0355 jusqu’a~ 0,325. Le plus court chemin moyen entre les neurones
diminue en méme temps que I'index de clustering, ce quiB&gue la topologie
devient plus aléatoire. L'écart-typg de la distribution de connectiviték (ou Pk
est la probabilité qu’un neurone choisi au hasakdaisins) a par contre presque
triplé au cours de I'évolution. Cela signifie que la distribotde connectivité
des réseaux s’élargit En d’autres termes, I'évolutiorfieigile rend les réseaux
plus hétérogénes. Toutefois, il convient de garder a liesjpre ce résultat est
largement tributaire de la topologie des données ellesenéfiti la base de
données MNIST), et pourrait étre différent avec d’autresndes.

Ce résultat a été présenté a la conférence ECCS 2007 [110]( daumrop
Conference on Complex Systems 2007 — Dresden) et a la conée@HBC 2009
[111] ( Genetic and Evolutionary Computation 2009 — Shanyhai

Echo State Networks (ESN)

Il est connu depuis longtemps qu’'une bonne conception depaldgie
du réseau est un ingrédient essentiel pour une applicatiossie des réseaux
de neurones. Sur le plan théorique, les études récentegsstaprésentations
profondes ont prouvé que certains types de topologies siégiest un nombre
exponentiel d’unités cachées afin d’étre en mesure de eéalie tache d’ap-
prentissage donnée, tandis que les topologies de profopdatrait ne nécessiter
gu’'un nombre linéaire de couches pour la méme tache. Les &iztte Networks
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[105], qui ont été récemment proposés pour I'apprentissagervisé de séries
temporelles, peuvent étre considérés comme une approhaative : au lieu

de I'optimisation d’'une topologie pour une tache donné@rdpose d'utiliser

un large réservoir de neurones dont les connexions somstia® sort (et a
faible densité). Seuls les poids des connexions sortaotésasapprendre, ce qui
transforme le processus d’apprentissage en un simple bigpne d’optimisation

guadratique qui est facilement résolu par une méthode tsasde gradient ...,

du moins dans le cas de I'apprentissage supervisé.

Notre construction : Nous avons proposé d’utiliser I'algorithme évolution-
naire état de I'art pour I'optimisation continue, CMA-ES (@oance Matrix
Adaptation Evolution Strategy) [87, 88, 85] pour remplate@rméthode du
gradient dans le cadre non supervisé. CMA est un algorithnodutionnaire
reconnu et a obtenu de bons résultats sur un large éventailotéemes dans
le domaine de l'optimisation continue. La flexibilité de plimisation par
I'évolution nous permet en outre d’optimiser non seulenleatpoids sortant,
mais également, ou alternativement, d’autres paramegeBESN (le rayon
spectral, les pentes a l'origine des fonctions de transfest neurones actifs).
En ce qui concerne le rayon spectral, il est unanimemenirecaomme un
parameétre critique des ESNs. En particulier, la valeur maile autorisée pour
le rayon spectral afin d’assurer la propriété “Echo Staté’desl. Cependant,
des valeurs différentes ont été proposées dans la littérgtaur différents
problémes. Il semble donc Iégitime de ne pas fixer a prioriaon spectral
mais de le considérer un parametre libre optimisé par CMA-E8la ne fait
gu’ajouter une dimension au probléeme. Pour les pentes detidas d’activa-
tion des neurones, comme I'Echo Etat Network est un ensedwlsystémes
dynamiques qui sont combinés linéairement pour produingdeltat désire, il
semble plausible que la modification des pentes de tous lgsmes de maniere
indépendante puisse permettre a 'lESN de mieux répondreéche-cible. La

fonction de transfert dans le neurone interne devient {anh= Treax
A l'origine la fonction sigmoidale de Jaeger était tanhrespondant au cas= 2.

Supervised Learning :Dans cette partie, nous prenons un probléme standard
de prédiction de séries temporelles. Un signal mono-cdaatrée sinusoidal est
donnée pau(n) = sin(n/5). L'objectif est de d’apprendre au réseau a produire
une sortie mono-canayieacHN) = %u7(n). Le premier résultat, pour une taille
de réservoir de 100, confirme simplement que CMA-ES peut &tssi grécis
que la méthode du gradient citée dans [105], en nécesgitatefois un effort de
calcul beaucoup plus important. Les résultats obtenugspondent a la méme
précision lors de l'optimisation des poids de sortie querésiltats originaux
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obtenus a l'aide d’'une optimisation quadratique. Avec wenéoir plus petit,
cependant, c’est I'optimisation des pentes des fonctiengahsfert de tous les
neurones qui permet d’'atteindre la meilleure précision dliption, pour un
co(t de calcul toutefois assez élevé. De plus, il existe onglation intéressante
entre la valeur finale du rayon spectral a la fin de l'algorigheh la performance
correspondante obtenue. Dans le cas=dE00 neurones, les meilleurs résultats
sont obtenus lorsque le rayon spectral est compris entret@, et dans le cas
de 30 neurones, le rayon spectral optimal est centré aueo0yodb.

Apprentissage par renforcement : Le probleme de [I'équilibre des
barres (ou encore du double pendule inversé) est une tacheomtedle
classique étudiée depuis plus de 40 ans — voir pour les phent® travaux
[225, 78, 71, 204, 101, 45, 70, 117]. Le systeme se composeube phrties.
La premiére partie est un charriot dont la masse est de 1 kgied gn de-
gré de liberté le long de l'axe, la deuxieme partie comprend une ou deux
barres de longueurs différentes; (£ 1m,l, = 0.1m)) et de masses différentes
(m = 0.1kg,m, = 0.01kg)) qui sont connectés au charriot par des charnieres.
Chaque barre a un degré de liberté, a savoir 'angle de ldation (6;, respecti-
vement6,) avec la verticale. La commande est une fdfgéR, € [—10N, 10N])
qui est appliquée au charriot, et le défi est de garder lespfdas des limites
données pour les angles des articulations aussi longteopgassible. Nous
montrons que 'ESN évolutionnaire obtient des résultaissqnt comparables a
ceux des meilleurs algorithmes faisant I'apprentissada tigpologie des réseaux
de neurones. Les meilleurs résultats sont ici obtenus gatinisant que les poids
sortants. En outre, il semble y avoir une forte dépendanseéiltats par rap-
port a la topologie du réservoir, au moins pour les petitélesaxpérimentées ici.

Modéle de Reconnaissance d’'Objets Visuels Inspiré par le Cegau

Enfin, le chapiteSMF est la derniere partie qui présente nos travaux initiaux
de recherche sur la SMF (“Standard Model Feature”), un neodélreconnais-
sance d’objets qui est inspiré par le cortex visuel. Deusivarbasées sur SMF
ont participé au Challenge PASCAL - Reconnaissance de la mjitovisual
(VOC2008). Le but a long terme est de trouver la topologienoalié du modele
SMF, mais le colt de calcul est cependant trop important pptimiser la to-
pologie compléte directement. Donc dans un premier tenqss appliquons un
algorithme évolutionnaire pour sélectionner automatiggiet les caracteristiques
utilisée par le systeme pour la classification finale. Nousitnoms que, pour
VOC2008, avec seulement 20% caractéeristiques bien chplsiesysteme peut
fonctionner aussi bien qu’avec I'ensemble des 1000 caiatitgies choisies au
hasard.
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Pour les taches de reconnaissance immédiate d’objets darscane, il a été
suggéré que le cerveau utilise des propriétés d'invarideckobjet. Le modeéle
SMF est inspiré par cette remarque. La SMF est fondamengalieam réseau de
neurones a propagation directe (“feed-forward”) hiéraped. Dans ce manuscrit,
nous avons utilisé une simplification du modéle de référefit@4], donné dans
[198], qui se compose de quatre couches de réseaux de nsuromeécurrents.
Le modéle comporte deux types de neurones : ceux qu’on appeiples unités,
ou S, et les unités complexes, ou C. Les unités S combiners énirées avec
une “Bell-Shaped tuning function” pour augmenter la sélgéti Les unités C
combinent leurs entrées avec une fonction maximum (MAX)rpmwgmenter
l'invariance. Par conséquent, en réglant les parametresysiéme, le modéle
peut obtenir un bon équilibre entre la sélectivité et I'maace.

Dans ce modele initial, la sortie du réseau est composéerdetéastiques
qui sont passées au travers d’'un algorithme de combinaiséaile pour la
tache de classification elle-méme, c’est a dire qu'il cacla confiance de
VOC 2008 de chaque image pour chaque classe d'objet. Dame &tide,
nous appliquons une optimisation évolutionnaire utiiSaMA-ES (Covariance
Matrix Adaptation Evolution Strategy [88, 103] pour cakeula confiance de
VOC2008 de chaque image pour chaque classe d’objet. Pren@ate nous
utilisons CMA-ES afin d’optimiser le poids d’'un combinateimélaire. Comme
la dimension d’optimisation est au moins aussi grande qu¥,10ous testons
également un algorithme multi-évolutionnaire pour sébecter de fagon op-
timale 200 dimensions parmi 1000, avant d’optimiser lesdii&nsions choisies.

Nous montrons qu’en sélectionnant 200 caractéristiqueshales le systeme
peut garder presque les mémes performances dans le défi VOGROEN
utilisant 1000 caracteéristiques choisies au hasard, toautliminuant le codt
calcul de 2 ordres de grandeur. La robustesse du systemdesdégendre des
caractéristiques sélectionnées. Méme si nos résultatg@G2008 ne sont pas
parmi les meilleurs du challenge, en considérant la sint@ldu modéle que nous
avons appliqué (nous utilisons seulement la mise en modeledfaut et il y a
beaucoup de parametres qui peuvent étre ajustés), nouepstqu’il y a encore
de la place pour des améliorations significatives. Les $ui@vaux de recherche
seraient d’optimiser la topologie des connexions entreteshes du modele de
SMF, et également d’optimiser les parametres de réglagergueffectivement
été définis par la recherche bio-inspirée.
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Chapter 1

Introduction

We are now in the 21st century, and since the 1950s, Artiflailligence has
become an independent subject of study of Computer Scienddsainfluence
on our daily life has been ever increasing.

Intelligence is the result of an evolutionary process basedatural selection.
In recent years, studying the so-call@d-inspired mechanisms, i.e. mechanisms
that try to somehow mimic natural processes, has raiseddd tesearch interest.
In particular, two of these research streams have attracead attention and lead
to a large body of work.

From a macroscopic point of view, nature produced a rich angfsk set of
species thanks to two principles: blind variations, thatted the diversity in the
first place, and natural selection, that selected someithdils and populations
for survival according to the natural principle afurvivalof thefittest”. Artificial
Evolutionary Algorithms (EASs) [47, 43] are powerful optimaition algorithms
inspired by this natural selection mechanism, and have beeressfully applied
in lots of real world problems [231].

From the microscopic point of view, the material basis faelligence is
based on large-scale ensembles of neurons, organizedwonket Artificial
Neural Networks (ANNs) are a powerful model inspired by theiological
counterparts for knowledge processing and analysis. Qxigd in the early 50s
[182], ANN research is still very active [105, 143, 93, 198].

At the crossroad of both research areas, research usingtiévary Algo-
rithm to optimize Artificial Neural Networks has been going for many years
[230]: Beyond the “simple” optimization of the weights of awerk with a fixed
given topology, the flexibility of Evolutionary Algorithmsiade them appealing
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1. INTRODUCTION

when it came to optimize also the topology of candidate Hewgtworks for a
given task.

During the same period (the last 20 years), the study of cexnpétworks
has brought this area into new research directions andratgpi. Inspired both
by natural networks (e.g. Gene Regulatory Networks, pregentein interaction
networks, ...) and artificial ones (e.g. the World Wide Weibljree connec-
tion networks, social networks such as co-authoring neksyar. . ), new insights
have been gained into network topologies. More particylegsearches on small-
world [220] and scale-free [19] networks have produced a peint of view for
our understanding of network complexity.

Chapter| 2 will survey those research areas in more detaltigiging the
different paradigms that have been used for this thesis.

In this context, the present work is centered around the¢ioelhip between
the (possibly complex) topology of a given Neural Networkl @s performance
as a computing unit. Two approaches will be considered, aperemented
with in different application domains. Thdirect problem is the study of the
performance of a given type of neural network, in a given mrment, with
respect to its topology. By controlled variation of the tampl, within a given
class of parameterized topologies, and careful measuteedafesulting network
performance, some hints can be gathered regarding theno8uef this or that
topology description parameter. We will then consider itheerse problem
i.e. optimize the topology in order to maximize the perfonta of the neural
network. Evolutionary Algorithms will be the optimizatidiwol, as they can
handle either continuous optimization, in the case whereédpology is described
by some macroscopic description parameters, or directhdleathe topology
itself (e.g. through modifications of the connections) tefiane the topology.

A first application domain will be that of Self-Organizing & (SOMS)
[124], detailed in Chapter 3. SOMs are mainly used for unstiged learning,
and the standard regular topology is generally used withauth questioning.
However, there is hardly a universally acclaimed perforoeameasure for
comparing the performance of unsupervised learning dlgos. Hence, the
performance of a given SOM topology will be assessed throgltlassification
accuracy on the well-known MNIST database for digit rectgni The inverse
problem will be addressed here by directly manipulatingcthrenections between
neurons.

A second application context, presented in Chapter 4, ischEtho State
Networks [105], the recent paradigm pertaining to the Reser@omputing
family. While ESNs are generally used for regression taskd the optimization
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problem then amounts to the quadratic optimization of thggang weights,
using ESNs for reinforcement learning tasks has hardly begiressed in
the literature. We will investigate the influence of diffetenyper-parameters
defining the reservoir topology on the well-known benchntagk of balancing
the double-pole. The optimization algorithm for the outpugights will be
the well-known CMA-ES (Covariance Matrix Adaptation Evotrti Strategy)
[88, 86], as the problem is not quadratic any more. But the ggdd of this
drawback is that the same algorithm can be used to simulheoptimize the
output weights and some hyper-parameters defining thedgpalf the reservoir.

Finally, Chapter ' 5 will present a first study involving a Cortespired
Visual Object Recognition model [198]. In particular, wenlvestigate whether
using only a sub-sample of the many features designed byritpea algorithm
can improve the global recognition rate, while acceleratime learning phase.
Results will be demonstrated on the complex VOC2008 challenge

And as usual, Chapter | 6 will conclude this dissertation, sanzimg and
discussing the results, and opening the way for furtherarebe
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Chapter 2

Background

This chapter will set up the background for all work to be préed in this disser-
tation. First, brief introductions on Artificial Neural Nedrks (ANNs) and Evo-
lutionary Computing (EC) will be given. Then we will focus oniNe-Evolution,
the coupling of both techniques, i.e., the specific EC meshioat have been devel-
oped for evolving Artificial Neural Networks. Further, re¢@dvances regarding
the Topology of Complex Networks will be surveyed. Finallythe light of this
state-of-the-art methods, we will introduce the reseatsstjons addressed in the
present research and their motivations.

2.1 Artificial Neural Networks

The human brain is a complex biological system composed afgelnumber
of highly interconnected processing elements (neuron§)7][11t is formed by
about 18 neurons [104]. Each neuron connects to abodtdtBer neurons on
average [155, 30]. Figure 2.1 shows an example of a biolbg&aron.

The physiological research about the brain and other hicdbgneural
systems is the foundation for artificial neural networks (Y. The artificial
neural model is an abstraction of biological neurons (showfigure (2.2) , i.e.
an interpretation of our understanding of brain operati@pplied to build an
artificial intelligence system.

Artificial Neural Networks (ANNs) are parallel informatioprocessing
systems in which a number of artificial neurons (or units)iaterconnected by
synapses. Usually the output of each unit is a nonlineartiomof the sum of its
inputs, weighted by synaptic weights (see figure| 2.2). Thmnaea is then to
find algorithms or heuristics for adjusting the synapsesthadsynaptic weights
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P
"> Dendrite

Mucleus
Axon

Tarminal \% f};
Synapse

Figure 2.1:A neuron is an excitable cell in the nervous system that processes asd tra
mits information. It exists in a humber of different shapes and sizes. Thigefigom
[32] shows a scheme of a spinal motor neuron, consisting of a cell bwdlya dong thin
axon. Around the cell body is a branching dendritic tree that receigesals from other
neurons. The end of the axon has branching terminals (axon terminatetbase neu-
rotransmitters between the terminals and the dendrites of the next neutioh,paicess
the information transmission.

in such a way that the network fulfills the desired informatwocessing task.
The success of Atrtificial Neural Networks in computer sceeand machine

learning is mainly based on the following strong points:

* ANNSs can discretionarily approximate any linear or comph®n-linear
function [98, 11];

 All quantitative or qualitative information is stored irdéstributed manner
in the connections of the network, so it takes on strong cteraf robust-
ness and tolerance [182];

» The use of parallel distributed processing approach esgtdrallel com-
puting [210];

 Self-adaptive and self-organizing ability endows ANNshathe capability
to learn even when only limited knowledge about the systeavaslable
[122].

2.1.1 History

The history of ANNSs is as long as that of Artificial Intelliges but it is also
more tortuous.
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Inputs Weights
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Figure 2.2: The artificial neural model is an abstraction of biological neurons. The
artificial neuron receives one or more inputs (representing one or desrérites) and
sums them. Usually each inpygtis weighted in the sum by the corresponding synaptic
weightw;, and the resulting weighted sum is passed through a non-linear functimkn
as theactivationfunction ortransferfunction. This mimics the nonlinear input-output
relationship observed in real biological neurons. The transfer fumtisually have a
sigmoidal shapes, but they may also take the form of other non-lineaidaagcpiecewise
linear functions, or step functions. They are also generally monotonicalhgadsing,
continuous, differentiable and bounded.
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Creation: In 1943, psychologist McCulloch and symbolic logician Pittslt

the first mathematical neuron model [147], known as the MPehothey gave
a formal mathematical description: For a given artificialmom k, let there be
m+ 1 inputs with signalg throughxy,, and weightswg throughwy,,. The output

yk of neuronkis: yx = ¢ (ZT:OijXJ')’ whereg is the transfer function.

They proved that a single neuron can perform logic functidnereby creating
the era of artificial neural networks. In 1949, the psychbglebb proposed a
conception that the synaptic contacts could have variadténsities, depending
only on the activation of the pre- and postsynaptic neur@: ['When an axon
of cell A is near enough to excite cell B and repeatedly oripstly takes part
in firing it, some growth process or metabolic change takasepin one or both
cells such that A's efficiency, as one of the cells firing B, ireéased”.

This so-called Hebb rule of neural network is an underlyiagig for the learn-
ing algorithm of ANNs. In 1958, Rosenblatt built the Perceptmodel [177].
The Perceptron is a binary classifier that maps its inpia real-valued vector)
to an output valugy (a single binary value) across the matrix of weigvs;:

i = 1 zTZOijxj>O
0 else

The perceptron model is a specifical case of MP model and thib Hearn-
ing algorithm can also be used to tune their connection weigee section 2.1.2).

The Neural Network Winter: After analyzing the function and the constraints
of artificial neural networks, typically represented by d¢&g@tron, Minsky and
co-author published the «Perceptron» book in 1969 [151].this book they
pointed out the limit of the perceptron model. For instarticey reported that no
single-layer perceptron can solve higher-order classificgoroblems, including
nonlinearly separable problems such as the XOR functioneirTdwrguments
greatly impacted the study of ANNs. At the same epoch, sedalputers and
artificial intelligence progressed rapidly. These two ogmscaused the lack of
the necessity and urgency to develop new methods for congputlherefore
the research on ANNs was in depression during more than s aéterwards.
However, some researchers still continued to develop thedied proposed the
theory of self-organizing map (SOMs) [122, 123] in 1972, astablished a
strong mathematical foundation for ANNs [3].

The Return of Spring: Three years after Minsky’'s book, Grossberg pub-
lished the paper introducing multi-layer networks capatilemodeling XOR
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functions [74]. But the research on ANNs did not return to &gpruntil the
1980s, helped by the progresses in CPU power. In 1982, physiapfield
proposed what is today known as the Hopfield Neural Networkieho[96].
A Hopfield net is a form of recurrent artificial neural networklopfield nets
serve as content-addressable memory systems with binaashibld units. The
introduction of the “calculational energy” determined stability of the neural
network. They are guaranteed to converge to a local mininbwihgconvergence
to one of the stored patterns is not guaranteed.

In 1983, Hinton and Sejnowski gave the name of Boltzmann nmacko
a type of stochastic recurrent neural network [94]. Boltzmamachines can
be seen as the stochastic, generative counterpart of Hbpless. They were
one of the first examples of a neural network capable of legrnnternal
representations. They are able to represent, and, givéicienf time, to solve
difficult combinatorial problems. If the connectivity ismstrained, the learning
can be made efficient enough to be useful for practical probleln 1985, the
statistical thermodynamics simulated annealing teclesgwhich applied in the
Boltzmann model, helped to prove that the whole system wahévally converge
toward a global stability point [1]. In 1986, by studying th&crostructure
of cognition, Rumelhart and the PDP Research Group proposedh#éory
of Parallel Distributed Processing [38]. The famous BaadpRgation (BP)
algorithm for multi-layer feedforward ANNs was proposed.B86 too [181].

2.1.2 Learning Methods

One major difference between classical programming teglas and ANNS is
that the later are not strictly speaking programmed, buttrbagrained before
they are used. A number of learning methods have been dexktyer the years,
that can be divided into Supervised Learning, Non-supedvlsearning and Re-
inforcement Learning.

Supervised Learning

In the supervised learning case, the training examplesiega tpgether with the
expected outputs or labels (in classification case) cafladher’s dates. By com-
paring the margins between the expected dates and ANN'sisIthe connection
strengths are adjusted and converge to a stable positionn Yeeenvironment
changes after the training, the network is retrained angtadao the new envi-
ronment. The Back-propagation algorithm [181] is a widelgduglgorithm in

9



2. BACKGROUND

the feedforward multi-layer ANNS. It is a supervised leaghmethod, and is an
implementation of th®eltarule.

The Delta rule is a gradient descent learning rule for updathe weights
of the artificial neurons in a single-layer perceptron. Fonearon j, with
activation functiong(x), the delta rule forj's iy, weight wj is given by
Awji = a(tj —y;j)d'(hj)x, wherea is a small constant called learning raggx)
is the neuron’s activation functioty, is the target outputy; is the weighted sum
of the neuron’s inputsy; is the actual output, ang is theith input. It holds

hj =3 xwiji, andy;j = g(hj).
The Back-propagation algorithm can be summarized as follows
1. Present a training sample to the neural network.

2. Compare the resulting output with the desired output fergiven input.
This is called the error.

3. For each neuron, calculate what the output should have, bed a scaling
factor, how much lower or higher the output must be adjustedatch the
desired output. This is the local error.

4. Adjust the weights of each neuron to lower the local ersoapplying the
Delta rule.

5. Assign "blame" for the local error to neurons at the previtavel, back-
propagate the local error to the neurons of the previoud keveording
to their connection weights with the neurons of current lleadjust the
weights by applying the Delta rule too.

6. Repeat from step 3 on the neurons at the previous levelj esich "blame”
has its error.

In the feed-back ANNs domain, the Reservoir Computing modeb]ht-
tracted a lot of attention in recent years, in particulartfe Supervised Learning
of time series. It will be introduced in detail in chapter 4.

Unsupervised Learning

In the Unsupervised Learning case, there is no expectedibagsociated with
the input, so that, the ANNSs is expected to find the correattiqutput matching
by using self-organized methods based on its unique netaarkitecture and
learning rules. In the learning process, ANNs continue tceptthe learning
samples and auto-organize the data in the pattern of caanegeights among

10
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neurons. Self-organizing map [122, 123] network is tygycated in this kind of
learning model, to create low dimensional view of high disienal data.

Reinforcement Learning

In a way, Reinforcement learning can be considered an intiatesbetween su-
pervised and non-supervised learning. In reinforcememnhlag, the teacher does
not provide the correct output associated with the input,absimple reward (or
punishment) when the predicted output is correct (fals@)s Teward can be de-
layed. In all robotic experiments where the robot must finduv&y out of a maze.
The system tries to find a policy for maximizing cumulativevaeds over the
course of the problem. Thus, reinforcement learning isi@ddrly well suited
to problems which include a long-term versus short-termaremrade-off. It has
been applied successfully to various problems, includitgt control (chapter 4),
elevator scheduling, telecommunications, backgammorchess [209, 114].

2.1.3 Network Topology

Based on connection topology, neural network models arétitradlly divided
into feedforward networks anféedback (orecurrent) networks. However, recent
developments in the so-called complex network field leacbtgemplate the use
of other classes of topology. We will present these aspeasdtion 2.4.

Feedforward networks

Feedforward networks are structures in which there is np ladhe connection
graph of the network. A specific case is thatayfered feedforward architectures,
where the neurons are organized in layers, and where eachmi@lkes its inputs
from the previous layer and sends its output to the next oneal® the con-
nection graph is loop-free, there are no feedbacks in theankt(Figure | 2.3).
Consequently, the networks has no real dynamics: informatist flows from
one layer to the other. Such a network realizes the projeétoom the input space
to the output space, and its information processing capaaihes from a multiple
compound of simple nonlinear functions. This kind of netkvstructure is simple
and easy to implement (compared to networks with loops). Bagagation is an
especially well-suited supervised learning method fodfeevard networks, and
even easier to implement within multi-layer feedforwardwaks.

11
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Input Hidden Output
layer layer layer
Input #1 —
= »— Output
Input #2 —s

Figure 2.3: A sample feedforward ANN with one hidden layer.fédedforward

network, each neuron receives its inputs from the previayerland sends its
outputs to the next one. As there is no feedback in the nesyirls a loop-free

map.

Input Hidden Output
layer layer layer

Feedback

Imput #1 — | W
>~ =3 ;:—4> — Output

Input#2 — )

Figure 2.4: A sample feed-back ANN with one hidden layer. réhexists feed-
backs within the same layer or/and from the next one.

Feedback networks

In a feedback network, there exists recurrent connectiognsfeedbacks within
the same layer or from a given layer to a preceding one. It eafigured by
a map of loops ( Figure 2.4). Its information processing cépaomes from
the transformation of network states. Because of the feddtmmections, these
networks are expected to undergo complex dynamics, thdieapproached with
dynamical systems theory. Hopfield networks, Boltzmann nmeshand reservoir
computing models are feedback networks.

2.1.4 Recentresearch

Recent Neural Network research can be divided into thealetesearch and
applied research.

12
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Theoretical Research:

Theoretical research can be divided into two categories:

1. Application of the scientific research in neurophysiglegd cognitive sci-
ence to understand the mechanisms of intelligence [21].

2. Improvements of the performance of ANN in various domaldsing the
research results of basis neural theory, the goal is to expgle perfor-
mance of neural network model, to study in-deep of netwagk@hms and
performance and to develop new mathematical theory of Niéletavorks
[105, 93, 194].

Applied research:

Application can also be divided into two categories:

1. ANN's software simulation, as demonstrated and dissatathwith the fol-
lowing software platforms: Stuttgart Neural Network Siamol (SNNS),
JavaNNS, Neural Lab, etc, and corresponding hardware megléations
[136].

2. Application of Neural Network in various fields, such astg@an recogni-
tion, signal processing, knowledge engineering, expestesys, optimiza-
tion, robot control, etc.

Recent hot research topics

Below are some hot points in ANNS research area in recent:years

Self Adaptation:

“How can an ANN self-adapt to its environment?” is always amportant
issue. The most famous self-adaptive ANN model is Kohonep ké&a Self-
Organizing Maps) which has been wildly used in classificatind representation
of information. SOMs will be presented and studied in cha@eThe search for
further unsupervised learning methods is still an activeaio of research.
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Complex Systems Theory:

Since the 1990's, theoretical studies of Complex System daeply changed
our view of many fields [192, 232]. “Complex systems are syst@rhere the
collective behavior of their parts entails emergence opprties that can hardly,
if not at all, be inferred from properties of the parts. Ex#&spof complex

systems include ant-hills, ants themselves, human ec@sproiimate, nervous
systems, cells and living things, including human beingswall as modern
energy or telecommunication infrastructures.” — The Comdgstems Society
(CSS). ANNs are present in many areas of Complex Systems, anbecaeen
as one example of complex systems, and recent research $h8@js that the
performance of an ANN can be influenced by its topology, just what is

well-known in other complex systems (social networks, dgidal network,

internet etc) [28].

Reservoir Computing and Deep Belief Network:

ANN:Ss still suffer from (at least) some crucial issues. Thi#idllty of learning
increases with the number of neurons (and synapses). Fudhe learning
feedforward networks is also still very difficult when thetwerk is made
of numerous layers. Finally, there is still no training aigfum for recurrent
networks. Reservoir computing and Deep Belief Networks aspectively, two
elements of answer to these issues.

The Reservoir Computing model, proposed independently bgelgd05]
(Echo State Networks ) and Maass and colleagues [143] (dLi§tate Machines),
uses a large recurrent (feedback) network of neurons treatardomly and
sparsely connected (the “reservoir”). The weights and ltapoof this reservoir
are not optimized nor adapted and are kept fixed during trginiThe reservoir
neurons are connected to output neurons that are used atateéthe reservoir
states. The major idea behind reservoir computing is thigt@tgoing weights
(those from the reservoir to the output neurons) are opédjizvhich amounts
in the supervised case to a simple quadratic optimizatioblpm that is easily
solved by any gradient-based method. Hence, reservoir gtingpcan use
a large number of neurons and weights (within the resenamnnected as a
feedforward network with rich dynamics, but learning istriesed to the lower
number of feedforward outgoing weights. The promises of RegeComputing
have been fulfilled for several kinds of problems. See chiagpfer further details.

