
THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SUD

SPÉCIALITÉ : INFORMATIQUE

présentée par

Fei JIANG

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS-SUD

Sujet de la thèse :

Optimisation de la Topologie de
Grands Réseaux de Neurones

Soutenue le 16/12/2009, devant le jury composé de :

Mr Hugues Berry Directeur de these (Chargé de Recherche, INRIA Rhone-Alpes)
Mr Guillaume Beslon Rapporteur (Professeur, INSA-Lyon, Université de Lyon)
Mr Abdel Lisser Examinateur (Professeur, Université ParisSud)
Mme Hélène Paugam-Moisy Examinatrice (Professeur, Université de Lyon)
Mr Marc Schoenauer Directeur de these (Directeur de Recherche, INRIA Saclay)
Mr Darrell Whitley Rapporteur (Professeur, Colorado State University)

Abstract

In this dissertation, we present our study regarding the influence of the topology
on the learning performances of neural networks with complex topologies. Three
different neural networks have been investigated : the classical Self-Organizing
Maps (SOM) with complex graph topology, the Echo State Network (ESN) and
the Standard Model Features(SMF). In each case, we begin by comparing the
performances of different topologies for the same task. We then try to optimize
the topology of some neural network in order to improve such performance.

The first part deals with Self-Organizing Maps, and the task is the standard
handwritten digits recognition of the MNIST database. We show that topology
has a small impact on performance and robustness to neuron failures, at least at
long learning times. Performance may however be increased by almost 10% by
artificial evolution of the network topology. In our experimental conditions, the
evolved networks are more random than their parents, but display a more broad
degree distribution.

In the second part, we proposes to apply CMA-ES, the state-of-the-art method
in evolutionary continuous parameter optimization, to theevolutionary learning of
the parameters of an Echo State Network (the Readout weights,of course, but also,
Spectral Radius, Slopes of the neurons active function). First, a standard supervi-
sed learning problem is used to validate the approach and compare it to the original
one. But the flexibility of evolutionary optimization allowsus to optimize not only
the outgoing weights but also, or alternatively, other ESN parameters, sometimes
leading to improved results. The classical double pole balancing control problem
is used to demonstrate the feasibility of evolutionary reinforcement learning of
ESN. We show that the evolutionary ESN obtain results that are comparable with
those of the best topology-learning neuro-evolution methods.

Finally, the last part presents our initial research of the SMF - a visual ob-
ject recognition model which is inspired by the visual cortex. Two version based
on SMF are applied to the PASCAL Visual multi-Object recognition Challenge
(VOC2008). The long term goal is to find the optimal topology ofthe SMF mo-
del, but the computation cost is however too expensive to optimize the complete
topology directly. So as a first step, we apply an Evolutionary Algorithm to auto-
select the features used by the systems. We show that, for theVOC2008 challenge,
with only 20% selected feature, the system can perform as well as with all 1000
randomly selected feature.

Acknowledgements

I would like to sincerely thank :

My supervisors : Hugues Berry and Marc Schoenauer for their integrity,
kindness, sagacity and unremitting efforts in scientific research.

My reviewers and jury : Professor Guillaume Beslon, Professor Abdel Lisser,
Professor Hélène Paugam-Moisy and Professor Darrell Whitley for taking time
to review this report and for giving very detailed comments.

My teams leaders, colleges and friends : Oliver Teman, Michele Sebag, Oliver
Teytaud, Cédric Hartland, Sylvain Gelly, Xiangliang Zhang,Jun Liu etc. for their
helping and beneficial discussion.

And my parents for their support.

Résumé

Nous sommes maintenant au 21ème siècle, et depuis les années1950, l’Intelli-
gence Artificielle est devenue un sujet indépendant d’études au sein des sciences
informatiques, et son influence sur notre vie quotidienne n’a cessé d’augmenter.

L’intelligence est le résultat de l’évolution via la sélection naturelle. Dans les
années récentes, l’étude de ce qu’on appelle les mécanismesbio-inspirés, qui
tentent d’imiter les processus naturels, a soulevé beaucoup d’intérêt en recherche.
En particulier, deux de ces volets de recherche ont attiré beaucoup d’attention et
donné naissance à de nombreux travaux.

D’un point de vue macroscopique, la nature a produit un ensemble riche et
diversifié d’espèces, et toutes les espèces ayant survécu sont apparues à la suite
de modifications aléatoires lors de la reproduction, et ont été sélectionnées selon
le principe naturel de la “survie du plus apte”. Les Algorithmes Evolutionnaires
Artificiels (AEs) sont des algorithmes puissants d’optimisation inspirés par ces
mécanismes de variations aveugles et sélection naturelle,et ont été appliqués
avec succès dans de nombreux problèmes du monde réel [231].

Du point de vue microscopique, la base matérielle de l’intelligence est basée
sur des ensembles de neurones, organisés en réseaux à grandeéchelle. Les
réseaux neuronaux artificiels (RNAs) sont des modèles puissants inspirés par
leurs homologues biologiques pour le traitement des connaissances et l’analyse de
données. Originaire du début des années 50 [182], la recherche dans le domaine
des RNAs est encore très active [105, 143, 93, 198].

Au carrefour de ces deux domaines, la recherche utilisant des algorithmes
évolutionnaires pour optimiser les réseaux de neurones artificiels est en cours
depuis de nombreuses années [230] : au-delà la “simple” optimisation des poids
d’un réseau avec une topologie fixe, la flexibilité des algorithmes évolutionnaires
les a rendus attrayants quand il s’agissait également d’optimiser la topologie des
réseaux neuronaux pour une tâche donnée.

Pendant la même période, l’étude des réseaux complexes s’est fortement
développée et a vu émerger de nouvelles sources d’instpiration et orientations
de recherche. Inspiré à la fois par les réseaux naturels (e.g., les réseaux de
régulation génétiques, les réseaux d’interaction protéine-protéine, . . .) et les
réseaux artificiels (e.g., le World Wide Web, les réseaux de connexions des

compagnies aériennes, les réseaux sociaux tels que les réseaux des co-auteurs,
. . .), de nouvelles connaissances ont été acquises dans les topologies de réseaux.
Plus particulièrement, les recherches sur les réseaux “petit-monde” [220] et les
réseaux à invariance d’échelle [19] ont apporté un nouveau point de vue pour
notre compréhension de la complexité des réseaux.

Le ChapitreContexte de cette thèse passera en revue ces trois domaines de
recherche plus en détail, mettant en évidence les différents paradigmes qui ont été
utilisés dans le cadre de cette thèse. Dans ce contexte, le présent travail est centré
autour de la relation (éventuellement complexe) entre la topologie d’un réseau de
neurones donné et ses performances en tant qu’unité de calcul. Deux approches
seront envisagées et expérimentées dans différents domaines d’application.

Le problème direct consiste en l’étude de la performance d’un type de
réseau de neurones, dans un environnement donné, en fonction de sa topologie.
Considérant une classe donnée de topologies paramétrées, nous mesurerons soi-
gneusement les performances des réseaux en fonction des paramètres controllant
la topologie et en dégagerons quelques tendances concernant l’influence de tel ou
tel paramètre de description de la topologie sur le comportement du réseau.

Nous examinerons ensuite leproblème inverse, qui consiste à optimiser
la topologie afin de maximiser la performance du réseau de neurones. L’outil
d’optimisation sera les Algorithmes Evolutionnaires, et l’action sur les topologies
se fera soit au travers de certains paramètres macroscopiques, soit directement
en laissant l’AE gérer la topologie lui-même (e.g., en agissant au niveau des
connexions).

Le premier domaine d’application est celui des Cartes de Kohonen [124] (ou
Self-Organizing Maps(SOMs)), détaillé dans leChapitre SOMs. Les SOMs sont
principalement utilisées pour l’apprentissage non-supervisé, pour lequel la topo-
logie ordinaire standard (grille régulière) est la plus utilisée. Cependant, il n’existe
pas de mesure de performance universellement reconnue permettant de comparer
la performance des algorithmes d’apprentissage non-supervisé. Nous avons donc
opté pour une mesure de la performance d’une topologie SOM donnée au travers
de l’exactitude du classement pour un problème d’apprendissage supervisé, la
reconnaissance de chiffres manuscrits de la célèbre base MNIST. Le problème in-
verse sera abordé ici en manipulant directement les connexions entre les neurones.

Le deuxième domaine d’application, présenté dans le Chapitre ESNs, est
celui desEcho State Networks[105] qui rentre dans le paradigme récent du
“Reservoir Computing”. Les ESNs sont généralement utilisés pour des tâches

ii

de régression, et le problème se ramène alors à un problème d’optimisation
quadratique des poids sortants. Par contre, pour autant quenous le sachions, les
ESNs n’ont pratiquement pas encore été utilisés pour des tâches d’apprentissage
par renforcement. Nous allons utiliser dans ce cadre un algorithme évolution-
naire, le célèbre CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
[88, 86], afin de pallier l’absence de gradient pour l’optimisation des poids de
sortie du réseau. Un effet secondaire de ce choix est que le même algorithme
peut être utilisé pour optimiser simultanément le poids de sortie et quelques
hyper-paramètres définissant la topologie du réservoir. Nous allons ainsi étudier
l’influence des différents hyper-paramètres définissant latopologie du réservoir
sur une des tâches de référence en apprentissage par renforcement, l’équilibre du
double pôle.

Enfin, le ChapitreSMFsprésentera une première étude impliquant un modèle
de reconnaissance d’objet inspiré par le cortex visuel [198]. En particulier,
nous analyserons si, en utilisant seulement un sous-échantillon des nombreuses
fonctionnalités conçues par l’algorithme original, nous pouvons améliorer le
taux de reconnaissance global, tout en accélérant la phase d’apprentissage. Les
résultats seront démontrés sur les données du Challenge VOC2008.

Comme d’habitude, le ChapitreConclusion conclura cette thèse et donnera
quelques pistes pour de nouvelles recherches. Nous allons maintenant donner
un peu plus de détails sur les trois types de réseaux de neurones que nous avons
étudiés.

Self-Organizing Maps (SOM)

Dans cette partie, nous utilisons les réseaux de Kohonen (ouSOM, Self
Organizing Maps) pour la reconnaissance des chiffres manuscrits. Les SOMs
sont des réseaux de neurones dont les relations de voisinageentre neurones
sont définis par un réseau complexe, La théorie de la Self-Organizing Map
(SOM) a été introduite par Kohonen [122, 123]. Il décrit une projection d’un
espace d’entrées de grande dimension sur un espace de sortiede dimension
bien inférieure. Cela rend possible l’utilisation de SOMs pour la visualisation
des données de grandes dimensions [162]. Le but utilisé dansce travail est la
reconnaissance / classification de chiffres manuscrits, enutilisant la base de
données bien connue MNIST. Le MNIST [130] a un ensemble d’apprentissage
de 60 000 exemples, et un ensemble de test de 10 000 exemples. Les chiffres ont
été normalisés en fonction de leur taille, centrés dans une taille fixe (28×28), et
représentés par 28× 28 pixels sur 256 niveaux de gris. Les SOMs seront donc
utilisés ici en apprentissage supervisé. Les neurones sontrépartis dans un espace

iii

2D, et à chaque neurone est associé un vecteur de poids de taille 28×28 (wi) qui
sont initialisés aléatoirement et seront ajustés pendant la phase d’apprentissage.

Expérience :Dans l’algorithme classique de SOM, les neurones sont dispo-
sés sur une grille régulière en 2 dimensions. Mais deux distances peuvent être
définies entre les neurones : la distance euclidienne et la distance liée au graphe
de voisinnages (le nombre minimal de neurones qu’il faut visiter pour joindre
les 2 neurones donnés. Ces 2 distances sont équivalentes sur une grille régulière.
Toutefois, lorsque la topologie se détourne de la grille régulière (par exemple,
des liens sont ajoutés ou supprimés), la situation change radicalement. Comme
le but ici est d’évaluer l’influence de la topologie du réseausur ses performances
d’apprentissage, la distance entre deux neurones sera leurdistance ’graphique’,
définie par le graphe des connexions). L’apprentissage est un processus itératif.
Quand un exempleI(t) est présentée au réseau, pour chaque neuronei, sa distance
di à I(t) est calculé par :di = ∑M

j=1(I j −Wi j)
2. La Meilleure Unité Adéquate

(MUA) est le neurone dont le vecteur des poids est le plus proche (en norme
L2) de I(t). Les poids de la MUAk sont mis à jour et rapprochés de ceux de
l’exemple courant par :wk(t + 1) = wk(t) + η(t)× (I(t) − wk(t)),, où η est
le taux d’apprentissage défini par l’utilisateur. Le poids de tous les voisins de
la MUA sont mis à jour de façon similaire, mais le taux d’apprentissageη
diminue selon une fonction gaussienne de la distance à la MUA. Ce processus
est répété pour chaque exemple des données d’apprentissagepour un nombre
(généralement grand) de cyclesNmax. Les clusters des données d’apprentissage
s’auto-organisent progressivement sur la carte. Dans le cadre de l’apprentissage
supervisé, des étiquettes peuvent de plus être attachées aux neurones, et le SOM
peut être utilisé pour classer les exemples de test. La fonction objectif utilisée est
alors classiquement le taux d’erreur de classification. Il convient de noter que le
but d’ici n’est pas d’atteindre le meilleur rendement possible pour le problème
MNIST (SOM ne rivalise pas avec les meilleurs résultats publiés à ce jour) mais
de comparer les performances relatives des différentes topologies sur le même
problème.

Problème direct : Le but des premières expériences est de comparer les
performances de classification de SOM construites sur des topologies différentes,
allant des topologies régulières aux topologies aléatoires en suivant le modèle
de Watts et Strogatz. Les résultats montrent que pour un apprentissage long, la
performance du réseau est clairement indépendante de la topologie. Cela n’est
pas surprenant puisque le rôle de la topologie diminue avec le rayonR. En
effet, le nombre des voisins dans un rayonR d’un neurone augmente lorsque
la probabilité de recâblagep augmente. Toutefois, cette différence disparait
quandR diminue. Des différences importantes sont évidentes pour un temps

iv

d’apprentissage court ou moyen : plus le réseau est aléatoire, moins efficace
il sera pour ces échelles de temps. Plus aléatoire est le réseau, plus petite est
le chemin le plus court moyen. Par conséquent, une interprétation possible est
que, pour de grandes valeurs dep, l’influence d’un neurone pour une période
d’apprentissage courte s’étend sur la totalité de l’espace2-D, à presque tous
les autres neurones. Ainsi, pour des échelles de temps courtes, presque tous les
neurones sont mis à jour chaque fois qu’une nouvelle image est présentée, ce
qui interdit effectivement tout apprentissage dans le réseau. Cette interprétation
est validée par des expériences dans le cas où le rayon initial est cinq fois moindre.

Problème inverse :Les algorithmes évolutionnaires [46] ont été choisis pour
optimiser la topologie de SOM, ceci étant motivé par leur flexibilité et leur ro-
bustesse face aux minima locaux. Le but de la deuxième expérience est de savoir
si l’optimisation aura tendance à pousser la topologie versdes réseaux aléatoires,
ou vers d’autres topologies, en dehors des modèles de Watts et Strogatz. La
performance du taux de reconnaissance peut être augmentée de près de 10% par
l’optimisation évolutionaire de la topologie du réseau. L’erreur de classement
de la meilleure topologie dans la population diminue au cours de l’évolution, à
partir de 0,355 jusqu’à≈ 0,325. Le plus court chemin moyen entre les neurones
diminue en même temps que l’index de clustering, ce qui signifie que la topologie
devient plus aléatoire. L’écart-typeσk de la distribution de connectivitéPk (oùPk
est la probabilité qu’un neurone choisi au hasard ak voisins) a par contre presque
triplé au cours de l’évolution. Cela signifie que la distribution de connectivité
des réseaux s’élargit En d’autres termes, l’évolution artificielle rend les réseaux
plus hétérogènes. Toutefois, il convient de garder à l’esprit que ce résultat est
largement tributaire de la topologie des données elles-mêmes (ici la base de
données MNIST), et pourrait être différent avec d’autres données.