The Deep Belief Network model was proposed by Hinton in 20063].[9
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It has been known for a long time that if the initial weights aofeedforward
network that has multiple hidden layers are close to a godatisn, gradient
descent works well. Conversely, learning is poorly efficihenever the initial
weight values are far from a good solution. But finding suclofable initial

weights is very difficult. In Hinton’s model, each layer isitred just like in a
single-layer network, one after the other and indepengdrdim the others. So
a multilayer ANNSs is divided into a stack dRestrictedBoltzmannMachines
(RBMs) and each hidden layer of the lower RBMs is the input layethef
higher RBM. After this pre-training, the model is unrolled avackpropagation
of error derivatives can be used to fine-tune the ANNSs to getigearning results.

The seminal work in Deep Belief Natworks [93] shows that the-fpaining
procedure works well for a variety of data sets. And inspbethis model, Jaeger
proposed a hierarchical multilayer ESN model in 2007 [107].

Bio-inspired System:

The best current machine vision systems are still not cotngetvith human
and primate natural vision in visual recognition field, esplly for objects
in cluttered and natural scenes of real world, despite decad hard works
[99, 166, 219, 198]. So taking inspiration from real biokaji systems is an
important method to improve the performance of artificiateyns.

Inspired by the biology of visual cortex, Serre and Poggi@8]lproposed a
model for invariant visual object recognition in 2007. Thedel gets the state of
the art results in a series of visual benchmark tests on ecomplage data bases,
such as CalTech5 [57, 221], CalTech101 [53], MIT-CBCL [92]. Mosgails
about this model will be discussed in chapter 5.

2.2 Evolutionary Computing

This section quickly surveys the bases of Evolutionary Camguadopting the
modern point of view popularized by [47, 43], and borrowingshideas from
[188].

Darwin’s evolution theory is based on the two basic prirespbf natural
selection andlind variations. Natural selection describes how individuathin
a given population have better chances to survive and tmdepe if they are
adapted to the current environment. Blind variations dbssrihow the genetic
material of the parents is randomly modified when transihittethe children
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(even though Darwin had no precise idea about what suchigematerial could
be).

Evolutionary Algorithms (EAS) are stochastic optimizatelgorithms loosely
inspired by this crude view of Darwinian theory. Candidatdusons to
the optimization problem at hand, call@dividuals, are represented by their
chromosome. The target function of the optimization, fikeess, plays the role
of the environment. Within this environmentpapulation, or set of individuals,
is first randomly initialized, and the fitness of all indivala is computed. This
population then undergoes a successiogarierations. First, the population is
subject tgparentakelection: some individuals are selected, based on theaskt
in such a way that fitter individuals are more likely to be stdd than individ-
uals with poor fitness. The selected individuals geneofispring individuals,
thanks to the application ofariationoperators, byrossover (orecombination)
operators, that involve 2 or moparents to generate each offspring, amatation
operators, where a single parent is randomly modified intoffspring. The new-
born offspring are themvaluated, i.e., their fitness is computed. Finally, thgloo
is closed by applyingurvivalselection, globally to both parents and offspring, in
order to select the starting population for next generatsonvival selection still
favors fitter individuals.

Algorithm 1 Pseudo-code of Evolutionary Algorithm
Begin
INITIALIZE population with random individuals;
EVALUATE each individual;
REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO
1 SELECT parents from population;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 EVALUATE newborn offspring;
5 SELECT individuals for the next generation;
0D

END

2.2.1 Key Issues

The different components of the basic algorithm above vaivrbe discussed in
turn, and the key issues to consider when designing an EAsdpecific problem
will be highlighted.
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Fitness

How an individual adapts to the environment is measureddifjtitess. Improv-
ing the fitness function should result in improving the objecfunction of the
optimization problem at hand. On the other hand, modifyhwgfitness function
by some linear transformation only impacts the selectiepsbf the algorithm.
Hence we will consider in general that the fithess funcisdhe original objective
function, postponing the discussion about possible toansditions to the discus-
sion about selection procedures.

A crucial remark about the fitness is that it usually represenost of the
computational cost of the EA. Indeed, in most real-worldiaibns, selection
and variation are generally very fast operations (thougtirgphuge populations
can become time consuming when the population size insgasmpared to the
evaluation, that can involve heavy simulations of possiidy-linear physical,
mechanical, chemical phenomenon. This also explains wiytal of the EC
designer will be, beyond finding the optimum of the objecfuection at hand,
to minimize the number of fitness function evaluations. Alne tisual measure
for comparing different EA or EA settings is the number oflaatéions needed to
reach a predefined optimization goal (e.g., a given fitnelseya

Representation

For a given problem, the representation of the candidatdisnl or individuals,
is crucial. The original optimization problem is posed inigeg search space,
and solutions must ultimately be given in this space. Howethe EC designer
faces two goals that are somehow contradictory. On the ond, e needs to
find the best possible solution in the original search sp&rethe other hand,
exploration depends on the variation operators, and sometste of the search
space is mandatory to make the exploration efficient. Frasnpiint of view, the
choice of a representation and the design of the variati@matprs are the two
faces of the same coin, and should be done together.

It is hence often useful to search an auxiliary space, whiickemt variation
operators can be designed, rather than the search spaeeooigimal optimization
problem. Still crudely inspired from biology, the origiregarch space is termed
phenotypic spa@ewhile the space where variation operators are appliedledca
the genotypic space. The phenotypes (or potential solutiorieebptimization

problem at hand) arencoded into the genotypic space, where the actual search

takes place through the application of the variation opesat The individuals

lor sometimegdehavioralspace as this is where the behavior of the individual is exatl
when the fitness is computed.
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referred to in the previous Section 2.2 and in Algorithm 1gerotypes, that are
decoded into the corresponding phenotypes for evaluation.

'Natural’ Selection

The two selection steps are the parental selection, thattselvhich individuals
are allowed to reproduce, and the survival selection, thabses which indi-
viduals will survive to the next generation. The main diffiece between both
selections is that an individual can be selected severaktas a parent, while all
individuals are selected at most once for survival, andpgisar forever if they
are not selected. However, similar selection procedune®eaised in both cases.

Another important remark is that both selection steps ompethd on the
fitness of the individuals in the population. In that respasetiection isprob-
lem independent and can be viewed as a technical issue when designing an
EAs for a specific problem. Many toolboxes exist indeed wheee EC de-
signer can pick the selection method of his choice, withibetteed to be creative.

Selection procedures can be either deterministic, or agith Determinis-
tic selection acts globally on the population, and seldwtskest (fithess-wise)
individuals in the population up to the required number.

Two categories of stochastic selections can be distingdisithether they are
based on the fitnesaluesor simply on theranks of the individuals. The most
popular value-based selection is the so-catimaettewheel selection [95, 68],
where each individual is selected with a probability thgtnsportional to its fit-
ness. Roulette-wheel, like all value-based selection plaes, suffers from being
very sensitive to the actual distribution of the fithess galuvhereas optimizing
or exp f) are equivalent optimization problems, the correspondiudette-wheel
selection procedures will produce very different resuft9oth settings, favoring
much more the best individuals in the latter case:silectionpressure (the prob-
ability to select the best individual divided by the probigpio select the average
individual) is hard to control efficiently. This is why, inispof many trials to cope
with this defect, and in spite of some early theoretical &sidn Schema Theory
that are based on proportional selection [95, 68], valusedaelection procedures
are hardly used nowadays.

Rank-based selections (including deterministic selertare insensitive to
monotonous transformations of the fitness function. Manyawés have been
proposed, including some roulette-wheel on the ranks ofrtiiduals, rather
than on their fitness values (akanking). However, the most popular selection
procedure today is thimurnament selection: it is a rank-based selection, and the
selectionpressure can be easily controlled through a single paranteéstour-
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nament sizél. In order to select one individual, tournament selectiost fiicks
up T individuals, and returns the best of thoBe The selection pressure is pro-
portional toT. When selection pressure smaller than 2 are required, aasttich
variant of the tournament of size 2 is used, where the bedteofwo uniformly
chosen individuals is returned with probability]0.5,1]. The selection pressure
is then 2.

Variation Operators

Variation operators are stochastic transformations defomethe genotype space.
One distinguishes two types of variation operators baseédenumber of parents
that are required to generate an offspring.

Crossover. The basic idea of crossover operators is to be able to reicesbme
good parts of the parents’ genotypes to possibly genertsjerofg that have better
fitness than their parents. Crossover involves two (or mo&}) [darents, and
implicitly assumes some sort of linearity of the fitness tiort with respect to
(parts of) the genotype.

The debate about the usefulness of crossover has been goifagy tong:
crossover can be seen as just a macro-mutation [113, 4],eor le¥ considered
harmful [61]. Early theoretical work like the Schema Thef8§, 68] only give
hints about the way crossover works, though introducingnibigon of Building
blocks. Indeed, the crossover is only analyzed there by diognts destructive
effects. Their extension dformaTheory [172, 173] is tentative to also take
into account the positive effects of crossover, but did esutt in more practical
conclusions. More recently, the theory of mixing [211] wasisited in [67] in
another effort to better understand the Building Block Theamy the effects of
Crossover. In any case, the debate has nowadays cooled dovtheadominant
point of view is that of pragmatism: if an efficient crossoean be designed for
the representation at hand, then using crossover doesvmphe performance
of the EAs (but this is a tautology!). Otherwise, a mutatarly EAs is the
best choice, and many examples of such situations existjlalsendetailed for
instance in Sectian 2.3.

Mutation: Whereas there can be pros and cons for using crossover opsgrat
there has hardly been any discussion about mutation. O$eolike all very gen-
eral statements, this one has its exceptions: Koza’s sémork on Genetic Pro-
gramming [125] did not use mutation, but provided sufficigrdvision of Build-
ing Blocks by using very large populations; the particular C&lgorithm uses
an exploratory crossover, and hence does not need addinortation [49]; same
remark applies to the SBX crossover [41]. But almost all ptiacters have exper-
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imented that in general the lack of mutation largely degsdtle efficiency of any
EAs, and early theoretical results [180] as well as moreneaees [6] prove that
the ergodicity of the mutation operator (i.e., its ability tositithe whole search
space with positive probability) is mandatory to ensure @nyergence result of
EAs.

The probability of mutation that should be used is related toclhiariation
operator (crossover or mutation) is considered the majoee df evolution. When
crossover plays this role, like in traditional GAs, mutatis simply a background
operator ensuring ergodicity, and should be applied sparsaly a few indi-
viduals should be mutated (generally after crossover has beplied). When
mutation is the main (or the only!) driving force, it should bpplied to all in-
dividuals. When relevant, the issue of tsteength of mutation is also important,
and mutation is generally defined such that 'small’ mutatiare more likely than
'large’ ones. But the idea of small and large mutations in fat#rs to the result-
ing modification of the fitness, and relates to the ide&twbngCausality [174].
Such considerations lead to the ideaanfaptive operators, responsible for the
great successes of Evolution Strategies (see Sectionti&h®). Unfortunately,
such efficient adaptive strategies could not as far as we kwgeneralized to
other domains than that of continuous optimization.

Exploration Vs Exploitation

An important concept to keep in mind when designing an Exahairy Algorithm
is the Exploitation Vs Exploration dilemma. At any time during evolution, the
algorithm must choose whether to look around the best iddals found so far,
exploiting the results of previous steps, or whether it &hdry to explore new
regions of the search space that have not yet been searcheaimd®er tuning
should permanently take this balance into account. Foamtst, increasing the
selection pressure will undoubtly favor exploitation. @e bpposite, increasing
the mutation probability (or the mutation strength) is veften the best way to
increase the exploration. The case of crossover is less giareas crossover is
an exploration operator at the beginning of evolution, ttdeaes more and more
an exploitation operator as the population diversity deses.

2.2.2 Historical Trends

The main 3 historical trends of Evolutionary Algorithms wenitially proposed
in the mid 60s, though several seminal ideas in fact appeatée late 50s (gath-
ered 10 years ago in [60]). Independently, J. Holland in Ngah, I. Rechenberg
and H.-P. Schwefel in Germany, and L. Fogel in California ps#l to use artifi-
cial evolution as a model for problem-solving procedurdglighing thereafter the
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seminal books that grounded the field into reality.

John Holland [95] modeled adaptation in natural systentswitat he called
GeneticAlgorithms, and the first PhD student in the field, Ken DeJarsgd his
ideas for function optimization [42]. Ingo Rechenberg andhéiBaul Schwefel,
two engineers in Berlin, optimized the shape of a nozzle usimat was to become
EvolutionStrategies. Their ideas were generalized later in [174]. 1%itry Fogel
optimized Finite State Automata to predict time series [68Bhe lack of CPU
power of the computer at that time, resulting in the lack oégiole real-world
applications was responsible for what could be called ti@viinter” (see Section
2.1.1). In the 80s, however, Holland’s student David Goidhapplied GAs to
optimize a gas pipeline system and found better than sfateeeart solutions to
this very complex problem. He later published his seminalkbf®8] “Genetic
Algorithms in Search, Optimization and Machine Learningfobably the most
cited one in the field. This was the beginning of an extra@ndiy revival of those
ideas, and though still considered separate fields, thanclisin between the 3
branches rapidly started to vanish, thanks to the seconédrgigon of pioneers
like Z. Michalewicz [150], T. Back [13] and D. Fogel [62].

In the meantime, born as a particular case of applicatioreoig@c Algorithms
[37], Genetic Programming was introduced and popularizedahn Koza [125]
and rapidly became the fourth wheel of theolutionaryComputation truck.

As of today, though those four streams should remain maligistory, the
terms are still used to distinguish some specific aspect dicpéar EAs, and
are sometimes referred to as 'dialects’. The followingrafies to summarize the
communities and differences between those dialects.

Genetic Algorithm [95, 68]

Representation: Bit-string representation

Parental Selection | Roulette-wheel (and tournament, later)

Survival Selection | Generational (or Steady-State)

Crossover: 1-point, 2-points, uniform (with given probabilif)
Mutation: Bit-flip (applied to every bit with probability, )

Evolution strategies [174, 191]

Representation: Real-valued vectors
Parental Selection| No selection

Survival Selection | (u + A) strategies

Crossover: Intermediate (exchange) or arithmetical (linear combina-
tion)
Mutation: (Self-)adaptive Gaussian mutation (see below)
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Evolutionary programming [63, 62]

Representation: Finite State Automata, evolved into using any represen-
tation

Parental Selection| No selection (1 parent creates one offspring)

Survival Selection | Survival tournament

Crossover: No crossover
Mutation: Ad hoc — self-adaptive Gaussian mutation for real-valued
genotypes

Genetic programming [125, 18]

Representation: Parse-trees of LISP-like expressions

Selections “inherited” from GAs, with preference for Steady State
with tournaments

Crossover: Sub-tree exchange

Mutation: No mutation originally, point mutation, or node- or -leaf-
mutations generally

2.2.3 An Adaptive Evolution Strategy: CMA-ES
Evolution Strategies

Evolution Strategies are continuous optimization aldons, i.e., they work on a
real-valued search space, say a subs&"ofor some integen.

The main operator of ES is the Gaussian mutation, that gesseadfspring
from a normal distribution centered around the parent. Tostgeneral Gaussian
distribution inR" is the multivariate normal distribution”(m,C), with meanm
and covariancematrix C, a n x n positive definite matrix. It has the following
Probability Distribution Function

_ exp(—3(X —m)'C~L(X —m))
(2m)"|C]|

®(X)

where|C]| is the determinant of covariance matéx
The mutation of a vectaoX € R" is generally written as

X — X + oN(0,C)

distinguishing a scaling factar, also called thetep-size, from the principal di-
rections of the Gaussian distribution, as given by the ¢axiae matrixC.
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In the simplest cas& is the identity matrix. In this case, mutating vector
X amounts to mutate independently all coordinatesafising a 1D-Gaussian
mutation with variance?. In this case, the Gaussian mutation is caitdropic.

Tuning an ES amounts to tuning the step-size and the coeariauatrix — or
simply tuning the step-size in the isotropic case.

Two simple functions have been considered by early analyvorks on ES,
corresponding to typical cases of the two extreme situatibe algorithm can en-
counter: when far from the optimum, the isolines of the fighed! locally look
like straight lines orthogonal to the direction of the optimn the fitness function
will look linear, with optimum at infinity; when close to thegmum, if the fit-
ness function is smooth enough, it will look like its secomdey approximation
in Taylor expansion, i.e., it will look quadratic. The studfythese two very sim-
ple cases (the ’'linear’ function whefféx) = x;, and the 'sphere’ function where
f(x) = ||x?||) lead to the successive improvements in the way the parasnete
the Gaussian mutation were adapted.

Adapting the Step-size

The step-size of an isotropic Gaussian mutation deterntimeescale of the search.
Suppose a 1D situation and a (1+1)-ES (one parent givestbirdne offspring,
and the best of both is the next parent) with a fixed stepiza the linear case,
the average distance between parent and successful nffspiproportional ta:

it should be increased as much as possible. In the quadests the best precision
one can hope is proportional to Those arguments naturally lead to the optimal
adaptive setting of the step-sizexr should be proportionally resized according to
the distance to the optimum. See early work [191], completithl studies of the
progressate [26], and a more recent proof [7]. However, such algoriis indeed
impractical, as the distance to the optimum is unknown!

But further analytical derivations on linear and sphere fiamclead to the
first practical method to adapt the step-size, the so-caltedfifthrule. Indeed,
another piece of information is available to the algoritmamely the proportion
of successful mutations, in which the offspring is bettanthhe parent. This
successgate does indirectly give information about the step-sit¢he success
rate over some time window is larger than the success rate teestep-size is
optimal (0.2, i.e., one-fifth), the step-size should beeased; on the opposite, if
the success rate is smaller than 0.2, the step-size shouddreased. Though
formally derived from studies on the sphere function andcthreidor function (a
bounded linear function), the one-fifth rule has been exietpd to any function.

There are however many situations where the one-fifth rule f&oreover,
it does not handle the case of non-isotropic (even if quagriainctions: there, a
full covariance matrix is mandatory. Nevertheless, afteritg been abandoned
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when Self-Adaptive ES was proposed (see below), the simmpb€ the one-fifth

rule makes it appealing when simple adaptation rules argetedt is for instance
used for fast step-size adaptation within the multi-oliyec€CMA-ES algorithm

[102].

Self-Adaptive ES

The idea of Self-Adaptive ES (SA-ES) is fairly simple: thegaeters of the
mutation (both the step-size and the covariance matrixpteehed to each in-
dividual, and are adapted by mutation, too. Three variaat® lbeen proposed:
the isotropic case uses a single step-size per individualpdreisotropic muta-
tion uses a vector af “standard deviationsd; (the resulting covariance matrix is
equivalent to a diagonal matrxwith aiz on the diagonal); and theorrelated mu-
tations attaches a full covariance matrix to each indiMidMiaitating an individual
is then a two-steps process: first, the mutation parametetb@mselves mutated;
then the design variables are mutated using the new mutadiemeters. Details
can be found in [15, 12].

The rationale for SA-ES are that even though the selectibassd on fitness,
an individual with 'poor’ mutation parameters will on avgeagenerate offspring
that will be overpassed by offspring of individuals with toect’ mutation param-
eters, where 'poor’ and 'correct’ refer to the local fithessdscape (for instance
the step-size should be small if the landscape is steep).

SA-ES have often been said to “optimize mutation parameimrdree”
through the evolution itself. And indeed, SA-ES have longrbéhe state-of-
the-art in parametric optimization [15].

But do SA-ES work as expected? Whereas, it has been experiipeiemon-
strated for the step-size [13, 27], it is not true for the c@mrace matrix. Indeed,
when replacing the sphere function with a quadratic fumcimin %XtHX for
some positive definite matrikd), the mutation should progress slower along the
directions of steepest descent of H: the covariance médtoxldg be proportional
to H~1. And there are some evidences that the covariance mattixsttearned
by thecorrelated SA-ES is not any close from the actual inverséefHessian

[5].

Back to Adaptation: CMA-ES

Another issue when using SA-ES is the slow adaptation of the&ation parame-
ters: even for the simple case of the step-size, if the Inraéue is not optimal,
it takes some time to the algorithm to reach that optimal eand start being
efficient.
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This observation lead Hansen and Ostermeier to head baak aolaptive
method for parameter tuning by proposing deterministicedales to adapt the
parameters of the Gaussian mutation. They first addressestép-size adapta-
tion [89], and later that of the full covariance matrix [87The full Covariance
Matrix Adaptation (CMA-ES) algorithm was detailed after defauliues for its
parameters had been carefully designed, in [88]. Latermgamavement for the
update of the covariance matrix was proposed in [86].

The basic ideas in CMA-ES for step-size adaptation is to eegbe previous
moves of the algorithm. When successive moves are in coflidieactions the
step-size should be increased, in order to allow largesstegand similarly, when
the totalpath-length is very short after several iterations, therstiep-size should
be decreased, as the algorithm is hovering around the optimu

Regarding the covariance matrix, the idea of the update suteincrease the
probability in the direction of previous successful movgsabding matrices with
the corresponding eigenvectors to the current covariaratexm

Following Hansen and Ostermeier [88], in thg,A)-CMA-ES theA off-
spring of generatiog+ 1 are computed by

XEJrl _ <X>E,lg) + O-(Q)B(Q)D(g)zl((g), k=1,...,A,

B(g)D(g)zf(g) ~ ¥ (0,Cl9)
where

1

u = Hzle|(g)x|(g)

sel

represents the center of mass of the selected individuadgemérationg , and

I € Iég? is the set of indices of the selected individuals of genenegiwith |i ¢

Iégﬂ — u. 09 s the global step size.

The random vectorg are.# (O, ) distributed ( -dimensional normally dis-
tributed with expectation zero and the identity covariangagrix) and serve to
generate offspring for generatignt 1. We can calculate their center of mass as:

1
@Y =3 97+

sel

The covariance matri€® of the random vectorB@D @2 is a symmetri-
cal positiven x n -matrix. The improvement equation for the update of the deva
ance matrix proposed in [86] is as follow:
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Cg+l = (1 - Ccov) : C(g) + CCOV(aCOV' pg+1( g+1)T + (1_ aCOV) ) Zg+l)

wherep%Jrl is the evolution pathgeoy is the learning rate.

For adapting the global step size the evolution patt'p%+1 is computed in
analogy to the evolution pathlg+ 1), and the new step size is determined by
comparing the length of the evolution path to that of a ranehatk:

1 pgt | =Xy
o9l = g9 exg—1 21
Mg, %] )

whereX, = E[|| .#(0,1) ||] is the expected length of @,1), i.e., a normally
distributed random vector that would be the average lenigghrandom walk, and
ds > 1is the damping parameter.

It is important to note that CMA-ES is almost a parameterldgsrahm.
Only the number of offspring (that greatly impacts on the actual computational
complexity of the algorithm) has to eventually be modifiedattount for the
ruggedness of the fitness landscape at hand. The defaudt, vaduset in [88]
increases logarithmically with the dimensiah of the problem (number of
unknown parameters) as= 4+ 3In(d). It should be increased for highly multi-
modal objective functions, as demonstrated by the recestanteCMA-ES [9].
Furthermore, some particular landscapes that are onlylymitdlti-modal, like
Whitley’s funnel landscapes [139], cannot be successfulyesl by enlarging
the population size: such types of landscapes motivateithep-CMA-ES [83].

CMA-ES can be considered the state-of-the-art in continoptisization to-
day. The restart-CMA-ES was demonstrated to outperform otbstr stochastic
algorithms for parametric optimization (e.g. variants 8@, DE, EDASs), as wit-
nessed by its success in the 2005 contest that took place aPCEL[51]. More
recently, some comparative results [10] obtained for tHEOZBECCO Workshop
on Black-BoxOptimizationBenchmark [50] demonstrated that the bi-pop-CMA-
ES also outperforms the best-performing methods in claksiemerical opti-
mization (e.g. the standard Levenberg-Marquard algoritbnthe very recent
NEWUOA algorithm by Powell [170, 171]).

2.2.4 Applications

It is widely acknowledged that in Evolutionary Computatidineory lags far be-
hind practice. Indeed, lessons from successful applicataye one of the main
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driving forces of EAs research today. Several edited bookslavoted to Appli-
cations of EAs (see e.g. the recent [231]), and almost ewergtaledicated to
EAs has its own Special Session dedicated to real-worldagins.

Application areas can be distinguished according to the tyfsearch space
they involve.

Regardingcontinuous optimization, Section 2.2.3 has introduced in de-
tail the CMA-ES algorithm as the state-of-the-art algoritfon optimization of
real-variables. An impressive list of applications of CMA& ks maintained on
N. Hansen’s Web page [84].

Another niche of EAs idMulti-objective optimization. Basically, Multi-
Objective Evolutionary Algorithms (MOEAS) are the only alghms to-date that
can produce a set of best possible compromiseRtdretoset). MOEAS use the
same variation operators than standard EAs, but the Daawicomponents are
modified to take into account the multi-valued fitness [4Q, 3Bough prominent
application results have been obtained in the area of rabjaetive coutinuous
optimization area (see e.g. [159, 160]), the methods carsee with any search
space [179, 80].

Combinatorial problems are another area where EAs have proven to be very
efficient. However, as far as benchmark problems are coadernis commonly
acknowledged that EAs alone cannot compete with OR methseis €.9., the
poor results in [16]). However, in the last 15 years, hyblgbathms, also termed
MemeticAlgorithms, coupling traditional OR methods with EAs, hagained
the best-so-far results on a number of such benchmark pnsble.g. from [64]
to [149]).

However, for real-world combinatorial problems, “pure” MiRuristics gen-
erally don't directly apply, and OR methods have to take itoount problem
specificities. This is where EA flexibility is crucial: somgesific EAs, carefully
tuned to the problem at hand, have been very successfuhgalal-world com-
binatorial problems, as for instance in the broad area céchalmg [164, 193].

When it comes tonixed search space@nvolving a fixed number of variables
that can be floating points, integers or discrete), agaifiel@ility of EAs allow
to tailor them to the problem at hand. For instance, constrgiwariation opera-
tors for mixed individuals is straightforward, and can siyripe done by applying
to each variable some variation operator defined for its.tifeny problem have
been easily handled that way (see e.g. the optical filtemopation in [14, 145]).
Furthermore, some platforms now exist that help the non-g@r to implement
generic EAs for a given problem involving different typeswiked search spaces
[36].

Ultimately, the ability of EAs to handle almost any searclacp can al-
low engineers and/or artists to unveil their wildest idea®esign. Indeed, the
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idea ofcomponent-based representationsan boost innovation in structural de-
sign [66, 81], architecture [178] as well as in many otheraarancluding art
[25, 24]. Furthermore, the recently emerged aredefelopmental represen-
tations [76, 126] might lead to tremendous applications. The idda @ptimize
the program that builds the solution, rather than the smiutiself. The pioneer-
ing work of Gruau (see Section 2.3.2) was used to design graouits [126] —
though exploring a huge search space (a space of prograpi#sm heavy com-
putational cost. However, it seems that those approacimdsrtey a breakthrough
in Evolutionary Design [201].

2.3 Evolving Artificial Neural Network

This Section surveys existing work that use Evolutionary @otation to opti-
mize Neural Networks for a given task (akBeuro-Evolution), as such context
will be that of all original works presented in this disséda. Two types of
approaches will be considered, whereas only the weights gi#en NN are
being optimized, or in case the topology of the NN is beingroged as well.
An orthogonal classification regards the nature of the tdaskamd, whether
supervised, reinforcement or unsupervised (see SectioR)2.More details can
be found about the early work on Neuro-Evolution in two weaibwn surveys
that have been written by Schaffer, Whitley, and Eshelmad][if81992 and by
Yao [230] in 1999.

2.3.1 Evolving Connection Weights

In the 80s, great successes of NNs were obtained in the ss@eriearning
framework (see Section 2.1.2) using Back-Propagation (B§9rithm to op-
timize the connections weights [128, 56]. However, the BPoriligm also
showed a number of limitations. It demonstrated slow cayeece for large-scale
NNs, and too frequent premature convergence to some logahmaiclose to
the starting point, thus missing the global minimum [2086]22A workaround
was to use different initializations, but without much qarstees of convergence.
Furthermore, because it requires the differentiabilitjhef objective function, BP
algorithm is unable to handle discontinuous neural transfiections (e.g., the
Heaviside function — Unit Step fuction).

On the other hand, in unsupervised or reinforcement legroomtext, where

direct gradient information is either unavailable, or §osb obtain, no gradient-
based method is available, so even learning the weights vea NN was con-
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sidered a difficult task. In that context, because of the tdekgeneral theory and
also because the optimal output is unknown, the traditiomahual approaches
have been designed by the experts, e.g. Hopfield networksajab Adaptive
Resonance Theory (ART) [75]. But such methods have two shoitgs: their
design has many degrees of freedom that must be fixed mantuatigermore,
they have to be tuned anew for each given task, and the réwultlyy generalize
from one task to another.

Therefore, even though ANNs were considered a good chorcarfsuper-
vised and reinforcement learning, it seemed that a new apprwas required
to actually perform the optimization of the neural netwoskarting with the
optimization of the weights of a NNs with a given topology.

At the same period, Evolutionary Algorithms, and more Belyi Genetic
Algorithms, started to encounter some success in many.amgasause of the
flexibility of Evolutionary Algorithm, and in particular lmause they do not re-
quire derivative information, the initial work of evolvingNNs began at this
stage [152, 226, 39] with the easiest problem, that of ogiimgithe weights of a
given NN with fixed topology.

The research of what was to become knowiasro-Evolution hence started
with optimization of the connection weights of single-laye multi-layer feed-
forward neural networks (aka perceptrons). Starting whkh input and output
sizes, the programmer has to manually determine the nunfdedden layers,
and the number of neurons in each layer. Such topology renfiaed during the
whole learning phase, and the genotype is then simply thewvet all connec-
tion weights. Depending on the learning framework, anyrofaation algorithm
can then be used, as the problem then amounts to standanducrg parameter
optimization.

Early attempts dealt with supervised learning: In 1989, Moa and
Davis [152] learned the weights of a simple perceptron foloeean echo de-
tection, and achieved better results than the back projagaigorithm; also the
other works such as Caudell et al. [34]; Whitley et al. [226]

However, because there didn't exist any other unanimoustognized
method for reinforcement learning tasks, many works in Netwvolution have
been devoted to such context, from the pioneering work of @&339] where
the task was to control some “walking sticks” and Whitley et[@R5] that first
introduced the pole balancing problems in the EC commusite Section 4.4.1),
to handling other classical benchmark problems like luaadér [176], truck
backer-upper [190], to recent work using standard CMA-ES swoiging the
double-pole balancing problem using a perceptron with Y@myneurons [101].

Another distinction can be made here whether the weighteaceded as
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binary strings or as real numbers. Most of the early worksl iseary string en-
coding, that was considered in the GA community almost as\wetsal encoding.
Hence lots of researchers followed this approach at tha tjg24, 34, 226, 39].
In this method, each connection weight is represented bgarystring of given
length, and all these strings are concatenated to form tremgsome. Classi-
cal GA variation operators can then be applied directly lfsas single-point or
uniform crossover). Binary representation is also conautivthe realization of
digital hardware.

However, the precision of the encoding then depends on tiregdength
that is chosen to encode each weight, and a compromise hastade between
the precision and the total chromosome length. If the lemgttoo short, the
connection weights cannot be optimized with sufficient {@iea; On the other
hand, when the code length is too large, the optimizatiocgs® might become
too slow to converge, degrading the efficiency of the wholecgss. There are
however well-known exceptions, such as the work in Evohdary Robotics
performed by Floreano and co-authors [59, 158] that repgbatesed coarse
binary encoding (8 bits per weight) to evolve successfutlyot controllers for
various tasks.

Using real encoding (and appropriate variation operatisrs) way to over-
come this difficulty. Used by Montana and Davis as early a91[452], and
followed by Whitley et al. [225] for reinforcement learnirasks, it became more
and more popular in the 90s with the growing popularity of lation Strategies
(see e.g., [176, 190], and more recently [101]). Our work im@ar 4 builds on
those ideas.

An issue that has been raised about the evolutionary legaofithe weights
of a given NN is the “structural/functional mapping” probg225] (aka “com-
peting convention” problem): The mapping from genotypelienmtype is here a
many-to-one mapping, because two NNs that only differ byottaker of the hid-
den neurons are de facto identical, whereas the corresmpotromosomes will
be completely different. In particular, any crossover apar (and for any repre-
sentation of the weights) might be very inefficient. Howewerpractice, and at
least for not too large populations, it seems that this gwbis not an issue, as
evolution rapidly chooses one of the possible orderingh®fieurons, and hardly
has to crossover NNs that only differ by a permutation of tidelén neurons [82].

On the other hand, using evolutionary algorithm allows thegpammer to
optimize not only the connection weights, but also the patans of the transfer
functions, sometimes leading to improved results, as atedcin [189]. The
work presented in Chapter 4 is another demonstration ofdeis. i
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However, even though multi-layer perceptrons are univeapproximators
[97], it is well-known that the topology of a NNs is an impaortassue for large-
scape applications. For instance, many man-years of éféwe¢ been devoted to
building the topology of the well-known digit recognitionNNfor the US Post
[129, 31]. And again, thanks to their flexibility, EAs are fe®t optimizer candi-
dates for the task of optimizing the topology of NNs for a givask.

2.3.2 Evolving Network Topologies

Tuning the topology of Neural Networks, even simple feedvird networks like
perceptrons, has received a lot of attention in the Machiearhing commu-
nity. Both bottom-up and top-down approaches have been egldCascade-
correlation algorithms for instance iteratively add newsrto a very specific archi-
tecture [55], while pruning methods start with a very largéwork and gradually
remove neurons, using from brute force [222] to iteratigoathms [33]. Hence,
quite naturally, early works in Neuro-Evolution trying tptomize the topology of
NNs followed similar paths [90, 226, 206]. But here again,fteeibility of EAs
rapidly lead researchers to generalize such methods., #iese is no need any
more to work either bottom-up or top-down, as the completenectivity matrix
can be optimize, adding and removing either neurons or aiams, optimizing
the weights either using traditional BP algorithm, in cassugervised learning,
or within the EAs itself, in case of reinforcement learningrd here again, not
only the weights but any parameter of the transfer functeomlze optimized [54].
Those methods (see [230] for a more complete surveys, asahtbe&ise methods
were published prior to 1999), that use different repres@ris of the topology
to directly manipulate and transform it through the vadatbperators, are termed
directrepresentation methods.

However, the poor scaling-up behavior with respect to the sf the problem
of direct encoding lead to a change of paradigm, that ra$uitethe indirect
methods, starting witldevelopmentaimethods, where evolution is concerned
with evolving some program such that, when the program isweel on some
pre-definedembryo, the result is a fully operational Neural Network.isTap-
proach has been illustrated by the seminal works of Kitad®[and Gruau [77].
However, such developmental approaches have not met tkg#ctations, and
recent trends use other types of indirect representatmingdack to biological
inspiration, and borrowing some basic principles to GeneuRegry Networks
or Protein Interaction Networks to define artificial netwe[&8, 132, 45, 157].

We will now detail in turn the some recedirectrepresentation methods, ul-
timately focusing on NEAT [204], that is today consideree $tate-of-the-art for
the evolution of small NNs. Interestingly, NEAT uses an a&agh very close from
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a pure bottom-up approach, in that it keeps adding neurocthg@mections to a
minimal embryo NN.

We will then survey some indirect representations, fromsgminal work of
Gruau to the recent approaches inspired by biological mésvd@ hrough this pre-
sentation, we will de facto survey part of the research @egim Neuro-Evolution
in the last decade (i.e. posterior to Yao’s 1999 survey [R30]

Some Direct Representations: from SANE to NEAT

An important issue when using direct representations tévevaoth the weights
and the topology of NNs is the following: when the topologymsdified, the

performance of the resulting new topology is generally eatlow until the

weights have been adjusted to the new topology. Severalaugthave been
proposed in the recent years in the realm of direct reprasens for evolving

NNSs try to address this issue, beside taking into accourgdhkng-up issue.

Coevolution Methods

In 1997 Moriarty and Miikkulainen proposed a co-evolutipnenodel named
Symbiotic Adaptive Neuro-Evolution (SANE) [154]. The bagilea in SANE
is to evolve two populations. The first population is made @fnons, and the
second population is made of network structures with oneldndlayer (aka
blueprints) pointing to neurons from the first population tiee hidden neurons.
The blueprints are instantiated, then evaluated on theatds&nd; the neurons are
evaluated based on how good are the networks they haveipatéd to.

SANE obtained good results at diverse reinforcement legriasks: First,
because new topologies are using neurons that are provetvgtdothe parent
topologies, preventing too poor performance of offspriBgcond, because the
algorithm also implicitly maintains some diversity at thexvél of the neurons:
no neuron can overtake the whole population as networksgyusiostly copies
of the same neuron are likely to perform poorly. However, &Adoved poor
at evolving recurrent NN, probably because in recurrens tle¢ dynamics of
the neurons are much more dependent on the other neuronsomnected to —
evolving neurons separately becomes unviable.

In the following years, Miikkulainen and his students maaifithe SANE
model into the Enforced Sub-Populations (ESP) maodel [69ke ISANE, ESP
evolves the topology of NNs with one hidden layer. Howevke humber of
hidden neurons must be specified, and ESP evolves as manyapops of
neurons. Complete Neural Networks are built by randomly shr@pone neuron
from each population, repeatedly until each neuron has beed on average a
given number of times (e.g. 10). Each neuron is evaluateddbas how good
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on average the networks it has been part of performed. Bed¢hasgustering
of neurons is explicit (neurons with different sub-taskdobg to different
populations), crossover only recombines neurons thatleeady specialized for
the same sub-task. ESP hence obtained better results thdg 8A the same
reinforcement tasks. Furthermore, recurrent NN can bevedowith ESP, by
including the weights of the recurrent connections into ¢femotypes of the
neurons. However, the main limitation of ESP is that it caly evolve one-layer
architectures.

Neuroevolution of Augmenting Topologies: NEAT

Building upon SANE and ESP, Miikkulainen and his student eyaproposed
NEAT (Neuroevolution of Augmenting Topologie204, 203], a new direct rep-
resentation to evolve any feed-forward or recurrent NN igéecture in order to
address the following issues:

1. How to optimize both the weights and the topology, i.e. lesgpa huge
search space efficiently?

2. How can crossover be implemented when structures do niechfa

3. How can innovative topologies survive while having atlity low fitness?

The original features of NEAT are

» The bottom-up approach to network topology: the optimd@aiprocess
starts with a minimal NN (one neuron per input, all being cartad to
the output neurons), and can only add connections and neuron

» The representation, that can handle any type of connggtmihile be-
ing easily and smoothly evolvable through variation opmsat Figure 2.5
shows an example of genotype to phenotype mapping (from]}20ze
Node Genes describe the neurons and their role in the netimubt, out-
put, or hidden), and the Connection Genes describe the commebetween
the neurons: the input and output neurons, the correspgmeéight, an En-
abled/Disabled flag, and an important and original feattimejnnovation
number.

» The innovation number stores for each gene the moment d@aapg in the
history of evolution (a global counter is incremented euene a new gene
is created). It allows the crossover operator to answeeigsabove: when
two individuals have to be recombined, they are first alignéh respect to
innovation numbers, and only genes with matching innovatiembers are
exchanged. They are genes that are descents of the sarakgaite, and
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Genome (Genotype)

Node [noae 1 |wode 2 [woae 2 |Node 4 [woae s
Genes | sensor [Sensor |Sensor |oOutput |Hidden

Comnect. | In 1 In 2 In 3 In 2 In 5 In 1 In 4

Geﬂes out 4 out 4 Qut 4 Qut & out 4 Qut & Qut &
Weight 0.7 |Weight-0.5 |Weight 0.5 |Weight 0.2 |Weight 0.4 | Weight 0.6| Weight 0.6
Enabled DISAELED Enabled Enabled Enabled Enabled Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innov & Innov & Innov 11

Network (Phenotype) 4

Figure 2.5: This example (from [204]) shows a genotype tanphgre mapping
used by NEAT. There are 3 input, one hidden, and one outpw)ahd seven
connections, one of which is recurrent. The second geneabhlid, so the con-
nection that it specifies (between nodes 2 and 4) is not es@ddn the phenotype

hence should play a similar role in the structure, as onlygiemutation
might have happened since they were separated).

 Structural mutation operators that modify the networkitile las possible:
Add Connection mutation and Add Node mutation are describédgure
2.6. Note that weight mutation adds some random Gaussiar wath fixed
standard deviation.

» Explicit fitness sharing mechanism, based on some distdeiteed using
gene alignments based on the innovation numbers: this mieir@ovative
structures to disappear immediately because of their perdomance, thus
answering issue 3 above.

Because of its praised successes, there are already a $elifésrent versions
of NEAT, including C++ (Linux, Windows, Real-time), JAVA, Dghi, Matlab, G.
More details as well as news about NEAT and the growing NEATmmaoinity can
be found in the NEAT dedicated Web Sitmaintenaned by K. Stanley.

NEAT is indeed considered today the state-of-the-art ofnods based on
direct representations to evolve both the topology and thights of a NN. It is
hence the baseline algorithm to which any new approach tinst @ generating

2http://www.cs.ucf.edu/ kstanley/neat.html

34



2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

1| 2 |3 4 51 6 12 |3 / 51 6 7
1—=4 2—=4|3—=4[2—=5|5-=4|1-=5 1—>4 P—=4|3—=4[2—=5[5-=4(1-=5[3->5
DIS DIS
Mutate Add Connection
1 2 3
3 4 51 6 112 |3 4 1 61819
-4 2—=4 |3—=4|2—=50—=4|1-=5] [—=4P—=4|3—24|2-=55—=4[1-25|3—=6(|6—=4
DIS DIS | DIS
Mutate Add Node .
O
. G
1 2 3*

Figure 2.6: Structural mutations in NEAT (from [204]). InetAdd Connection
mutation, two previously unconnected neurons are chosedioraly and con-
nected, and the connection is assigned a small random wéigthte Add Node

mutation, an existing connection is chosen and replaced tgwaneuron, that
received two connections, with the two neurons which weeeipusly connected
by the disabled connection. The weight of input connectibthe new neuron is
set to 1 and the weight of output connection is set to the saeighivas the old
connection, for minimal destructive effect.
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NNs should be compared. However, it also suffers from a sesteawback: it
has a lot of parameters that the user needs to tune, and eragner difficult to
master for a completely new task. Furthermore, whereaspwbeectly tuned, it
can evolve diverse structures (both feedforward and rent)rof reasonable size
(a few dozens of neurons), it does not scale-up very well anmtigular it does not
address modularity or code-reuse issues, that seem mayttatackle large-scale
problems.

Indirect representations have been proposed in order tessithese crucial
issues, and next Sections will detail the most popular one&jding one of the
early ones, Hyper-NEAT, a follow-up of NEAT that tries to adsls the short-
comings of NEAT, and some recent representations borroidigas to biological
networks.

Developmental Representations

There has been several proposal d@velopmentatepresentations, i.e. repre-
sentations of a program that actually builds the solutiotheoproblem at hand
rather than directly evolving the solution itself (such negentations are not
specific to Neuro-Evolution, see e.g., [126]). The works btaiKo [119], using
some grammar-based representation close to L-systemsGeuali [77, 76]
using Cellular Encoding, a representation close to the paess of Genetic
Programming have pioneered this research direction. We bhagsen to detail
the latter here, as it seems more likely to be generalizedher dasks than the
former. Finally, we will briefly mention the recent HyperNEA202], that can
be viewed as a developmental representation even thougbdised on different
paradigm than the previous approaches.

Cellular Encoding

Cellular Encoding is one of the very first instances of develeptal represen-
tation. Cellular Encoding is uses a langauge describing lp@gh transforma-
tions, in order to control the division of cells that grow atifecial neural network
[77, 76].

In Cellular Encoding, individuals are represented as gramtreas with or-
dered branches. The nodes of the grammar tree are labetedamtes of program
symbols. The neural network starts with a single 'embrydf, @nd performs a
sequential development process by reading the grammaat@eapplying the
operation described in the current node of the tree to theeticell it points
to. Basic operations includearallelDivision andSequentiaDivision of the cell.
When a cell meets thEnd instruction, the cell stops its development process and
becomes a neuron. Optimization proceeds on the trees, aisgover and mu-
tation operators that are very similar to those indepegiendbposed for Genetic

36



2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

Programming [125].

Early work with Cellular Encoding addressed only booleanrakenetworks
[76]. 1t was later applied to NNs with real valued weights 727Z8]. In 1996,
Gruau, Whitley, and Pyeatt solved the double poles balaneitigout velocity
problem with Cellular Encoding [78] (see also Section 4.4.1)

Importantly, Cellular Encoding addressed the scalabibgue by adding a
Recursion node to the initial representation, allowing tkl@ some amount of
modularity. The proof of concept of increased scalabiligswnade by evolving
solutions to the multiplexer problem [76]. It was later derstvated on a real-
world problem by Khozabadjian [121] that successfully gedla controller for
an hexapod robot.

However, it seems that the evolvability of Cellular Encodmegulted in a
computationally heavy algorithm, and to the best of our kiedge, it has not
been used ever since. Note that such very heavy costs wereegsrted for
experiments using similar ideas borrowing to embryogeniesie by J. Koza
[126].

HyperNEAT

A completely different approach, that can neverthelessdgad as some de-
velopmental representation for Neuro-Evolution, is thaHgper-NEAT [202].
Hyper-NEAT builds on NEAT by using the idea of Compositionalktern Pro-
ducing Networks (CPPNSs) proposed by Stanley [201] to desigiems with reg-
ularities. The goal of Hyper-NEAT is to design large NNs wheiach neuron
is materialized as a point on a 2D grid. The basic idea is thdoutld (using
NEAT) a top-level Neural Network that will take as input twaigs of coordinates
(those of two neurons), and output one real value, that ofvikight between both
neurons. Doing so, Hyper-NEAT is able to take into accouatgbometry of the
target network (e.g., to design symmetric networks). Ib @ddresses the scala-
bility issue, as the optimization is always made on the sixBl§ (with 4 inputs
and 1 output). For instance, Stanley and co-authors reporé success building
a visual discrimination network containing over eight milis connections [202].

Bio-inspired Indirect representations

Several models of Genetic Regulatory Networks (GRNs) hava pemposed as
a basis for an indirect representation for Neuro-Evolutdihey differ in several
ways, and actually model only parts of what is known about GRNsis Sec-
tion will quickly detail 3 of them, Analog Genetic Encodingd, 146], RBF-Gene
[131, 132], and finally the so-called Banzhaf model [17, 1B@}tthough not ap-
plied to Neuro-Evolution yet, seem relevant for the pertipes it opens, relative
to the work presented in this dissertation.
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The concept of Gene Regulatory Network (GRN) comes from theoBio&l
Sciences. The expression of the genes in a genome is redjugtspecial
proteins produced by other genes which can enhance or tirthiiproduction
of their target protein, akdranscriptionFactors. And the GRN describe the
interaction between the genes and the Transcription Factor

Analog Genetic Encoding

The Analog Genetic Encoding (AGE) was initially proposedtfee synthesis
of analog circuits [58, 146] (hence its name), and the samasidvere used later
for Neuro-Evolution [45]. The neurons in Neuro-Evolutiam the components in
the analog circuit application, are referred to as 'deviceAGE.

The genome of AGE is constituted by a sequence of charactersd finite
genetic alphabet (eg. “A’ - “Z"). Each device is encoded byadsfic 'start’ token
(e.g. “NE”) followed by a number of terminal sequences (EIE"). In the case
of neuro-evolution, the substring between the start sezpiand the first terminal
sequence is the “input” string for the neuron, and that betwie first and the
second terminal sequence is the “output” string for the oreur

Such genome encodes a fully connected Neural Network, artossnection
weight between 2 neurons is the result of s@ignmentscore between the output
string of the first neuron and the input string of the seconda® This alignment
score in an integer value that depends on a user-definedkrgatng some score
to any pair of characters. This integer value is then bourtded in[1,37]), and
converted into a floating point number by a logarithmic maggnto an interval
that determines the minimum and maximum precision (©.01,1000).

Similarly, all neurons are connected to the input and outfuhe network
through the same mechanism, where the “output string” ofyewgut of the
network and the “input string” of every output of the netwake predefined
strings.

The variation operator used for evolution are [45Characterdeletion,
insertion, and substitution, Fragmentdeletion, transpositionand duplication,
Deviceinsertion (a random complete neuron is insertéthmologousCrossover
(crossover based on syntactic alignment of both parentrgesp andGenome
duplication.

The initial population is created by generating random geg®in which a
given number of different neurons with random terminal sxapes are inserted.
Such bootstrap procedure is necessary in order to ensurgigum number of
neurons.

In [45], AGE for Neuro-Evolution is applied to the doublelpdialancing
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device token
B terminal tokens

w,: | (AEAAER , BEEE)

w,, = | (EEEAR , FIFFFFFF)

W= | (EEEEED, EEEEEED)

w,= 1 (EEEEEE, BJBEIE))
device extraction device connection

(EBIE[E]E[E} @ (A[AJA[A[ATA]A)
Ntp— e — ‘
e output terminals

e

>
input terminals -
——— P —
HEEEEGEGE @ (E[EEEEE

Figure 2.7: Sample genome in AGE (from [45]) (a 'device’ igéh@ neuron).
One device is extracted for each 'start’ token (“NE”) thafaBowed by the re-
quired number of 'end’ tokens (“TE”) — here 2 substrings ageded, the input
and the output string for each device. The weights are thempated, for the
inputs/outputs of the network, and for all connections leetvpairs of devices.

problem. The NN model is a Continuous-Time Recurrent Neura(IERNN):
the neurons are sigmoidal neurons, but their dynamic isrgedEby a continuous
differential equation. The results presented in  [45] argelbeghan previously
published results for Neuro-Evolution methods (see Seetid.1).

However, there are a number of design decisions that have ivegle in
order to obtain those results that do not seem to be cleadyghtforward: the
substitution matrix used to compute the alignment scome nthpping from the
alignment score into a floating point value, the sequenceshi® inputs and
outputs of the networks (they are made of identical charscteyy why are they
of size 7, 5, 6 and 4 for respectiveBj, 6,, x and the bias?), not to mention
the different rates for the variation operators. The awtlawe well aware of the
problem, as they suggest that many of those parameters cancbeed in the
genome, in order to be self-adapted by evolution — but noyarsais given about
this part of the work.

RBF-Gene

In 2004, Lefort and co-authors proposed RBF-Gene [131, 132]agother
indirect encoding to evolve both the structure and the patara (weights and pa-
rameters of the transfer functions) of an RBF netowork, i.e Ns MWith one hid-
den layer and Radial Basis Functions as transfer functions.niddel is loosely
inspired from genetic regulatory network: each gene enc@ae neuron: one
RBF, and the output weights (one per output of the network) hEREBF requires
a mean vector (one coordinate per input variable) and a atdrbviation. Each
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gene is thus defined by+ m+ 1 real values, whereis the input dimension, and
m the number of outputs.

The representation is a variable length string built overagrimabet. Each
gene is the sub-string between two special characters dlfabet, the 'start’
and ’end’ characters (and there is hence a variable humbgerméds/neurons).
Within a given gene, each required parameter is encoded lhatacters, one
representing a 0 and one representing a 1. The alphabesdiBance 2-2(n+
m+ 1). Each parameter is encoded as a binary sequence defined\sluke of
the corresponding characters within the gene. This binegyence is decoded as
the Gray value of an integer and transformed into a real nunftigure 2.8 (from
[132]) shows an example of decoding of such a genome.

Genetic sequence

Gl G2 G3 G4
—

Genetic code {

P | val [ [A[FFDGGCFDGHEG [B]FF |

Start w:DCD & 101, 0 & 110p,,, = 0.75

Stop w EFFE = 01105, = 01004, = 0.25

C w 0 o: GGGHG = 00010,y = 000104, = 0.0625
D w 1
E u 0
F u 1 Kernel K;: o |
G G 0 W g
H 1

T

Phenotype : 2 'l-l’i.&r;.
S i=1
Figure 2.8: A simple example of the mapping from the chromusdo the neu-
rons. One input value (n = 1) and one output value (m = 1) leagenatic code
of2+2(1+1+1)=_8letters [132]

The evolution is done using variation operators that arptadiefrom their bio-
logical counterparts: beside the 'traditional’ crossd¥er variable-length strings)
and mutation (modification of a character), the authors hsesl both small (lo-
cal) and large duplication, translocation and deletiorrajoes.

Good results are obtained on some difficult regression prob[132].
However, this representation is limited to RBF networks: etf@ugh they are
universal approximators, they have been hardly used fafamiement learning
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task. Moreover, this representation does not seem to sqgaleell with the
dimension of the input space, as the size of the alphabegaserlinearly with the
input dimension.

The promises of GRN-based Representations: Banzhaf model

In 2003, Wolfgang Banzhaf proposed a Artificial Gene Reguaktetworks
in terms of computer science [17, 127]. In this model, allegeare both protein
producers and Transcription Factors that regulate theyotah of all other genes
(including their own) instantaneously.

A genome is represented as a bit string. As in AGE and RBF-Gespea@fic
32-bit sequence is used as 'promoter site’, i.e. to idernlié/starting location of
a gene (see Figure 2.9 for an illustration). Upstream froenpifomoter site, two
32-bits sequences represent one enhancer and one intslésrfor this gene.
The 160 bits (5¢< 32) downstream represent the gene information, encodimg th
type of protein that the gene will be responsible for creati protein is a 32-bits
sequence, each bit is the result of a majority vote betweerbtborresponding
bits at the same position in the<532 bits representing the gene information.

Enhancer | nhi bit or Pr onot er Cene
site site site i nformation
\ \ v
| | XYz01010101] | | | | |
32 bits 32 hits 32 bhits 160 bits

SO

32 bits

Figure 2.9: A gene of the Artificial Gene Regulatory Networksdal proposed
by Banzhaf [17]

All proteins regulate the production of all genes: the siterof the regula-
tion (that is also the weight of the connection between betieg) is computing
by OR-ing the protein code and the enhancer site (resp. thigitmhsite) of the
corresponding gene. Hence the regulation network is ai@iéully connected
network, i.e. without any possibly interesting topologyowver, by putting a
threshold on the regulation term, some connections withgjiear, and interest-
ing topologies do appear. Nicolau and Schoenauer has démateas[156, 157]
that the evolution using quite standard variation opesatoir populations of such
GRNs that have been initialized using the duplication-djeecce method pro-
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posed in the initial model by Banzhaf [17], can be lead towatsvorks exhibiting
very specific topological statistical properties, suchraalsworld or scale-free
characteristics (see next Section 2.4).

Discussion

All representations, whether direct or indirect, that hbeen used for evolving
both the topology and the weights of NNs are variable lengfirasentations.
They are all able to generate a variable number of neuronsveir, only the
bio-inspired representations have non-coding segments.

Regarding the topologies they can generate, though both AGRBF-Gene
can indeed generate different topologies, those topdagimain within a very
restricted set, and only differ by the number of genes: AGatEs fully connected
NNs, and RBF-Gene generates 3-layer RBF networks. In that 98624, and,
of course, the developmental methods, can create moresditygres of topologies
- and so does the Banzhaf model thanks to the threshold tratkeéimoves many
connections. Note that it could be possible to apply thektto AGE too.

Furthermore, only the developmental representations et@ally able to
scale-up to huge numbers of neurons without requiring alainmcrease of the
representation size. The direct representations cleadyg to manipulate (create,
tune, connect) each gene one by one: this can be an advarttageowly a small
network is needed, but will not be sufficient for large netkgorOn the other hand,
the GRN-inspired representations, though they need to sx@k genes of the
network, can be considered as intermediate with respebietsdaling-up issue:
because they use global variation operators like duptinatihey can succeed
in generating networks of moderate size, up to a few hundredsons [156, 157].

Regarding the evolution of the weights, in AGE and in the Bahatwdel, the
weights are based on some distance between labels/affit@sy while in direct
representations, and in RBF-Gene, they are directly encaleidary strings. The
consequence of the indirect encoding of the former metrotisat by modifying
one of the labels/sites, all weights issued from one neuremredified at once,
strengthening those connecting a certain type of neurensywa@akening others.
A direct encoding of the weights requires, for the same tethat several weights
are modified in the same direction, a very unlikely event. \Waetne approach or
another is best for evolution is however unclear: being sbhaodify all weights
of a given neuron in a single mutation can indeed help for dagse adjustment
of the NNs, as witnessed by the improvements brought by gdtiie coefficient
of the sigmoid function to the genome even when only optingzihe weights
[189, 54]; On the other hand, fine-tuning a Neural Networlemftjoes through
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2.4. TOPOLOGY OF COMPLEX NETWORKS

fine-tuning its weights independently.

In developmental representations, the causality for theluden of the
weights is less clear: in Cellular Encoding and other grardoaaed representa-
tions, the weights have to be described directly, but wilused whenever some
code re-use happens in the morphogenetic process. In HypaT; the weights
are the result of the application of the top-level neura) aetomplex process not
easily related to the variation operators acting over thisvork.

In summary, there is of course no method that clearly outypens all others.
Simple approaches, i.e. evolving the weights of a robustitayy (e.g. multi-layer
perceptron) with a robust optimizer (e.g. CMA-ES) are cleafficient for many
problems (e.g. as witnessed by Igel’s results on the pdimbang problem [101]
—see also Section 4.4.1). But the influence of given chaiiatitsrof the topology
like statistical measures that have recently been propmsembmplex networks,
has not been systematically studied — and this is part of Wwastmotivated the
present work (see also Section|2.5).

2.4 Topology of Complex Networks

Up to recent years, the major types of studied network tapolere totally ran-
dom networks and regular networks. Since the end of the $988vVeral real life
networks have started to be known with enough precision $0 asalyze them
in quantified details. The results were that real life neksdrave actually several
properties that exclude them from the regular or totallydan classes. The so-
called complex networks field has mainly been created agpames to this issue.
In the last decade, complex network topologies, e.g. swatld or scale-free,
have attracted a great amount of interests (for a reviewj2&3e In this section
we briefly introduce some basic concepts.

2.4.1 Small World Topology

The small-world phenomenon originates from social netvgbtklies. According
to this theory, each person can be seen as a node of a graptpamected with
a large number of paths with the others. The connectionsdstwmodes mean
that the peoples know each other. The hypothesis is that pexdon needs
only a few intermediaries (an average of 6) to establishlawiith anybody else
in the world. It is an issue of sociology, mathematics and @ot@r science.
The hypothesis is suggested by the social psychologistriiig [141] for an

experiment in the 1960’s: “Track the shortest path of theiadagetwork in

United States”. He asked each participant to send a lettar“target person”
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who lives beside Boston, and each participant can only tranbm letter to
another person he or she knows. Milgram found that on aveaagemplete
chain passed through 6 persons only (note that this statistbiased by the fact
that the large number of unsuccessful trials, ie brokemshavas not factored in.)

Similarly, in 2007, Microsoft researchers Leskovec and uitar [133]
filtered the MSN messages of a single month of the year 2006glB9 billion
communication messages between 180 million users in thighmdhey found
that any user can be connected with anyone else among the illgth masers
through an average of 6.6 people. Up to 87% of users can besctathwithin a
connection trough 7 people.

In 1998, Watts and Strogatz [220] gave a formal model of susinall-world
network. According to this famous algorithm, small-worldtworks are inter-
mediate topologies between regular and random ones (see fgli0). Their
properties are most often quantified by two key parameté&g]{Zhe clustering
coefficient & C >) and mean-shortest patid ), The clustering coefficient
quantifies the extent to which the neighbors of a given ndkvwade (i.e. the
nodes to which it is connected) are, on average, intercaedéagether. It reflects
the network capacities of local information transmissiofihe graph distance
between two nodes of the network is the smallest number &§ lone has to
travel to go from one node to the other. TM&Pis the average graph distance of
the network and indicates the capacities of long distarfogrration transmission.