Ce résultat a été présenté à la conférence ECCS 2007 [110](European
Conference on Complex Systems 2007 – Dresden) et à la conférence GEC 2009
[111] (Genetic and Evolutionary Computation 2009 – Shanghai).

Echo State Networks (ESN)

Il est connu depuis longtemps qu’une bonne conception de la topologie
du réseau est un ingrédient essentiel pour une application réussie des réseaux
de neurones. Sur le plan théorique, les études récentes sur les représentations
profondes ont prouvé que certains types de topologies nécessitaient un nombre
exponentiel d’unités cachées afin d’être en mesure de réaliser une tâche d’ap-
prentissage donnée, tandis que les topologies de profondeur pourrait ne nécessiter
qu’un nombre linéaire de couches pour la même tâche. Les EchoState Networks

v

[105], qui ont été récemment proposés pour l’apprentissagesupervisé de séries
temporelles, peuvent être considérés comme une approche alternative : au lieu
de l’optimisation d’une topologie pour une tâche donnée, ilpropose d’utiliser
un large réservoir de neurones dont les connexions sont tirées au sort (et à
faible densité). Seuls les poids des connexions sortantes sont à apprendre, ce qui
transforme le processus d’apprentissage en un simple un problème d’optimisation
quadratique qui est facilement résolu par une méthode baséesur le gradient . . . ,
du moins dans le cas de l’apprentissage supervisé.

Notre construction : Nous avons proposé d’utiliser l’algorithme évolution-
naire état de l’art pour l’optimisation continue, CMA-ES (Covariance Matrix
Adaptation Evolution Strategy) [87, 88, 85] pour remplacerla méthode du
gradient dans le cadre non supervisé. CMA est un algorithme évolutionnaire
reconnu et a obtenu de bons résultats sur un large éventail deproblèmes dans
le domaine de l’optimisation continue. La flexibilité de l’optimisation par
l’évolution nous permet en outre d’optimiser non seulementles poids sortant,
mais également, ou alternativement, d’autres paramètres de l’ESN (le rayon
spectral, les pentes à l’origine des fonctions de transfertdes neurones actifs).
En ce qui concerne le rayon spectral, il est unanimement reconnu comme un
paramètre critique des ESNs. En particulier, la valeur maximale autorisée pour
le rayon spectral afin d’assurer la propriété “Echo State” est de 1. Cependant,
des valeurs différentes ont été proposées dans la littérature pour différents
problèmes. Il semble donc légitime de ne pas fixer a priori le rayon spectral
mais de le considérer un paramètre libre optimisé par CMA-ES :cela ne fait
qu’ajouter une dimension au problème. Pour les pentes des fonctions d’activa-
tion des neurones, comme l’Echo Etat Network est un ensemblede systèmes
dynamiques qui sont combinés linéairement pour produire lerésultat désiré, il
semble plausible que la modification des pentes de tous les neurones de manière
indépendante puisse permettre à l’ESN de mieux répondre à latâche-cible. La

fonction de transfert dans le neurone interne devient tanha(x) =
2

1+e−a∗x − 1.

A l’origine la fonction sigmoïdale de Jaeger était tanh, correspondant au casa= 2.

Supervised Learning :Dans cette partie, nous prenons un problème standard
de prédiction de séries temporelles. Un signal mono-canal d’entrée sinusoïdal est
donnée paru(n) = sin(n/5). L’objectif est de d’apprendre au réseau à produire
une sortie mono-canal,yteach(n) = 1

2u7(n). Le premier résultat, pour une taille
de réservoir de 100, confirme simplement que CMA-ES peut être aussi précis
que la méthode du gradient citée dans [105], en nécessitant toutefois un effort de
calcul beaucoup plus important. Les résultats obtenus correspondent à la même
précision lors de l’optimisation des poids de sortie que lesrésultats originaux

vi

obtenus à l’aide d’une optimisation quadratique. Avec un réservoir plus petit,
cependant, c’est l’optimisation des pentes des fonctions de transfert de tous les
neurones qui permet d’atteindre la meilleure précision de prédiction, pour un
coût de calcul toutefois assez élevé. De plus, il existe une corrélation intéressante
entre la valeur finale du rayon spectral à la fin de l’algorithme et la performance
correspondante obtenue. Dans le cas de= 100 neurones, les meilleurs résultats
sont obtenus lorsque le rayon spectral est compris entre 0,6et 0,8, et dans le cas
de 30 neurones, le rayon spectral optimal est centré autour de 0,96.

Apprentissage par renforcement : Le problème de l’équilibre des
barres (ou encore du double pendule inversé) est une tâche decontrôle
classique étudiée depuis plus de 40 ans – voir pour les plus récents travaux
[225, 78, 71, 204, 101, 45, 70, 117]. Le système se compose de deux parties.
La première partie est un charriot dont la masse est de 1 kg et qui a un de-
gré de liberté le long de l’axex, la deuxième partie comprend une ou deux
barres de longueurs différentes ((l1 = 1m, l2 = 0.1m)) et de masses différentes
(m1 = 0.1kg,m2 = 0.01kg)) qui sont connectés au charriot par des charnières.
Chaque barre a un degré de liberté, à savoir l’angle de l’articulation (θ1, respecti-
vementθ2) avec la verticale. La commande est une forceFx (Fx ∈ [−10N,10N])
qui est appliquée au charriot, et le défi est de garder les pôles dans des limites
données pour les angles des articulations aussi longtemps que possible. Nous
montrons que l’ESN évolutionnaire obtient des résultats qui sont comparables à
ceux des meilleurs algorithmes faisant l’apprentissage dela topologie des réseaux
de neurones. Les meilleurs résultats sont ici obtenus en n’optimisant que les poids
sortants. En outre, il semble y avoir une forte dépendance des résultats par rap-
port à la topologie du réservoir, au moins pour les petites tailles expérimentées ici.

Modèle de Reconnaissance d’Objets Visuels Inspiré par le Cerveau
Enfin, le chapiteSMF est la dernière partie qui présente nos travaux initiaux

de recherche sur la SMF (“Standard Model Feature”), un modèle de reconnais-
sance d’objets qui est inspiré par le cortex visuel. Deux version basées sur SMF
ont participé au Challenge PASCAL - Reconnaissance de la multi objets visual
(VOC2008). Le but à long terme est de trouver la topologie optimale du modèle
SMF, mais le coût de calcul est cependant trop important pouroptimiser la to-
pologie complète directement. Donc dans un premier temps, nous appliquons un
algorithme évolutionnaire pour sélectionner automatiquement les caractèristiques
utilisée par le système pour la classification finale. Nous montrons que, pour
VOC2008, avec seulement 20% caractèristiques bien choisies, le système peut
fonctionner aussi bien qu’avec l’ensemble des 1000 caractèristiques choisies au
hasard.

vii

Pour les tâches de reconnaissance immédiate d’objets dans une scène, il a été
suggéré que le cerveau utilise des propriétés d’invariancede l’objet. Le modèle
SMF est inspiré par cette remarque. La SMF est fondamentalement un réseau de
neurones à propagation directe (“feed-forward”) hiérarchique. Dans ce manuscrit,
nous avons utilisé une simplification du modèle de référence[194], donné dans
[198], qui se compose de quatre couches de réseaux de neurones non récurrents.
Le modèle comporte deux types de neurones : ceux qu’on appelle simples unités,
ou S, et les unités complexes, ou C. Les unités S combinent leurs entrées avec
une “Bell-Shaped tuning function” pour augmenter la sélectivité. Les unités C
combinent leurs entrées avec une fonction maximum (MAX) pour augmenter
l’invariance. Par conséquent, en réglant les paramètres dusystème, le modèle
peut obtenir un bon équilibre entre la sélectivité et l’invariance.

Dans ce modèle initial, la sortie du réseau est composée de caractéristiques
qui sont passées au travers d’un algorithme de combinaison linéaire pour la
tâche de classification elle-même, c’est à dire qu’il calcule la confiance de
VOC 2008 de chaque image pour chaque classe d’objet. Dans notre étude,
nous appliquons une optimisation évolutionnaire utilisant CMA-ES (Covariance
Matrix Adaptation Evolution Strategy [88, 103] pour calculer la confiance de
VOC2008 de chaque image pour chaque classe d’objet. Premièrement, nous
utilisons CMA-ES afin d’optimiser le poids d’un combinateur linéaire. Comme
la dimension d’optimisation est au moins aussi grande que 1000, nous testons
également un algorithme multi-évolutionnaire pour sélectionner de façon op-
timale 200 dimensions parmi 1000, avant d’optimiser les 200dimensions choisies.

Nous montrons qu’en sélectionnant 200 caractéristiques optimales le système
peut garder presque les mêmes performances dans le défi VOC2008 qu’en
utilisant 1000 caractèristiques choisies au hasard, tout en diminuant le coût
calcul de 2 ordres de grandeur. La robustesse du système semble dépendre des
caractéristiques sélectionnées. Même si nos résultats surVOC2008 ne sont pas
parmi les meilleurs du challenge, en considérant la simplicité du modèle que nous
avons appliqué (nous utilisons seulement la mise en modèle par défaut et il y a
beaucoup de paramètres qui peuvent être ajustés), nous estimons qu’il y a encore
de la place pour des améliorations significatives. Les futurs travaux de recherche
seraient d’optimiser la topologie des connexions entre lescouches du modèle de
SMF, et également d’optimiser les paramètres de réglage quiont effectivement
été définis par la recherche bio-inspirée.

viii

Contents

1 Introduction 1

2 Background 5
2.1 Artificial Neural Networks . 5

2.1.1 History . 6
2.1.2 Learning Methods . 9
2.1.3 Network Topology . 11
2.1.4 Recent research . 12

2.2 Evolutionary Computing . 15
2.2.1 Key Issues . 16
2.2.2 Historical Trends . 20
2.2.3 An Adaptive Evolution Strategy: CMA-ES 22
2.2.4 Applications . 26

2.3 Evolving Artificial Neural Network 28
2.3.1 Evolving Connection Weights 28
2.3.2 Evolving Network Topologies 31

2.4 Topology of Complex Networks 43
2.4.1 Small World Topology 43
2.4.2 Scale Free Topology . 45
2.4.3 Applications to ANNs 47

2.5 Research Questions . 47

3 Evolving the Topology of Self-Organizing Map 49
3.1 Introduction . 49
3.2 Topology of Self-Organizing Map 49

3.2.1 Kohonen Maps . 49
3.2.2 An Example with Color Data 51
3.2.3 Quantitative measure of topology preservation in SOM. . 52
3.2.4 Discussion . 55

3.3 Method and Experiments . 56
3.3.1 A Simple Experiment with Classical Q H Measure 56

ix

CONTENTS

3.3.2 Experiments With MNIST database 59
3.3.3 Learning . 60
3.3.4 Distance . 62
3.3.5 Labeling . 62
3.3.6 Classifying . 65

3.4 Direct problem . 67
3.4.1 Influence of the radius 67
3.4.2 Robustness against noise 69

3.5 Inverse problem . 71
3.5.1 The Algorithm . 71
3.5.2 Results . 73
3.5.3 Generalization w.r.t. the Learning Process 73

3.6 Conclusion . 76

4 Evolutionary Optimization of Echo State Networks 79
4.1 Introduction . 79
4.2 Reservoir Computing Model . 81

4.2.1 A Chaotic Time Series Prediction by ESN 83
4.2.2 Researches on RC . 83
4.2.3 Discussion . 86

4.3 Supervised Learning of ESN . 87
4.3.1 Jaeger’s Original Settings 87
4.3.2 Which parameters to optimize? 89
4.3.3 The experiments . 90
4.3.4 Comparative Measures 91
4.3.5 Results . 91
4.3.6 Discussion . 95

4.4 Reinforcement Learning of ESN 95
4.4.1 The Pole-balancing Benchmark 95
4.4.2 Fitness(es) . 99
4.4.3 Experimental conditions 100
4.4.4 Results and Discussion 101

4.5 ESN vs Developmental Methods 110
4.6 Conclusion . 111

5 Feature Selection in a Cortex-Like Object Recognition Model 113
5.1 Cortex-Like Object Recognition 114

5.1.1 Visual Object Recognition in the Cortex 114
5.1.2 Standard Model Features (SMFs) 115
5.1.3 Model Details . 116
5.1.4 The Perspectives of the Model 121

x

CONTENTS

5.2 PASCAL Visual Object classes Challenge (VOC08) 122
5.2.1 Classification/Detection Image Sets 123
5.2.2 Classification Task . 125

5.3 Experiments . 128
5.3.1 Using EC Algorithms with SMF Model 128
5.3.2 Pre-training of SMFs model 128
5.3.3 Linear Combination using CMA-ES 129
5.3.4 Multi-Evolutionary Optimization 130
5.3.5 Results . 138
5.3.6 Result Analysis . 138

5.4 Conclusion . 142

6 Conclusion 145
6.1 Summary of Results . 145

6.1.1 Evolving SOM Topology 145
6.1.2 Evolving Parameters and Hyper-parameters of ESN146
6.1.3 Feature Sub-Sampling in SMF Bio-Inspired Approach . . 147

6.2 Perspectives . 148
6.2.1 Fundamental Issues . 148
6.2.2 Practical Issues . 149

xi

CONTENTS

xii

Chapter 1

Introduction

We are now in the 21st century, and since the 1950s, ArtificialIntelligence has
become an independent subject of study of Computer Science, and its influence
on our daily life has been ever increasing.

Intelligence is the result of an evolutionary process basedon natural selection.
In recent years, studying the so-calledbio-inspired mechanisms, i.e. mechanisms
that try to somehow mimic natural processes, has raised a lotof research interest.
In particular, two of these research streams have attractedgreat attention and lead
to a large body of work.

From a macroscopic point of view, nature produced a rich and diverse set of
species thanks to two principles: blind variations, that created the diversity in the
first place, and natural selection, that selected some individuals and populations
for survival according to the natural principle of “survivalof thefittest”. Artificial
Evolutionary Algorithms (EAs) [47, 43] are powerful optimization algorithms
inspired by this natural selection mechanism, and have beensuccessfully applied
in lots of real world problems [231].

From the microscopic point of view, the material basis for intelligence is
based on large-scale ensembles of neurons, organized in networks. Artificial
Neural Networks (ANNs) are a powerful model inspired by their biological
counterparts for knowledge processing and analysis. Originated in the early 50s
[182], ANN research is still very active [105, 143, 93, 198].

At the crossroad of both research areas, research using Evolutionary Algo-
rithm to optimize Artificial Neural Networks has been going on for many years
[230]: Beyond the “simple” optimization of the weights of a network with a fixed
given topology, the flexibility of Evolutionary Algorithmsmade them appealing

1

1. INTRODUCTION

when it came to optimize also the topology of candidate neural networks for a
given task.