Figure!2.10 illustrates an example of small-world netwooknfation ac-
cording to Watts and Strogatz. Starting from a regular ngtwa ring in the
figure, where each node is connected to its four nearest lb@ig)) one re-wires
each link with (uniform) probabilityp. A regular network p = 0) has a high
clustering coefficient but itdSPis long. At the other extreme, totally random
networks, obtained witlp = 1, display a small clustering coefficient but a short
MSP. For small-to-intermediate values @f (for instancep € [0.004 0.100
for rings with 1000 nodes and 10 links per node [220]), theamigld networks
preserve a high clustering coefficient while thBISP is already small (Figure
2.11). Such networks have optimal information transmissiapacities, both at
the local and global scales [120] and are called small-wodtivorks. Many
“real-world” networks, either technological (the Intetnelectric power grids),
social (collaboration networks) or biological (neuralwetks, protein or gene
networks), have been found to display such a small-worldltugy [28].

44



2.4. TOPOLOGY OF COMPLEX NETWORKS

regular small-world random

p=0 > p=1
increasing randomness

Figure 2.10: Small-world networks according to Watts and@itz. Starting with

a regular ring networkg = 0, left), and each link is rewired to a randomly-chosen
destination node with probabilitp. Whenp = 1 (right), the network is a purely
random one. At small-to-intermediagevalues (depending on the network size),
the network displays small-world properties (center). ptdd from [220].

2.4.2 Scale Free Topology

Not all characteristics of real-world networks can be cegdiby the small-world
networks. For instance, real-world networks often posses® highly-connected
nodes ("hubs™), connecting almost disconnected sub-neswoBesides small-
world networks, other types of networks, such as the scake-fietworks [19],
have been studied. In scale-free networks, the degreédistn P(k) (that gives

the probability that a node, chosen at random in the netwawknects withk

other nodes) follows a power law relationship(k) ~ k™Y (it usually decays
much quicker, e.g. exponentially, in totally random netkg)r This power law
indicates that in such networks, there exists a large numibeodes which have
only a few connections (eg. the computers in internet oftemect with a few
neighbour in the same sub-net), but there is also a signififtamber of nodes
with a huge number of connections (eg. the root routers efrmat which are
connected with almost every computer). The “preferentialchment algorithm”
[19] can be used to build such topologies, reflecting alsatmamical aspect of
those network, whose size can increase over time. The ‘ferafal attachment
algorithm” starts with a small number of nodes connectedrbgd@dge. At each
step of the algorithm, a new node is added to the network. Toect it to the
existing network, one picks a node at random in the existetgvark, but with

a bias that is proportional to the number of connections sf lode. As more
connected nodes are more likely to be chosen, thus to get owmeections,
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Figure 2.11: Mean Shortest Path lengdh (p) and clustering coefficienC) (p)
for the family of randomly rewired graphs described in Feg#.10. HeréA ) (p)
(or MSR p)) is defined as the number of edges in the shortest path between
vertices, averaged over all pairs of vertices. The clustedoefficient(C) (p)

is defined as follows. Suppose that a vertex v kaseighbours; then at most
ky x (ky — 1)/2 edges can exist between them (this occurs when every raighb
of v is connected to every other neighbourwf Let C, denote the fraction of
these allowable edges that actually exist. Defi@e as the average @, over
all v. The data shown in the figure are averages over 20 randorzagatis of
the rewiring process described in Figure 2.10, and have beemnalized by the
values(A) (0), C(0) for a regular lattice. All the graphs have= 1,000 vertices
and an average degreelof 10 edges per vertex. A logarithmic horizontal scale
has been used to resolve the rapid dropAih(p), corresponding to the onset of
the small-world phenomenon. During this dr@p) remains almost constant at
its value for the regular lattice, indicating that the triéina to a small world is
almost undetectable at the local level. [220].
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this method reflects a "richer get richer" principle. Withsthinethod, the
created network showsR(k) ~ k=Y connection distribution. Many “real-world”
networks fall into this category (the Internet, airplanatss, metabolic networks,
social collaboration networks...) [28].

2.4.3 Applications to ANNs

Importantly, the connectivity structure of such compleiwaks (i.e. their topol-
ogy) is a crucial determinant of their information trangbfeoperties [28]. Hence,
the computation made by complex neural networks, i.e. hewatavorks with
complex connectivity structure, could as well be depenagntheir topology.
For instance, recent studies have shown that introducimgadi-svorld topology
in a multilayer perceptron increases its performance [299, However, other
studies have inspected the performance of Hopfield [118, 183 205] or Echo
state networks [44] with small-world or scale-free topaésgand reported more
contrasted results.

2.5 Research Questions

As noted above, the connectivity structure of complex netaqi.e. their
topology) is a crucial determinant of information transfarlarge networks
(internet, social networks, metabolic networks...). Fostance, information,
virus or epidemic spreading in Small-world or Scale-freéwoeks is much
more efficient/faster than in comparable random or reguwarks. Other
crucial properties of these systems are topology-coetlpkuch as tolerance to
faults/defects (robustness), vaccination or the exigt@icritical thresholds for
epidemic spreading [28].

Several studies have applied such complex networks toolsuml networks.
Here again, several functional properties of neural nétsvgeem to depend on
the network (complex) topology. For instance, a recentystuas shown that
introducing a Small-world topology in a monolayer perceptincreases the
learning rate of the network [199].

Symmetrically, evolutionary algorithms are commonly usednodify the
topology of neural networks so as to optimize ANNs perforogan But, in
most cases, the studied topologies are quite simple andutmder of connec-
tions/neurons is low. Furthermore, the evolutionary mearas used in most of
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these studies do not modify the topology in an intensive raann

Hence, the optimization of large neural networks througtii@al evolution
has hardly been studied. However the optimization of cormpdologies in
related systems has recently begun to be inspected. Fa@naoest Tomassini
and collaborators [142] have used evolutionary algorithmsoptimize the
topology of 1D-cellular automata networks (majority prerol) and reported that
their optimal topologies were systematically close to $:wakld ones. More
recently, Oikonomou & Cluzel [161] have optimized the tomgpimf boolean
networks and found that the evolution of networks with randmpology was
very different, even quantitatively, from networks withe®efree topology.

Here, we hope to study the interaction between the topolddgrge neural
networks and their learning capacities. Our approach éadibth the direct and
inverse problem:

Direct problem: Given a network with a fixed topology, we study how the
network learns to perform its target task through local kpagpagation, Hebb’s
rules) or global (artificial evolution) rules. An importaaspect of this part of
the study is that the quantification of the network efficieseyn be defined on
the basis of its pure performance, but it may also be basetsanhustness to
failures, noise, or attacks.

Inverse problem: Given a set of local learning rules and a given evolutionary
optimization algorithm acting on the network topology (amassibly, on the
global parameters of the local rules themselves), we warstudy what kind
of topology the networks evolves to. In other words, we wankriow if there
exists such a thing as an optimal topology, for given locaftieng rules and a
given task to perform. An interesting part of this study va# to compare the
obtained topologies with real biological neural networksere again, network
optimization can concern the pure performance of the ndtvmit, alternatively,
it may as well concern its robustness to noise or defects.
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Chapter 3

Evolving the Topology of
Self-Organizing Map

3.1 Introduction

In this chapter, we use classical Self-Organizing Maps (SPigl classify hand-
written digits. But unlike classical SOMs where the neuroighleorhood rela-
tionships are defined using a simple topology (e.g. regujaare or hexagonal
lattices), we define neighborhood relationships using dexpetworks. We re-
ferred to this kind of ANNs “complex ANNs”. We show that theptdogy of
neural network has small impact on the performance and tobss of neuron
failures, especially in the case of long learning times. ey, the performance
of recognition rate can be increased (by almost 10%) by &eolary optimiza-
tion of the network topology. In our experimental settinge evolved networks
are more random than their parents, whereas they have a mi@®@eneous de-
gree distribution.

3.2 Topology of Self-Organizing Map

3.2.1 Kohonen Maps

The theory of Self-Organizing Map (SOM) was first proposecaasArtificial
Neural Networks (ANNs) by Kohonen [122, 123]. It is there&faalso called
Kohonen Maps [124]. The current version of the SOM bibligdma contains
around 8000 entries [116, 162].

The Self-Organizing Map usually describes a mapping fronghédr dimen-
sional input space to a lower dimensional map space. ThiesnaM able to be
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3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

used for visualizing high-dimensional data by low-dimensil views. For exam-
ple SOM has been widely applied for feature extraction [PA4].

Self-Organizing Map consists of components called nodesarons. Each
neuron is associated with a weight vector of the same diroeras the input
data vectors (high-dimension) and with a location (low-gision) in the 2D
map space. Classically, SOM neurons are linked to each oyheexagonal- or
square-lattice connections, which defines the neighbatbbdthe neurons. When
an example from data space is presented, the neuron whodak#est weight
vector to the example is firstly found, then the weights ofrtbaron itself and of
all its neighbors’ are adjusted by the training process ko

Training a SOM is a competitive learning process. When aitrgiexam-
ple 1(t) is presented to the network, for each neurpits distanced; to I (t) is
computed by:

M
di=y (Ij—wy)?
j=1

wherew;j stands for componentof the weight vector of neuroinw; andl; is the
j-th component of. The correspondinBestMatchingUnit (BMU) is the neuron
whose weight vector is the closest (iA-norm) tol (t). The weight of the BMk

are updated by:

Wic(t+1) = wi () +n (1) x (1(t) —wk(t)),

wheren is a user-definetearningrate. The weights of all BMU neighbors are
updated similarly. In the simplest form, the learning ratés 1 for all neurons
close enough to BMU and O for others. However, Gaussian decaymore
common choice: the learning rate decays according to a Gaussian law with
respect to the distance to the BMU. The variance of the Gaudaia is also
called theradius of the neighborhood. Regardless of the functionahfdhe
radius always decreases with time. At the beginning whem#éighborhood is
broad, the self-organizing takes place on the global s¥dleen the neighborhood
shrinks to only a couple of neurons, the weights are conmgryi local estimates.

This process is repeated for each input data example forual{ydarge)
number of cycletNnax The patterns in the input data set is self-organized on the
map. If these patterns can be labeled, the labels can béadttae the associated
neurons.
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3.2. TOPOLOGY OF SELF-ORGANIZING MAP

3.2.2 An Example with Color Data

Let us illustrate with a toy example how Self-Organizing Mayorks.

Visible lights are composed of three basic colors - Red, GaeehBlue. For
any color, it can be viewed as a data in a three-dimensioraespFigure’ 3.1
presents the color data set used as the training set for S@ireg).

Figure 3.1: Random colors chosen as the training data for@h fearning.

As introduced in the previous subsection, SOM is consttudte a 2-
dimension grid, where each neuron is associated with a vER{G,B), as shown
in Figure[3.2.

Figure 3.2: SOM in a 2D grid, with neurons associated with (BR)&ectors.

After the training process, the colors from the training seif-organize in
the map. Figure 3/3 shows the learning results with rectangoexagonal and
octagonal topology. The left one has rectangular connestithe middle one has
hexagonal connections and the right one has octagonal chome For every
topology, similar colors are found in close proximity to bather in the 2D map:
all those images display local similarity. This feature barclearly viewed in this
two dimension grid.
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Figure 3.3: The learning results with different regulardlmgies, the left map has
rectangular connections, the middle map has hexagonakctions and the right

map has octagonal connections. All others learning paensietere the same: the
map size was 68 60, the initial learning radius was the half of the map siZ® (3
and decreased with time, the initial learning rate was Odladso decreased with
time, the training set consisted of 200 randomly chosenrcala the number of

learning step was 10,000. The distance used is the Graphénde (not Euclidian

distance).

3.2.3 Quantitative measure of topology preservation in SOM

In the previous Section, we found out that the learning tesarle different for
different topologies, even when that all the learning patems are the same,
as shown in Figure 3.3 with three regular topologies. It isopen issue to
study these differences in a quantitative way, especiafgmihe topology is not
regular. In this subsection we will briefly present the quative studies of SOM
topology in the literature.

In Self-Organizing Maps (SOMs), the role of network topgltgs been stud-
ied for several years under the perspective of the relatiprizetween data topol-
ogy and network topology. Several criteria, such as TogugcaProduct, Topo-
graphic Function, have been proposed for the quantitatieasure of topology
preservation. We will first introduce these criteria andntldéscuss the articles
which compared the results with different methods.

Topographic Product

The topographic product is a measure for the preservationegfhborhood
relations in maps between spaces of different dimensignalt has first been
introduced in the context of nonlinear dynamics and timéeseanalysis [135]
and then used to measure the preservation of neighborhtaithns in SOM by
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Bauer and Pawelzik in 1992 [20]. The topographic product isi@ngjfication
method which compares the distance between neiuaod itsk;, nearest neuron
in both input space and output space. For computing the tapbg product,
Qa(i, j) is the distance between poinin the output space and itg, nearest
neighborj in the output space, divided by the distance between paoirthe input
space and it&;, nearest neighboy in the input spaceQs(i, j) gives analogous
information wherei and j are both points in the output space. In Ref. [20],
Bauer proposed several ways to combiQg(i, j) and Qz(i,j) to produce a
single numbeP, the “Topographic Product” which can define the quality @ th
preservation of neighborhood.

The method has been tested in [20] by a simple experimentenxh2+D space
is embedded into 1, 2 and 3 dimensions spaces, and a moreeoaxalmple of
the speech recognition. The result is quantitative, buptioeess is hugely time-
consuming.

Topographic Function

The topographic function has been introduced by Villmanaleh 1995 [217].
The notion of “ Voronoi polyhedron” was applied to determthe receptive field
of each neuron. Each neuron defines a Voronoi cell, that stenef all points
closer to this neuron than to any other. The segments of thengodiagram are
all the points that are equidistant to the two nearest neurdhe Voronoi nodes
are the points that are equidistant to three (or more) nsurdhe main idea is
to observe the neighborhood relations between receptids fie input space. If
only the nearest lattice neighbors of a neurdrave receptive fields which are
adjacent to the receptive field of neurigthe SOM is considered doing a perfect
preservation. The authors have also given a method to detethe adjacency of
two receptive fields.

Q, H and QH measures

Polani introduced several quantitative measures of SOMtgusuch as the en-
ergy function measures and Hebbian measures [167] and thed@B mea-
sures [168]. He also compared the results among these reeasyrtesting 6
different topologies (linear, hexagonal, square, crdepdubic and tree). We will
briefly present these works below.

The Q measure: Q is themeanquantizationerror between a large set of
points from the input space and its discrete approximatiche output space. It
is a rather canonical quantity measure. For calculating f@rge set of points
X1...Xq € R of the input space are chosen randomly according to the pildba
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data distribution (if known) oR. w;(xx) is the nearest approximation ®f in
the output space defined by the distance betwegéxy) andx, (w; (xx) is the Best
Matching Unit (BMU) ofxy). Q is defined as:

Q—\/3 S OR(W (4, %)
= qul R{Wj{ Xk ),

wheredg define the distance betweai(xx) andxy. With respect to Q measures,
small quantization errors denote good performance.

H measure: The H measure is the Hebbian measure developed in [167]. As
the Q measure, a large sat...X; € R in the input space are chosen randomly
according to the probability data distribution (if knowm) &. For every point
Xk, one searches for the neurdrend j, whose weightsy; andw; are closest (in
the L2-norm sense) and second closesttoAn (Hebbian) edge is then created
between neuronisand j, with strength 1 if it was not present before or increased
by +1 if it already existed. The Hebbian measure essentil@tgrmines the Ko-
honen edges that do not match Hebbian edges and vice vets& denotes the
edge set of the Kohonen graph afyg denotes the edge set of the Hebbian graph,
€= (3 (jkean Cik)/|An| is the average strength of the Hebbian graph edges. Mea-
sure H is calculated as:

_ CIANAHI 3 (1 eanAx Cik

H=1-—
CIAK| + 3 (j .k ean Cik

whereAx \ Ay denotes the edge set which aredin but not inAy and theAy \ Ak
denotes the edge set vice versa.

The Hebbian measure essentially determines the Kohoneeseithgit do
not match Hebbian ones, if values of H close to 1 indicate adgopology
preservation and vice versa.

QH measure: The QH measures is a hybrid measure, giverpp?

Comparing these indicators

Many articles have proposed to compare the different methaidmeasuring
topology preservation in SOM.

Goodhill compared results obtained with some of the methiogishave been
proposed before 1995 [72] and showed one important caveatgly that for
the same learning result, different measures could givierdifit assessments.
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Therefore, it is difficult to decide which one is the best. hstpaper[72], the
author also gave two suggestions to define a mapping thatqblgripreserves
the neighborhood structure of the original data in the magpgipace. The first
suggestion is that the mapping must preserve similarit#agch means for each
pair of points in one space, its similarity should be equatht® similarity of
the images of those points in the other space. The seconcesimy is that
the mapping must only preserve similarity orderings, whaodans, rather than
comparing the absolute values of the similarity betweemspaii points in one
space and the similarity between their images in the othés,anly concerned
that their relative orderings within the two sets of simitias are the same. This
weak condition in fact imposes strong constraints on thepimgp

In [169], Polani compared the 6 measure proposed before 1r89idding the
H, Q and QH measures introduced above. In the experimentalitcans of this
work, the QH measure performed best, but no canonical measurbe given as
in the Goodhill article. The author also advise [169] thathé results show that
in the current state of research one must proceed with gagatwehen applying
some organization measure to new situations with no a priaywledge of the
structure of the training data.”

3.2.4 Discussion

The article of Villmann in 2001 [218] was devoted to the depehent of network
topologies that preserve the structure of data. In this-dat@n context, the
network topology is thus constrained by the data under study

In the context of complex networks however, a key issue amscihe general
performance of complex network classes: considering angiaga set, do the
different complex network topology classes (regular, $wakld, scale-free)
yield significant differences with respect to performance?

Furthermore, for complex data sets, defining the similgdigtance) among
the data in the input space can be very difficult. Indeed, twolar data may
represent different things as in the following example: st consider for
instance a handwritten digit data set where every digitpsagented as a bitmap.
The similarity between the data is usually computed by thelifiean distance.
However in many cases, images which are very similar witlpeesto their
bitmap representation can have different labels (i.e. esgnt different digits).
Therefore, if the SOM keeps these similarities in its prestgon of neighborhood
relations, it may cause confusion for the following classifion process. In such
a complex dataset, do the different complex network toppldgsses (regular,
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small-world, scale-free) yield significant differences?

Another important issue is the following. In real-worlddarscale neuron
networks, noise of neurons may appear and neurons may &mgtiany time.
Could the different complex network topologies be more rolsen some part
(eventually large) of the neurons do not function correctly can robustness to
noise or defect of the neural network depend on its topology?

In the following sections we investigate both issues thtoag experimen-
tal study on the relationship between complex topologyofelhg 2D-Watts and
Strogatz models and the performance of the correspondimds3iD a supervised
learning problem (handwritten digit classification), amdits robustness with re-
spect to noise. After introducing the context in Section S&ction 3.4 is devoted
to thedirect problem, i.e. observing the performances of networks witierd
ent topologies. Théverseproblem is addressed in Section |3.5: what topology
class emerges from the evolutionary optimization of thesifecation accuracy of
a class of networks?

3.3 Method and Experiments

3.3.1 A Simple Experiment with Classical Q H Measure

Before the experiments for hand written digits, a first experit is performed
using classical Q H measures described in section|3.2.3.

One thousand real numbers are picked randomly in a 2D spabi@a, 1)°.
A 30 x 30 size SOMs is then created for learning of this data set.inDuhe
learning process, we use Q, H and QH measures (describedtiors8.2.3) to
monitor the evolution of the SOM with various topologiesgiuar, small-world,
random).

Distance

In the classical SOM algorithm, tié neurons are regularly scattered on a regular
2d grid, that can be quadrangular, hexagonal or octogonal. tWhedistances
that can be naturally defined between neurons, the Euclidistance and the
graph distance (the minimum number of hops between two neuialowing

the graph connections), are completely equivalent. Howyevieen the topology
diverts from that of a regular grid (e.g. links are added qopsassed), the
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Figure 3.4: lllustration of 1% 15 Kohonen maps with various interconnection
topologies, ranging from regular (left), to small-worldtiwrewiring probability
p = 0.04(center) and random (right) depending on a rewiring poditya p.

situation changes dramatically. Because the goal here \smataae the influence
of the topology of the network on its learning performanbe, distance between
two neurons will be their graph distance. In other words,levhlassical SOM
algorithms use regular grid networks for neuron positiams Buclidean distance
for learning, we define the distance between the neuronsagdph distance as
given by their complex interconnection network.

Figurel 3.4 illustrates three kinds of interconnection togis for D SOM
networks. In analogy with Watts and Strogatz algorithm (iFég 2.10), neurons
are first positioned on a square grid and each neuron is ctathexits 4 nearest
neighbors on the grid. This defines a regular topology (Kig8t4, left). Each
link is then rewired with probabilityp : its destination neuron is changed to a
uniformly randomly chosen neuron. Depending on the valup @, 0.01, 0.02,
0.04, 0.08, 0.16, 0.32, 0.64, 0.99 in our test), the neurtaréonnection network
thus varies from regular (left) to small-world (center) datally random (right).

Figure 3.5 shows the evolution of the Q Measure during thenleg process.
The results indicate that in such a learning case, the re¢ap@logy gives the
best topology preservation with Q measures.

Figure 3.6 shows the evolution of the H measure during theieg process.
The situation is the same as with the Q measure above, i.eedlodar topology
gives the best topology preservation .

Figure 3.7 show the fitness by combining the Q measure and tdeds$ure
during the learning process.
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Figure 3.5: The fitness using Q Measures during the learmiogess. Plots for
different values of the rewiring probability.
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Figure 3.6: The fitness using H Measures during the learnioggss
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Figure 3.7: The fitness using QH Measures during the leaymiogess

This first experiment shows that when the topology of theningj set is very
simple, the SOMs with the most simple topology can give th& pberformance
as judged by classical topology preservation measures f Big topology of the
training set is more complex, e.g. with handwritten dig#s,that the classical
topology measures cannot not be applied (since the topalbtie input data set
is too complex or hierarchic), the situation may be différdrhis issue is treated
in the following section, with our work on the MNIST databasfehandwritten
digits.

3.3.2 Experiments With MNIST database

SOM are usually used for unsupervised learning tasks andupeo low-
dimensional representations of high-dimensional dat®][16They are thus
useful for visualization purposes. This section will detiae supervised learning
procedure that has been used here. To sum up, a label musteretgieach
neuron of the network after the standard SOM unsupervisachileg. To this
aim, we’ll used a supervised learning process. The claasdit of an unknown
example is then achieved by finding the best matching neusdmJ) of the
network. The guessed class of the unknown image is then ble¢ dé this BMU.
More details are given below.
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3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

The task considered here is the recognition/classificatibiandwritten
digits, using the well-known MNIST database: The MNIST thatse of hand-
written digits [130] has a training set of 60,000 examples| atest set of 10,000
examples. It is a subset of a larger set available from NISE. digits have been
size-normalized and centered in a fixed-size X2Z8) image. SOM will hence
be used here with partly supervised learning, in order te g unambiguous
performance measure and estimate the corresponding tpppéformance
relation. It should be noted that the goal here is not to rehehbest possible
performance for the MNIST problem (and indeed SOM cannot pxtm with
best-to-date published results) but to compare the relgberformances of
different topologies on the same problem [130].

Each digit in the data base is described bW a= 28 x 28 matrix of pixels
(integer gray level in [0,255]). ThE neurons of the SOM are scattered onda 2
space. Each neurdrhas an associatdd-dimensional weight vectow; that is
initialized randomly and will be adjusted while learningettraining set. The
different phases of the learning process go as follows.

3.3.3 Learning

This phase is the classical unsupervised SOM learning psostiich has been
introduced before (section 3.2.1). It classically go thylothe following steps:

1. Randomly initialize the weight vectors of all neurons
2. Randomly fetch an input image from the training set
3. For each node in the map

(a) Use Euclidean distance formula to find similarity betwéee input
image and the neuron’s weight vector item Track the BMU, tlee,
node that produces the smallest distance

4. Update the BMU and the neurons in the neighborhood of the BMU b
pulling them closer to the input vector

5. Increment and repeat from 2 while< Npax

In the present work, the total number of learning stipsx was varied between
10* and 1@, and the radius is decreased along learning iterationse(ge€igure
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Figure 3.8: The visualization of SOM learning result durihg learning process,
from the top left to top right, and bottom left to bottom rigftte weight vectors
of every neuron was represented as 2B image centered on the neuron posi-
tion. It was just a demo example with only 3000 learning stépige numbers of
iteration for the six images were 0, 200, 500, 1000, 18000300

3.12BorE).

If we visualize the learning result as a image (the weightamcof every
neuron is represented as a>228 image centered on the neuron position) during
the learning process, we can get a more direct understaidihgw the SOM
learning works. Figure 3.8 shows a 485 size SOM, form the top left to top
right, and bottom left to bottom right are the visualizagsoof learning result
during the learning process. We can see at the beginningg #ie weight vectors
of every neuron are randomly initialized, the visualizatiof SOM present a
complete fuzzy image; then with the SOM learning processnguron begin to
adjust it's weights vectors from the training example adoay to the classical
SOM learning rule. The visualization of SOM become finallgasl and the
cluster appear in the end of learning process.
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3.3.4 Distance

The three figures in Figure 3.9 show the results of the legrphmase (described
above) using the three topology classes of Figure 3.4. Ieetligures, the
weight vectorw; of each neuron is represented as a small 288 image,
centered on the neuron position in treedrid. In the regular network, the original
784-dimensional data images of handwritten digits haven lpgejected on the
2d map so that the visual proximity between two digits is welidered by the
Euclidean distance between the network nodes. When theimgwarobability p
increases, the image representations of the neuron wedghtsme increasingly
fuzzy. Furthermore, the visual proximity between two im@deecomes less
and less correlated to the Euclidean distance between thremse because it is
correlated to their graph distance.

Figure 3.10 illustrates an example of the influence of theltmyy on the size
of the neighborhood of the neurons. The three top figures siv@gular topology
while the three bottom figures show a small word topologyni-tioe left to right,
the three figures give the neighborhood of a randomly choseron (left: one
step in graph distance, middle: four steps in graph distamngiet: eight steps in
graph distance). This figure illustrates that in small-@ant random topologies,
the neighborhood at a given radius of a neuron is composedasfar number
of neurons than with regular topology. That means that tieaence of a BMU
neuron is wider in a small-world topology. This property Maé crucial for the
results shown thereatfter.

For a given connectivity density, although the Random tagplbas the
smallest Mean Shortest Path (MSP), the influence of a BMU menray even
extend to every neuron, and thus forbids any learning (asodstrated by our
next experiments). Thus one target of this study is to inyat if there exists a
optimal trade-off between the regular topology and the samdbopology — such
as small world topology for instance — for the given task.

3.3.5 Labeling

The major issue here however is that measuring the qualityeofesults obtained
with SOMs such as those presented in figure is not trivial.eHee will use an
additional supervised training level to this aim.

The aim of this phase is thus to prepare the map obtained fnenprevious
unsupervised learning phase described above for the riicogclassification of
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Figure 3.9: Results of the learning phase using the threddgpelasses shown

in Figure|[3.3.

. The weight vectar; of each neuromis represented as a 288

image, centered on the neuron position in tkeg#id. For the random network,
some neurons are disconnected from the network, and thustdearn from the
examples during the learning phase. Their weight vectaghars kept random,

yielding the random images on the figure.
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Figure 3.10: The three top figures show a regular topologyasg) while the three

bottom figures show a small word topology with rewiring prbitity p

From the left to right, the three figures give the neighbothoba randomly cho-

sen neuron.(left: one step in graph distance, middle: ftapssin graph distance,
right: eight steps in graph distance). We can find in smalildvtopology, there

are more neurons which are connected with the same radimealts that the in-
fluence of a BMU neuron is more wilder in a small-world topologith a smaller

MSP (mean shortest path).
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handwritten digits, i.e., to be able to classify unknownmegkes. The label of
each neuron is assigned in the following way. Firstly, the Bbfléach example
of the training set is computed (see Section 3.3.3). Segpfall each neuron
of the network, a probability vector is computed, descigbihe different votes
of each class for this neuron as BMU. For example, if neuranthe BMU of
20 (labeled) examples, out of which 16 are labeled “1” andbglied “7”, the
probabilities attached to this neuron are computeg; €l = %—8, andp;i(7) = %
(andpi(l) = O for other values of). Thebasiclabel for the neuron is then defined
as the class with higher probability, e.g. “1” in the precggdéexample. Neurons
that never were BMUs are given the basic label of the class fwbioh they are
at shortest distance i® norm (this case only concerns a very small number of
neurons and does not impact the classification accuracy).

Figurel 3.11 illustrates an example of the influence of thelmyy. In the
three figures, the different color indicates the differeudls of the neurons. The
left figure is a SOM with regular topology, the middle one hasnaall-world
topology with low rewiring probability p = 0.02, close to regular topology) and
the right figure has a topology with high rewiring probaWilfp = 0.32 which is
no longer small-world by the definition, but close to randapaiogy). We can
see that in the regular topology, the neurons with same latgetlose to each
other and the clusterings can be clearly identified. But inrtgbt figure, the
different clusterings are mixed with others.

3.3.6 Classifying

Using either the whole probability vector, or the basic lab&o strategies for
classifying unknown examples can be designed. In both cHeetest example is
presented to the network, then the distance between thepdx@md each neuron

is computed, and finally thBl nearest neurons from the examples are recorded
(N is a user-defined parameter).

Majority by numbers: The class given to the unknown example is the
basic label most often encountered among Xhaearest neurons. Preliminary
experiments (for maps of, 800 neurons) witlN ranging from 1 to 500 showed
that the best performances are obtained\fe 1.

Majority by probability : Here, the probability vectop; attached to each
neuroni is used to compute the probability that the test image baldoglassk
(k € [0,9]) using the following equation:
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3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

Figure 3.11: In the three figures, the different color intkcene different labels
of the neurons. The left figure is a SOM with regular topoldtpe middle one
has a small-world topology with low rewiring probabilitp & 0.02, close to reg-
ular topology) and the right figure has a topology with higwirgng probability

(p = 0.32 which is no longer small-world by the definition, but cldeerandom
topology). We can see that in the regular topology, the neuwath same label
are close to each other and the clusterings can be clearniyifidd, except in the
right figure, where the different clusterings are mixed vaithers.

1 N
ﬂzﬁi;pi(k)

The label of the test image is given by the highest probalHlit For this strategy,
preliminary experiments reported that the best performascobtained with
Ne[1-8|.

The “Majority by probability” strategy is more computatalty expensive
than the former. Moreover, the same preliminary experisiementioned above
showed that its performance is not significantly better. déerall following
experiments will use the first strategy (“Majority by num&@grwith N = 1. the
class given to an unknown test example is simply the based tzlits BMU.

The performance (or fitness) of the network can then be computed as the
misclassification error over the whole test set:

F = nerr/Nest,

whereng; is the number of incorrectly classified test examples lsggl the size
of the test set.
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3.4 Direct problem

The goal of the first experiments is to compare the classibicgierformance
of SOM built on different topologies, namely ranging fronguéar to random
topologies according to the Watts and Strogatz model (spa€2.10).

Figure 3.12-A shows plots of the evolution of the classifaaperformancé
during the (unsupervised) learning phase for networks 8#132x 32 )neurons
with regular (rewiring probabilityp = 0, bottom curve) to small-world (intermedi-
ate curves) to fully randonp(= 1, top curve) topologies. The initial learning rate
is n(0) = 0.008 (adjusted after a few preliminary runs) and the total Inemof
learning steps is 0 The radius of each neuron (i.e. the variance of the learning
rate) was varied as shown in figure 3.12-B. The full MNIST datsbwas used
for those experiments, i.e. the size of training set is 60Dthe size of test set
is 10000.

3.4.1 Influence of the radius

First of all, Figure 3.12-A shows that, at long learning tsnehe network
performance is clearly independent on the topology. Thisissurprising since
the role of the topology decreases with the radius Indeed, the number of
neighbors within a radiuR of a given neuron increases when the rewiring prob-
ability p increases. However, this difference decaysatecreases. Important
differences are however obvious at short to intermediaenlag times: the more
random, the less efficient the network at this time scale.s Témark deserves
further analysis. Indeed, the performance of these randetwanks evolves
in a piecewise constant fashion. Comparing this evolutiothéosimultaneous
decrease of the neighborhood radius (Figure 3.12-B) unsdhet performance
plateaus are synchronized to radius plateaus.

The more random the network, the lower its Mean Shortest. Pathnce, a
possible interpretation is that, for highvalues, the influence of a given neuron
at short learning times extends over the entidespace, to almost every other
neuron. Thus, at short time scales, almost all neurons atateg each time a
new image is presented, which actually forbids any learmrtge network. This
interpretation is supported by Figure 3.13-D, where thiahiadius is five times
smaller than in Figure 3.12-A, everything else being eqtale, the differences
in short time behaviors observed above have vanished.
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Figure 3.12: Evolution of the performancé& during learning for SOM on com-
plex neighborhood network with large initial neighborhood radius. Nejgintod net-
works are constructed positioning neurons on a square grid, and liddoh neu-

ron to its 8-nearest neighbors on the grid (Moore neighborhood). Hakhs then
rewired to a (uniformly) randomly-chosen destination neuron with probabgity
0,0.002 0.004,0.008 0.016,0.032 0.064,0.256,1.000 (from bottom to top). Panel,

C show the evolution of the fitnegsfor different noise levels (as indicated on each pan-
els). Panel® displays the evolution of the neighborhood radius. Other parameters: map
sizeN = 1024 neurons, initial learning ratg0) = 0.080, training and test sets of 30,000
and 10,000 examples, respectively.
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3.4.2 Robustness against noise

Unlike most of computer-simulated ones, real-world neksdjiincluding neural
networks), involving a large number of computing unitshoss, will be subject to
noise and defects. In particular, we were interested irygtgdhow noise affecting
the topology, and its impact on the computing performané#seonetwork (here,
its classification performance). Noise is modeled here actikating a fraction
v of the neurons at each learning step (the list ofNhedeactivated neurons is
chosen uniformly for each learning step). All neurons aredwer considered
active for the evaluation phase (Section 3.3.6).

Figure 3.12-C shows the performance of the same networksgllearning
with v = 0.25 noise level (i.e. 25% of the neurons are insensitive toieg, at
each step) and the same large initial radius as in Figure®.The differences
between both figures can be explained by looking again atatieis. Clearly,
because the deactivated neurons are protected from upbateffect of large
radius that is described above is strongly attenuated.hieratords, the presence
of noise (here random node failures) actuathproves the performance of these
complex random networks at short learning times. That tfieceis effectively
related to large radius sizes is confirmed by inspection géiféi 3.13C, which
shows that with small initial radius, this 'beneficial’ effeof noise is not observed
(compare with Figure 3.13D).

Another result from Figure 3.12 is that the effects of noiee r@stricted to
short-to-average learning times and almost disappear laith learning times,
where the performances of all networks are similar (whatelke topology
randomness or initial radius). Hence, for long learningesnthe SOM are robust
to neuron failure rates as high as 25%, and this robustness ot seem to
depend on their neighborhood topology.

Finally, Figure 3.14 shows the effects of network size opé&gormance. Each
point is averaged over 11 independent runs. While large S®M @,000) per-
form better with regular neighborhood networks, the situais just the opposite
with small (N < 200) SOM, where random networks perform better than regular
ones. Small-world topologies are intermediate (not shoviNgte however that
even for the extreme sizes, the difference of fithess betwegurlar and random
topologies, though statistically significant (see cagtioemains minute.
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Figure 3.13: Evolution of the performanc& during learning for SOM on complex
neighborhood network with small initial neighborhood radius. Other captétails are
the same as in Figure 3.13.
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Figure 3.14: PerformancE vs number of neurondl after 1® learning steps
for regular (rewiring probabilityp = 0, white circles) or randomp(= 1, black
circles) topologies. Each point is an average over 11 raniddmal weight and
topology realizations. Vertical bars are standard desiti Stars indicate statis-
tically significant differences (unpairgetest,p < 0.010). Other parameters as in
Figure 3.12-A.

3.5 Inverse problem

The inverse problem consists in optimizing the topology ideo to minimize

the classification error. Evolutionary Algorithms [46] lkeabeen chosen for
their flexibility and robustness with respect to local miaim However, due
to their high computational cost, only SOM with = 100 neurons could be
tested: according to the results of previous section, trst tmgology among
the Watts and Strogatz models for this size of network argltdsk is that of a
random network (see Figure 3.14). The purpose of the foligveixperiments is
to find out whether optimization will tend to push the topoldgward random

networks, or if other topologies, outside the Watts andgaéttomodel, will appear.

3.5.1 The Algorithm

Evolutionary Engine: The algorithm used here is a Steady-State Genetic
Algorithm with 2-tournament selection and 6-tournameiaeement: at each
generation, the best of two uniformly drawn networks undeggvariation (see
below), and replaces the worse of 6 uniformly drawn netwéskshe population.
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The initial population is composed of 100 different smatifg networks (initial
with rewiring probabilityp = 0.050).

Variation operators: Evolutionary algorithms typically use two types of
variation operators: crossover, involving two or more p#&eo generate one
offspring, and mutation, that uses a single parent to ciesatdfspring. However,
because no meaningful crossover operator could be desigeed since we
want to have the total number of connections fix during theéntipation, only
mutation was used (no crossover operator is better thanrapassover operator).

The mutation consists in random rewiring©¥% of uniformly chosen links.
C decreases exponentially during evolutia®(q) = 30(1026) %9 whereg
is the generation number argghax is the total number of generations). Here,
Omax = 200000. In these condition&;(g) decreases from 102 rewired links in
total (g = 0) down to 1 single rewiringd = Omax)-

Fitness The fitness is computed as the average misclassificatiam Erfsee
Section 3.3.6) over 5 learning phases, starting from 5miffeinitial weights.

Each network contains 10 10 neurons, each neuron having 8 neighbors
(Moore neighborhood). The initial learning rate is setrt(0) = 0.35 for a
fast learning. However, in order to further decrease theprdational time, the
learning algorithm is run during only 10000 learning stegese(discussion below),
using only 2000 examples from the training set, and the streesomputed using
5000 examples from the test set.

This algorithm is summarized below :

* Initialize K networks: rewire 5% of a regular network (8 links per neuron
with its neighbors, 342 global)

* ForM "generations":

1. Draw uniformly 2 networks, select the best oré

2. N’ = mutatior{N) (rewireC% of its links)

3. Computen times fitnesdy{’), get the mean

4. Draw uniformly 6 networks, replace the worst by the mutadé-

springN’
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3.5.2 Results

As already mentioned, considering the small size of the S@MIved, one may
expect random networks to perform slightly better than laganes (Figure 3.14).
The main statistics of the best networks obtained during @uéon runs are
plotted Figure 3.15.

The first remark from Figure 3.14-A is that indeed, the classion error
of the best topology in the population decreases along g@alufrom 0355 to
~ 0.325, i.e. a> 9% improvement.

But the most interesting results can be seen when lookingeathhracter-
istics of the best topologies that have emerged during &eoluFigure 3.15-B
shows an important decrease of the Mean Shortest Path, Wigilee 3.15-C
demonstrates a clear collapse (more than fourfold recu)ctd the Clustering
Index. In other words, the topology evolves towards moreloamess — as could
be expected from Figure 3.14.

Interestingly, there is another important change in thelayy along evo-
lution, concerning the network connectivity distributionndeed, the standard
deviationgy of the connectivity distributiofP(k) (whereP(k) is the probability
that a neuron chosen at random kaseighbors) almost triples during evolution
(Figure 3.15D). This means that the connectivity distitnutof the networks
broadens (becomes less sharply peaked). In other wordfcialrtevolution
yields more heterogeneous networks. However, it shouldepeik mind that this
result is highly dependent on the topology of the data thérasghere MNIST
database), and could be different with other data. Futurksweill be necessary
to investigate this interesting question.

3.5.3 Generalization w.r.t. the Learning Process

During the evolution process, the networks at each gewoeratiere trained
during 1Q000 learning steps mainly for computational cost reasonshBw do

the evolved networks perform with learning protocols ofetiént lengths (e.g.
one million steps)? In order to investigate this generéibraability, the 6 best
networks from the initialization phase and the 6 best nétwabtained after
evolution were trained during respectively, 000 (Figure 3.16) and one million
(Figure 3.17) learning steps. Note that the results obdgairieh 10 000 learning
steps are not a simple zoom-in of the results obtained withroilion learning
steps, because the radiRslecays at different rates in these two cases (as shown
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Figure 3.15: Time courses of the main network statisticsnduartificial evolu-
tion. Each time a mutation gives rise to a topology with adyditness than the
best one in the current population, its fitne&$, @verage mean shortest paB) (
average clustering inde¢C) (C) and the standard deviation of its connectivity
distributiongi (D) are plotted against the current generation number. Eachklp
groups the results of 9 evolution runs.

in the bottom plots).

With 10,000 learning steps, the fithess obtained at the end of thaitear
phase by the evolved networks are slightly better than tloiained with the
initial networks. Surprisingly, this improvement of thenfiss is much clearer
when learning was performed over one million learning st@pgure| 3.17) -
albeit during evolution, these networks were trained udidg-fold less training
steps-. At the end of the learning protocol, the averaged#trad the 6 best
evolved networks is> 4% better than that of the 6 best initialized networks
(note that this figure is lower than the 9% improvement above, because the
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Figure 3.16: Evolution of the fitness during learning of thiee&t networks from
the initialization phase (dashed lines) and the 6 best rr&snabtained after evo-
lution (full lines). The learning protocol consisted of*ll6arning steps. The inset
shows magnified views of the results at the end of the learpirage. The evo-
lution of the neighborhood radius is also given in each casedmparison pur-
poses. Each curve is an average over 11 initial realizatibtie neuron weights.

12 networks were selected from 3 evolution runs only). In thse of one
million learning steps, this difference increases up-t8%. Finally, note that,
at the end of the learning period, the difference betweenvileepopulations is
statistically significant |§ < 0.01, unpaired t-test) for both learning conditions
(10000 and one million steps). Hence, the networks selactedy 10 learning
steps also outperform the initial networks for very diff@réearning processes
(here 100-times longer). Further investigations are meguio better understand
this phenomenon.
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Figure 3.17: Same simulations as those in 3.16 except tede#ining protocol
used during evolution consisted offl§teps.

3.6 Conclusion

The objective of this chapter was to study the influence oblimgy in a case of
neural network defined on a complex topology. On the limitegeeiments pre-
sented here, it seems that the performance of the netwonkjisveakly controlled
by its topology. Though only regular, small-world and ramdtopologies, have
been presented, similar results have been obtained fa-fea topologies. This
suggests that for such learning task, the topology of thearétis not crucial.
Interestingly, though, these slight differences can rnbedess be exploited by
evolutionary algorithms: after evolution, the networks arore random than the
initial small-world topology population. Their connedti distribution is also
more heterogeneous, which may indicate a tendency to etmlverd scale-free
topologies. Unfortunately, this assumption can only beetewiith large-size net-
works, for which the shape of the connectivity distributicem unambiguously
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be determined, but whose artificial evolution, for compotatost reasons, could
not be carried out.
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Chapter 4

Evolutionary Optimization of Echo
State Networks

A possible alternative to fine topology tuning for Neural Wetk (NN) opti-
mization is to use Echo State Networks (ESNSs), recurrent biNlsupon a large
reservoir of sparsely randomly connected neurons. The iseanof ESNs have
been fulfilled for supervised learning tasks. But reinforeaimlearning tasks,
such as control problems, require more flexible optimizatitethods — such as
Evolutionary Algorithms.

This chapter proposes to apply CMA-ES, the state-of-theragthod in
evolutionary continuous parameter optimization, to thel@onary learning of
some ESN parameters (see Section 2.2.3). First, a stanagipedvised learning
problem is used to validate the approach and compare it tstémelard quadratic
approach. Further, thanks their flexibility, evolutionatimization allow one
to optimize not only the standard outgoing weights, but atsoalternatively,
some other internal parameters of the ESN, sometimes kgadinmproved
results, as will be demonstrated here. The classical dqddebalancing control
problem (Section 4.4.1) is then used to demonstrate théflywof evolutionary
reinforcement ESN learning. Note that special care mustakent when using
CMA-ES for this specific problem, in order to lead the evolaotioy ESN to-
ward results that are comparable with those of the bestaggdkarning methods.

4.1 Introduction

It has long been known to Neural Networks practitioners éhgod design of the
topology of the network was an essential ingredient to aessgfal application
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4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

of Neural Networks, for a given learning task. In the framewof supervised
learning, the famous US Postal application [129, 31] dernated the need to
carefully craft the topology for the problem at hand (see &sction 2.3.2). On
the theoretical side, the recent studiesdaeprepresentations, as developed in
[22] for instance, proved that indeed, some types of topetoge.g. shallow
one-layer perceptrons) require an exponential numberdufdm units w.r.t. the
input dimension, in order to be able to achieve a given legrtask, while deep
topologies might require as few as a linear number of layardhfe same task.
The critical issue then becomes that of learning the ap@tEpmweights, and
specific methods have to be used, as the standard backptiopaghkyorithm
becomes inefficient [23].

Echo State Networks [105], that was recently proposed fpesased learn-
ing of time series, can be seen as an alternative approastkeashof optimizing a
topology for a given task, it proposes to use a lamgervoir of neurons that are
randomly (and sparsely) connected. Only the weights of tihgaang connections
are to be learned, transforming the learning process intonpls a quadratic
optimization problem that is easily solved by any gradiemted method ... at
least in the supervised learning case.

The situation changes dramatically when addressing neiefoent learning
tasks, such as control tasks: no example of input-outpuhefrietwork are
available, and hence the learning problem can no longer bassa quadratic
problem. Even some tricks like BackPropagation Through Tj2#8] don't
directly apply to recurrent neural network learning.

Evolutionary Computation provides a possible solution fartssituations, as
long as some fitness for the sought controller is available

This chapter addresses the following issues: are Evolatyoilgorithms
(EAS) a viable method to train Echo State Networks in generatl for rein-
forcement learning tasks in particular — and how does it o the quadratic
learning in the supervised context? Furthermore, are Ed¢ate Sletworks an
alternative to topology learning in the framework of ContRsbblem? Finally,
as the flexibility of Evolutionary Algorithms allows them kearn to adjust more
than just the weights of the outgoing connections of the ERiés this improve
the leaning power of ESNs?

This chapter will start by introducing in Section 4.2 the E@tate Networks
and the standard supervised learning of their outgoing hgigTo address the
first research issue listed above, the same experimentaigses the original
supervised learning of time series proposed in Jaegersmaépaper [105] will
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4.2. RESERVOIR COMPUTING MODEL

be used in Section 4.3, and different reservoir sizes wilekgerimented with.
But because EAs don't require gradient information, usinge&nin lieu of

a gradient method will offer more flexibility for ESN leargnallowing us to
optimize more than just the outgoing weights of the netwalkp optimizing
the spectral radius of the ESN, or the slope of the sigmoitiebtigin for each
neuron.

Moreover, Evolutionary Learning opens up the field of rein@ment learning
to ESNs, that is optimizing the characteristics of the nekwwhen no direct
input-output examples are available, but only some pogsidlayed reward, as is
the case in control problems.

In the reinforcement context, many works advocating defermethods to
evolve a complete neural network (i.e. both topology andgivsi) have dealt
with the double pole balancing problem, as presented in@edt4.1, providing
a basis for comparison without the burden of re-doing alleexpents. The same
control problem will be used in Section 4.4, the results oNESolutionary learn-
ing will be compared to those of the literature. Moreoverjrathe supervised
case, experiments will involve the optimization of diffetegparameters of the
ESN. Section 4.5 will further discuss the results in linehattie developmental
and generative approaches it was compared to. Finallyjd®eti6 will sum up
the chapter and sketch directions for on-going and furtkeearches.

4.2 Reservoir Computing Model

The paradigm underlying what is today known as Reservoir CompyRC)
made Recurrent NNs accessible for practical applicationsye@sr before,
and outperformed classical fully trained RNNs in many tasks38]. Echo
State Networks (ESN) have been proposed by Jaeger in 20&] {lith the
objective of endowing a neural network with rich dynamicédnaoral patterns
while keeping learning complexity at a low level. An ESN is iacdete time,
continuous state, recurrent neural network using a sigah@idtivation function
for all neurons. A typical ESN is shown in figure 4.1: the infayer is totally
connected to the hidden layer; the hidden layer, and pgstie input layer,
are totally connected to the output layer. Moreover, thooghsidered not
essential, the output layer can be connected backward thitlien layer. In
this setup, the hidden layer, cgservoir, is randomly generatedl neurons are
randomly connected up to a user-defined density of conmexdio The weights
of those connections are randomly set uniformly[#l, 1], and are scaled so

81
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uKQ

Input layer Hidden layer Output layer

Figure 4.1: Schematic view of an Echo State Network. Plaioves stand for
weights that are randomly chosen and remain fixed, whileathalrows represent
the weights to be optimized: eithéK + N) x L if direct connections from inputs
to outputs are used, or simplN x L if not, whereK, L andN are the number of
inputs, of outputs, and of neurons in the reservoir.

that the spectral radius of the connection matrix is less thgiven valuep < 1,
ensuring that the network exhibits the “echo state propertg. stays out of
the chaotic behavior zone whatever the input sequence (gee[¥06]). The
random construction of an ESN is thus determined by the 3wetexN, 4 andp.

The main point in ESN is that only the weights going from thpunhand
hidden nodes to the output nodes are to be learned. If thégonobask inputs
andL outputs and a reservoir of sidg this amounts eitheX or (K+N) x L free
parameters (depending on whether or not the input layerrecity connected
to the output layer). Moreover, any supervised learningol@m using some
MSE objective is then reduced to a quadratic optimizatiavbjf@m that can be
efficiently and quickly solved by any deterministic optimiion procedure, even
for very large values oN. In some sense, an ESN can be seen as a universal
dynamical system approximator, which linearly combines ¢hfementary dy-
namics contained in the reservoir [163]. ESNs have been showperform
surprisingly well in such context of supervised learnimgparticular for problems
of prediction of times series.

For instance, Reservoir Computing (RC) has starkly outperfdrprevious
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methods of nonlinear system identification, prediction aelagsification, in pre-
dicting chaotic dynamics (three orders of magnitude impdoaccuracy [108]),
nonlinear wireless channel equalization (two orders of mtage improvement
[108]), the Japanese Vowel benchmark (zero test error pag®jous best: 1.8%
[109]), financial forecasting (winner of the internatiofatecasting competition
NN ), and in isolated spoken digits recognition (improvemdnvard error rate
on benchmark from 0.6% for the previous best system to 0.2%)]2

We will first introduce the state of arts work of ESN in supsed learning
area.

4.2.1 A Chaotic Time Series Prediction by ESN

The first great success of ESN has been done with the MackessGlystem, a
popular chaotic dynamic system that is defined by a singléimear time delay
ordinary differential equation :

dy _, W
dt 1+vy.P

wherea,y, 1,3 are real numbers, ang represents the value of the varialylat

time (t — 7). Depending on the values of the parameters, this equatgpiagyis

a range of periodic and chaotic dynamics. In the chaoticesystmodeling
community the parameters are often setate= 0.2,y = 0.1, = 10. When

T > 16.8, the system is a chaotic attractor. Depending on the vdlug the
system varies form a mildly chaotic attractar€ 17, used normally) to a more
chaotic behaviori(= 30). Figure 4.2 shows 600 consecutive time steps obtained
with T =17 andr = 30

_yy7 V7a7B>07

The task here is to create a system which can reproduce tea ghaotic
attractor as precisely as possible in a predefined numbesrations.

ESNs show excellent results in Jaeger’s first techniquert¢p@5] with 400
units and state of art results with 1,000 units were alsogortesl [108].

4.2.2 Researches on RC

Since the first report of Jaeger in 2001, Reservoir Computing @éR€jcted a lot
of research interest. RC methods have indeed been succedsfnlapplied to
several benchmarks, often outperforming classical fubyned RNNs. And as
with all RC methods these good results were obtained withlpuamdom (i.e.

Lhttp://www.neural-forecasting-competition.com/NN®fex.htm
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Figure 4.2: 600-step sections of the Mackey-Glass chatttiacéor system for
delayst = 17 (left) andr = 30 (right).

non-optimized) reservoirs. However, the obvious succésamlom reservoir
does not imply that they are optimal and that they cannot lpgaxed/optimized
further. Thus besides application studies, anther impogteam of current RC
research on reservoir methods is devoted to optimal resetesign, or reservoir
optimization algorithms.

Lukosevicius and Jaeger gave in 2007 an overview which pteseost of the
works in this stream [138]. We briefly present below thesek&pomasmuch as
they are related to our own research.

Generic Reservoir Recipes

As mentioned in [105], in order to produce rich’ sets of dgmes, it is important
to create ’'big’ reservoirs (that can display rich varied aymncs), that are
'sparsely’ (reservoir neurons are only loosely coupled) aandomly’ connected
(every generated reservoir is different from the other).

And the echo state property of the reservoir is needed to insure that the
ESNs work. This condition makes sure that a previous stateagrevious input
should vanish as time passes in the future instead of persigt amplified ( via
self-excitation ). Jaeger proved that for most practicappsees, the echo state
property is assured if the reservoir weight matrix W is sdae that its spectral
radiusp(W) (i.e., the modulus of the largest eigenvalue) satighig4/) < 1 in
reservoirs using the tanh function as neuron active funcaad for zero input. A
rather conservative rigorous sufficient condition of thieeestate property for any
kind of inputsu(n) (including zero) and states x(n) (with tanh nonlinearitgjry
OmaxXW) < 1, whereomaxW) is the largest singular value of W.
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But this condition only ensures that the ESNs will not selfiex The optimal
value ofp(W) should be set depending on the amount of memory and noritinear
that the given task requires, and varies with the task. Jagges a rule stating
thatp (W) should be close to 1 for tasks that require long memory anordcgly
smaller for the tasks where a too long memory might in factdrenful [105].

Small-world, scale-free and biologically-inspired coaten topologies were
tested and compared with sparsely randomly connected boeso significant
differences were presented among there different topedogsing the measure
and the experiment methods of the article [134].

For a conventional ESNs, one of the shortcoming is that thigagions are
still coupled strongly even though the reservoirs are gpafhat makes ESNs
poor performers when dealing with different time scalesdiameously. In [229],
the reservoir was divided into partially decoupled suleresirs, introducing
inhibitory connections among all the sub-reservoirs. Hyistem was shown to
successfully resolve the multi-time scale problem at haNdte moreover that
other related works combine outputs from several sepaeatrvoirs and will be
discussed in the following section.

In conventional ESN, the activation function of the neur@ngsually a Sig-
moidal function, but others types of functions were alsodufee different pro-
poses. For example, in Evolino [187] a Long Short-Term Mentgpe of RNNS
were used to preserve memory for long periods of time. Jgé@&i also sug-
gested a version of a leaky integrator ESNs (LI-ESNs) whiedsia leaky inte-
grator active function. This version is in fact a discretizersion of a continuous
differential equation for a leaky integrator neuron thade:

X(n) = (1—alt)x(n—1) + At f (Wnhu(n) +Wxn—1))

Whena = 1 andAt = 1, one recovers the classical (non leaky) simple ESN.
The parametersr and At control the 'speed’ of the reservoir dynamics. Small
values ofa andAt result in reservoirs that react slowly to the input. By chaggi
these parameters it is possible to shift the effective waleof frequencies in
which the reservoir is working.

Readouts from the reservoirs

In conventional ESN, the readout always has a single layex.optimization is a
linear mapping form the reservoirs stain) to target outputtarget(n) and there
exists for this aim many linear regression algorithms that\wery fast, even for
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a very large number of time stepdo forecast, as the objective is simply here to
minimize the quadratic error between Wgyx(n) and theytarget(N).

Recently, however, some multilayer perceptrons (MLPs)inéc by error
backpropagation, are beginning to be used as readouts. réfitvadly they are
more powerful than a singer layer, but in practice, trairbggerror backpropaga-
tion is much more difficult than linear regression with a sengyer.

Another approach that has been proposed consists in cargbseveral
readouts by averaging the outputs coming from severalnostof ESNs (e.g.,
to refine the prediction of chaotic time series [108]). Theralso an ESN-based
predictive classifier [200] which is reported to be much nrotsist to noise than
a standard Hidden Markov Model for the task of spoken woragadion, by
using a set of competitively trained predictors for eacls<laf the training set,
and then applying dynamic programming to find the optimalusege of the a
opoutput of these predictors.

Finally, though the reservoirs may have thousands of uthiey, usually have
a single layer. It was suggested that for complex demandisistthe adaptation
of a single reservoir might not be enough and a hierarchichii@cture of ESNs
might be needed. Jaeger himself [107] proposed a first apiptoeahis problem,
but this research is still in its infancy.

4.2.3 Discussion

In our opinion, at least three aspects need further invetsbig in the context or
Reservoir Computing in general, and ESN in particular.

Gradient Descent or Evolutionary Computing

As discussed in previous section, gradient decent algosithave been used
to optimize the readout layer in the supervised learninglfielThe idea of
Evolutionary Learning for Echo State Networks amounts pda@ng the gradient
descent that is used to optimize the outgoing weights in el&e@pproach
by an Evolutionary Algorithm (EA). This makes it possible apply ESN in
Reinforcement Learning field. A first mandatory step in thaecdton is to
validate this approach on a supervised learning task, congpthe results with
those of the standard gradient method. This will be done @ti@e4.3. Then a
reinforcement learning task will be experimented with ict&m| 4.4

86



4.3. SUPERVISED LEARNING OF ESN

The Evolutionary Algorithm that has been chosen for therojatition here is
the Covariance Matrix Adaptation Evolution Strategy, aka GHE8 [87, 88, 85],
which has been introduced in detail in 2/2.3. As alreadyudised, the only
parameter of CMA-ES that needs to be set by the user is the mwhb#spring
A, depending on the possible ruggedness of the fitness |lgmelsdehand. The
default value, as set in [88], increases logarithmicallyhwthe dimensiond
of the problem (number of unknown parameters),Aas- 4+ 3In(d). In the
supervised case of Section 4.3, involving problems of dsmrs 30, 60 and 100,
the corresponding values afare respectively 12, 15, and 17.

Auto Parameters Turning

In many ESN applications, the ESN parameters were chosemeauined by hand
(most often through trial-and-error) and have fixed valdegger [105] states that
p(W) should be close to 1 for tasks that require long memory andrdogly
smaller for the tasks where a too long memory might in factdoentul. But the
optimal p(W) is still unknown. One side effect of the Evolutionary Optaation
of ESN weights is that we will also here use EC to determinefitamal p(W).

Transfer Function

In conventional ESNs, the transfer function of all neuransisually a Sigmoid
function (or, equivalently, the tanhfunction) with fixedpk. But because we are
using EC, and do not need any more we are also able to optinezsldpes of
every neuron. And this gives another point of entry into E®Nrization. So in
our study, we will also test this aspect on a supervised iegproblem and on a
reinforcement learning case study.

4.3 Supervised Learning of ESN

In order to validate the Evolutionary approach to ESN leagna first experiment
reproduces one of Jaeger’s initial setting [105], but usamgy Evolutionary

Algorithm in lieu of some gradient-based quadratic optaizn procedure. The
problem is that of a time series prediction.