During the same period (the last 20 years), the study of complex networks
has brought this area into new research directions and inspiration. Inspired both
by natural networks (e.g. Gene Regulatory Networks, protein-protein interaction
networks, . . .) and artificial ones (e.g. the World Wide Web, airline connec-
tion networks, social networks such as co-authoring networks, . . .), new insights
have been gained into network topologies. More particularly, researches on small-
world [220] and scale-free [19] networks have produced a newpoint of view for
our understanding of network complexity.

Chapter 2 will survey those research areas in more detail, highlighting the
different paradigms that have been used for this thesis.

In this context, the present work is centered around the relationship between
the (possibly complex) topology of a given Neural Network and its performance
as a computing unit. Two approaches will be considered, and experimented
with in different application domains. Thedirect problem is the study of the
performance of a given type of neural network, in a given environment, with
respect to its topology. By controlled variation of the topology, within a given
class of parameterized topologies, and careful measure of the resulting network
performance, some hints can be gathered regarding the influence of this or that
topology description parameter. We will then consider theinverse problem,
i.e. optimize the topology in order to maximize the performance of the neural
network. Evolutionary Algorithms will be the optimizationtool, as they can
handle either continuous optimization, in the case where the topology is described
by some macroscopic description parameters, or directly handle the topology
itself (e.g. through modifications of the connections) to fine-tune the topology.

A first application domain will be that of Self-Organizing Maps (SOMs)
[124], detailed in Chapter 3. SOMs are mainly used for unsupervised learning,
and the standard regular topology is generally used withoutmuch questioning.
However, there is hardly a universally acclaimed performance measure for
comparing the performance of unsupervised learning algorithms. Hence, the
performance of a given SOM topology will be assessed throughthe classification
accuracy on the well-known MNIST database for digit recognition. The inverse
problem will be addressed here by directly manipulating theconnections between
neurons.

A second application context, presented in Chapter 4, is thatof Echo State
Networks [105], the recent paradigm pertaining to the Reservoir Computing
family. While ESNs are generally used for regression tasks, and the optimization

2

problem then amounts to the quadratic optimization of the outgoing weights,
using ESNs for reinforcement learning tasks has hardly beenaddressed in
the literature. We will investigate the influence of different hyper-parameters
defining the reservoir topology on the well-known benchmarktask of balancing
the double-pole. The optimization algorithm for the outputweights will be
the well-known CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
[88, 86], as the problem is not quadratic any more. But the goodside of this
drawback is that the same algorithm can be used to simultaneously optimize the
output weights and some hyper-parameters defining the topology of the reservoir.

Finally, Chapter 5 will present a first study involving a Cortexinspired
Visual Object Recognition model [198]. In particular, we will investigate whether
using only a sub-sample of the many features designed by the original algorithm
can improve the global recognition rate, while accelerating the learning phase.
Results will be demonstrated on the complex VOC2008 challenge.

And as usual, Chapter 6 will conclude this dissertation, summarizing and
discussing the results, and opening the way for further research.

3

1. INTRODUCTION

4

Chapter 2

Background

This chapter will set up the background for all work to be presented in this disser-
tation. First, brief introductions on Artificial Neural Networks (ANNs) and Evo-
lutionary Computing (EC) will be given. Then we will focus on Neuro-Evolution,
the coupling of both techniques, i.e., the specific EC methods that have been devel-
oped for evolving Artificial Neural Networks. Further, recent advances regarding
the Topology of Complex Networks will be surveyed. Finally, in the light of this
state-of-the-art methods, we will introduce the research questions addressed in the
present research and their motivations.

2.1 Artificial Neural Networks

The human brain is a complex biological system composed of a large number
of highly interconnected processing elements (neurons) [137]. It is formed by
about 1011 neurons [104]. Each neuron connects to about 104 other neurons on
average [155, 30]. Figure 2.1 shows an example of a biological neuron.

The physiological research about the brain and other biological neural
systems is the foundation for artificial neural networks (ANNs). The artificial
neural model is an abstraction of biological neurons (shownin figure 2.2) , i.e.
an interpretation of our understanding of brain operations, applied to build an
artificial intelligence system.

Artificial Neural Networks (ANNs) are parallel informationprocessing
systems in which a number of artificial neurons (or units) areinterconnected by
synapses. Usually the output of each unit is a nonlinear function of the sum of its
inputs, weighted by synaptic weights (see figure 2.2). The main idea is then to
find algorithms or heuristics for adjusting the synapses andthe synaptic weights

5

2. BACKGROUND

Figure 2.1:A neuron is an excitable cell in the nervous system that processes and trans-
mits information. It exists in a number of different shapes and sizes. This figure from
[32] shows a scheme of a spinal motor neuron, consisting of a cell body and a long thin
axon. Around the cell body is a branching dendritic tree that receives signals from other
neurons. The end of the axon has branching terminals (axon terminal) thatrelease neu-
rotransmitters between the terminals and the dendrites of the next neuron, which process
the information transmission.

in such a way that the network fulfills the desired information processing task.

The success of Artificial Neural Networks in computer science and machine
learning is mainly based on the following strong points:

• ANNs can discretionarily approximate any linear or complex non-linear
function [98, 11];

• All quantitative or qualitative information is stored in adistributed manner
in the connections of the network, so it takes on strong character of robust-
ness and tolerance [182];

• The use of parallel distributed processing approach enables parallel com-
puting [210];

• Self-adaptive and self-organizing ability endows ANNs with the capability
to learn even when only limited knowledge about the system isavailable
[122].

2.1.1 History

The history of ANNs is as long as that of Artificial Intelligence, but it is also
more tortuous.

6

2.1. ARTIFICIAL NEURAL NETWORKS

∑

w1x1

Inputs Weights

w2x2

w3x3

...
...

wnxn

b0

trans f er
f uction

ϕ(•)

activation
f uction

y

out put

Figure 2.2: The artificial neural model is an abstraction of biological neurons. The
artificial neuron receives one or more inputs (representing one or moredendrites) and
sums them. Usually each inputxi is weighted in the sum by the corresponding synaptic
weightwi , and the resulting weighted sum is passed through a non-linear function known
as theactivationfunction or transferfunction. This mimics the nonlinear input-output
relationship observed in real biological neurons. The transfer functions usually have a
sigmoidal shapes, but they may also take the form of other non-linear functions, piecewise
linear functions, or step functions. They are also generally monotonically increasing,
continuous, differentiable and bounded.

7

2. BACKGROUND

Creation: In 1943, psychologist McCulloch and symbolic logician Pittsbuilt
the first mathematical neuron model [147], known as the MP model. They gave
a formal mathematical description: For a given artificial neuron k, let there be
m+1 inputs with signalsx0 throughxm and weightswk0 throughwkm. The output

yk of neuronk is: yk = ϕ
(

∑m
j=0wk jx j

)

, whereϕ is the transfer function.

They proved that a single neuron can perform logic functions, thereby creating
the era of artificial neural networks. In 1949, the psychologist Hebb proposed a
conception that the synaptic contacts could have variable intensities, depending
only on the activation of the pre- and postsynaptic neurons [91]: “When an axon
of cell A is near enough to excite cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased”.

This so-called Hebb rule of neural network is an underlying basis for the learn-
ing algorithm of ANNs. In 1958, Rosenblatt built the Perceptron model [177].
The Perceptron is a binary classifier that maps its inputxk (a real-valued vector)
to an output valueyk (a single binary value) across the matrix of weights(wi, j :

yk =

{

1 ∑m
j=0wk jx j > 0

0 else

The perceptron model is a specifical case of MP model and the Hebb learn-
ing algorithm can also be used to tune their connection weights (see section 2.1.2).

The Neural Network Winter: After analyzing the function and the constraints
of artificial neural networks, typically represented by Perceptron, Minsky and
co-author published the «Perceptron» book in 1969 [151]. Inthis book they
pointed out the limit of the perceptron model. For instance,they reported that no
single-layer perceptron can solve higher-order classification problems, including
nonlinearly separable problems such as the XOR function. Their arguments
greatly impacted the study of ANNs. At the same epoch, serialcomputers and
artificial intelligence progressed rapidly. These two reasons caused the lack of
the necessity and urgency to develop new methods for computing. Therefore
the research on ANNs was in depression during more than ten years afterwards.
However, some researchers still continued to develop the field and proposed the
theory of self-organizing map (SOMs) [122, 123] in 1972, andestablished a
strong mathematical foundation for ANNs [3].

The Return of Spring: Three years after Minsky’s book, Grossberg pub-
lished the paper introducing multi-layer networks capableof modeling XOR

8

2.1. ARTIFICIAL NEURAL NETWORKS

functions [74]. But the research on ANNs did not return to Spring until the
1980s, helped by the progresses in CPU power. In 1982, physicist Hopfield
proposed what is today known as the Hopfield Neural Network model [96].
A Hopfield net is a form of recurrent artificial neural network. Hopfield nets
serve as content-addressable memory systems with binary threshold units. The
introduction of the “calculational energy” determined thestability of the neural
network. They are guaranteed to converge to a local minimum,but convergence
to one of the stored patterns is not guaranteed.

In 1983, Hinton and Sejnowski gave the name of Boltzmann machine to
a type of stochastic recurrent neural network [94]. Boltzmann machines can
be seen as the stochastic, generative counterpart of Hopfield nets. They were
one of the first examples of a neural network capable of learning internal
representations. They are able to represent, and, given sufficient time, to solve
difficult combinatorial problems. If the connectivity is constrained, the learning
can be made efficient enough to be useful for practical problems. In 1985, the
statistical thermodynamics simulated annealing techniques, which applied in the
Boltzmann model, helped to prove that the whole system will eventually converge
toward a global stability point [1]. In 1986, by studying themicrostructure
of cognition, Rumelhart and the PDP Research Group proposed the theory
of Parallel Distributed Processing [38]. The famous Back-Propagation (BP)
algorithm for multi-layer feedforward ANNs was proposed in1986 too [181].

2.1.2 Learning Methods

One major difference between classical programming techniques and ANNs is
that the later are not strictly speaking programmed, but must be trained before
they are used. A number of learning methods have been developed over the years,
that can be divided into Supervised Learning, Non-supervised Learning and Re-
inforcement Learning.

Supervised Learning

In the supervised learning case, the training examples are given together with the
expected outputs or labels (in classification case) called teacher’s dates. By com-
paring the margins between the expected dates and ANN’s outputs, the connection
strengths are adjusted and converge to a stable position. When the environment
changes after the training, the network is retrained and adapted to the new envi-
ronment. The Back-propagation algorithm [181] is a widely used algorithm in

9

2. BACKGROUND

the feedforward multi-layer ANNs. It is a supervised learning method, and is an
implementation of theDeltarule.

The Delta rule is a gradient descent learning rule for updating the weights
of the artificial neurons in a single-layer perceptron. For aneuron j, with
activation functiong(x), the delta rule for j ’s ith weight w ji is given by
∆w ji = α(t j − y j)g′(h j)xi, whereα is a small constant called learning rate,g(x)
is the neuron’s activation function,t j is the target output,h j is the weighted sum
of the neuron’s inputs,y j is the actual output, andxi is the ith input. It holds
h j = ∑xiw ji , andy j = g(h j).

The Back-propagation algorithm can be summarized as follows:

1. Present a training sample to the neural network.

2. Compare the resulting output with the desired output for the given input.
This is called the error.

3. For each neuron, calculate what the output should have been, and a scaling
factor, how much lower or higher the output must be adjusted to match the
desired output. This is the local error.

4. Adjust the weights of each neuron to lower the local error by applying the
Delta rule.

5. Assign "blame" for the local error to neurons at the previous level, back-
propagate the local error to the neurons of the previous level according
to their connection weights with the neurons of current level, adjust the
weights by applying the Delta rule too.

6. Repeat from step 3 on the neurons at the previous level, using each "blame"
has its error.

In the feed-back ANNs domain, the Reservoir Computing model [105] at-
tracted a lot of attention in recent years, in particular forthe Supervised Learning
of time series. It will be introduced in detail in chapter 4.

Unsupervised Learning

In the Unsupervised Learning case, there is no expected output associated with
the input, so that, the ANNs is expected to find the correct input-output matching
by using self-organized methods based on its unique networkarchitecture and
learning rules. In the learning process, ANNs continue to accept the learning
samples and auto-organize the data in the pattern of connection weights among

10

2.1. ARTIFICIAL NEURAL NETWORKS

neurons. Self-organizing map [122, 123] network is typically used in this kind of
learning model, to create low dimensional view of high dimensional data.

Reinforcement Learning

In a way, Reinforcement learning can be considered an intermediate between su-
pervised and non-supervised learning. In reinforcement learning, the teacher does
not provide the correct output associated with the input, but a simple reward (or
punishment) when the predicted output is correct (false). This reward can be de-
layed. In all robotic experiments where the robot must find its way out of a maze.
The system tries to find a policy for maximizing cumulative rewards over the
course of the problem. Thus, reinforcement learning is particularly well suited
to problems which include a long-term versus short-term reward trade-off. It has
been applied successfully to various problems, including robot control (chapter 4),
elevator scheduling, telecommunications, backgammon andchess [209, 114].

2.1.3 Network Topology

Based on connection topology, neural network models are traditionally divided
into feedforward networks andfeedback (orrecurrent) networks. However, recent
developments in the so-called complex network field lead to contemplate the use
of other classes of topology. We will present these aspects in section 2.4.

Feedforward networks

Feedforward networks are structures in which there is no loop in the connection
graph of the network. A specific case is that oflayered feedforward architectures,
where the neurons are organized in layers, and where each neuron takes its inputs
from the previous layer and sends its output to the next one. Because the con-
nection graph is loop-free, there are no feedbacks in the network (Figure 2.3).
Consequently, the networks has no real dynamics: information just flows from
one layer to the other. Such a network realizes the projection from the input space
to the output space, and its information processing capacity comes from a multiple
compound of simple nonlinear functions. This kind of network structure is simple
and easy to implement (compared to networks with loops). Backpropagation is an
especially well-suited supervised learning method for feedforward networks, and
even easier to implement within multi-layer feedforward networks.

11

2. BACKGROUND

Figure 2.3: A sample feedforward ANN with one hidden layer. In feedforward
network, each neuron receives its inputs from the previous layer and sends its
outputs to the next one. As there is no feedback in the networks, it is a loop-free
map.

Figure 2.4: A sample feed-back ANN with one hidden layer. There exists feed-
backs within the same layer or/and from the next one.

Feedback networks

In a feedback network, there exists recurrent connections,i.e. feedbacks within
the same layer or from a given layer to a preceding one. It can be figured by
a map of loops (Figure 2.4). Its information processing capacity comes from
the transformation of network states. Because of the feedback connections, these
networks are expected to undergo complex dynamics, that canbe approached with
dynamical systems theory. Hopfield networks, Boltzmann machines and reservoir
computing models are feedback networks.

2.1.4 Recent research

Recent Neural Network research can be divided into theoretical research and
applied research.

12

2.1. ARTIFICIAL NEURAL NETWORKS

Theoretical Research:

Theoretical research can be divided into two categories:

1. Application of the scientific research in neurophysiology and cognitive sci-
ence to understand the mechanisms of intelligence [21].

2. Improvements of the performance of ANN in various domains: Using the
research results of basis neural theory, the goal is to explore the perfor-
mance of neural network model, to study in-deep of network algorithms and
performance and to develop new mathematical theory of Neural Networks
[105, 93, 194].

Applied research:

Application can also be divided into two categories:

1. ANN’s software simulation, as demonstrated and disseminated with the fol-
lowing software platforms: Stuttgart Neural Network Simulator (SNNS),
JavaNNS, Neural Lab, etc, and corresponding hardware implementations
[136].