4.3.1 Jaeger’s Original Settings

In this toy example, a single-channel sinusoidal inputvegibyu(n) = sin(n/5).
The target is to train the network to produce a single-chiarméput,

87



4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

\ f\ [\ [ I\ '\ —— 1l nput: u(n) = sin(n/5)
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Figure 4.3: The input signali(n) = sin(n/5) in red and the target output
YeeacHN) = 3u7(n) in blue

Yieact{N) = 3u’(n), as shown in Figure 4.3

The network output is given by the following equation:

N
Y(r) =t 5w o (n)

wherewP" denotes the weight of the i-th output connection, &itd) is the state
of i-th neurone at time step The activity function is the standard sigmoid func-
tion with slope 2:

2
1+e

The reservoir used in Jaeger’s original paper has a size@h&Qrons. The
neurons of the reservoir are randomly connected, and thghigeare set to
values of 0, +0.4 and -0.4 with probabilities 0.95, 0.02%)26. respectively,
thus reaching a sparse connectivity of 5% (further works &iN& rather used
uniform initialization of the non-zero weights {r-1,1]). The weights are then
scaled so that the spectral radius of the connection mafrtke reservoir is
|Pmax = 0.88 < 1.

tanh(x) =

The input weights (from the input to all neurons in the resejvare set to
+1 or —1 with equal probability. No direct links from inputs to outs, and no
backward links from outputs back into the reservoir are us=é either.
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As in Jaeger’s work, the fithess to be minimized is the Meana8grror
of the network. The bootstrapping is done the following wéye states of all
neurons in the reservoir is initialized to zero; the netwisrthen run for 100 time
steps without measuring the error; finally, the MSE is coraguin the next 200
time steps as

1 300

= . 2
MSEain = 200n: 01<y(n) arCtaanteacf{n))>

4.3.2 Which parameters to optimize?

In Jaeger’s original paper, only the output weights wereinoged, leading

to a quadratic optimization problem of dimensidh) the size of the reser-
voir. The optimization was done using a gradient method émarecisely,

the Fit function from Mathematica©). The reported result is airtmg error
MSgrain = 3.3x 10 12, When the trained network was tested on test data, the
reported test error i1Sgest ~ 3.7 % 10715,

However, as already mentioned, whereas gradient methoddimensolve
reliably convex problems, CMA-ES can reliably find good glaipzasi-optima of
non-convex problems, leading to different other optionhoase which parame-
ters to optimize, as already demonstrated beneficial inake of feed-forward or
small recurrent NNs [189, 54].

The Spectral Radius

In particular, a critical parameter in ESN tuning seems tahe@emaximal value
allowed for the spectral radius. To ensure “echo state” gntypthis radius must
be smaller than 1, but different values have been proposdaeititerature for

different problems. Hence it seems a good idea to use thdrapeadius as
a free parameter, to be optimized by CMA-ES: it only adds omeedsion to

the problem. The procedure goes as follows: when a set ofreas is to be
evaluated, the weights of the recurrent connection indigeréservoir are first
scaled so that the spectral radius of the connection matkixstthe value of the
additional optimized parameter, the same way it was doniegltine initialization

of the reservoir itself. Then the response of the ESN is cdatpas usual, using
the scaled weights.
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The Sigmoid Slopes

Because an Echo State Network is a set of dynamical systemarthdinearly
combined to generate the desired output, it seems plausitanodifying the
slopes of all neurons independently might allow the ESN tibebdit the target.

The transfer function of in internal neuron becomes téxh= Trea
Jaeger’s original sigmoidal function was tanh, correspamtb the casa = 2.

However, if both the output weights and the sigmoid slopesatimized, the
dimension of the optimization problem is doubled. Hencerst éixperiment was
to optimize the slopes alone (and the problem still has agwiéon the number
of neurons in the reservoir), before running the complepearment, optimizing
both the slopes and the output weights.

4.3.3 The experiments

Four variants of evolutionary optimization of an ESN haveerbeompared:
the standard optimization of the output weights, dendédiin the following,
which hasN unknown parameterdy being the reservoir size; the optimization
of the output weights plus the spectral radius, den&kd, of dimensiorN + 1;
the optimization of the sigmoidal slopes denotgldpes, of dimensioiN; and
the optimization of both the output weights and the slopesjotedFull, of
dimension ZN.

Two reservoir sizes have also been chosin= 100 as in Jaeger’s original
paper, that then provides a basis for comparison, duag 30, that allows more
systematic comparison, in particular regarding Flodl variant, as no meaningful
better results could be obtained using that variant in tisea= 100.

However, because of the small reservoir size, the averageectivity was
increased, to ensure that each neuron has the same avenalgerrai connections
than in theN = 100 case, leading to setting the weights to values of 0, +0.4
and -0.4 with probabilities 0.864, 0.068, 0.068 respebtivéhe same maximal
spectral radius ofpmax = 0.88 < 1 was used for both reservoir sizes (except for
theRho variants of course).
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4.3.4 Comparative Measures

One surprising issue in Jaeger’'s original paper is thatetherno statistical
analysis whatsoever: indeed, even if the optimization jemhs quadratic, and
has a unique global solution that the gradient method willbloéy find, the

network itself is randomly built, and different networks ght have different
optimal value for the MSE fitness.

In any case, because CMA-ES, like all EAs, is a stochastiaropdition
procedure, no strong conclusion can be drawn without dothgmugh statistical
analysis of the performances. Hence 15 different netwosake® lbeen used, and
for each network, 5 runs of CMA-ES were launched with différamdom seeds
(and hence starting points).

Afirst global performance measure is given by the now stah8&1 measure,
an estimator for the success performance used in [85] arlgzaakin [8]: it is
defined as the number of evaluations needed to reach a ginesditevel, divided
by the proportion of runs that did reach that fithess valuel la@nce can be
viewed as the computational effort that is required to remgiven performance
level.

Moreover, the variability over the reservoir topology vélso be assessed, by
studying in detail the different results obtained by the Bsréor each of the 15
networks.

4.3.5 Results

Figures 4.4 and 4.5 show the SP1 plots for reservoirs of 1@03&nneurons,
respectively, and all evolution variants, except thdl method that could not
be applied for the reservoir size of 100. The first result,doeservoir size of
100, simply confirms that CMA-ES can be as precise as the gradiethod

reported in [105], though undoubtedly requiring a much ggmeaomputational
effort: indeed, a factor of 7 to 10 in the computational costiween CMA-ES

and BFGS was reported in [88] for quadratic functions ... whging numerical

derivation — whereas the analytical gradient is availaldeeh In a few cases,
though, CMA-ES was able to find better solution than our locatgent-based
method, that was stopped by precision thresholds.

However, the two other plots on Figure 4.4 are rather disappg, as
increasing the search space didn't allow to improve theigi@ts: neither the
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a run of theRho method and the corresponding fitness, in the blasel00 (left)
andN = 30 (right). The best fitness in the casde= 100(left) is found where the
spectral radius is between 0.6 and 0.8, and in the Base80(right), the optimal
spectral radius is centered around 0.96

Slopes nor th&kho variants are able to reach a better precisionRihe method
being the worse.

The situation is different on Figure 4.5: In the case of amasesize of 30,
the Std method could not go below 1& while the Slopes and th&ull variants
were able to reach values below 8. This, however, has a cost, and requires
almost 100 times more evaluations when measured with SRlt¢dine fact that
very few runs do find such low values). However, here agai@Rho variant
didn’t produce any good result, requiring about a 100 tinaggdr computational
effort than theStd method to reach its best value, slightly below 10

A possible explanation is that, though tR&o variant solves a problem that
is only one dimension larger than that of t8&d method, the additional variable
is interacting intricately with all other variables, whasethe quadratic problem
solved by theStd method is separable. Figure 4.6 confirms this hypothesis
demonstrating a clear correlation in bobh = 100(left) and N = 30(right)
versions between the final value of the spectral radius agmlaeof a run of the
Rho method and the corresponding fitness: fpWwave a poor fitness, indicating
that CMA-ES had some hard time increasing varigbJeand found an easier
descent direction by increasing the output weights. Thisoisfirmed by the
average absolute values of the outgoing weights: in the cg460 (resp. 30)
neurons in the reservoir, the average of the absolute vafisoutgoing weights
over all runs of theRho variant is 17 x 10° (resp. 63 x 10°), while it is of order
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Figure 4.7: Cumulative figures witN = 100 neurons, each line of those plots
represents the 5 runs for one network, the Y-axis being tmeben of runs that
actually reached the X-axis fitness value. The top left figeite Std variant, the
top right is the Slopes variant and the bottom is the Rho varian

of magnitude 10 for all other variants and reservoir sizes.

This is confirmed by the other plots of Figure 4.7 and Figuge 4ach line of

those plots represents 5 runs for one single network, thesrkeing the number
of runs that actually reached the X-axis fitness value. Allards (for both sizes
of the reservoir) except thRho method, show almost no dispersion (i.e. the
performance of CMA-ES on each network is independent of theisg point)
while theRho method displays a very large dispersion. Another remarkose
plots is that, for a given method, the range of optimal vaheeshed for the MSE

is larger in the cas®&l = 30 than in the casBl = 100, even for théStd variant.
However, even in the cad¢ = 100, the best MSE reached by tBéd or the
Slopes variants for different networks can vary by almostdes of magnitude
from the best network to the worst.
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4.3.6 Discussion

The result show that:, for such a simple time series probkie,size of ESN

Is a crucial parameter for getting a better learning prenisiwhen the size of
ESN is large enough (as with = 100), the dynamical states within the ESN are
already rich enough for solving the problem, and 8td version can obtain the
best results. But wheN is small (e.g.N = 30), itis more important to create rich
dynamic states by varying the spectral radiBg variant) or the slopesS(opes
variant). A largeN may be not a problem for such supervised time series problem,
but as will be detailed in next section, it will be in the cadere&inforcement
learning, when the simulation is very costly.

Another conclusion for this section is the interesting etation between the
final Rho value and the fithess. We also need to mention that in tled\cas100,
the p used byStd version is taken from Jaeger’s suggestion, and in that fhas
already an optimized value. For choosing an optimé&br a specific task, Jaeger
made a generic suggestion: if we need short memory in a dynamvironment,
the p should be small, and vice versa. The optirpas often chosen by trial and
error. In our experiments, the optimain Rho version folN = 100 is very closed
to thep value which is chosen by Jaeger. This suggests that EAs avesibte
method for choosing the optimalfor a given task.

4.4 Reinforcement Learning of ESN

4.4.1 The Pole-balancing Benchmark

This Section introduces the Pole-balancing problem areflpniecalls compara-
tive results that have been obtained by different Neurohlvm techniques in the
recent years, for getting a more detailed comparison betteeNeuro-Evolution
techniques surveyed in section 2/3.2, and also for pregdhi@ experiments on
evolving ESN for reinforcement learning.

The pole-balancing problem (aka inverted pendulum) is asatal control
task that has been used as a benchmark for reinforcemeningdor more than
40 years [183, 2, 225, 78, 71, 204, 101, 45, 70, 117]. In thly easearch, there
was only one pole connected. The car positign ¢ar speedx), the joint angle
(61) and the joint angle speed,( are normalized and become the inputs of the
controllers. However, at the end of last century, this peabfinally proved to be
rather easy to solve. So in order to increase the difficutiy,9peed information
of car and pole were removed from the inputs. This did not addmto the
difficulty, and people thus turned to the double pole problanding a second
pole with different length to the system. In this case the petes have to be
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balanced simultaneously. Similarly, and again in ordentwaase the difficulty,
the speed information are removed from the inputs. This fimablem, also
known as the double pole balancing without velocity prohlesthe most difficult
version of currently used pole balancing problems.

The double pole balancing problem without velocity probismsed by Stan-
ley and Miikkulainen [203] to compare different neuroev@n methods that
evolve both the topology and the weights of neural netwofkeaau’s Cellular
Encoding (CE, [78]), Gomez and Miikkulainen’s Enforced Suaip&ations (ESP,
[71], Stanley and Miikkulainen’s Augmenting TopologiesgAT, [203]). More
recently, Durr, Mattiussi and Floreano have used the sastgteblem to com-
pare their system AGE [45] with the previous approacheslen®i Igel [101] has
evolved the weights of a totally connected recurrent nenefvork with fixed
topology for the same task. A brief presentation of thereho@s$ has been given
in section 2.3.2.

In all experiments (in this chapter as well as in previousksirthe ordinary
differential equations that model this mechanical systarevintegrated numeri-
cally using a fourth-order Runge-Kutta method with a cortstéep size of 0.01s.

The system consists of two parts, the first part is a car whasssns 1kg
and has one degree of freedom along thaxis, the second part consists of
one or two poles of different length$; (= 1m,l, = 0.1m) and different masses
(m = 0.1kg,mp = 0.01kg) that are connected to the car by hinges. The poles
have one degree of freedom, namely the joint an@lg (resp. 6,) with the
vertical direction. The command is a forEg (F« € [—10N, 10N]) that is applied
to the cart and the challenge is to keep the poles up (i.eimgfiken bounds for
the joint angles) as long as possible.

But this criterion leads to some problems since some goodisoufall
quickly when the initial conditions have changed. In oraestudy the generality
of solution, a new evaluation criterion has been proposed.indlividual passes
the first test if it succeeds in keeping the system into thecessg domain
during 100 000 time steps. It is then tested with a true géimaten test,
involving 625 different initial positions from where the rooller must balance
the system and stay within the success domain for 1000 tiepes stThe initial
conditions are chosen such that the normalized values,far,6; and 6, are
€ 0.05,0.25,0.5,,0.75,0.95 (the 625 values correspond to a full factorial Design
Of Experiment). And if the best individual in the populatismcceeds for at least
200 of those 625 trials, the run is stopped, and the indiVithat passed those
200 trials successfully is returned as the solution. Thebarrof trails passed by
the solution is also called ti@eneralization.
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A
y

Figure 4.9: Balancing double poles

Comparative Results of Neuro-Evolution methods

For the double poles balancing without velocity probleng ¢iptimizing results
of different models are as following (different methods amenpared by their
average number of Evaluation for finding the success salutio

Table 4.1: Published performance results of evolving ANNs$hads on the dou-
ble pole balancing with no velocity information and evolyithe weights and
topology simultaneously. The number of neurons is fixedrdytihe optimization
(3 and 11 are the smallest and largest number of hidden neweported by Igel).

Method # Eval. | Std Dev.| Generalization
CE [78] 840000 n.a 300
ESP [71] 169466 n.a 289
NEAT [204] 33184 | 21790 286
AGE [45] 25065 | 19499 317
Igel [101] Nhidden 6061 250
Igel [101] 1Nhigden | 25254 226
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4.4.2 Fitness(es)

The idea of the fitness function in the double pole experimastin all control

problems, is that an individual that maximizes the fitnessukh have very
good generalization capabilities. However, standard $gne such situations
usually average the performance of the controller over ntaalg from different

starting positions, an extremely costly procedure. In potdeavoid such heavy
computational cost, many, if not all, previous works in tielationary literature

addressing the double pole balancing problem [78, 71, 204, 45] have used
a simplified fitness where the controller performance onlyethels on its ability
to maintain the poles up during a single trial. Only the beslividual in the

population (for this fitness) is then evaluated through gaimation tests.

However, though this simplified fithess does save a lot of adatnal
resources, we agree with [45] that it is a poor fithess witlpeesto the overall
goal of the optimization, in that it is not clear that indiuels maximizing this
fitness will perform any good when it comes to generalizatests. We will
hence propose another fitness that additionally captueegeheralization ability
of the controller.

We will now in turn introduce both fithesses.

The “Cheap* Fitness Function

A single trial is run for every individual in the populatiostarting from the same
state 01(0) = 4.5°,6,(0) = 6,(0) = 6,(0) = x(0) = x(0) = 0). The simulation
is continued until either the system leaves the successidot@|—2.4m, 2.4m|
and 6, 6; € [—36°,36°], or a maximum of 1000 time steps is reached.

The fitness functioffrcheapis then a sum of two components:

t .
Fcheap: Olm+ ngstable Wlth

0 if t <100
0.75

St 100(X |+ %] +164] +161))

fstable= otherwise

wheret denotes the number of time steps the system remains ingdgutitess
domain.
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The Generalization Fithess

In preliminary tests, we found that some controllers camioka very high fitness
without ever passing the second test, while some contsoflassed all 200 gen-
eralization tests with a rather loneap Hence we have also used a fitness that
takes into account all 3 tests describe above. Of coursegiitgputation involves

all 3 tests, including the stabilization during 1000 times steps, and the 625
trials from different starting positions. The fitness vaisighen given by

Fo_F N #lter n #Success
new=Tchear™ 100,000 625

(4.1)

where #ter is the number of iterations among the 100,000 where the myiste
maintained in the success domain, aiBligcesss the number of generalization
trials that the controller passes. The value 30 was chosetnidlyand error.
Note that the latter means that individuals that are subfdess more than
625/30~ 21 generalization runs will have a high fithess now.

4.4.3 Experimental conditions

The size of the reservoir was fixed here to 20 neurons: indigeriments
indicated that larger reservoirs did not improve the resulaan assumption that
will be revisited in Section 4.5.

To study the variability with respect to the reservoir taggyl, as in Section
4.3, 20 different reservoirs were generated, and 11 indigrgnmuns of CMA-ES
were made for each reservaoir.

Each reservoir was initialized as described in section14.8xcept for the
fixed weights: here, the 10% non-zero weights of the reseaiwell as the
in-coming weights were randomly initialized jr-1, 1].

At the beginning of each run, the activity of all neurons ie teservoir was
zeroed, and the network was run for 20 iterations (the nurabeeurons) before
the control actually began and the fitness started to acaienul

As mentioned in Section 2.2.3, CMA-ES is almost a parametedégorithm.
Only the population size (in fact, number of offspring is to be tuned [88].
Hence, after some preliminary experiments that seemingiyahstrated that a
large population was needed, a first series of experimergsuva withA = 256,
and weird results were obtained (described below in seetidm). A second
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series of experiments was then launched, following Igeli@ee to give a lower
bound of 005 to the step-sizer during the CMA-ES run. Indeed, the standard
population size was then sufficient to obtain solutions plaatsed all 3 tests of the
fitness function (see previous Section 4.4.2). Moreoveexatained also in that
Section, both the “cheap fithess” and the new “generalindiiness” (denoted
simply “new fitness” in the following) were tried for both CMES settings. And
for all (CMA-ES - fitness) pair, all 4 variants of the evolutasg ESN learning
described in Section 4.3.2 were run — except3hepes method with the default
CMA-ES setting, for reasons that will be explained later.

4.4.4 Results and Discussion

Table 4.2: Experimental results for the double pole balaciThe five top lines
refer to the § = 256, omin = 0) CMA-ES setting, the four bottom lines to the
setting wherel = 13 takes its default value ara,, = 0.05. The fitness used is
the cheapcheap

Cheap Fitness

Method Avg. Std. Genera- % Avg. BB
Eval. Dev. lization success Force Rate
Std- 0.95| 16128 5127 246 8.2% 9.1 78.6%
Std - 0.60| 16248 7121 250 13.2% 8.0 64.3%
Rho 35903 9695 265 25.0% 4.4 24.2%
Slopes 38214 8741 247 1.8% 0.23 O
Std-Opt | 17888 6671 264 11.8% 8.3 68.4%
Std - 0.95| 14960 6291 234 6.8% 0.61 1.16e-5
Std - 0.60| 16639 17037 225 6.8% 0.44 0.59%
Rho 23571 10175 241 52.7% 29 12.3%
Std - Opt | 19168 21782 232 9.5% 0.62 3.83e-6

All results are summarized in Table 4.2 (the results usingapHiness) and
in Table 4.3 (the results using New fitness). For each taleCIMA-ES settings
is in horizontal and the corresponding fitness is in vertittad five top lines refer
to the @ = 256, omin = 0) CMA-ES setting, the four bottom lines td & 13
(default value) gmin = 0.05) setting.

For each variant, the 220 runs (11 runs for each of the 20rdiftereservoir
initializations) are here grouped together, and the foluroas of each sub-table
show the average number of evaluatiamseraged over the successful runs
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Table 4.3: Experimental results as same as in Table 4.2 eftoefitness used is
the new onéew. The five top lines refer to thel(= 256, gmin = 0) CMA-ES
setting, the four bottom lines to the setting whare- 13 takes its default value
andomin = 0.05

New Fitness

Method Avg. Std. Genera- % Avg. BB
Eval. Dev. lization success Force Rate
Std - 0.95| 27770 12522 234  44.5% 9.1 78.6%
Std - 0.60| 27152 14696 236  62.7% 9.1 82.1%
Rho 35275 7481 233 99.5% 7.0 40.6%
Slopes 51712 13672 208 19.1% 2.0 0.18%
Std - Opt | 26683 15395 243 64.5% 9.283.6%
Std - 0.95| 16303 11511 209 82.3% 24 57%
Std - 0.60| 16886 11073 211 87.3% 20 5.0%
Rho 19796 6770 224 91.4% 3.4 11.0%
Std - Opt | 15965 11813 208 86.8% 20 4.3%

Table 4.4: Experimental results

Standard  Fitness
Method | Success % BB Rate
Std 8.2% 78.6%
Rho 25.0% 24.2%
Slopes 1.8% 0%
Std 6.8% 1.16e-5
Rho 52.7% 12.3%

Table 4.5: Experimental results

New Fitness
Method | Success % BB Rate
Std 44.5% 78.6%
Rho 99.5%  40.6%
Slopes 19.1% 0.18%
Std 82.3% 5.7%
Rho 91.4% 11.0%
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(column Avg Eval.), its standard deviatiorS{d Dev.), the number of tests (out
of 625) passed during the third generalization t€3¢rferalization), and, most
importantly, the percentage of succe%s guccess), i.e. of runs where the best
individual did pass the 3 generalization tests. The othel@wens will be detailed
later.

First of all, it should be noted that only Table 4 2HeapFitness) can be
compared to the published results of Table 4.4.1, becaesexjperiments in the
second column didn’t use the same fitness.

The first striking result is the poor performance of the lgpgeulation size
with no bound ono (first 5 lines of results of Table 4.2): only a small fraction
of all runs did pass the 3 generalization tests, from 25%lfelRho method to
as little as 1.8% for th&lopes method. Since the Avg. Eval. is only averaged
over the successful runs and because of the poor successaatgared to other
published results (Table 4.4.1), this result is very disémpng. If we compare to
other algorithms, the SP1 need to be computed to make a faijpaason. In the
simplest way the SP1 can be cursorily compute&Bs= AvgEval./succes%.
(we need to notice that it is just a cursorily one because Herunsuccessful
runs, their evaluation number could be more or less thanwbrage evaluations
number of success runs.). With this equation the best resstittm the Std-0.60
version whose SP1 is 16248132 = 123090, it is almost 4 times larger by
comparing with NEAT.

Things get a little better for the second CMA-ES setting witHoever
threshold oro (4 last lines of the Table), at least when looking at the perénce
of theRho variant: more than half of the runs succeeded, with arageetost of
23571 evaluations, which amounts to an SP1 value of abo@34538his is still
worse than NEAT and AGE, but within the same order of magmeitud

However, those weak success rates are to be related wittetieenent in [45]
that “each run has to be restarted 10 times on average to fioldigos”. But on
the other hand, NEAT [203], and Igel [101] at a very low cosngistently found
a solution that passed all tests.

As expected, the results really improve when using the newdg, that takes
into account the generalization ability of the network: lwihe first CMA-ES
setting, theRho variant almost always find a solution (except for one runobu
220), and theStd and theSlopes variants improve a lot over their results with the
cheap fitness.
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More importantly, using both the new fitness and a lower bdondr allows
all variants to reach performances at the level of those oANRAGE, or the
totally recurrent network with 9 neurons or more — thoughairse those results
cannot really be compared, as they were obtained usingaetiif fitness. Indeed,
the SP1 values fo6td-0.60,Std-0.95, andRrho variants respectively are 19342,
19808 and 21658, even though slightly m&ieo runs fail to find a solution.

Controller Behaviors In order to try to understand those striking differences, th
behavior of each controller was analyzed — and the reswdtsianmarized in the
last 2 columns of each sub-table: coludwy. Force gives the average (over the
100000 times-steps of test 2 and the successful trials dd 1@ steps out of
the 625 generalization test 3) of the absolute value of theefto be applied to
the cart, (in Newton, ifi0, 10}); the last columnBB rate gives the percentage of
time steps where the controller gave a "Bang-Bang” commaadaiforce whose
absolute value is higher than 9 N.

It now clearly appears that all successful controllers thatned without a
lower bound ono exhibit a behavior that is very close to a complete bang-bang
control — and this is even more so with the new fitness. On therdtand, the
Rho variant manages to find intermediate behaviors, whilefétesuccessful
runs of theSlopes variant can balance the double pole and pass allvibdts
spending an incredibly low energy (the average force isecto®, which means
the car is almost motionless during the simulation!). Notyever, that the new
fitness, because it favors generalization more than dexodasovement (as does
the cheap fitness alone), allows tRbo andSlopes methods to find many more
solutions passing the generalization tests, but the quureing controllers need
larger forces and are “closer from bang-bang”.

When there is a lower bound @n however, no method whatsoever finds any
bang-bang solution. Moreover, tis#d method in fact exhibits controllers using
smaller forces (on average) than tReo method. Note that th8lopes variant
was not tried (yet) for this setting.

Interestingly, the average squared weights reaches vatibgih as 14 for
the results of botlstd variants with the new fitness and CMA-ES unbounded
and as low as 69 and even 7 for tBlpes andRho variants respectively in the
same conditions. But averaging here hides the most integegtienomenon: as
can be seen on Figure 4/10, that shows the average histogfdorses values:
the Std variants are clearly bang-bang, Bl®pes method demonstrates a very
smooth behavior with all forces around 0, and surprisinghg Rho method
shows both modes, indicating that it found both kinds of Sois.
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4.4. REINFORCEMENT LEARNING OF ESN

Those findings give some hints about the actual fitness lapésc and might
help to explain the results.

Fitness landscapesFrom the above study on the weights of the solutions, it
seems that bang-bang solutions are frequent, deep and @adedptima w.r.t.
the output weights: indeed, they correspond to regionsefk#arch space with
very high values of all weights, giving saturated output mes, and small
modifications of those weights are not likely to move the ceaway from
such local optimum. This explains why CMA-ES, without a lovweund on

o, prematurely converges into one of those wells. Adding aelotound on

o prevents a too early stagnation, and favors explorations #llowing the
algorithm to find better optima for the fitness at hand ...andhe long run,
smooth optimizers are better optima than bang-bang comsnand

The situation is different for th&lopes variant, that cannot reach any of the
bang-bang commands, because its output weights are fixeld ew values).
Hence it can only find smooth controllers, but its degreesseédoms are too
limited to make this search efficient. The most interestiagecdis that of th&®ho
method: it seems that adding this additional variable gikeslgorithm sufficient
flexibility to be able to discover both kinds of solutions €déigure 4.10), thus
favoring exploration increases its chances to find smoatirgls. In some sense,
even with a smal, modifying p might be enough to find a shortcut toward a
smooth solution later in the run than by modifying all weghidividually.

Spectral Radius It has always been advocated by ESN pioneers that the upper
bound on the spectral radius was an important feature faresstul ESN use,
and the results for bot8td variants with different spectral radius seem to confirm
this. In Table 4.2 of the version with Cheap fitness, if we dsettthe low bound

for o, the success rate of Std-0.60 is better than the successfr&el-0.95.
(13.2 % vs 8.2 %) while in Table 4.3 when the new fitness is usedsuccess
rate of Std-0.60 is also better than the success rate of. 8&-(562.7 % vs 44.5 %).

However, the most remarkable fact here is that for all sg#titCMA-ES
tuning and fitness), theho variant, that explicitly optimizes the Spectral Radius,
almost always gives the best results. This is surprisingnvb@mparing to
the situation in the supervised context (Section 4.3.5)er@htheRho variant
performed the worst of all.

Further experiments were run, using t8&l variant but fixing the Spectral
Radius to the final value found by tiRho method (see the lines "Std — Opt* in
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Figure 4.10: The distribution of the output force (averagedr the successful
trials out of the 625 generalization tests) for the diffénaariants. The high peaks
at both ends of the domain illustrate a bang-bang behaviutewa peak around
0 demonstrate a smooth control. The Rho variant is the onlytoried both
behaviors (for different runs) whether or notis lower-bounded or not (see text
for more details). The above are the results for the "cheapdg”, but the results
of the new fitness exhibit the same tendencies.
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Table' 4.2). Though it generally slightly improves the résuver an arbitrary
value like 06 or 095, it does not allow to reach the same level of performance
than theRho method itself. The important feature is thgatcan be modified
during the optimization, and not the final value it reaches.

Figure 4.11 show the fing value for the success runs of foRho versions,
the top two figures are the result with the cheap fitness, therie withA = 256
andomin = 0.0 and the right one with = 13 andoy,in = 0.05, each color represent
an ESN. In this case there are not many runs can find the susclkesg®ns, but
with gmin = 0.05 the results is already much better.

The bottom two figures are the result with the New fitness, ¢ffteoine with
A = 256 andomin = 0.0 and the right one with = 13 andom, = 0.05, we can
find clearly that there are much more success runs than watlclieap fitness.
This result may indicate that in our test, each randomlytece&SN (with some
constraints) has the ability to solve the double-pole bafnwithout velocity
problem, if given enough information.

This result is proved by the following test: if evolution (g the new fitness)
is continued after the first network has passed the 200-0é$tst3: all resulting
networks are able to successfully solve more than 500 outeo625 test cases,
with a peak at 555 for one network. This is a good advantagetabe Rho
variant, which seems to be able to provide controllers tleaiegalize very well.
Unfortunately, the other published results do not proviesults of this kind, ex-
cept for one sentence in [45] that mentions that one netwackessfully solved
525 test cases.