2. Application of Neural Network in various fields, such as pattern recogni-
tion, signal processing, knowledge engineering, expert systems, optimiza-
tion, robot control, etc.

Recent hot research topics

Below are some hot points in ANNs research area in recent years:

Self Adaptation:

“How can an ANN self-adapt to its environment?” is always an important
issue. The most famous self-adaptive ANN model is Kohonen Map (aka Self-
Organizing Maps) which has been wildly used in classification and representation
of information. SOMs will be presented and studied in chapter 3. The search for
further unsupervised learning methods is still an active domain of research.

13

2. BACKGROUND

Complex Systems Theory:

Since the 1990’s, theoretical studies of Complex System havedeeply changed
our view of many fields [192, 232]. “Complex systems are systems where the
collective behavior of their parts entails emergence of properties that can hardly,
if not at all, be inferred from properties of the parts. Examples of complex
systems include ant-hills, ants themselves, human economies, climate, nervous
systems, cells and living things, including human beings, as well as modern
energy or telecommunication infrastructures.” – The Complex Systems Society
(CSS). ANNs are present in many areas of Complex Systems, and can be seen
as one example of complex systems, and recent research [199]shows that the
performance of an ANN can be influenced by its topology, just like what is
well-known in other complex systems (social networks, biological network,
internet etc) [28].

Reservoir Computing and Deep Belief Network:

ANNs still suffer from (at least) some crucial issues. The difficulty of learning
increases with the number of neurons (and synapses). Furthermore, learning
feedforward networks is also still very difficult when the network is made
of numerous layers. Finally, there is still no training algorithm for recurrent
networks. Reservoir computing and Deep Belief Networks are, respectively, two
elements of answer to these issues.

The Reservoir Computing model, proposed independently by Jeager [105]
(Echo State Networks) and Maass and colleagues [143] (Liquid State Machines),
uses a large recurrent (feedback) network of neurons that are randomly and
sparsely connected (the “reservoir”). The weights and topology of this reservoir
are not optimized nor adapted and are kept fixed during training. The reservoir
neurons are connected to output neurons that are used as a readout of the reservoir
states. The major idea behind reservoir computing is that only outgoing weights
(those from the reservoir to the output neurons) are optimized, which amounts
in the supervised case to a simple quadratic optimization problem that is easily
solved by any gradient-based method. Hence, reservoir computing can use
a large number of neurons and weights (within the reservoir)connected as a
feedforward network with rich dynamics, but learning is restricted to the lower
number of feedforward outgoing weights. The promises of Reservoir Computing
have been fulfilled for several kinds of problems. See chapter 4 for further details.

The Deep Belief Network model was proposed by Hinton in 2006 [93].

14

2.2. EVOLUTIONARY COMPUTING

It has been known for a long time that if the initial weights ofa feedforward
network that has multiple hidden layers are close to a good solution, gradient
descent works well. Conversely, learning is poorly efficientwhenever the initial
weight values are far from a good solution. But finding such favorable initial
weights is very difficult. In Hinton’s model, each layer is trained just like in a
single-layer network, one after the other and independently from the others. So
a multilayer ANNs is divided into a stack ofRestrictedBoltzmannMachines
(RBMs) and each hidden layer of the lower RBMs is the input layer ofthe
higher RBM. After this pre-training, the model is unrolled andbackpropagation
of error derivatives can be used to fine-tune the ANNs to get good learning results.

The seminal work in Deep Belief Natworks [93] shows that the pre-training
procedure works well for a variety of data sets. And inspiredby this model, Jaeger
proposed a hierarchical multilayer ESN model in 2007 [107].

Bio-inspired System:

The best current machine vision systems are still not competitive with human
and primate natural vision in visual recognition field, especially for objects
in cluttered and natural scenes of real world, despite decades of hard works
[99, 166, 219, 198]. So taking inspiration from real biological systems is an
important method to improve the performance of artificial systems.

Inspired by the biology of visual cortex, Serre and Poggio [198] proposed a
model for invariant visual object recognition in 2007. The model gets the state of
the art results in a series of visual benchmark tests on complex image data bases,
such as CalTech5 [57, 221], CalTech101 [53], MIT-CBCL [92]. More details
about this model will be discussed in chapter 5.

2.2 Evolutionary Computing

This section quickly surveys the bases of Evolutionary Computing, adopting the
modern point of view popularized by [47, 43], and borrowing most ideas from
[188].

Darwin’s evolution theory is based on the two basic principles of natural
selection andblind variations. Natural selection describes how individuals within
a given population have better chances to survive and to reproduce if they are
adapted to the current environment. Blind variations describes how the genetic
material of the parents is randomly modified when transmitted to the children

15

2. BACKGROUND

(even though Darwin had no precise idea about what such genetic material could
be).

Evolutionary Algorithms (EAs) are stochastic optimization algorithms loosely
inspired by this crude view of Darwinian theory. Candidate solutions to
the optimization problem at hand, calledindividuals, are represented by their
chromosome. The target function of the optimization, akafitness, plays the role
of the environment. Within this environment, apopulation, or set of individuals,
is first randomly initialized, and the fitness of all individuals is computed. This
population then undergoes a succession ofgenerations. First, the population is
subject toparentalselection: some individuals are selected, based on their fitness,
in such a way that fitter individuals are more likely to be selected than individ-
uals with poor fitness. The selected individuals generateoffspring individuals,
thanks to the application ofvariationoperators, bycrossover (orrecombination)
operators, that involve 2 or moreparents to generate each offspring, andmutation
operators, where a single parent is randomly modified into anoffspring. The new-
born offspring are thenevaluated, i.e., their fitness is computed. Finally, the loop
is closed by applyingsurvivalselection, globally to both parents and offspring, in
order to select the starting population for next generation; survival selection still
favors fitter individuals.

Algorithm 1 Pseudo-code of Evolutionary Algorithm
Begin

INITIALIZE population with random individuals;

EVALUATE each individual;

REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1 SELECT parents from population;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE newborn offspring;

5 SELECT individuals for the next generation;

OD

END

2.2.1 Key Issues

The different components of the basic algorithm above will now be discussed in
turn, and the key issues to consider when designing an EAs fora specific problem
will be highlighted.

16

2.2. EVOLUTIONARY COMPUTING

Fitness

How an individual adapts to the environment is measured by its fitness. Improv-
ing the fitness function should result in improving the objective function of the
optimization problem at hand. On the other hand, modifying the fitness function
by some linear transformation only impacts the selection steps of the algorithm.
Hence we will consider in general that the fitness functionis the original objective
function, postponing the discussion about possible transformations to the discus-
sion about selection procedures.

A crucial remark about the fitness is that it usually represents most of the
computational cost of the EA. Indeed, in most real-world situations, selection
and variation are generally very fast operations (though sorting huge populations
can become time consuming when the population size increases) compared to the
evaluation, that can involve heavy simulations of possiblynon-linear physical,
mechanical, chemical phenomenon. This also explains why the goal of the EC
designer will be, beyond finding the optimum of the objectivefunction at hand,
to minimize the number of fitness function evaluations. And the usual measure
for comparing different EA or EA settings is the number of evaluations needed to
reach a predefined optimization goal (e.g., a given fitness value).

Representation

For a given problem, the representation of the candidate solution, or individuals,
is crucial. The original optimization problem is posed in a given search space,
and solutions must ultimately be given in this space. However, the EC designer
faces two goals that are somehow contradictory. On the one hand, he needs to
find the best possible solution in the original search space;On the other hand,
exploration depends on the variation operators, and some structure of the search
space is mandatory to make the exploration efficient. From this point of view, the
choice of a representation and the design of the variation operators are the two
faces of the same coin, and should be done together.

It is hence often useful to search an auxiliary space, where efficient variation
operators can be designed, rather than the search space of the original optimization
problem. Still crudely inspired from biology, the originalsearch space is termed
phenotypic space1, while the space where variation operators are applied is called
the genotypic space. The phenotypes (or potential solutions ofthe optimization
problem at hand) areencoded into the genotypic space, where the actual search
takes place through the application of the variation operators. The individuals

1or sometimesbehavioralspace as this is where the behavior of the individual is evaluated
when the fitness is computed.

17

2. BACKGROUND

referred to in the previous Section 2.2 and in Algorithm 1 aregenotypes, that are
decoded into the corresponding phenotypes for evaluation.

’Natural’ Selection

The two selection steps are the parental selection, that selects which individuals
are allowed to reproduce, and the survival selection, that chooses which indi-
viduals will survive to the next generation. The main difference between both
selections is that an individual can be selected several times as a parent, while all
individuals are selected at most once for survival, and disappear forever if they
are not selected. However, similar selection procedures can be used in both cases.

Another important remark is that both selection steps only depend on the
fitness of the individuals in the population. In that respect, selection isprob-
lem independent, and can be viewed as a technical issue when designing an
EAs for a specific problem. Many toolboxes exist indeed wherethe EC de-
signer can pick the selection method of his choice, without the need to be creative.

Selection procedures can be either deterministic, or stochastic. Determinis-
tic selection acts globally on the population, and selects the best (fitness-wise)
individuals in the population up to the required number.

Two categories of stochastic selections can be distinguished, whether they are
based on the fitnessvaluesor simply on theranks of the individuals. The most
popular value-based selection is the so-calledroulettewheel selection [95, 68],
where each individual is selected with a probability that isproportional to its fit-
ness. Roulette-wheel, like all value-based selection procedures, suffers from being
very sensitive to the actual distribution of the fitness values: whereas optimizingf
or exp(f) are equivalent optimization problems, the corresponding roulette-wheel
selection procedures will produce very different results on both settings, favoring
much more the best individuals in the latter case: theselectionpressure (the prob-
ability to select the best individual divided by the probability to select the average
individual) is hard to control efficiently. This is why, in spite of many trials to cope
with this defect, and in spite of some early theoretical studies on Schema Theory
that are based on proportional selection [95, 68], value-based selection procedures
are hardly used nowadays.

Rank-based selections (including deterministic selection) are insensitive to
monotonous transformations of the fitness function. Many variants have been
proposed, including some roulette-wheel on the ranks of theindividuals, rather
than on their fitness values (akaranking). However, the most popular selection
procedure today is thetournament selection: it is a rank-based selection, and the
selectionpressure can be easily controlled through a single parameter, the tour-

18

2.2. EVOLUTIONARY COMPUTING

nament sizeT. In order to select one individual, tournament selection first picks
up T individuals, and returns the best of thoseT. The selection pressure is pro-
portional toT. When selection pressure smaller than 2 are required, a stochastic
variant of the tournament of size 2 is used, where the best of the two uniformly
chosen individuals is returned with probabilityt ∈]0.5,1]. The selection pressure
is then 2t.

Variation Operators

Variation operators are stochastic transformations defined on the genotype space.
One distinguishes two types of variation operators based onthe number of parents
that are required to generate an offspring.

Crossover: The basic idea of crossover operators is to be able to recombine some
good parts of the parents’ genotypes to possibly generate offspring that have better
fitness than their parents. Crossover involves two (or more [48]) parents, and
implicitly assumes some sort of linearity of the fitness function with respect to
(parts of) the genotype.

The debate about the usefulness of crossover has been going on for long:
crossover can be seen as just a macro-mutation [113, 4], or even be considered
harmful [61]. Early theoretical work like the Schema Theory[95, 68] only give
hints about the way crossover works, though introducing thenotion of Building
blocks. Indeed, the crossover is only analyzed there by bounding its destructive
effects. Their extension ofFormaTheory [172, 173] is tentative to also take
into account the positive effects of crossover, but did not result in more practical
conclusions. More recently, the theory of mixing [211] was revisited in [67] in
another effort to better understand the Building Block Theoryand the effects of
Crossover. In any case, the debate has nowadays cooled down, and the dominant
point of view is that of pragmatism: if an efficient crossovercan be designed for
the representation at hand, then using crossover does improve the performance
of the EAs (but this is a tautology!). Otherwise, a mutation-only EAs is the
best choice, and many examples of such situations exist, as will be detailed for
instance in Section 2.3.

Mutation : Whereas there can be pros and cons for using crossover operators,
there has hardly been any discussion about mutation. Of course, like all very gen-
eral statements, this one has its exceptions: Koza’s seminal work on Genetic Pro-
gramming [125] did not use mutation, but provided sufficientprovision of Build-
ing Blocks by using very large populations; the particular CHCalgorithm uses
an exploratory crossover, and hence does not need additional mutation [49]; same
remark applies to the SBX crossover [41]. But almost all practitioners have exper-

19

2. BACKGROUND

imented that in general the lack of mutation largely degrades the efficiency of any
EAs, and early theoretical results [180] as well as more recent ones [6] prove that
the ergodicity of the mutation operator (i.e., its ability to visit the whole search
space with positive probability) is mandatory to ensure anyconvergence result of
EAs.

Theprobability of mutation that should be used is related to which variation
operator (crossover or mutation) is considered the major drive of evolution. When
crossover plays this role, like in traditional GAs, mutation is simply a background
operator ensuring ergodicity, and should be applied sparsely: only a few indi-
viduals should be mutated (generally after crossover has been applied). When
mutation is the main (or the only!) driving force, it should be applied to all in-
dividuals. When relevant, the issue of thestrength of mutation is also important,
and mutation is generally defined such that ’small’ mutations are more likely than
’large’ ones. But the idea of small and large mutations in factrefers to the result-
ing modification of the fitness, and relates to the idea ofStrongCausality [174].
Such considerations lead to the idea ofadaptive operators, responsible for the
great successes of Evolution Strategies (see Section 2.2.3below). Unfortunately,
such efficient adaptive strategies could not as far as we knowbe generalized to
other domains than that of continuous optimization.

Exploration Vs Exploitation

An important concept to keep in mind when designing an Evolutionary Algorithm
is theExploitationVs Exploration dilemma. At any time during evolution, the
algorithm must choose whether to look around the best individuals found so far,
exploiting the results of previous steps, or whether it should try to explore new
regions of the search space that have not yet been searched. Parameter tuning
should permanently take this balance into account. For instance, increasing the
selection pressure will undoubtly favor exploitation. On the opposite, increasing
the mutation probability (or the mutation strength) is veryoften the best way to
increase the exploration. The case of crossover is less clear: whereas crossover is
an exploration operator at the beginning of evolution, it becomes more and more
an exploitation operator as the population diversity decreases.

2.2.2 Historical Trends

The main 3 historical trends of Evolutionary Algorithms were initially proposed
in the mid 60s, though several seminal ideas in fact appearedin the late 50s (gath-
ered 10 years ago in [60]). Independently, J. Holland in Michigan, I. Rechenberg
and H.-P. Schwefel in Germany, and L. Fogel in California proposed to use artifi-
cial evolution as a model for problem-solving procedure, publishing thereafter the

20

2.2. EVOLUTIONARY COMPUTING

seminal books that grounded the field into reality.
John Holland [95] modeled adaptation in natural systems into what he called

GeneticAlgorithms, and the first PhD student in the field, Ken DeJong,used his
ideas for function optimization [42]. Ingo Rechenberg and Hans-Paul Schwefel,
two engineers in Berlin, optimized the shape of a nozzle usingwhat was to become
EvolutionStrategies. Their ideas were generalized later in [174, 191]. Larry Fogel
optimized Finite State Automata to predict time series [63]. The lack of CPU
power of the computer at that time, resulting in the lack of possible real-world
applications was responsible for what could be called the “EC winter” (see Section
2.1.1). In the 80s, however, Holland’s student David Goldberg applied GAs to
optimize a gas pipeline system and found better than state-of-the-art solutions to
this very complex problem. He later published his seminal book [68] “Genetic
Algorithms in Search, Optimization and Machine Learning”,probably the most
cited one in the field. This was the beginning of an extraordinarily revival of those
ideas, and though still considered separate fields, the distinction between the 3
branches rapidly started to vanish, thanks to the second generation of pioneers
like Z. Michalewicz [150], T. Bäck [13] and D. Fogel [62].