Finally, Figure 4.12 shows the fingl and the number of evaluation of the
bestRho version, wherd = 13 andomi, = 0.05 by using New fitness. Each
color represent a ESN, the dot is the average of the optomahd the number
of evaluation, the bars is the range of the different runse Gan see that each
network has its specific optimal value fpr and that each network does behave
differently (the range of optimad, the range of number of evaluation, etc.) even
though all the learning parameters are identical. This esighat the topology of
ESN might have an important role for such a learning tasleadtlwhen the size
of ESN is small.

CMA-ES settings It has been said (Section 2.2.3) that CMA-ES was almost a
parameterless algorithm. However, the experiments predebove are another
example of the dangers of black-box use of any algorithm: abse of the
characteristics of the fitness landscape, the best resdis wbtained when
using CMA-ES in a very atypical way, favoring exploration afutbidding
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Figure 4.11: Rho variant , final values pffor the runs which successfully find
the solutions, withh = 256 ando,i, = 0.0, Cheap (top left) and new (bottom left)
fitness, A = 13 andanin = 0.05, Cheap (top right) and new (bottom right) fitness.
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exploitation by keeping far from 0. But this relates to the fithess design, not to
the optimization algorithm used.

Reservoir topologiesThe influence of the initialization of the topology of the
reservoir is clear: for instance, among the 55 runs thatgoha$l tests for the
Rho variant with CMA-ES first setting (25% of the 220 runs), 4Gevebtained
from 4 reservoirs out of 20, and 10 reservoirs could not geex single success
during the 11 runs that were launched. Together with thesidifices noted in
the supervised learning context (though their statiss@aificance could not be
measured due to the too small number of experiments), thkesmaclear picture
that the topology of the reservoir matters. Why, and how te &kvantage of this
fact, is the object of further work.

4.5 ESN vs Developmental Methods

Quite different results could be observed on the double padblem for different

(random) settings of the connections (i.e. the non-zerghis), for the same
value of the density of connection. The question is now opdmereas reservoir
computing has been proposed as a possible alternative tauimeg of the

topology of Neural Networks, it might be the case that turthigytopology of the
reservoir allows to obtain more efficient ESNs. Further waik address this
research question, and two main directions can be imagined.

The network can be built using classes of topologies (e.g.allsworld,
scale free, ...); identifying classes of network that arcieht for a given
type of problem (i.e. such that randomly built networks fréms class have a
very high probability to solve the problem at hand) wouldead relieve the
programmer from the task of optimizing the topology, resing the search space
to a parameter space, where CMA-ES proved to be an efficieht too

It might be the case, however, that for reservoir computongblem-specific
topology tuning is nevertheless required anew for eachlenob The main
difficulty will then be to design efficient techniques for tng the topology of
large networks, as most existing methods do not really sgpléo hundreds
of neurons or more. Some hints have been recently given wythe HNEAT
[201] on the one hand, and with the different approachesdase Genetic
Regulatory Networks, starting with AGE [45], though other GRdproaches can
be envisioned, too (see [156, 157] and the discussion ind®e2i3.2).
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But the benefit of using such approaches still remains to bevened, and in
particular special care will need to be paid to comparingmesr approaches with
the straightforward fully connected recurrent network rapgh: as witnessed
by Igel'results for the double pole balancing problem [1QkE latter, thanks to
CMA-ES, is able to solve quite a large class of control prolsidhat were at
some point thought to be difficult.

4.6 Conclusion

This chapter has demonstrated the feasibility of evolatipriearning of Echo
State Networks. Moreover, the flexibility of EAs opens newhgdor optimizing
not just the outgoing weights of the ESN.

In a supervised context, the results on a standard timesserediction
problem reach the same precision when optimizing the owmights than the
original results obtained using quadratic optimizatiarg ather optimization fail
to improve this precision. With a smaller reservoir, howeeptimizing also the
slopes of the transfer functions of all neurons allows ug#xh better prediction
accuracy, at a high computational cost, though.

For reinforcement tasks, the good news is that the Evolatiphearning of
ESNs works. Moreover, optimizing more than just the outgoiveights does
improve the results. Furthermore, there seems to be a higéndency of the
results on the topology of the reservoir, at least for thellssiies experimented
with here.

Hence, the results presented here do not satisfactorifweanthe question
of where ESNs stand between the two extremes of neuroevoltitiday: on
the one hand, the evolutionary optimization of the weigtita dully recurrent
neural network (as proposed in [101]), with which evoluéon learning of
ESNs shares the ease of implementation (a straightforwgptication of the
now state-of-the-art CMA-ES for parameter tuning); and oa tither hand,
the carefully crafted developmental systems that evoleettipology of highly
efficient NNs for a given task [204, 45]. Further experimargsg more reliable
test problems, and using larger reservoir sizes, are needeefinitely address
this issue.

Indeed, a side take-home lesson from this chapter regaedssifulness of
the double pole balancing problem as a benchmark for ewolaty control in
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general: the answer is clearly negative for us now (but had loiaimed by others
before), at least with the kind of fitness used up to now toleathke problem.

The lack or correlation between that fitness and the gematan tests that the
system is asked to pass to be declared successful introduceshigh random
part in the evaluation of the results, as there is no prontiaethe good fithess
will lead to the good generalization, and also as they areymays to minimize

the fitness, leading to unpredictable generalization ptse
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Chapter 5

Feature Selection in a Cortex-Like
Object Recognition Model

In this chapter, we will introduce our work regarding a visalbject recognition
model which is inspired by the biology of visual cortex. Thiedel, originally
proposed by T. Serre and T. Poggio [198], is basically a feedard hierarchical
neural network that alternates between template matchages and maximum
pooling operations. The long term goal for us is to study #iationship between
the model’s topology and performance. But for the reason gifi kibomputation
cost, the first step will be the question of how to decreasedheputational cost
while preserving the system performance, using a multitg\mary algorithm
and applying the result in the framework of a PASCAL visual tirolject
recognition challenge [140] (VOC2008).

In this model, the network output consists of standard festthat are passed
to a linear combination algorithm for the final classificattask itself. The coef-
ficients of this linear combination will be obtained by eunary optimization,
using CMA-ES (Covariance Matrix Adaptation Evolution Stpte[87, 88, 103]
detailed in Section 2.2.3.

The results show that optimizing the selection of 200 optii@aures among
1000 randomly chosen ones, we are able to maintain the peafare of the sys-
tem on the VOC2008 challenge, while decreasing the computdticost by 2
orders of magnitude. Even if our results in VOC2008 are not g&ong from the
perspective of their performance on the classificationgadkhand, considering
the simplicity of the model being applied shows that theiteista large room for
progress in the future: we simply used the default modeinggstt and there are
lots of parameters that could be adjusted.
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5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

5.1 Cortex-Like Object Recognition

Complex visual object recognition is an important domainemgputer science,
in both theory and practice. However, in spite of decadesanél lwork, the
best machine vision systems are still not competitive witlmans and pri-
mates [99, 166, 219, 198]. Therefore building a bio-ingpicemputer vision
system is an attractive research direction.

Serre and Poggio proposed a cortex-like feed-forward niaddl, 195] which
was directly inspired by the image processing mechanisnesréx and showed
excellent results in a series of image classification tak86,[198]. In this section,
we will briefly present their model.

5.1.1 Visual Object Recognition in the Cortex

The primary regions for the treatment of visual informatiby the cortex
of primates (regionsvVl and V?2) are located in the occipital lobe, in the
rearmost part of the skull [115]. Visual information is théransmitted
to higher-level treatment regions through two distinctbéatl partly con-
nected) neural routes : the ventral and dorsal streams. ®Ohgaldstream
(V1 — V2 — MT — posterior parietal cortex), sometimes called the “where
pathway” is associated with object location in space andanptvhile the ventral
streamV{1— V2 — V4 — inferior temporal cortex), sometimes called the “what
pathway” is associated with form recognition and objectrespntation. Being
interested here in object recognition/classification $aske will emphasis the
latter.

As a first approximation, basic processing of informatiothim ventral stream
is feedforward, at least for the first stages of visual preicgs This hypothesis
is supported by the short time spans required for a selectiggonse to appear
in the inferior temporal (IT) cortex cells [165]. Indeed, @®mphasized in [100]:
“Through a variety of recognition tasks, the activity of dhm@uronal populations
in monkey IT contains surprisingly accurate and robustrimation just over very
short time intervals (as small as 12.5 ms) and only about 19@fter stimulus
onset”.

The ability to learn and categorize scenes as well as thectsbyathin is an
essential and important functionality of human. In thisrfeavork, the immediate
recognition task consists in recognizing an object withscane in a very short
time delay. For this task in particular, it has been suggestat the ventral stream
may have invariance properties for the object to be receghizvhich means
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that if the same object is located at different positionspacg, or zoomed in or
out within the scene, the system is still able to recognizeTtie processing is
probably based on a rapid and parallel detection of disjumatets of unbound
features of the target category [212, 228] : an object is €instracterized by a
set of line segments that compose it; the process then datach line segment
in parallel; the object is then recognized through the ithstion in space of the
detected line segments. More recently, a psychophysigarerent [52] found
that during immediate recognition processing, spatiarnmition on the location
of the objects may be absent, which would mean that the detssdm is not
implicated in such immediate recognition tasks. Moreotiat theans the human
observers may correctly detect a target object in a rapideseze of images, but
not be able to recover even its approximate location [52].

Another fundamental property of the ventral pathway is teiron tuning
becomes increasingly complex along the feedforward patfurdhal tuning des-
ignates the fact that any given neuron responds prefeligrnita subset of stimuli
within its receptive field. In the primary visual areas, reng have simple tuning.
For example, a neuron in V1 may fire to any vertical stimulussimeceptive field.
In the higher visual areas, neurons have more complex turkiog example, in
the inferior temporal cortex (IT), a neuron may fire only whegertain object
appears in its receptive field.

Based on these research results, Riesenhuber, Serre and Ptggrated
a theory of the feedforward path of object recognition intexy that accounts
for the first 100-200 milliseconds of processing in the valingtream of primate
visual cortex [175, 194]. Riesenhuber and Poggio proposednbdel in 1999
and showed that it is able to duplicate the tuning propediageurons in several
visual cortical areas [175]. This first model’'s performam@s only evaluated on
simple artificial stimuli without real world image degrameis such as change
in illumination, clutter, etc. Hence, Serre and Poggio edtsl the model in
2005 and obtained successful results on a variety of largkesreal-world
object recognition databases with performances that coenfavorably with
state-of-the-art systems, whether bio-inspired and ri@t][1We will present this
model in the following section.

5.1.2 Standard Model Features (SMFs)

The model itself attempts to summarize — in a quantitative wa core of well-
accepted facts about the ventral stream in the visual cortex

1. Visual processing is hierarchical, and aims at buildinvgriance to position
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and scale first and then to viewpoint and other transformatio

2. Along the hierarchy stream, the receptive fields of theoes(i.e., the part
of the visual field that can potentially elicit a responserfrthe neuron) as
well as the complexity of their tuning properties (i.e., #at of stimuli that
elicit the maximal response of the neuron) increases.

3. The initial processing of information is feed-forwardr(fmmediate recog-
nition tasks, i.e., when the image presentation is rapidthece is no time
for eye movements or shifts of attention).

4. Plasticity and learning probably occur at all stages anthaly at the level
of infratemporal (IT) cortex and prefrontal cortex (PFC¥ thp-most layers
of the hierarchy.

In the present report, we used a simplification of the moaehf[194], given
in [198] and that consists of four feedforward layers of maunetworks. Basi-
cally, the model has two types neurons : so-called simpleis and complex
C units. The S units combine their inputs with a bell-shapsdnig function to
increase selectivity. The C units pool their inputs throagmaximum (MAX)
operation to increase invariance. The main idea behindribel is that by care-
fully tuning the parameters, the model can get a good balbetveeen selectivity
and invariance.

Figure 5.1 shows a schematic illustration of the model,ridkem Serre and
Poggio ’s article [198].

5.1.3 Model Detalils
S1 units:

Hubel and Wiesel first described the classical simple célth@® primary visual
cortex (V1) almost 50 years ago [99]. These cells optimapond to contrasted
bars or gratings with a preferred orientation [115] . Gahuorctions, described
by the equation 5/1, have been shown to provide a good appabixin for the
response of cortical simple cells [112].

X5+ 1Y

F(xy) = exp(—T‘z) X cos(z)\—nxo) (5.1

with X, = xcog0) +ysin(8)andy, = —xsin(0) +ycog 0) (5.2)

In the model, the first S1 layer consists in a multidimendianay of simple S1
units, where each simple S1 unit is modeled using eq. 5. hdsimplest model,
Serre and Poggio adjusted the Gabor parameters (aspect, ieftective widtho,
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Small Scale

Large Scale

Input Image

gray-value

S1

Apply battery of Gabor
filters. Here we see
filtration at 8 scales and
4 orientations (color
indicates orientation).
The full model uses 16
scales.

C1

Local maximum over
position and scale.

S2
Filter (L2 RBF) with N previously
seen patches (Pi | i=1.N}. These
patches are in C1 format. Each
orientation in the patch is matched
to the carrespanding orientation in
C1. The result is one image per C1
band per patch.

4! (nxnx4)

n

c2
The C2 values
are computed by
taking a max
over all 52
associated with
a given patch.
Thus, the C2
respanse has
length N.

Figure 5.1: Scheme of the model. A gray-value image passeagh the four
layers - S1, C1, S2, C2, form left to right. S1 analyzes the iniggerientations
and 16 scales. Then at layer C1, the image is subsampled theolagal MAX

pooling operation over a neighborhood of S1 units in botlrcepnd scale, but
with the same preferred orientation. S2 units are essBnR&F units, each hav-
ing a different preferred stimulus cross all positions acales. Finally the C2
layer performs a MAX pooling operation with the same seldgtiof S2 units,

yielding the C2 unit responses.
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Ch layer S layer
Scale Spatial pooling Overlap filter Gabor | Gabor
band S | grid (Ng x Ng) As size s & A
Bnd 1| 8x38 + || oxo | 36 | 16
Band2 | 1010 S || 15x13| 54 | es
Band3 | 1212 6 Jurxar| 73 | o1
Band4 | 14x14 1 |l 2txar | 92 | 11
Bands | 1616 5 | 2sx2s | 108 | 141
Band 6 | 1818 > | 2ox20 | 154 | 1608
Band7 | 20x20 | 10| 53%5 | 58 | 19
Bandg | 2x2 | o0 [ BEE 8 | B

Figure 5.2: Summary of the S1 and C1 SMFs Parameters

wavelengtih and preferred orientatiofh) according to the tuning properties of V1
simple cells, that were determined experimentally by twitedeént groups [213,
214,186, 185]. The sizes of these Gabor filters ranged fram i 37x 37 pixels
by steps of two pixels. Four discrete preferred orientati@h, 45°,90°,and 135)
were used, thus leading to 64 different S1 receptive fieldsyp total (16 scales
x 4 orientations).

C1 units:

The next layer consists of C1 units. It corresponds to theadledt cortical
complex cells, which already show tolerance to position sind experimentally.
Because they pool the outputs from S1 cells that are neighbdise previous
layer, the receptive fields of C1 cells is twice as large as ¢aimple cells.
Basically, the C1 cells implement a MAX operation of the S1 demgells they
are connected too. That means the response of a complexoar@sponds to the
response of the strongest cell from the previous S1 layértivé same orientation
and from the same scale band.

C1 units are organized in scale bands. Scale band 1 containsliSlon-
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nected to S1 cells with sizesx77 and 9x 9, scale band 2 contains C1 cells con-
nected to S1 cells with sizes ¥111 and 13« 13 and so on.... Hence there are 8
scale bands in layer C1 for 16 scales in layer S1 (see figure Bh@)response of a
Clunitin scale band 1, for instance, is computed by subsamisie output of the
S1 cells of size & 7 and 9x 9 that are situated beneath the C1 cell, within a grid
of size 8«8 pixels. The output of this C1 cell is just the max of thesex@S1
cells. Note that C1 responses are not computed at every fopsikl locations
in the image: C1 units overlap by an amouni\gipixels (As depends on the scale
band considered, see figure|5.2). The oveflggiminishes the total number of
cells in layer C1, thus avoiding too many redundant cellsimlttyer. This makes
the computations at the next stage more efficient. Agaisgtherangements were
adjusted so that the tuning of the C1 units matches the turfiagtaal complex
cells as measured experimentally (see [197] for details).

Figure 5.3 is an example given by Serre [194] that schenwalizes scale and
position tolerances are obtained at the C1 level. ThanksetdtAX operation
of the horizontal bar (that of the “A” letter), the C1 cell diaps the same output
whatever the location of the horizontal bar within its reoepfields (ie the under-
lying S1 cells it pools over). Tolerance to scale changebtained with the same
mechanisms.

Learning stage:

Before using the S2 layeN (e.g., 1,000 here) prototypes or patches are clipped
and stored during a specific learning process. The learningeps consists
of presenting to the network to a large number of images frben database
and computing the network response up to layer C1. A patchfisetkas the
response to a given image of all the C1 cells within a contiguagion within
layer C1. During the learning stage, a large pool of patchesesponding to
neighborhoods of various sizes and located at random posijtiare extracted
from each image. The patches are furthermore extractedsaato4 orientations,
l.e., a patchP, of sizen x nin fact represents the output ofx n x 4 C1 cells

to a given image. In the following, we extracted patches of fdifferent sizes:
4x4,8x8,12x 12 and 16x 16. The final step consists in selecting at random
(uniform distribution)N patches amongst the stored ones.

Note that an important question for both neuroscience amgpater vision
regards the choice of the unlabeled images from which thehpatare extracted
as well as how to select th¢ patches among all the stored ones. In other words,
the issue amounts to find how to learn in such an unsupervisgcdawocabulary
of elementary visual features. We will present below resah the use of an
evolutionary method in this perspective.
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C7 c7
Local softmax over
pool of S7 cells
A _ a
A = T S7 g
] I \
strongest S7 atferent
S7 alferents from the pool

Figure 5.3: An example given by Serre in [194] showing howesead position
tolerances are obtained at the C1 level: Each C1 unit receipess from S1 units

at the same orientation (e.g., O degree) arranged in baraisea€h orientation,

a band S contains S1 units in two different sizes and varioggipns (grid cell

of size NCS1 X Ng’l). From each grid cell (see left hand side) one measurement
is obtained by taking the maximum over all positions: thiswas the C1 unit

to respond to a horizontal bar anywhere within the grid, flog a translation-
tolerant representation. Similarly, taking a max over the sizes (see right hand
side) enables the C1 unit to be more tolerant to changes ia.scal
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S2 units:

Each cell in layer S2 computes the Euclidean distance betwee of the selected
patchP, and the response of Layer C1 to a new (unknown) image. To this ai
the response of S2 cell layer consists of a Gaussian Radiad Basction (RBF)
@(x) = exp(—||x—Pj||?), whereP; is the real-valued vector Paté¢handx the
response of layer C1 to the current image.

Each S2 cell pools over afferent C1 units from a local spatdgmborhood
across all four orientations. Layer S2 thus containd\8maps, each representing
the response of one of the 8 scale bands of Layer C1 comparee fgadch?, out
of theN selected ones.

C2 units:

The final layer, layer C2, computes the global maximum of th&2lunits over

all scales and positions. As explained above, one S2 mapumsatge match
between a selected prototyBeand the input image at every position for a given
scale band. One C2 units only keeps the maximal value of thea® mcross all
scale bands for a given patéh The final system output for a new image is thus
aN-dimensional vector, whend is to the number of patches extracted during the
learning stage. Note that one C2 unit expresses the maximuns&fmap over
the whole image, which implies that its response is not dégenon the object
location within the image.

The Classification Stage:

Hence every new image passes the feedforward system arub yaéN-value
vector in the output of layer C2, whose elements are caismhdardModel
Features (SMFs). The SMFs are then further passed to a shimgde classifier
(SVM or boosting in the original article). This part of theataing is a simple
supervised learning, since all the labels are given for thminhg set, and the
fitness to be optimized is just the misclassification rate.

5.1.4 The Perspectives of the Model

Serre et al. [198] list three major perspective directidrad tould be followed to
further improve the performance of their architecture :

 Addition of extra layers (e.g., S3, C3, S4, etc.)

» Applying a standard feature selection technique.

121



5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

» Auto parameters tuning through learning.

In our study (see above), we focused on the second item ofishis.e. de-
velop strategies to select the patches (standard feataras)optimal way: from
the 1000 randomly chosen patches, we will try to select asafepossible while
maintaining the classification rate. And it could signifitgneduce the high com-
putational cost of this model.

5.2 PASCAL Visual Object classes Challenge
(VOCO08)

The image database we used is from the PASCAL Visual ObjessetaChallenge
2008 [140]. The goal of this challenge is to recognize olsj&é@m a number of
visual object classes in realistic scenes (i.e. not preaseted objects). There are
twenty object classes (e.g. Figure 5.4):

* Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbiteent
* Indoor: bottle, chair, dining table, potted plant, sofdirtonitor
Two main tasks are:

* Classification: For each of the classes, predict the pregabsence of at
least one object of that class in a test image.

» Detection: For each of the classes, predict the boundirgsof each object
of that class in a test image (if any).

The VOC2008 database contains a total of 10,057 annotatepgesndhe data
is released in two phases:

1. Training and validation data with annotation are reldagih the first de-
velopment kit before the competition;

2. Test data without annotation is released later. Aftergetion of the chal-
lenge, annotation for the test data will be released.
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Figure 5.4: Examples of the 20 classes of VOC challenge

5.2.1 Classification/Detection Image Sets

Table/ 5.1 summarizes the statistics of the main image setsh Ene gives the
statistic of each target class. The column “train” mearninitng set and the column
“val” means validation set, while the column “trainval’ @& a sum number of
both training and valid sets. The column “img” means how mangges have
the target class, while the column “obj” counts how manyéampjects exists in
these images. The number of “obj” is always larger than thaber of “img”
since within the same image can exist more than one targetofg.g. a picture
of family in the “Person” class will always have more than 2soas (obj) in the
same picture (img)).

Table/ 5.1 summarizes the number of objects and images fér @ass and
image set. The data have been split into 50% for trainingfatbn and 50% for
testing. The distributions of images and objects by classpproximately equal
across the training/ validation and test sets.
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Table 5.1: Statistics of the main image sets. Object sizgiist only the “non-
diffcult” objects used in the evaluation.

train val trainval
img obj img obj img obj

Aeroplane 119 159 117 157 236 316
Bicycle 92 133 100 136 192 269
Bird 166 239 139 237 305 476

Boat 111 170 96 166 207 336

Bottle 129 229 114 228 243 457

Bus 48 61 52 68 100 129

Car 243 426 223 414 466 840

Cat 159 186 169 192 328 378

Chair 177 313 174 310 351 623

Cow 37 61 37 69 74 130
Diningtable 53 55 52 55 105 110
Dog 186 238 202 239 388 a77

Horse 96 139 102 146 198 285
Motorbike 102 137 102 135 204 272

Person 947 1996 1055 2172 2002 4168

Pottedplant 85 178 95 183 180 361
Sheep 32 67 32 78 64 145
Sofa 69 74 65 77 134 151

Train 78 83 73 83 151 166
Tvmonitor 107 138 108 136 215 274

Total 2113 5082 2227 5281 4340 10363
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5.2.2 Classification Task

We participated in the classification task of the VOC2008lehgle. In this task,
for each of the twenty object classes, the goal is to prelécptesence/absence of
at least one object of that class in a testimage. The outpurt fine system should
be a real-valued confidence of the object’s presence so tpata@asion/recall
curve can be drawn. And the result of the challenge was jutigeitie average
precision (AP). The following Section explains how to cortgptihe AP in detalil.

For each image, the system is expected to output a real-tlatieepresents
the confidence of the object presence within the image andvbaefer to as the
VOC confidence. This VOC confidence could be interpreted agtbbability
that there is at least one target object with the image. Haladses, we first
construct the vectov confidence Where thea-th element/configence gives the VOC
of imagei. VconfidenceiS then sorted by decreasing order, so ¥ahfidence >
Veontidencej Vi > J-

The next step consists in comparing the real-valued préibediof target
object inV ¢onfidence to their real label. Two vectory/; andV; are created to this
aim. Each elemen¥;; indicates how many positive images (those images that
indeed have the target object) exist between element O antkeli of the sorted
Vconfidence V¢ Vector collects the same information for negative imagbesg
images that do not have the target object). For instanckerittare 150 positive
and 50 negative images before element 200 @ffigence the 200th element ok
will be 150 and the 200th elementdf will be 50.

The final results are stored in vecto¥&recision and Viecall:  Voprecision
vector registers the percentage of positive image befoe shme po-
sition element ofVconfidence  Vprecisionn = W,i/i (for the example above,
Vprecision200 = 150/200= 0.75). Vrecal is justV divided buy the total number of
positive images in the image set. Therefore the first elermEYitecq) is close to
0 and the last one is always 1.

To investigate these final vectors, one can plot each elen@n¥ eca) as a
function ofi. If the system can give good confidence, this curve will dtarn
0 and quickly increase to 1 in a very short tim¥precision can be plotted the
same way. A perfect system is expected to produce a curvegténom 1, then
decreasing to the percentage of positive images.

Here we give an example of these results: let us say we hawid2@es and
half of them have the target object. We illustrate in figurg Bow to interpret
the quantifiers above with three kinds of classifiers. The &re is the best
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Figure 5.5: An illustration of the behavior of 3 synthetiassifiers. The top
row shows thé/eca) curves and the bottom one thfgrecision Curves for the best
possible classifier (first column), a random classifier (f@dzblumn) and the
worst possible classifier (third column).

classifier ever possible. With this classifier, the 500 pasiimages are sorted
in front of the list and are the first 500 elements\Ofonfigence 1N this case,

Viecali = 1/500Vi < 500 andVigcanj = 1 Vi > 500, while Vprecisioni decays

rapidly from 1 to the total percentage of positive imageshimm $et. The second
classifier is the worst one possible and puts the 500 positiages at the end of
the Veonfidence The recall curve is zero up to 500 then increases lineatilew
the precision curve is zero up to 500 then increases to tlad¢ percentage of
positive images in the set. Finally, the last classifier @edcolumn in the figure)
is just a random one, giving a random confidence to each imidgerecall curve

increases slowly to 1, reaching it only for the last imagejlevthe precision

curve decreases rapidly to the total percentage of positigges in the set.

An alternative representation consists in plotting thecisien/recall in the
same figure, i.e. plotting, for ea¢hVprecisioni @s a function oMecaj. Figure
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Figure 5.6: Precision/recall curve, the x-axis is the feealues and the y-axis
is the corresponding precision value, the left is from bésisifier, the middle is
from the random classifier and the right is from the worstsifaes

5.6 shows the result for the three cases illustrated abovee average preci-
sion (AP) is then computed from these precision/recall esirvin practice, the
range of recall is divided into 11 sub-part$Q}, [0.1,1.0], [0.2,1.0], ... [0.9,1.0]
and 10. The AP is the average of the largest precision value in sabkparts:
AP = L 51% max(precisione recall([15, 1])). The AP fitness is also called VOC

fitness in this chapter.

For the three synthetic classifiers illustrated above, tRdithess iISARyest=
1.0, ARandom: 05234 andb\Pworst - 05

An example code for computing the precision/recall and ARsunee is pro-
vided in the development kit [140].

Note that, in the system developed by Poggio and collabatee final clas-
sification stage results in a simple binary response : thetiimpage is guessed
to contain (output = 0) or not to contain (ouput=1) one obfeelbnging to the
image class under study (car, plane...). In our case hoywneabove mentioned
definition of fitness is based on a real-valued confidenceatdr and not a bi-
nary answer, e.g. whether the target is guessed to exidte image scene or not.
We thus first use an Evolutionary Algorithm to optimize a &nelassifier that
produces the VOC confidence for every images, then compatéfh(average
precision) of the training set and validation set. For thpsiroization step, the
fitness is simply the AP, to be maximized: the EA seeks to apérthe coeffi-
cient of the final linear classifier so as to maximize the APe&aond layer will
be added on top of this EA, trying to select the patches in @imapmanner. A
second evolutionary algorithm will wrap the system desatibbove, resulting in
amulti-evolutionary algorithm.
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5.3 Experiments

5.3.1 Using EC Algorithms with SMF Model

As explained in the previous section, instead of giving aaminiguousYes or
No answer for the question whether there exists a targetbinj¢he test image,
the VOC challenge requests an intermediate fitness (the \@d@dence) for the
probability that the target object exists in the image, idesrto be able to sort
the ensemble of images and compute the final fithess (AP).Kiimisof fithess
is useful for real-world applications (e.g. image searchimes), but it cannot
be directly applied to the conventional SMFs model with SVilssifier. Since
the relationship between the VOC confidence and the AP fitrsessnlinear,
and almost no prime knowledge about the relationships kmivwkem can be
used directly, Evolutionary Algorithms seems to be a gooaiahfor this kind
of problem. The EC algorithm here is used to optimize a moresldinear
combinator to create VOC confidence for each image, and théffiness used
by EA is the AP fitness.

Therefore in our study, we apply evolutionary optimizatissing CMA-ES
(see Section 2.2.3) to optimize the VOC confidence for alecbglasses. In a
first step, we will use CMA-ES to optimize the weights of a lineambination
(Section 5.3.3). But because there are 1000 features gdtfrera the random
choice of patches in layer C1, and in order to try to reduce timeptexity of the
overall algorithm, we will also implement a multi-level Butionary Algorithm
(Multi-Evolutionary algorithm for short) to optimally selea small subset (200
here) of those 1000 features while preserving the recagnéccuracy. This will
be presented in Section 5.3.4

5.3.2 Pre-training of SMFs model

We will first briefly present the pre-training process for ®iglFs model before
applying our optimization approach.