In the meantime, born as a particular case of application of Genetic Algorithms
[37], Genetic Programming was introduced and popularized by John Koza [125]
and rapidly became the fourth wheel of theEvolutionaryComputation truck.

As of today, though those four streams should remain mainly as history, the
terms are still used to distinguish some specific aspect of particular EAs, and
are sometimes referred to as ’dialects’. The following attempts to summarize the
communities and differences between those dialects.

Genetic Algorithm [95, 68]

Representation: Bit-string representation
Parental Selection Roulette-wheel (and tournament, later)
Survival Selection Generational (or Steady-State)
Crossover: 1-point, 2-points, uniform (with given probabilityPc)
Mutation: Bit-flip (applied to every bit with probabilitypm)

Evolution strategies [174, 191]

Representation: Real-valued vectors
Parental Selection No selection
Survival Selection (µ

,
+ λ) strategies

Crossover: Intermediate (exchange) or arithmetical (linear combina-
tion)

Mutation: (Self-)adaptive Gaussian mutation (see below)

21

2. BACKGROUND

Evolutionary programming [63, 62]

Representation: Finite State Automata, evolved into using any represen-
tation

Parental Selection No selection (1 parent creates one offspring)
Survival Selection Survival tournament
Crossover: No crossover
Mutation: Ad hoc – self-adaptive Gaussian mutation for real-valued

genotypes

Genetic programming [125, 18]

Representation: Parse-trees of LISP-like expressions
Selections “inherited” from GAs, with preference for Steady State

with tournaments
Crossover: Sub-tree exchange
Mutation: No mutation originally, point mutation, or node- or -leaf-

mutations generally

2.2.3 An Adaptive Evolution Strategy: CMA-ES

Evolution Strategies

Evolution Strategies are continuous optimization algorithms, i.e., they work on a
real-valued search space, say a subset ofR

n, for some integern.
The main operator of ES is the Gaussian mutation, that generates offspring

from a normal distribution centered around the parent. The most general Gaussian
distribution inR

n is the multivariate normal distributionN (m,C), with meanm
andcovariancematrix C, a n× n positive definite matrix. It has the following
Probability Distribution Function

Φ(X) =
exp(−1

2(X−m)tC−1(X−m))
√

(2π)n|C|

where|C| is the determinant of covariance matrixC.
The mutation of a vectorX ∈ R

n is generally written as

X → X +σN(0,C)

distinguishing a scaling factorσ , also called thestep-size, from the principal di-
rections of the Gaussian distribution, as given by the covariance matrixC.

22

2.2. EVOLUTIONARY COMPUTING

In the simplest case,C is the identity matrix. In this case, mutating vector
X amounts to mutate independently all coordinates ofX using a 1D-Gaussian
mutation with varianceσ2. In this case, the Gaussian mutation is calledisotropic.

Tuning an ES amounts to tuning the step-size and the covariance matrix – or
simply tuning the step-size in the isotropic case.

Two simple functions have been considered by early analytical works on ES,
corresponding to typical cases of the two extreme situations the algorithm can en-
counter: when far from the optimum, the isolines of the fitness will locally look
like straight lines orthogonal to the direction of the optimum: the fitness function
will look linear, with optimum at infinity; when close to the optimum, if the fit-
ness function is smooth enough, it will look like its second order approximation
in Taylor expansion, i.e., it will look quadratic. The studyof these two very sim-
ple cases (the ’linear’ function wheref (x) = x1, and the ’sphere’ function where
f (x) = ||x2||) lead to the successive improvements in the way the parameters of
the Gaussian mutation were adapted.

Adapting the Step-size

The step-size of an isotropic Gaussian mutation determinesthe scale of the search.
Suppose a 1D situation and a (1+1)-ES (one parent gives birthto one offspring,
and the best of both is the next parent) with a fixed step-sizeσ . In the linear case,
the average distance between parent and successful offspring is proportional toσ :
it should be increased as much as possible. In the quadratic case, the best precision
one can hope is proportional toσ . Those arguments naturally lead to the optimal
adaptivesetting of the step-size:σ should be proportionally resized according to
the distance to the optimum. See early work [191], completedwith studies of the
progressrate [26], and a more recent proof [7]. However, such algorithm is indeed
impractical, as the distance to the optimum is unknown!

But further analytical derivations on linear and sphere function lead to the
first practical method to adapt the step-size, the so-calledone-fifth rule. Indeed,
another piece of information is available to the algorithm,namely the proportion
of successful mutations, in which the offspring is better than the parent. This
successrate does indirectly give information about the step-size:if the success
rate over some time window is larger than the success rate when the step-size is
optimal (0.2, i.e., one-fifth), the step-size should be increased; on the opposite, if
the success rate is smaller than 0.2, the step-size should bedecreased. Though
formally derived from studies on the sphere function and thecorridor function (a
bounded linear function), the one-fifth rule has been extrapolated to any function.

There are however many situations where the one-fifth rule fails. Moreover,
it does not handle the case of non-isotropic (even if quadratic) functions: there, a
full covariance matrix is mandatory. Nevertheless, after having been abandoned

23

2. BACKGROUND

when Self-Adaptive ES was proposed (see below), the simplicity of the one-fifth
rule makes it appealing when simple adaptation rules are needed. It is for instance
used for fast step-size adaptation within the multi-objective CMA-ES algorithm
[102].

Self-Adaptive ES

The idea of Self-Adaptive ES (SA-ES) is fairly simple: the parameters of the
mutation (both the step-size and the covariance matrix) areattached to each in-
dividual, and are adapted by mutation, too. Three variants have been proposed:
the isotropic case uses a single step-size per individual; thenon-isotropic muta-
tion uses a vector ofn “standard deviations”σi (the resulting covariance matrix is
equivalent to a diagonal matrixC with σ2

i on the diagonal); and thecorrelated mu-
tations attaches a full covariance matrix to each individual. Mutating an individual
is then a two-steps process: first, the mutation parameters are themselves mutated;
then the design variables are mutated using the new mutationparameters. Details
can be found in [15, 12].

The rationale for SA-ES are that even though the selection isbased on fitness,
an individual with ’poor’ mutation parameters will on average generate offspring
that will be overpassed by offspring of individuals with ’correct’ mutation param-
eters, where ’poor’ and ’correct’ refer to the local fitness landscape (for instance
the step-size should be small if the landscape is steep).

SA-ES have often been said to “optimize mutation parametersfor free”
through the evolution itself. And indeed, SA-ES have long been the state-of-
the-art in parametric optimization [15].

But do SA-ES work as expected? Whereas, it has been experimentally demon-
strated for the step-size [13, 27], it is not true for the covariance matrix. Indeed,
when replacing the sphere function with a quadratic function (min 1

2XtHX for
some positive definite matrixH), the mutation should progress slower along the
directions of steepest descent of H: the covariance matrix should be proportional
to H−1. And there are some evidences that the covariance matrix that is learned
by thecorrelated SA-ES is not any close from the actual inverse of the Hessian
[5].

Back to Adaptation: CMA-ES

Another issue when using SA-ES is the slow adaptation of the mutation parame-
ters: even for the simple case of the step-size, if the initial value is not optimal,
it takes some time to the algorithm to reach that optimal value and start being
efficient.

24

2.2. EVOLUTIONARY COMPUTING

This observation lead Hansen and Ostermeier to head back to an adaptive
method for parameter tuning by proposing deterministic schedules to adapt the
parameters of the Gaussian mutation. They first addressed the step-size adapta-
tion [89], and later that of the full covariance matrix [87].The full Covariance
Matrix Adaptation (CMA-ES) algorithm was detailed after default values for its
parameters had been carefully designed, in [88]. Later, an improvement for the
update of the covariance matrix was proposed in [86].

The basic ideas in CMA-ES for step-size adaptation is to observe the previous
moves of the algorithm. When successive moves are in collinear directions the
step-size should be increased, in order to allow larger steps – and similarly, when
the totalpath-length is very short after several iterations, then the step-size should
be decreased, as the algorithm is hovering around the optimum.

Regarding the covariance matrix, the idea of the update rule is to increase the
probability in the direction of previous successful moves by adding matrices with
the corresponding eigenvectors to the current covariance matrix.

Following Hansen and Ostermeier [88], in the(µI ,λ)-CMA-ES theλ off-
spring of generationg+1 are computed by

xg+1
k = 〈x〉(g)

µ +σ (g)B(g)D(g)z(g)
k ,k = 1, . . . ,λ ,

B(g)D(g)z(g)
k ∼ N (0,C(g))

where

〈x〉(g)
µ =

1
µ

Σ
i∈I (g)

sel
xi(g)

represents the center of mass of the selected individuals ofgenerationg , and
i ∈ I (g)

sel is the set of indices of the selected individuals of generation g with |i ∈

I (g)
sel | = µ. σ (g) is the global step size.

The random vectorszk areN (O, I) distributed (n -dimensional normally dis-
tributed with expectation zero and the identity covariancematrix) and serve to
generate offspring for generationg+1. We can calculate their center of mass as:

〈Z〉(g+1)
µ =

1
µ

Σ
i∈I (g)

sel
zi(g+1)

The covariance matrixC(g) of the random vectorsB(g)D(g)z(g)
k is a symmetri-

cal positiven×n -matrix. The improvement equation for the update of the covari-
ance matrix proposed in [86] is as follow:

25

2. BACKGROUND

Cg+1 = (1−ccov) ·C(g) +ccov(αcov·pg+1
c (pg+1

c)T +(1−αcov) ·Zg+1)

wherepg+1
c is the evolution path,ccov is the learning rate.

For adapting the global step sizeσ , the evolution pathpg+1
σ is computed in

analogy to the evolution pathp(g+ 1), and the new step size is determined by
comparing the length of the evolution path to that of a randomwalk:

σg+1 = σg ·exp(
1

dσ

‖ pg+1
σ ‖ −X̂n

X̂n
)

whereX̂n = E[‖ N (0, I) ‖] is the expected length of a(0, I), i.e., a normally
distributed random vector that would be the average length of a random walk, and
dσ > 1 is the damping parameter.

It is important to note that CMA-ES is almost a parameterless algorithm.
Only the number of offspringλ (that greatly impacts on the actual computational
complexity of the algorithm) has to eventually be modified toaccount for the
ruggedness of the fitness landscape at hand. The default value, as set in [88]
increases logarithmically with the dimensiond of the problem (number of
unknown parameters) asλ = 4+3ln(d). It should be increased for highly multi-
modal objective functions, as demonstrated by the recent restart-CMA-ES [9].
Furthermore, some particular landscapes that are only mildly multi-modal, like
Whitley’s funnel landscapes [139], cannot be successfully solved by enlarging
the population size: such types of landscapes motivated thebi-pop-CMA-ES [83].

CMA-ES can be considered the state-of-the-art in continuousoptimization to-
day. The restart-CMA-ES was demonstrated to outperform mostother stochastic
algorithms for parametric optimization (e.g. variants of PSO, DE, EDAs), as wit-
nessed by its success in the 2005 contest that took place at CEC’2005 [51]. More
recently, some comparative results [10] obtained for the 2009 GECCO Workshop
onBlack-BoxOptimizationBenchmark [50] demonstrated that the bi-pop-CMA-
ES also outperforms the best-performing methods in classical numerical opti-
mization (e.g. the standard Levenberg-Marquard algorithm, or the very recent
NEWUOA algorithm by Powell [170, 171]).

2.2.4 Applications

It is widely acknowledged that in Evolutionary Computation,Theory lags far be-
hind practice. Indeed, lessons from successful applications are one of the main

26

2.2. EVOLUTIONARY COMPUTING

driving forces of EAs research today. Several edited books are devoted to Appli-
cations of EAs (see e.g. the recent [231]), and almost every event dedicated to
EAs has its own Special Session dedicated to real-world applications.

Application areas can be distinguished according to the type of search space
they involve.

Regardingcontinuous optimization, Section 2.2.3 has introduced in de-
tail the CMA-ES algorithm as the state-of-the-art algorithmfor optimization of
real-variables. An impressive list of applications of CMA-ES is maintained on
N. Hansen’s Web page [84].

Another niche of EAs isMulti-objective optimization . Basically, Multi-
Objective Evolutionary Algorithms (MOEAs) are the only algorithms to-date that
can produce a set of best possible compromise (theParetoset). MOEAs use the
same variation operators than standard EAs, but the Darwinian components are
modified to take into account the multi-valued fitness [40, 35]. Though prominent
application results have been obtained in the area of multi-objective coutinuous
optimization area (see e.g. [159, 160]), the methods can be used with any search
space [179, 80].

Combinatorial problems are another area where EAs have proven to be very
efficient. However, as far as benchmark problems are concerned, it is commonly
acknowledged that EAs alone cannot compete with OR methods (see e.g., the
poor results in [16]). However, in the last 15 years, hybrid algorithms, also termed
MemeticAlgorithms, coupling traditional OR methods with EAs, haveobtained
the best-so-far results on a number of such benchmark problems (e.g. from [64]
to [149]).

However, for real-world combinatorial problems, “pure” ORheuristics gen-
erally don’t directly apply, and OR methods have to take intoaccount problem
specificities. This is where EA flexibility is crucial: some specific EAs, carefully
tuned to the problem at hand, have been very successful solving real-world com-
binatorial problems, as for instance in the broad area of scheduling [164, 193].

When it comes tomixed search spaces(involving a fixed number of variables
that can be floating points, integers or discrete), again theflexibility of EAs allow
to tailor them to the problem at hand. For instance, constructing variation opera-
tors for mixed individuals is straightforward, and can simply be done by applying
to each variable some variation operator defined for its type. Many problem have
been easily handled that way (see e.g. the optical filter optimization in [14, 145]).
Furthermore, some platforms now exist that help the non-EC expert to implement
generic EAs for a given problem involving different types ofmixed search spaces
[36].

Ultimately, the ability of EAs to handle almost any search space can al-
low engineers and/or artists to unveil their wildest ideas in Design. Indeed, the

27

2. BACKGROUND

idea ofcomponent-based representationscan boost innovation in structural de-
sign [66, 81], architecture [178] as well as in many other areas including art
[25, 24]. Furthermore, the recently emerged area ofdevelopmental represen-
tations [76, 126] might lead to tremendous applications. The idea isto optimize
the program that builds the solution, rather than the solution itself. The pioneer-
ing work of Gruau (see Section 2.3.2) was used to design analog circuits [126] –
though exploring a huge search space (a space of programs) implies a heavy com-
putational cost. However, it seems that those approaches can bring a breakthrough
in Evolutionary Design [201].

2.3 Evolving Artificial Neural Network

This Section surveys existing work that use Evolutionary Computation to opti-
mize Neural Networks for a given task (akaNeuro-Evolution), as such context
will be that of all original works presented in this dissertation. Two types of
approaches will be considered, whereas only the weights of agiven NN are
being optimized, or in case the topology of the NN is being optimized as well.
An orthogonal classification regards the nature of the task at hand, whether
supervised, reinforcement or unsupervised (see Section 2.1.2). More details can
be found about the early work on Neuro-Evolution in two well-known surveys
that have been written by Schaffer, Whitley, and Eshelman [184] in 1992 and by
Yao [230] in 1999.

2.3.1 Evolving Connection Weights

In the 80s, great successes of NNs were obtained in the supervised learning
framework (see Section 2.1.2) using Back-Propagation (BP) algorithm to op-
timize the connections weights [128, 56]. However, the BP algorithm also
showed a number of limitations. It demonstrated slow convergence for large-scale
NNs, and too frequent premature convergence to some local minima close to
the starting point, thus missing the global minimum [208, 226]. A workaround
was to use different initializations, but without much guarantees of convergence.
Furthermore, because it requires the differentiability ofthe objective function, BP
algorithm is unable to handle discontinuous neural transfer functions (e.g., the
Heaviside function – Unit Step fuction).

On the other hand, in unsupervised or reinforcement learning context, where
direct gradient information is either unavailable, or costly to obtain, no gradient-
based method is available, so even learning the weights of a given NN was con-

28

2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

sidered a difficult task. In that context, because of the lackof a general theory and
also because the optimal output is unknown, the traditionalmanual approaches
have been designed by the experts, e.g. Hopfield networks [96] and Adaptive
Resonance Theory (ART) [75]. But such methods have two shortcomings: their
design has many degrees of freedom that must be fixed manually; furthermore,
they have to be tuned anew for each given task, and the resultshardly generalize
from one task to another.

Therefore, even though ANNs were considered a good choice for unsuper-
vised and reinforcement learning, it seemed that a new approach was required
to actually perform the optimization of the neural network,starting with the
optimization of the weights of a NNs with a given topology.

At the same period, Evolutionary Algorithms, and more precisely Genetic
Algorithms, started to encounter some success in many areas. Because of the
flexibility of Evolutionary Algorithm, and in particular because they do not re-
quire derivative information, the initial work of evolvingANNs began at this
stage [152, 226, 39] with the easiest problem, that of optimizing the weights of a
given NN with fixed topology.

The research of what was to become known asNeuro-Evolution hence started
with optimization of the connection weights of single-layer or multi-layer feed-
forward neural networks (aka perceptrons). Starting with the input and output
sizes, the programmer has to manually determine the number of hidden layers,
and the number of neurons in each layer. Such topology remains fixed during the
whole learning phase, and the genotype is then simply the vector of all connec-
tion weights. Depending on the learning framework, any optimization algorithm
can then be used, as the problem then amounts to standard continuous parameter
optimization.

Early attempts dealt with supervised learning: In 1989, Montana and
Davis [152] learned the weights of a simple perceptron for anocean echo de-
tection, and achieved better results than the back propagation algorithm; also the
other works such as Caudell et al. [34]; Whitley et al. [226]

However, because there didn’t exist any other unanimously recognized
method for reinforcement learning tasks, many works in Neuro-Evolution have
been devoted to such context, from the pioneering work of DeGaris [39] where
the task was to control some “walking sticks” and Whitley et al. [225] that first
introduced the pole balancing problems in the EC community (see Section 4.4.1),
to handling other classical benchmark problems like lunar lander [176], truck
backer-upper [190], to recent work using standard CMA-ES andsolving the
double-pole balancing problem using a perceptron with veryfew neurons [101].

Another distinction can be made here whether the weights areencoded as

29

2. BACKGROUND

binary strings or as real numbers. Most of the early works used binary string en-
coding, that was considered in the GA community almost as a universal encoding.
Hence lots of researchers followed this approach at that time [224, 34, 226, 39].
In this method, each connection weight is represented by a binary string of given
length, and all these strings are concatenated to form the chromosome. Classi-
cal GA variation operators can then be applied directly (such as single-point or
uniform crossover). Binary representation is also conducive to the realization of
digital hardware.

However, the precision of the encoding then depends on the string length
that is chosen to encode each weight, and a compromise has to be made between
the precision and the total chromosome length. If the lengthis too short, the
connection weights cannot be optimized with sufficient precision; On the other
hand, when the code length is too large, the optimization process might become
too slow to converge, degrading the efficiency of the whole process. There are
however well-known exceptions, such as the work in Evolutionary Robotics
performed by Floreano and co-authors [59, 158] that repeatedly used coarse
binary encoding (8 bits per weight) to evolve successfully robot controllers for
various tasks.

Using real encoding (and appropriate variation operators)is a way to over-
come this difficulty. Used by Montana and Davis as early as 1989 [152], and
followed by Whitley et al. [225] for reinforcement learning tasks, it became more
and more popular in the 90s with the growing popularity of Evolution Strategies
(see e.g., [176, 190], and more recently [101]). Our work in Chapter 4 builds on
those ideas.

An issue that has been raised about the evolutionary learning of the weights
of a given NN is the “structural/functional mapping” problem [225] (aka “com-
peting convention” problem): The mapping from genotype to phenotype is here a
many-to-one mapping, because two NNs that only differ by theorder of the hid-
den neurons are de facto identical, whereas the corresponding chromosomes will
be completely different. In particular, any crossover operator (and for any repre-
sentation of the weights) might be very inefficient. However, in practice, and at
least for not too large populations, it seems that this problem is not an issue, as
evolution rapidly chooses one of the possible orderings of the neurons, and hardly
has to crossover NNs that only differ by a permutation of the hidden neurons [82].

On the other hand, using evolutionary algorithm allows the programmer to
optimize not only the connection weights, but also the parameters of the transfer
functions, sometimes leading to improved results, as advocated in [189]. The
work presented in Chapter 4 is another demonstration of this idea.

30

2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

However, even though multi-layer perceptrons are universal approximators
[97], it is well-known that the topology of a NNs is an important issue for large-
scape applications. For instance, many man-years of efforthave been devoted to
building the topology of the well-known digit recognition NN for the US Post
[129, 31]. And again, thanks to their flexibility, EAs are perfect optimizer candi-
dates for the task of optimizing the topology of NNs for a given task.

2.3.2 Evolving Network Topologies

Tuning the topology of Neural Networks, even simple feed-forward networks like
perceptrons, has received a lot of attention in the Machine Learning commu-
nity. Both bottom-up and top-down approaches have been explored: Cascade-
correlation algorithms for instance iteratively add neurons to a very specific archi-
tecture [55], while pruning methods start with a very large network and gradually
remove neurons, using from brute force [222] to iterative algorithms [33]. Hence,
quite naturally, early works in Neuro-Evolution trying to optimize the topology of
NNs followed similar paths [90, 226, 206]. But here again, theflexibility of EAs
rapidly lead researchers to generalize such methods. First, there is no need any
more to work either bottom-up or top-down, as the complete connectivity matrix
can be optimize, adding and removing either neurons or connections, optimizing
the weights either using traditional BP algorithm, in case ofsupervised learning,
or within the EAs itself, in case of reinforcement learning –and here again, not
only the weights but any parameter of the transfer function can be optimized [54].
Those methods (see [230] for a more complete surveys, as mostof these methods
were published prior to 1999), that use different representations of the topology
to directly manipulate and transform it through the variation operators, are termed
directrepresentation methods.

However, the poor scaling-up behavior with respect to the size of the problem
of direct encoding lead to a change of paradigm, that resulted in the indirect
methods, starting withdevelopmentalmethods, where evolution is concerned
with evolving some program such that, when the program is executed on some
pre-definedembryo, the result is a fully operational Neural Network. This ap-
proach has been illustrated by the seminal works of Kitano [119] and Gruau [77].
However, such developmental approaches have not met their expectations, and
recent trends use other types of indirect representation, going back to biological
inspiration, and borrowing some basic principles to Gene Regulatory Networks
or Protein Interaction Networks to define artificial networks [58, 132, 45, 157].

We will now detail in turn the some recentdirect representation methods, ul-
timately focusing on NEAT [204], that is today considered the state-of-the-art for
the evolution of small NNs. Interestingly, NEAT uses an approach very close from

31

2. BACKGROUND

a pure bottom-up approach, in that it keeps adding neurons and connections to a
minimal embryo NN.

We will then survey some indirect representations, from theseminal work of
Gruau to the recent approaches inspired by biological networks. Through this pre-
sentation, we will de facto survey part of the research progress in Neuro-Evolution
in the last decade (i.e. posterior to Yao’s 1999 survey [230]).

Some Direct Representations: from SANE to NEAT

An important issue when using direct representations to evolve both the weights
and the topology of NNs is the following: when the topology ismodified, the
performance of the resulting new topology is generally rather low until the
weights have been adjusted to the new topology. Several methods have been
proposed in the recent years in the realm of direct representations for evolving
NNs try to address this issue, beside taking into account thescaling-up issue.

Coevolution Methods
In 1997 Moriarty and Miikkulainen proposed a co-evolutionary model named

Symbiotic Adaptive Neuro-Evolution (SANE) [154]. The basic idea in SANE
is to evolve two populations. The first population is made of neurons, and the
second population is made of network structures with one hidden layer (aka
blueprints) pointing to neurons from the first population for the hidden neurons.
The blueprints are instantiated, then evaluated on the taskat hand; the neurons are
evaluated based on how good are the networks they have participated to.

SANE obtained good results at diverse reinforcement learning tasks: First,
because new topologies are using neurons that are proved good with the parent
topologies, preventing too poor performance of offspring;Second, because the
algorithm also implicitly maintains some diversity at the level of the neurons:
no neuron can overtake the whole population as networks using mostly copies
of the same neuron are likely to perform poorly. However, SANE proved poor
at evolving recurrent NN, probably because in recurrent nets the dynamics of
the neurons are much more dependent on the other neurons it isconnected to –
evolving neurons separately becomes unviable.

In the following years, Miikkulainen and his students modified the SANE
model into the Enforced Sub-Populations (ESP) model [69]. Like SANE, ESP
evolves the topology of NNs with one hidden layer. However, the number of
hidden neurons must be specified, and ESP evolves as many populations of
neurons. Complete Neural Networks are built by randomly choosing one neuron
from each population, repeatedly until each neuron has beenused on average a
given number of times (e.g. 10). Each neuron is evaluated based on how good

32

2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

on average the networks it has been part of performed. Becausethe clustering
of neurons is explicit (neurons with different sub-tasks belong to different
populations), crossover only recombines neurons that are already specialized for
the same sub-task. ESP hence obtained better results than SANE on the same
reinforcement tasks. Furthermore, recurrent NN can be evolved with ESP, by
including the weights of the recurrent connections into thegenotypes of the
neurons. However, the main limitation of ESP is that it can only evolve one-layer
architectures.

Neuroevolution of Augmenting Topologies: NEAT
Building upon SANE and ESP, Miikkulainen and his student Stanley proposed

NEAT (Neuroevolution of Augmenting Topologies) [204, 203], a new direct rep-
resentation to evolve any feed-forward or recurrent NN architecture in order to
address the following issues:

1. How to optimize both the weights and the topology, i.e. explore a huge
search space efficiently?

2. How can crossover be implemented when structures do not match?

3. How can innovative topologies survive while having initially low fitness?

The original features of NEAT are

• The bottom-up approach to network topology: the optimization process
starts with a minimal NN (one neuron per input, all being connected to
the output neurons), and can only add connections and neurons.

• The representation, that can handle any type of connectivity, while be-
ing easily and smoothly evolvable through variation operators. Figure 2.5
shows an example of genotype to phenotype mapping (from [204]). The
Node Genes describe the neurons and their role in the network(input, out-
put, or hidden), and the Connection Genes describe the connections between
the neurons: the input and output neurons, the corresponding weight, an En-
abled/Disabled flag, and an important and original feature,the innovation
number.

• The innovation number stores for each gene the moment it appeared in the
history of evolution (a global counter is incremented everytime a new gene
is created). It allows the crossover operator to answer issue 2 above: when
two individuals have to be recombined, they are first alignedwith respect to
innovation numbers, and only genes with matching innovation numbers are
exchanged. They are genes that are descents of the same initial gene, and

33

2. BACKGROUND

Figure 2.5: This example (from [204]) shows a genotype to phenotype mapping
used by NEAT. There are 3 input, one hidden, and one output nodes, and seven
connections, one of which is recurrent. The second gene is disabled, so the con-
nection that it specifies (between nodes 2 and 4) is not expressed in the phenotype

hence should play a similar role in the structure, as only weight mutation
might have happened since they were separated).

• Structural mutation operators that modify the network as little as possible:
Add Connection mutation and Add Node mutation are described in Figure
2.6. Note that weight mutation adds some random Gaussian noise with fixed
standard deviation.

• Explicit fitness sharing mechanism, based on some distancedefined using
gene alignments based on the innovation numbers: this prevents innovative
structures to disappear immediately because of their poor performance, thus
answering issue 3 above.

Because of its praised successes, there are already a series of different versions
of NEAT, including C++ (Linux, Windows, Real-time), JAVA, Delphi, Matlab, C♯.
More details as well as news about NEAT and the growing NEAT community can
be found in the NEAT dedicated Web site2 maintenaned by K. Stanley.

NEAT is indeed considered today the state-of-the-art of methods based on
direct representations to evolve both the topology and the weights of a NN. It is
hence the baseline algorithm to which any new approach that aims at generating

2http://www.cs.ucf.edu/ kstanley/neat.html

34

2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

Figure 2.6: Structural mutations in NEAT (from [204]). In the Add Connection
mutation, two previously unconnected neurons are chosen randomly and con-
nected, and the connection is assigned a small random weight; In theAdd Node
mutation, an existing connection is chosen and replaced by anew neuron, that
received two connections, with the two neurons which were previously connected
by the disabled connection. The weight of input connection of the new neuron is
set to 1 and the weight of output connection is set to the same weight as the old
connection, for minimal destructive effect.

35

2. BACKGROUND

NNs should be compared. However, it also suffers from a severe drawback: it
has a lot of parameters that the user needs to tune, and remains rather difficult to
master for a completely new task. Furthermore, whereas, when correctly tuned, it
can evolve diverse structures (both feedforward and recurrent) of reasonable size
(a few dozens of neurons), it does not scale-up very well - in particular it does not
address modularity or code-reuse issues, that seem mandatory to tackle large-scale
problems.

Indirect representations have been proposed in order to address these crucial
issues, and next Sections will detail the most popular ones,including one of the
early ones, Hyper-NEAT, a follow-up of NEAT that tries to address the short-
comings of NEAT, and some recent representations borrowingideas to biological
networks.

Developmental Representations

There has been several proposal fordevelopmentalrepresentations, i.e. repre-
sentations of a program that actually builds the solution tothe problem at hand
rather than directly evolving the solution itself (such representations are not
specific to Neuro-Evolution, see e.g., [126]). The works by Kitano [119], using
some grammar-based representation close to L-systems, andGruau [77, 76]
using Cellular Encoding, a representation close to the parsetrees of Genetic
Programming have pioneered this research direction. We have chosen to detail
the latter here, as it seems more likely to be generalized to other tasks than the
former. Finally, we will briefly mention the recent HyperNEAT [202], that can
be viewed as a developmental representation even though it is based on different
paradigm than the previous approaches.

Cellular Encoding
Cellular Encoding is one of the very first instances of developmental represen-

tation. Cellular Encoding is uses a langauge describing local graph transforma-
tions, in order to control the division of cells that grow an artificial neural network
[77, 76].