Because the VOCdevkit is released in Matlab code and the deagrgm
released by Serre is also in Matlab code, we build our ownrpragn Matlab on
the basis of the Serre’s versfoand keep the original parameters settings. The
pre-training process is as follows:

* First, all training and validation images have to be norineal to a gray

1The author gratefully acknowledges Thomas Serre, McGolestitute for Brain Research,
MIT, for kindly providing the Matlab code of his program
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pixel image and resized so that the larger axis is 140 pixeitevkeeping
the ratio between X and Y axes constant. This was done oneall@363
images (see Table 5.1).

« Second, the normalized images are processed through tflaa&C1 layers
with the original parameters given in Figure|5.2. The finapaotifor every
images is saved for the next step.

» Third, for each image among the 20 classes, we select thusgeis from
the training set that contain at least one example of thes aagect (car,
plane...). These images are used to generate 1,000 patoneshie C1
outputs. With 4 patch sizes (44, 8x 8, 12x 12 and 16x 16) this means
that we select 250 patches per patch size at random positidhe output
of Layer C1.

» Fourth, each image from both the training and the valigasiets yields a
S2 map by using the previous C1 patches. Since there are 1516i0es
for each class, the C2 layers will give a vector whose size08QLfor each
object class. This vector gives the probability of the imhgeing an object
which is similar compared to the randomly chosen C1 patches.

 Finally, for every one of the 5082 training images and evemg of the
5281 image from validation set, we have 2@Q0-dimensional vectors (20
object classes and 1000 randomly chosen patches) that cexetdater for
optimization.

5.3.3 Linear Combination using CMA-ES

In this first version (referred to as ti@&MA version in the following), each image
in each object class is thus associated to a 1,000-dimeaisieator, the output of
the C2 layer. The goal is then to aggregate those 1000 scélesvato a single
value, that will be given as the VOC confidence for the contipeti The idea is
to use optimize a linear combination of those 1000 valuesderdo optimize the
VOC confidence, and an Evolutionary Algorithm is our preddrchoice.

However, because a search space of dimension 1,000 is gmftara con-
ventional CMA-ES, we will apply here a specific version of CM&-[proposed
in [103] and computationally less expensive (but also lessist), the(1+ 1)-
CMA-ES. The (14 1)-CMA-ES generates one offspring from the unique parent
and keeps the best of both — see Section 2.2.3). It uses aovetpvariant of the
one-fifth success rule for the step-size adaptation in platee usual path length
control, and an incrementaln?) Cholesky update of the covariance matrix re-
placing the originab(n?) covariance matrix update altogether with the iterative
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o(n®) eigendecomposition of the covariance matrix. That makessible to ap-
ply (1+1)-CMA-ES for a 1000 dimensions problem where the standaal#hm
would reach its limit in terms of CPU cost.

The search space here is hence the 1000-dimensional spteeveéights of
the linear combinations of the original 1000 features frove €2 layer, and the
fitness is the resulting AP (Average Precision) that is oletdiwhen this linear
combination is used as VOC confidence to rank the images.

In spite of using the modified1 + 1)-CMA-ES, this CMA version has
nevertheless a high computational cost because of the dioreof the search
space. Hence, in order to cope with this cost, we only run gsténization
for each object class (whereas CMA is a stochastic optinoimatigorithm, and
should thus be ran several times on the same data in ordet telgdly robust
results).

During the optimization, the Average Precision was comgite both the
training set and the validation set. Figures 5.7, 5.8 angfeSent the results of
the first 10,000 iterations for each class (the fithess onanghs very slightly
after the first 10,000 iterations). The individuals with thesst fithess on both the
train sets and the valid sets are then used to classify thedgsand the obtained
results were submitted to the VOC2008 challenge.

Looking at Figures 5.7, 5.8, and 5.9, we find that during theludion, the
Average Precision of the (unique) individual in the popiolatincreases, which
supports that for such large dimensions (1,000), (the 1)-CMA-ES can still
find the way to optimize the solution. However, the red lin&/@fC fithess (AP)
on validation set increases at the beginning, but then taitontinue this initial
trend: the Average Precision is only marginally improvedimatraining set. In-
terestingly, the Average Precision does not decreasereitiere seems to be no
danger of overfitting, even though the generalization tesuk disappointing.

5.3.4 Multi-Evolutionary Optimization

Using and handling 1,000 standard features has a certaiputational cost. In
this Section, we present another approach to Average Rredptimization, that
will be called theMEVO version, that tries to tackle this issue without degrading
the recognition results. The basic idea is that most probdlgicause the 1000
features were chosen randomly at layer S1, only a few of threnuseful for the
recognition task. In order to try to validate our hypothéisa many features could
be dropped without decreasing the recognition rate, weamphted a two-level
MEVO, to optimally select 200 standard features (patchetbef trials with 500
and 900 features lead to similar results).
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Figure 5.7:Behavior of theCMA version for classes 1-8 (aeroplane bicycle bird boat bbti&e
car cat). The blue line presents the Average Precision oéntisolution of thg1+ 1)-CMA-ES
on the training set and the red line presents its Averagadtwacn the validation set.
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Figure 5.8: Behavior of th€EMA version for classes 9-14 (chair cow dining-table
dog horse motor bike). The blue line presents the Averageigtoa of current
solution of the(1+ 1)-CMA-ES on the training set and the red line presents its

Average Precision on the validation set.
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The main optimization loop in MEVO consists in an Evolution&algorithm
that optimizes the choice of those 200 features among tr@ B@ailable ones.
In order to compute the fitness of any of such 200 subset ofifesit an inner
evolutionary loop uses the same CMA-ES optimization for @A version to
optimize the linear combination of these 200 chosen featwith respect to the
Average Precision. This optimized Average Precision isfithess of the subset
of 200 individuals for the outer EA.

The outer EA (the main optimization loop) searches the sp&d®00-bits
long strings that contain exactly 200 1’'s and 800 Q's, a 1datilng that the corre-
sponding feature belongs to the subset of selected feaflinesevolution engine
is a(10+ 70)ES 10 parents generate 70 offspring, and the best 10 are edtain
to become the parents of the next generation. No crossoweaimp is used in
our experiment. The only variation operator is the bit-exaie mutation operator
which swaps a randomly chosen 1 with a randomly chosen O isttitey. This
operator makes sure that the total number of chosen featuaésays 200.

The fitness of a given subset (a bitstring) is computed usia@MA version
above: a linear combination is obtained using the- 1)-CMA-ES to maximize
the Average Precision — and this optimized AP is returnechaditness of the
corresponding bitstring.

To each subset (or 1000-long bitstring) is associated a -tid@@ntional
real-valued vectora which stores the optimal values for the weights of the
linear coefficients giving the VOC confidence, result of theer-loop CMA-ES
optimization. The next application of CMA optimization on affispring of this
individual will use those stored values as the starting poirthe next CMA-ES
optimization in order to save computation times.

The Average Precision of the best individual of the offsgpnoopulation (out
of 70), both in training set (blue) and in validation set {tedre presented in
Figure 5.10, 5.11 and 5.12. We find that the fitness in traisétgncreases quickly
at the beginning of the optimization, and then stops inengad his may suggest
that it is not a hard task to chose 200 optimal features fr@@drandomly chosen
features for the training set. But their generalizationighig poor as the fitness in
validation set does not increase much. Furthermore, a Ipeaks are observed.
This might correspond to the selection of special featusdsch are harmful or
benefit only for part of the validation set.

Since there is no significant improvement for the best imllial in validation
set, the individual which has the best train+valid fithessenspplied to the test
set, and the results were submitted to the VOC2008
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its Average Precision on the validation set.
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Figure 5.12: Behavior of th#IEVO version for classes 15-20 (person potted-
plant sheep sofa train tv). The blue line presents the AeeRagcision of current
solution of the(1+ 1)-CMA-ES on the training set and the red line presents its
Average Precision on the validation set.
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5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

We will give the final test results and then compare these twthods in the
next section.

5.3.5 Results

Table 5.2 shows the final results for the 18 different pgytiots’ algorithms that
participated to the VOC 2008 challenge (our two own methaodsralicated with

bold faces). We immediately note that our two methods dorlgle®t compete

with the best methods for each class. Nevertheless, outsesa comparable to
those of several other methods patrticipating in the chgéler-urthermore, one
must keep in mind that all the other methods (even among thaseshow worse
results than ours) are developed by research groups withgaldsting expertise
in computer image analysis. We only leveraged the selftngi properties of
the original neural network-based method and almost paearree evolutionary
strategies, to reach, with no a priori expertise on compuigeon, a similar level

of performance than several of these groups. We think tietglan encouraging
indication of the promises of this research direction. Mwer we think that our
methods still offers a wide room for improvement. To this dieus first proceed
in the following to a deeper analysis of our results.

5.3.6 Result Analysis

In Table 5.3, we summarize the VOC fitness results of@MA version and the
MEVO versions of our approaches, with separate comparison oéghdts on the
training set, the validation set, and the test set. We adsthie corresponding best
fithess results among all participants of VOC 2008.

In Figures 5.13 and 5.14, we further give similar informatwith histograms
of the performance of CMA and MEVO, comparing their fitness loa training
set (deep blue), validation set (sky blue), and test setofyglto the best VOC
2008 fitness (brownish red).

From these tables and figures, we find that the results of MEN@e train-
ing set are statistically better than that of CMA. On the otierd, comparing the
results obtained on the validation set and on the test sedtatistical difference
can be seen any more, but most of the time, the MEVO versiansézgeneral-
ize better than the CMA version (with some noteworthy exceystilike the cow
class!) : using only 200 features allows to slightly ovetiig¢ training set, with-
out degrading too much the generalization results, evenawpg them on many
classes.

However, when compared with the best VOCO0S8 results, our é&sstltr look
much worse. Furthermore, for several object classes, suitseon the training
set are better than the best VOCO08 results (e.g. CMA versiodldsses 5, 6, 10,
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aero bicycle bird boat bottle bus car cat chair cow dining ddgorse  motor person potted sheep  sofa train tv
plane table bike plant monitor

BerlinFIRSTNikon ~ 72.4 374 511 574 245 385 539 447 246.256 28.6 403 57.0 53.5 83.0 210 214 286 66.2 50.2
CASIA_LinSVM  50.8 215 31.8 418 183 7.7 357 406 306 49 .17 315 293 22.0 73.4 79 137 116 189 31.0
CASIA_NeuralNet  47.6 127 284 353 127 58 316 345 227 .7 3 6.0 236 219 16.1 69.1 8.1 5.0 8.7 159 151
CASIA_NonLinSVM  35.1 19.7 242 405 137 38 305 371 302 85 62 311 204 263 74.5 51 144 9.3 103 21.8
ECPLIAMA  54.9 253 311 298 189 214 337 255 284 - - 212772 305 68.5 - - - 317 26.6
FIRST_SC1C 36.6 168 173 26.9 76 140 290 285 229 4.3 82B.2 148 30.3 64.5 10.3 55 13.2 9.6 24.0
FIRST_SCST 36.6 168 173 26.9 76 140 290 285 229 4.3 828B.2 148 30.3 64.5 10.3 55 132 9.6 24.0

INRIASaclay CMA  52.4 150 236 339 102 103 327 324 26432 160 222 185 27.3 64.8 8.6 4.4 79 200 30.4

INRIASaclay_MEVO  50.2 195 179 321 130 149 342 306 231 44 148 210 131 26.1 65.7 7.6 74 175 165 30.6

LEAR_flat  80.1 518 605 669 291 520 574 586 487 31.0 239.476 64.2 64.6 87.0 286 333 426 731 59.8
LEAR_shotgun 811 529 61.6 67.8 294 521 587 599 485 320 386 _47.9 654 652 870 29.0 344 431 743 61.5
SurreyUvA_SRKDA  79.5 543 614 648 _ 300521 595 594 489 336 378 46.0 66.1 64.0 86.8 29.2 423440 778 61.2
TKK_ALL_SFBS 77.9 473 524 610 279 455 535 555 476 826. 408 46.1 58.6 58.3 83.5 26.4 243 392 703 56.9
TKK_MAXVAL 76.7 473 516 608 283 446 542 555 478 212 9.3 46.1 588 55.9 83.3 264 243 419 702 52.4
UVA_FullSFS  79.8 53.0 613 657 289 465 584 589 477 254854 452 642 59.6 87.0 31.0 353 446 747 60.9
UVA_Soft5ColorSift ~ 79.7 521 615 655 29.1 465 583 574824 279 383 46,6 66.0 60.6 87.0 _ 318422 453 723 _64.7
UVA_TreeSFS 80.8 532616 656 294 499 585 594 480 30.1 39.6 450 67.360.4 87.1 301 415 454 743 59.8
XRCE 789 48.0 58.7 652 290 448 56.1 56.3 437 328 30.4 7 3961.2 61.7 86.8 229 342 442 684 59.1

Table 5.2: Statistics of the main image sets. Object siEifists only the “non-diffcult” objects used in the evdioa.
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5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

aero bicycle bird boat bottle bus car cat chair cow
plane
Train 67.0 40.6 35.0 54.4 36.0 60.4 44.6 54.9 425 57.8
Val 58.4 303 228 333 21.8 30.8 38.0 311 336 304
Test 52.4 150 236 33.9 10.2 10.3 32.7 324 264 132

Train 69.1 44.5 41.4 61.6 42.6 59.3 49.7 520 50.2 734
Val 57.4 29.6 24.0 39.9 224 39.9 38.2 314 369 309
Test 50.2 19.5 17.9 32.1 13.0 14.9 34.2 30.6 231 4.4

Best of VOC08 8l.1 54.3 61.6 67.8 30.0 52.1 590.5 50.9 489 336

o< mZ|>» 20

dining dog horse motor person potted sheep sofa  ftrain tv
table bike plant

Train 425 35.9 32.3 48.1 77.1 38.4 57.8 51.39 43.3 55.0
Val 321 26,5 252 30.4 69.3 18.7 35.3 25,6 26.0 37.0
Test 16.0 22.2 18.5 27.3 64.8 8.6 4.4 7.9 200 304

Train 50.0 37.6 43.7 54.9 75.8 41.2 56.7 61.0 583 583
Val 314 29.4 25.6 36.3 68.6 22.2 40.7 26.2 330 37.2
Test 14.8 21.0 13.1 26.1 65.7 7.6 7.4 175 165 30.6

Best of VOCO08 40.8 47.9 67.3 65.2 87.1 31.8 42.3 454 778 64.7

o< mZ|Ir»r 20

Table 5.3: Statistics of the main image sets. Object siaisists only the “non-
difficult” objects used in the evaluation.
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Fitness
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Object Class

Figure 5.13: CMA version by comparing the fitness in trainieg (sleep blue),
valid set (sky blue), test set (yellow) and the best VOC 200&séis (brownish
red). The X axis is the 20 index of object class and the Y axilsasvOC fitness.
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Figure 5.14: MEVO version by comparing the fitness in tragnéet (deep blue),
valid set (sky blue), test set (yellow) and the best VOC 200&sés (brownish
red). The X axis is the index of 20 object class and the Y axisasvOC fitness.
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5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

11, 16, 17 and 18, and MEVO version for class 5, 6, 9, 10, 111T76Gnd 18).
But even for these classes, the results on the test set alewease. This may
indicate that the optimization processes do some sort atfitieg after all, and
the MEVO approach selects features that are too specificeaféiming set, thus
failing to generalize well.

In agreement with the latter hypothesis, this generabmatssue seems to
depend on the object class, too. Indeed, Figure 5.13 andeFtgi4 show that,
for classes 1, 3, 4, 7, 8, 14, 15 and 20, the differences betteeperformance
on the validation set and the fitness on the test set are mualtesrar can even
be reversed (yielding. better performance on the validatet).

Finally, we emphasize that the good news here is that usityg2@0 selected
features/patches among the 1,000 randomly chosen oneesults are as good
as using all the 1,000 features. Since the CMA is much fast@006rdimensional
problems than with 1000-dimensional ones, decreasing dted humber of
patches by an optimal selection mechanism would enable dsvielop strategies
to optimize the topology of the SMF model itself, which is mntly out of reach
for computational cost reasons.

In theory, reducing the problem dimensionality frodp to N», the computa-
tional cost associated with CMA-ES can be reducedNy/N,)? [103]. In our
case, withN; = 1,000 andN, = 200 this theoretical limit would represent an
improvement by a factor 125 in the computation cost. In peacthis rate may
however vary according to a lot of others experimental daworalisuch as the com-
putation cost of simulation and the implementation of thegpam. We find that
in our case, on an Intel(R) Xeon(R) CPU 2.50GHz computer, onkigen run
of CMA with 200 dimensions takes 4B8&on average, while the same task with
1000 dimensions needs 811bSon average to complete. The ratio is thu466.
We emphasize that this ratio is just based on a few expersrant is expected
to depends on a lot of other experimental condition. But it steans that the
computation cost may be reduced by circa 2 orders of magnifude use the
optimal features in this optimization problem.

5.4 Conclusion

In this chapter, we presented the SMF model for the recagndf visual object
and applied this model to the VOC 2008 challenge. The restltsv that the
auto-selection feature can reduce the computation costesqthe performance
of system. But the generalization capacity of the system sderdepend on the
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5.4. CONCLUSION

feature selected. Future work will try to optimize the tampt of the connec-
tions between the layers of the SMF model, and to optimizp#nameters whose
values in the current work were taken without modificaticmirref. [198].
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Chapter 6

Conclusion

This dissertation has introduced our study of three differartificial neural
networks models: Self-Organizing Map (SOM, Chapter 3), E8tates Network
(ESN, Chapter 4) and Standard Model Features (SMF, Chaptaievill now
summarize our findings, and sketch some directions for éuntbsearch.

6.1 Summary of Results

6.1.1 Evolving SOM Topology

The first part of our work, Chapter 3, directly addressed issfuiie influence
of the topology on Self-Organizing Maps. The task we considéor SOM net-
works was the classification of handwritten digits. A modifion of the original
SOM practice was to change the neighborhood relationsbip fEuclidian dis-
tance to graph distance for weight updates, so that topatamgification resulted
in modified dynamics.

In a first step, we empirically explored the influence of srnaikld-like topol-
ogy modification of the standard regular SOM topology on tegggmance for
the task at hand. The small-world topology is created by nmegithe connec-
tions of a regular SOM network with a probability By varying the rewiring
probability, we tracked the performance of different taqgpés in the handwritten
digits recognition task and found out that, in this classagfdlogies, topology
has a small impact on the performance. Furthermore, it doesaem to influ-
ence the robustness to neuron failures, at least for lomgiteatimes. This result
may indicate that the performance of the network is only Wweaéntrolled by its
topology, at least for such learning tasks.

We then addressed the inverse problem, and evolved SOMagipsl of the
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same class with the goal of maximizing the performance orm#melwritten dig-

its recognition. The evolutionary algorithm used a direspiresentation of the
network topology, where mutation directly manipulates ¢banections. Unfor-
tunately, because of the high computation cost of such &walks; we could only

apply such evolutionary algorithm to find the optimal togploof a small net-

work (100 neurons). At the end of optimization, however, pleeformance of

the best network is improved by almost 10%. All evolved ne&scare ‘'more

random’ than the initial small-world topology populati@nd display a more het-
erogeneous degree distribution, which may indicate a tend® evolve toward

scale-free topologies. Unfortunately, in order to confihis tendency with less
ambiguity, larger networks should be considered.

6.1.2 Evolving Parameters and Hyper-parameters of ESN

Reservoir Computing is an alternative to the fine tuning of Ndy®togy for each

task, and has recently received a lot of attention. Themaigdea of Echo State
Networks, as proposed by Jaeger, is to rely on random spamsections within a

very large network and to simply combine them linearly. Téology is governed

by some hyper-parameters, and only the out-going weigbte@timized, leading

to a quadratic optimization problem in the supervised le@nase. The question
remains about how to tune those hyper-parameters for a tagén and whether
the ESN approach can be efficient in other contexts, e.g.es@mnforcement

learning tasks.

In Chapter 4, we demonstrated the ability of CMA-ES, the stéithe-art
method in evolutionary continuous parameter optimizatioefficiently optimize
ESN parameters and hyper-parameters for both the standpedvised learning
context already used in previous studies and for the dopdle-balancing,
a typical reinforcement learning task. Indeed, the fleiibibf Evolutionary
optimization allowed us to optimize not only the outgoinggies but also, other
ESN parameters (the Readout, Spectral Radius, Slopes of tlrenseactive
function).

The combination of ESN and CMA-ES was first tested on a stantiauel
series prediction problem, and validated against the @ii@doptimization
approach. With the standard parameter setting of an ESNMIihneurons, the
results show that CMA-ES can reach the same precision whemiajtg the
output weights than the original results obtained usingdeatéc optimization.
With a smaller reservoir, surprisingly, optimizing onlyetslopes of the transfer
functions of all neurons allowed us to reach even a bettetigien accuracy,
though at a higher computational cost.
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In the context of the double-pole balancing, the results ofACES applied to
ESN optimization are compared to those of the best topolegsring methods
in neuro-evolution. For such a reinforcement learning tés& good news is that
Evolutionary Learning of ESN does work: our results are atlével of the best
published results of neuro-evolution methods. Moreovptintizing more than
just the outgoing weights does improve the results. Fumlbeg, there seems to
be a high dependency of the results on the topology of thevaiseat least for
the small sizes experimented with here.

6.1.3 Feature Sub-Sampling in SMF Bio-Inspired Approach

The issue of the topology of the information processing Wlovk has received
many inspirations that are strongly influenced by the studgictual biological

processes, when sufficient information has been gatherduolygists. This is

the case for the biology of visual cortex, and Chapter 5 hasemtnated of a
bio-inspired model of the visual cortex proposed for objgetection by Serre
and Poggio. Here, the topology is specifically designed ttcimthe recently

researches of the biological process. However, severa¢dse@f freedom remain
in the proposed topology, leaving room for improvement.

We applied the Standard Model Features of Serre and Pogthe @8ASCAL
Visual multi-Object recognition Challenge (VOC2008), anch@entrated on the
possible selection of some of the random features that aainghe model, in an
attempt to decrease its huge computational complexity.

First, a specific variant of the CMA-ES algorithm was used tbroze the
final layer of the model: because of the non-linearity of th@G/confidence,
the measure of quality proposed within the PASCAL Challenige problem of
optimizing even a linear combination of the 1000 feature#fis specific criterion
could hardly be solved by traditional methods. Then, a hidgneel evolutionary
algorithm was used to select a small fractions of those nantéatures while
maintaining the same quality of recognition results: theet used by this EA
was obtained by running CMA-ES on the corresponding substtatfires and
measuring the resulting VOC-confidence.

The results of this Multi-Evolutionary algorithm demoratéed that using only
with 20% of the original features, the system could obtaendhme performance
than with all the features, requiring less computationfdref This result opens
the path for the longer-term goal about this model: optinais® the topology of
the SMF model, as this was not possible with the current dakieamethod when
using all features.
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6.2 Perspectives

We will here give some hints about possible research dorestihat emerged from
our work, both at the fundamental and at the practical levels

6.2.1 Fundamental Issues

One of the main difficulty we faced in Chapter 3 was to find an appate fitness
measure for the performance of SOMs. Especially, when {hat idata set has a
complex topology which may not be already clearly undemtdtow to measure
the approximation between the topology of network and tpeltmgy of the data
setis a difficult task. This is why we turned to using SOMs ifessification task,
which is not what they have been designed for. A new more Bpaljuantitative
measure method is required for unsupervised learningyiitiallow us to hope-
fully evolve optimized SOM topologies, and to maybe confihattsome types of
scale-free topologies are better suited than the regulgraiieast in some cases.
But it would also help to compare SOMs to other dimension-cédn algorithms.

Regarding our work on the ESN, more research is obviously eteéal un-
derstand the relationship between the hyper-parametérshanperformance of
reservoirs, both from a theoretical and a practical viewpoiEven the simple
guestion of the reservoir size is still open: for what taglkslarger-size reservoirs
helpful? On the practical side, we could not even try to stiheedirect problem
in reinforcement learning context — i.e., experimentaéstigate a wide range of
reservoir sizes on the same problem.

The problem of optimizing the reservoir topologies is sbien, too, and
seems to be even more out to reach in terms of computatiosal Several is-
sues remain open. We would like to investigate the generapproaches based
on Genetic Regulatory Networks, as discussed at the end tibB8&t3.2. Two
approaches can be envisioned. The straightforward appreacid be to directly
evaluate the evolved topologies on the reinforcement iegrproblem at hand,
with the huge CPU cost this implies. But, if some statisticalrelsteristics of ef-
ficient reservoirs have been previously identified, someltapes meeting those
requirements could first be evolved, without the need fotlg@smulations, and
only in a second phase the evaluation would be made on there@ment learn-
ing task. Recent experiments have demonstrated the feigsdiithe first phase
of this plan [156, 157], and CPU cost is the only barrier to theosid phase (see
below).

Another possible extension of ESN research, as pointed 38][tegards the
single-layer architecture of current reservoirs: “Evethé reservoirs may have
thousands of units, it has still a single layer. It suggeséd for demandingly
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complex tasks the adaptation of a single reservoir mightbeoenough and a
hierarchical architecture of ESNs might be needed.” [138 possible combi-
nation between Reservoir Computing and Deep Network is anaipeealing

future research direction ...that will undoubtedly alsquiee some orders of
magnitude more CPU resources.

The evolutionary computing vision system presented in Glrdiptthe system
may benefit from further advances in the biological knowkd§the natural vi-
sual system. In the SMF model presented here, the paranagt@rhe topology
of the system were completely hand-designed, and we hayeacnbmplished a
small step in the pruning of the set of random features. Butdneplete topology
could be self-turned by an evolutionary process, espgdfaVe can reduce the
CPU cost even more. Evolving the network topology betweendpers, self-
turning the system parameters together with self-seleatiothe C1 feature is
hence a promising direction for future research.

Another issue in object recognition research is that of #imee set of images:
only raw images are available at the moment, whereas a gaivabject data base
may be helpful for the future study of the SMF model.

6.2.2 Practical Issues
Balancing the Double Pole

As many published work used this problem as a benchmark,dersanse to keep
the same problem settings and use the same fitness defirgtimonipare one’s
algorithms with previous work. However, one important ssoncerns the ade-
quacy of the classical fitness used up to now to tackle thislpno. Considering
the results presented in Chapter 4, the answer is clearlit featot adapted to the
goal (note that such an answer has already been claimedéngditbfore). Indeed,
the correlation between the fitness and the generalizagiis that the system is
demanded to pass to be declared successful, is possiblgtoecelt introduces
a too high random part in the evaluation of the results: iddee often found
that the best individual of the population cannot pass teedegeneralization,
but other individuals, with lower fitness, could succedgfplss the test. An-
other inconvenience of the problem is that it doesn’t reghedcontrol behavior
of the successful solution. From the view of engineering, gblution with less
consumption of energy is better in practice, as in the Figdr&0 showing the
distribution of the output force. Hence we propose to inooafe the total energy
minimization into the fithess — possibly leading to a multjextive problem.
Another way to go would be to use other benchmarks for retefiment
learning tasks, from the 2D pole balancing, that seems atntbment still
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challenging, to video-game role playing, that could notydm challenging, but
could also attract many good students.

Distributed Computing

In a more general perspective, another issue that we hagd faall our studies
is the computation cost for evolving large neural networker example, when
we evolved the topology of SOM networks (Chapter 3), evenghone used a
Client-Server approach written in C++ and running on more #tarecent CPUs,
the whole evolutionary run tookeveral week$efore giving the final results.
Similar CPU costs were necessary for the work in other Chap@re run of

optimization of ESN could take serval days, which is unethtg considering that
several different networks have to be tested, each for at legatimes in order to
be able to draw statistically meaningful conclusions. Tias the main limitation
regarding the sizes of the networks that were used there.

At the end of the age of Moore’s law, as the speed of single CRhlmost
stopped to increase, it seems that the three following tolres may be useful
to construct new ANN simulation frameworks — while requiyimew algorithmic
designs.
Multi-thread The tendency of CPU designers is to add more and more cores
to the basic commercialized CPUs. But in order to directly Befrem those
architectures, multi-threading requires some precastionterms of memory
access to avoid conflicts and/or endless locks.

Message Passing Interfacdlessage Passing Interface (MPI) is a specification
for an API that allows many computers to communicate with anether. It is
used in computer clusters and supercomputers, and ultynzde be used on
GRIDS. MPI was created by William Gropp, Ewing Lusk and otH&®&j. The
famous MOGO computer go program got a speedup of about 25 ihg @8
computers in parallel with MPI [65]. In [79], the authors gia general guide
for this new technique. For a Evolutionary Algorithms addiag reinforce-
ment learning problems, there is always a big computatiast far the fithess
simulation. Parallel simulation by using MPI with large qouational grids
might useful for such optimization task. However, here agare must be taken
about the algorithm: it is known that increasing the popafasize of CMA-ES
does not always result in improving the convergence spepdcific studies are
necessary to actually take advantage of a huge number of CPUs.

Graphical Processing Units(GPU) have been designed as specialized multi-
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cores SIMD architectures for graphical processes. Neslatk, they can now

be programmed with almost general-purpose languages GOPA® language

by NVIDIA®) and are hence becoming more and more popular in the EC com-
munity, e.g. the Computational Intelligence on Consumer Gaamel Graphics
Hardware (CIGPU) workshop organized in GECCO 2@09Jnfortunately, the
SIMD architecture requires a complete rewriting of all aljons. However, they
seem well suited for the simulation of large Neural Netwoftke most recent
Geforce Gtx 295 has 480 processors) where they could speegisgveral orders

of magnitude the simulation time of very large networks.

Ideally, clusters of computers, each being equipped withesbighly efficient
multi-core architectures like the GPU could help fulfillitlge research agenda
that was set for this work, regarding how the topologyawnfe Neural Networks
influence their computational capacities, and whether gassible to optimize
their topologies to reach breakthrough results.

Lhttp://www.sigevo.org/gecco-2009/workshops.htmipfittvww.gpgpgpu.com/gecco2009/
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