In Cellular Encoding, individuals are represented as grammar trees with or-
dered branches. The nodes of the grammar tree are labeled with names of program
symbols. The neural network starts with a single ’embryo’ cell, and performs a
sequential development process by reading the grammar treeand applying the
operation described in the current node of the tree to the current cell it points
to. Basic operations includeParallelDivision andSequentialDivision of the cell.
When a cell meets theEnd instruction, the cell stops its development process and
becomes a neuron. Optimization proceeds on the trees, usingcrossover and mu-
tation operators that are very similar to those independently proposed for Genetic

36

2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

Programming [125].
Early work with Cellular Encoding addressed only boolean neural networks

[76]. It was later applied to NNs with real valued weights [227, 78]. In 1996,
Gruau, Whitley, and Pyeatt solved the double poles balancingwithout velocity
problem with Cellular Encoding [78] (see also Section 4.4.1).

Importantly, Cellular Encoding addressed the scalability issue by adding a
Recursion node to the initial representation, allowing to tackle some amount of
modularity. The proof of concept of increased scalability was made by evolving
solutions to the multiplexer problem [76]. It was later demonstrated on a real-
world problem by Khozabadjian [121] that successfully evolved a controller for
an hexapod robot.

However, it seems that the evolvability of Cellular Encodingresulted in a
computationally heavy algorithm, and to the best of our knowledge, it has not
been used ever since. Note that such very heavy costs were also reported for
experiments using similar ideas borrowing to embryogeniesmade by J. Koza
[126].

HyperNEAT
A completely different approach, that can nevertheless be viewed as some de-

velopmental representation for Neuro-Evolution, is that of Hyper-NEAT [202].
Hyper-NEAT builds on NEAT by using the idea of Compositional Pattern Pro-
ducing Networks (CPPNs) proposed by Stanley [201] to design patterns with reg-
ularities. The goal of Hyper-NEAT is to design large NNs where each neuron
is materialized as a point on a 2D grid. The basic idea is then to build (using
NEAT) a top-level Neural Network that will take as input two pairs of coordinates
(those of two neurons), and output one real value, that of theweight between both
neurons. Doing so, Hyper-NEAT is able to take into account the geometry of the
target network (e.g., to design symmetric networks). It also addresses the scala-
bility issue, as the optimization is always made on the smallNNs (with 4 inputs
and 1 output). For instance, Stanley and co-authors report some success building
a visual discrimination network containing over eight millions connections [202].

Bio-inspired Indirect representations

Several models of Genetic Regulatory Networks (GRNs) have been proposed as
a basis for an indirect representation for Neuro-Evolutoin. They differ in several
ways, and actually model only parts of what is known about GRNs. This Sec-
tion will quickly detail 3 of them, Analog Genetic Encoding [58, 146], RBF-Gene
[131, 132], and finally the so-called Banzhaf model [17, 127] that, though not ap-
plied to Neuro-Evolution yet, seem relevant for the perspectives it opens, relative
to the work presented in this dissertation.

37

2. BACKGROUND

The concept of Gene Regulatory Network (GRN) comes from the Biological
Sciences. The expression of the genes in a genome is regulated by special
proteins produced by other genes which can enhance or inhibit the production
of their target protein, akaTranscriptionFactors. And the GRN describe the
interaction between the genes and the Transcription Factors.

Analog Genetic Encoding
The Analog Genetic Encoding (AGE) was initially proposed for the synthesis

of analog circuits [58, 146] (hence its name), and the same ideas were used later
for Neuro-Evolution [45]. The neurons in Neuro-Evolution,or the components in
the analog circuit application, are referred to as ’devices’ in AGE.

The genome of AGE is constituted by a sequence of characters from a finite
genetic alphabet (eg. “A” - “Z”). Each device is encoded by a specific ’start’ token
(e.g. “NE”) followed by a number of terminal sequences (e.g.“TE”). In the case
of neuro-evolution, the substring between the start sequence and the first terminal
sequence is the “input” string for the neuron, and that between the first and the
second terminal sequence is the “output” string for the neuron.

Such genome encodes a fully connected Neural Network, and each connection
weight between 2 neurons is the result of somealignmentscore between the output
string of the first neuron and the input string of the second neuron. This alignment
score in an integer value that depends on a user-defined matrix giving some score
to any pair of characters. This integer value is then bounded(e.g. in[1,37]), and
converted into a floating point number by a logarithmic mapping into an interval
that determines the minimum and maximum precision (e.g.[0.001,1000]).

Similarly, all neurons are connected to the input and outputof the network
through the same mechanism, where the “output string” of every input of the
network and the “input string” of every output of the networkare predefined
strings.

The variation operator used for evolution are [45]:Characterdeletion,
insertion, and substitution, Fragmentdeletion, transpositionand duplication,
Deviceinsertion (a random complete neuron is inserted),HomologousCrossover
(crossover based on syntactic alignment of both parent genomes), andGenome
duplication.

The initial population is created by generating random genomes in which a
given number of different neurons with random terminal sequences are inserted.
Such bootstrap procedure is necessary in order to ensure a minimum number of
neurons.

In [45], AGE for Neuro-Evolution is applied to the double-pole balancing

38

2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

Figure 2.7: Sample genome in AGE (from [45]) (a ’device’ is here a neuron).
One device is extracted for each ’start’ token (“NE”) that isfollowed by the re-
quired number of ’end’ tokens (“TE”) – here 2 substrings are needed, the input
and the output string for each device. The weights are then computed, for the
inputs/outputs of the network, and for all connections between pairs of devices.

problem. The NN model is a Continuous-Time Recurrent Neural Net (CTRNN):
the neurons are sigmoidal neurons, but their dynamic is governed by a continuous
differential equation. The results presented in [45] are better than previously
published results for Neuro-Evolution methods (see Section 4.4.1).

However, there are a number of design decisions that have been made in
order to obtain those results that do not seem to be clearly straightforward: the
substitution matrix used to compute the alignment score, the mapping from the
alignment score into a floating point value, the sequences for the inputs and
outputs of the networks (they are made of identical characters, by why are they
of size 7, 5, 6 and 4 for respectivelyθ1, θ2, x and the bias?), not to mention
the different rates for the variation operators. The authors are well aware of the
problem, as they suggest that many of those parameters can beencoded in the
genome, in order to be self-adapted by evolution – but no analysis is given about
this part of the work.

RBF-Gene
In 2004, Lefort and co-authors proposed RBF-Gene [131, 132], yet another

indirect encoding to evolve both the structure and the parameters (weights and pa-
rameters of the transfer functions) of an RBF netowork, i.e. a NNs with one hid-
den layer and Radial Basis Functions as transfer functions. The model is loosely
inspired from genetic regulatory network: each gene encodes one neuron: one
RBF, and the output weights (one per output of the network). Each RBF requires
a mean vector (one coordinate per input variable) and a standard deviation. Each

39

2. BACKGROUND

gene is thus defined byn+m+1 real values, wheren is the input dimension, and
m the number of outputs.

The representation is a variable length string built over analphabet. Each
gene is the sub-string between two special characters of thealphabet, the ’start’
and ’end’ characters (and there is hence a variable number ofgenes/neurons).
Within a given gene, each required parameter is encoded by 2 characters, one
representing a 0 and one representing a 1. The alphabet size is hence 2+ 2(n+
m+1). Each parameter is encoded as a binary sequence defined by thevalues of
the corresponding characters within the gene. This binary sequence is decoded as
the Gray value of an integer and transformed into a real number. Figure 2.8 (from
[132]) shows an example of decoding of such a genome.

s

Figure 2.8: A simple example of the mapping from the chromosome to the neu-
rons. One input value (n = 1) and one output value (m = 1) leads agenetic code
of 2 + 2(1 + 1 + 1) = 8 letters [132]

The evolution is done using variation operators that are adapted from their bio-
logical counterparts: beside the ’traditional’ crossover(for variable-length strings)
and mutation (modification of a character), the authors haveused both small (lo-
cal) and large duplication, translocation and deletion operators.

Good results are obtained on some difficult regression problem [132].
However, this representation is limited to RBF networks: eventhough they are
universal approximators, they have been hardly used for reinforcement learning

40

2.3. EVOLVING ARTIFICIAL NEURAL NETWORK

task. Moreover, this representation does not seem to scale up well with the
dimension of the input space, as the size of the alphabet increase linearly with the
input dimension.

The promises of GRN-based Representations: Banzhaf model
In 2003, Wolfgang Banzhaf proposed a Artificial Gene Regulatory Networks

in terms of computer science [17, 127]. In this model, all genes are both protein
producers and Transcription Factors that regulate the production of all other genes
(including their own) instantaneously.

A genome is represented as a bit string. As in AGE and RBF-Gene, aspecific
32-bit sequence is used as ’promoter site’, i.e. to identifythe starting location of
a gene (see Figure 2.9 for an illustration). Upstream from the promoter site, two
32-bits sequences represent one enhancer and one inhibitorsites for this gene.
The 160 bits (5×32) downstream represent the gene information, encoding the
type of protein that the gene will be responsible for creating. A protein is a 32-bits
sequence, each bit is the result of a majority vote between the 5 corresponding
bits at the same position in the 5×32 bits representing the gene information.

XYZ010 0 01 1 1

32 bits32 bits

Enhancer
site

Inhibitor
site

Promoter
site

Gene
information

160 bits32 bits

Protein

32 bits

Figure 2.9: A gene of the Artificial Gene Regulatory Networks model proposed
by Banzhaf [17]

All proteins regulate the production of all genes: the strength of the regula-
tion (that is also the weight of the connection between both genes) is computing
by OR-ing the protein code and the enhancer site (resp. the inhibitor site) of the
corresponding gene. Hence the regulation network is a priori a fully connected
network, i.e. without any possibly interesting topology. However, by putting a
threshold on the regulation term, some connections will disappear, and interest-
ing topologies do appear. Nicolau and Schoenauer has demonstrated [156, 157]
that the evolution using quite standard variation operators, of populations of such
GRNs that have been initialized using the duplication-divergence method pro-

41

2. BACKGROUND

posed in the initial model by Banzhaf [17], can be lead toward networks exhibiting
very specific topological statistical properties, such as small-world or scale-free
characteristics (see next Section 2.4).

Discussion

All representations, whether direct or indirect, that havebeen used for evolving
both the topology and the weights of NNs are variable length representations.
They are all able to generate a variable number of neurons. However, only the
bio-inspired representations have non-coding segments.

Regarding the topologies they can generate, though both AGE and RBF-Gene
can indeed generate different topologies, those topologies remain within a very
restricted set, and only differ by the number of genes: AGE creates fully connected
NNs, and RBF-Gene generates 3-layer RBF networks. In that sense,NEAT, and,
of course, the developmental methods, can create more diverse types of topologies
- and so does the Banzhaf model thanks to the threshold trick that removes many
connections. Note that it could be possible to apply this trick to AGE too.

Furthermore, only the developmental representations are actually able to
scale-up to huge numbers of neurons without requiring a similar increase of the
representation size. The direct representations clearly need to manipulate (create,
tune, connect) each gene one by one: this can be an advantage when only a small
network is needed, but will not be sufficient for large networks. On the other hand,
the GRN-inspired representations, though they need to express all genes of the
network, can be considered as intermediate with respect to the scaling-up issue:
because they use global variation operators like duplication, they can succeed
in generating networks of moderate size, up to a few hundredsneurons [156, 157].

Regarding the evolution of the weights, in AGE and in the Banzhaf model, the
weights are based on some distance between labels/affinity sites, while in direct
representations, and in RBF-Gene, they are directly encoded as binary strings. The
consequence of the indirect encoding of the former methods is that by modifying
one of the labels/sites, all weights issued from one neuron are modified at once,
strengthening those connecting a certain type of neurons, and weakening others.
A direct encoding of the weights requires, for the same result, that several weights
are modified in the same direction, a very unlikely event. Whether one approach or
another is best for evolution is however unclear: being ableto modify all weights
of a given neuron in a single mutation can indeed help for the coarse adjustment
of the NNs, as witnessed by the improvements brought by adding the coefficient
of the sigmoid function to the genome even when only optimizing the weights
[189, 54]; On the other hand, fine-tuning a Neural Network often goes through

42

2.4. TOPOLOGY OF COMPLEX NETWORKS

fine-tuning its weights independently.
In developmental representations, the causality for the evolution of the

weights is less clear: in Cellular Encoding and other grammar-based representa-
tions, the weights have to be described directly, but will beused whenever some
code re-use happens in the morphogenetic process. In Hyper-NEAT, the weights
are the result of the application of the top-level neural net, a complex process not
easily related to the variation operators acting over this network.

In summary, there is of course no method that clearly outperforms all others.
Simple approaches, i.e. evolving the weights of a robust topology (e.g. multi-layer
perceptron) with a robust optimizer (e.g. CMA-ES) are clearly sufficient for many
problems (e.g. as witnessed by Igel’s results on the pole-balancing problem [101]
– see also Section 4.4.1). But the influence of given characteristics of the topology
like statistical measures that have recently been proposedfor complex networks,
has not been systematically studied – and this is part of whathas motivated the
present work (see also Section 2.5).

2.4 Topology of Complex Networks

Up to recent years, the major types of studied network topology were totally ran-
dom networks and regular networks. Since the end of the 1990’s, several real life
networks have started to be known with enough precision so asto analyze them
in quantified details. The results were that real life networks have actually several
properties that exclude them from the regular or totally random classes. The so-
called complex networks field has mainly been created as a response to this issue.
In the last decade, complex network topologies, e.g. small-world or scale-free,
have attracted a great amount of interests (for a review, see[28]). In this section
we briefly introduce some basic concepts.

2.4.1 Small World Topology

The small-world phenomenon originates from social networkstudies. According
to this theory, each person can be seen as a node of a graph, andconnected with
a large number of paths with the others. The connections between nodes mean
that the peoples know each other. The hypothesis is that eachperson needs
only a few intermediaries (an average of 6) to establish a link with anybody else
in the world. It is an issue of sociology, mathematics and computer science.
The hypothesis is suggested by the social psychologist Milgram [141] for an
experiment in the 1960’s: “Track the shortest path of the social network in
United States”. He asked each participant to send a letter toa “target person”

43

2. BACKGROUND

who lives beside Boston, and each participant can only transmit the letter to
another person he or she knows. Milgram found that on averagea complete
chain passed through 6 persons only (note that this statistics is biased by the fact
that the large number of unsuccessful trials, ie broken chains, was not factored in.)

Similarly, in 2007, Microsoft researchers Leskovec and Horvitz [133]
filtered the MSN messages of a single month of the year 2006. Using 30 billion
communication messages between 180 million users in this month, they found
that any user can be connected with anyone else among the 180 million users
through an average of 6.6 people. Up to 87% of users can be connected within a
connection trough 7 people.

In 1998, Watts and Strogatz [220] gave a formal model of such asmall-world
network. According to this famous algorithm, small-world networks are inter-
mediate topologies between regular and random ones (see figure 2.10). Their
properties are most often quantified by two key parameters [207]: the clustering
coefficient (< C >) and mean-shortest path (λ). The clustering coefficient
quantifies the extent to which the neighbors of a given network node (i.e. the
nodes to which it is connected) are, on average, interconnected together. It reflects
the network capacities of local information transmission.The graph distance
between two nodes of the network is the smallest number of links one has to
travel to go from one node to the other. TheMSPis the average graph distance of
the network and indicates the capacities of long distance information transmission.

Figure 2.10 illustrates an example of small-world network formation ac-
cording to Watts and Strogatz. Starting from a regular network (a ring in the
figure, where each node is connected to its four nearest neighbors), one re-wires
each link with (uniform) probabilityp. A regular network (p = 0) has a high
clustering coefficient but itsMSP is long. At the other extreme, totally random
networks, obtained withp = 1, display a small clustering coefficient but a short
MSP. For small-to-intermediate values ofp (for instancep ∈ [0.004,0.100]
for rings with 1000 nodes and 10 links per node [220]), the obtained networks
preserve a high clustering coefficient while theirMSP is already small (Figure
2.11). Such networks have optimal information transmission capacities, both at
the local and global scales [120] and are called small-worldnetworks. Many
“real-world” networks, either technological (the Internet, electric power grids),
social (collaboration networks) or biological (neural networks, protein or gene
networks), have been found to display such a small-world topology [28].

44

2.4. TOPOLOGY OF COMPLEX NETWORKS

Figure 2.10: Small-world networks according to Watts and Strogatz. Starting with
a regular ring network (p= 0, left), and each link is rewired to a randomly-chosen
destination node with probabilityp. Whenp = 1 (right), the network is a purely
random one. At small-to-intermediatep values (depending on the network size),
the network displays small-world properties (center). Adapted from [220].

2.4.2 Scale Free Topology

Not all characteristics of real-world networks can be captured by the small-world
networks. For instance, real-world networks often possesssome highly-connected
nodes ("hubs"), connecting almost disconnected sub-networks. Besides small-
world networks, other types of networks, such as the scale-free networks [19],
have been studied. In scale-free networks, the degree distributionP(k) (that gives
the probability that a node, chosen at random in the network,connects withk
other nodes) follows a power law relationship:P(k) ∼ k−γ (it usually decays
much quicker, e.g. exponentially, in totally random networks). This power law
indicates that in such networks, there exists a large numberof nodes which have
only a few connections (eg. the computers in internet often connect with a few
neighbour in the same sub-net), but there is also a significant number of nodes
with a huge number of connections (eg. the root routers of internet which are
connected with almost every computer). The “preferential attachment algorithm”
[19] can be used to build such topologies, reflecting also thedynamical aspect of
those network, whose size can increase over time. The “Preferential attachment
algorithm” starts with a small number of nodes connected by an edge. At each
step of the algorithm, a new node is added to the network. To connect it to the
existing network, one picks a node at random in the existing network, but with
a bias that is proportional to the number of connections of this node. As more
connected nodes are more likely to be chosen, thus to get moreconnections,

45

2. BACKGROUND

Figure 2.11: Mean Shortest Path length〈λ 〉(p) and clustering coefficient〈C〉(p)
for the family of randomly rewired graphs described in Figure 2.10. Here〈λ 〉(p)
(or MSP(p)) is defined as the number of edges in the shortest path betweentwo
vertices, averaged over all pairs of vertices. The clustering coefficient〈C〉(p)
is defined as follows. Suppose that a vertex v haskv neighbours; then at most
kv× (kv−1)/2 edges can exist between them (this occurs when every neighbour
of v is connected to every other neighbour ofv). Let Cv denote the fraction of
these allowable edges that actually exist. Define〈C〉 as the average ofCv over
all v. The data shown in the figure are averages over 20 random realizations of
the rewiring process described in Figure 2.10, and have beennormalized by the
values〈λ 〉(0), C(0) for a regular lattice. All the graphs haven = 1,000 vertices
and an average degree ofk = 10 edges per vertex. A logarithmic horizontal scale
has been used to resolve the rapid drop in〈λ 〉(p), corresponding to the onset of
the small-world phenomenon. During this drop,C(p) remains almost constant at
its value for the regular lattice, indicating that the transition to a small world is
almost undetectable at the local level. [220].

46

2.5. RESEARCH QUESTIONS

this method reflects a "richer get richer" principle. With this method, the
created network shows aP(k) ∼ k−γ connection distribution. Many “real-world”
networks fall into this category (the Internet, airplane routes, metabolic networks,
social collaboration networks...) [28].

2.4.3 Applications to ANNs

Importantly, the connectivity structure of such complex networks (i.e. their topol-
ogy) is a crucial determinant of their information transferproperties [28]. Hence,
the computation made by complex neural networks, i.e. neural networks with
complex connectivity structure, could as well be dependenton their topology.
For instance, recent studies have shown that introducing a small-world topology
in a multilayer perceptron increases its performance [199,29]. However, other
studies have inspected the performance of Hopfield [118, 153, 148, 205] or Echo
state networks [44] with small-world or scale-free topologies and reported more
contrasted results.

2.5 Research Questions

As noted above, the connectivity structure of complex networks (i.e. their
topology) is a crucial determinant of information transferin large networks
(internet, social networks, metabolic networks...). For instance, information,
virus or epidemic spreading in Small-world or Scale-free networks is much
more efficient/faster than in comparable random or regular networks. Other
crucial properties of these systems are topology-controlled, such as tolerance to
faults/defects (robustness), vaccination or the existence of critical thresholds for
epidemic spreading [28].

Several studies have applied such complex networks tools toneural networks.
Here again, several functional properties of neural networks seem to depend on
the network (complex) topology. For instance, a recent study has shown that
introducing a Small-world topology in a monolayer perceptron increases the
learning rate of the network [199].

Symmetrically, evolutionary algorithms are commonly usedto modify the
topology of neural networks so as to optimize ANNs performance. But, in
most cases, the studied topologies are quite simple and the number of connec-
tions/neurons is low. Furthermore, the evolutionary mechanisms used in most of

47

2. BACKGROUND

these studies do not modify the topology in an intensive manner.

Hence, the optimization of large neural networks through artificial evolution
has hardly been studied. However the optimization of complex topologies in
related systems has recently begun to be inspected. For instance, Tomassini
and collaborators [142] have used evolutionary algorithmsto optimize the
topology of 1D-cellular automata networks (majority problem) and reported that
their optimal topologies were systematically close to Small-world ones. More
recently, Oikonomou & Cluzel [161] have optimized the topology of boolean
networks and found that the evolution of networks with random topology was
very different, even quantitatively, from networks with Scale-free topology.

Here, we hope to study the interaction between the topology of large neural
networks and their learning capacities. Our approach tackles both the direct and
inverse problem:

Direct problem: Given a network with a fixed topology, we study how the
network learns to perform its target task through local (backpropagation, Hebb’s
rules) or global (artificial evolution) rules. An importantaspect of this part of
the study is that the quantification of the network efficiencycan be defined on
the basis of its pure performance, but it may also be based on its robustness to
failures, noise, or attacks.

Inverse problem: Given a set of local learning rules and a given evolutionary
optimization algorithm acting on the network topology (and, possibly, on the
global parameters of the local rules themselves), we want tostudy what kind
of topology the networks evolves to. In other words, we want to know if there
exists such a thing as an optimal topology, for given local learning rules and a
given task to perform. An interesting part of this study willbe to compare the
obtained topologies with real biological neural networks.Here again, network
optimization can concern the pure performance of the network, but, alternatively,
it may as well concern its robustness to noise or defects.

48

Chapter 3

Evolving the Topology of
Self-Organizing Map

3.1 Introduction

In this chapter, we use classical Self-Organizing Maps (SOMs) to classify hand-
written digits. But unlike classical SOMs where the neuron neighborhood rela-
tionships are defined using a simple topology (e.g. regular square or hexagonal
lattices), we define neighborhood relationships using complex networks. We re-
ferred to this kind of ANNs “complex ANNs”. We show that the topology of
neural network has small impact on the performance and robustness of neuron
failures, especially in the case of long learning times. However, the performance
of recognition rate can be increased (by almost 10%) by evolutionary optimiza-
tion of the network topology. In our experimental setting, the evolved networks
are more random than their parents, whereas they have a more heterogeneous de-
gree distribution.

3.2 Topology of Self-Organizing Map

3.2.1 Kohonen Maps

The theory of Self-Organizing Map (SOM) was first proposed asan Artificial
Neural Networks (ANNs) by Kohonen [122, 123]. It is therefore also called
Kohonen Maps [124]. The current version of the SOM bibliography contains
around 8000 entries [116, 162].

The Self-Organizing Map usually describes a mapping from a higher dimen-
sional input space to a lower dimensional map space. This makes SOM able to be

49

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

used for visualizing high-dimensional data by low-dimensional views. For exam-
ple SOM has been widely applied for feature extraction [144,216].

Self-Organizing Map consists of components called nodes orneurons. Each
neuron is associated with a weight vector of the same dimension as the input
data vectors (high-dimension) and with a location (low-dimension) in the 2D
map space. Classically, SOM neurons are linked to each other by hexagonal- or
square-lattice connections, which defines the neighborhood of the neurons. When
an example from data space is presented, the neuron who has the closest weight
vector to the example is firstly found, then the weights of theneuron itself and of
all its neighbors’ are adjusted by the training process as follow:

Training a SOM is a competitive learning process. When a training exam-
ple I(t) is presented to the network, for each neuroni, its distancedi to I(t) is
computed by:

di =
M

∑
j=1

(I j −wi j)
2

wherewi j stands for componentj of the weight vector of neuroni, wi andI j is the
j-th component ofI . The correspondingBestMatchingUnit (BMU) is the neuron
whose weight vector is the closest (inL2-norm) toI(t). The weight of the BMUk
are updated by:

wk(t +1) = wk(t)+η(t)× (I(t)−wk(t)),

whereη is a user-definedlearningrate. The weights of all BMU neighbors are
updated similarly. In the simplest form, the learning rateη is 1 for all neurons
close enough to BMU and 0 for others. However, Gaussian decay is a more
common choice: the learning rateη decays according to a Gaussian law with
respect to the distance to the BMU. The variance of the Gaussian law is also
called theradius of the neighborhood. Regardless of the functional form, the
radius always decreases with time. At the beginning when theneighborhood is
broad, the self-organizing takes place on the global scale.When the neighborhood
shrinks to only a couple of neurons, the weights are converging to local estimates.

This process is repeated for each input data example for a (usually large)
number of cyclesNmax. The patterns in the input data set is self-organized on the
map. If these patterns can be labeled, the labels can be attached to the associated
neurons.

50

3.2. TOPOLOGY OF SELF-ORGANIZING MAP

3.2.2 An Example with Color Data

Let us illustrate with a toy example how Self-Organizing Maps works.

Visible lights are composed of three basic colors - Red, Greenand Blue. For
any color, it can be viewed as a data in a three-dimensional space. Figure 3.1
presents the color data set used as the training set for SOM learning.

Figure 3.1: Random colors chosen as the training data for the SOM learning.

As introduced in the previous subsection, SOM is constructed in a 2-
dimension grid, where each neuron is associated with a vector (R,G,B), as shown
in Figure 3.2.

Figure 3.2: SOM in a 2D grid, with neurons associated with (R,G,B) vectors.

After the training process, the colors from the training setself-organize in
the map. Figure 3.3 shows the learning results with rectangular, hexagonal and
octagonal topology. The left one has rectangular connections, the middle one has
hexagonal connections and the right one has octagonal connections. For every
topology, similar colors are found in close proximity to each other in the 2D map:
all those images display local similarity. This feature canbe clearly viewed in this
two dimension grid.

51

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

Figure 3.3: The learning results with different regular topologies, the left map has
rectangular connections, the middle map has hexagonal connections and the right
map has octagonal connections. All others learning parameters were the same: the
map size was 60×60, the initial learning radius was the half of the map size (30)
and decreased with time, the initial learning rate was 0.1 and also decreased with
time, the training set consisted of 200 randomly chosen color, and the number of
learning step was 10,000. The distance used is the Graphic distance (not Euclidian
distance).

3.2.3 Quantitative measure of topology preservation in SOM

In the previous Section, we found out that the learning results are different for
different topologies, even when that all the learning parameters are the same,
as shown in Figure 3.3 with three regular topologies. It is anopen issue to
study these differences in a quantitative way, especially when the topology is not
regular. In this subsection we will briefly present the quantitative studies of SOM
topology in the literature.

In Self-Organizing Maps (SOMs), the role of network topology has been stud-
ied for several years under the perspective of the relationship between data topol-
ogy and network topology. Several criteria, such as Topographic Product, Topo-
graphic Function, have been proposed for the quantitative measure of topology
preservation. We will first introduce these criteria and then discuss the articles
which compared the results with different methods.

Topographic Product

The topographic product is a measure for the preservation ofneighborhood
relations in maps between spaces of different dimensionality. It has first been
introduced in the context of nonlinear dynamics and time series analysis [135]
and then used to measure the preservation of neighborhood relations in SOM by

52

3.2. TOPOLOGY OF SELF-ORGANIZING MAP

Bauer and Pawelzik in 1992 [20]. The topographic product is a quantification
method which compares the distance between neuroni and itskth nearest neuron
in both input space and output space. For computing the topographic product,
Q1(i, j) is the distance between pointi in the output space and itskth nearest
neighborj in the output space, divided by the distance between pointi in the input
space and itskth nearest neighborj in the input space.Q2(i, j) gives analogous
information wherei and j are both points in the output space. In Ref. [20],
Bauer proposed several ways to combineQ1(i, j) and Q2(i, j) to produce a
single numberP, the “Topographic Product” which can define the quality of the
preservation of neighborhood.

The method has been tested in [20] by a simple experiment where a 2-D space
is embedded into 1, 2 and 3 dimensions spaces, and a more complex example of
the speech recognition. The result is quantitative, but theprocess is hugely time-
consuming.

Topographic Function

The topographic function has been introduced by Villmann etal in 1995 [217].
The notion of “ Voronoi polyhedron” was applied to determinethe receptive field
of each neuron. Each neuron defines a Voronoi cell, that consists of all points
closer to this neuron than to any other. The segments of the Voronoi diagram are
all the points that are equidistant to the two nearest neurons. The Voronoi nodes
are the points that are equidistant to three (or more) neurons. The main idea is
to observe the neighborhood relations between receptive fields in input space. If
only the nearest lattice neighbors of a neuroni have receptive fields which are
adjacent to the receptive field of neuroni, the SOM is considered doing a perfect
preservation. The authors have also given a method to determine the adjacency of
two receptive fields.

Q, H and QH measures

Polani introduced several quantitative measures of SOM quality, such as the en-
ergy function measures and Hebbian measures [167] and the Q and QH mea-
sures [168]. He also compared the results among these measures by testing 6
different topologies (linear, hexagonal, square, crocodile, cubic and tree). We will
briefly present these works below.

The Q measure: Q is themeanquantizationerror between a large set of
points from the input space and its discrete approximation in the output space. It
is a rather canonical quantity measure. For calculating Q, alarge set of points
x1...xq ∈ R of the input space are chosen randomly according to the probability

53

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

data distribution (if known) onR. wi(xk) is the nearest approximation ofxk in
the output space defined by the distance betweenwi(xk) andxk (wi(xk) is the Best
Matching Unit (BMU) ofxk). Q is defined as:

Q =

√

1
q

q

∑
k=1

dR(wi(xk),xk)2

wheredR define the distance betweenwi(xk) andxk. With respect to Q measures,
small quantization errors denote good performance.

H measure: The H measure is the Hebbian measure developed in [167]. As
the Q measure, a large setx1 . . .xq ∈ R in the input space are chosen randomly
according to the probability data distribution (if known) on R. For every point
xk, one searches for the neuronsi and j, whose weightswi andw j are closest (in
theL2-norm sense) and second closest toxk. An (Hebbian) edge is then created
between neuronsi and j, with strength 1 if it was not present before or increased
by +1 if it already existed. The Hebbian measure essentiallydetermines the Ko-
honen edges that do not match Hebbian edges and vice versa. Let AK denotes the
edge set of the Kohonen graph andAH denotes the edge set of the Hebbian graph,
ĉ= (∑(j,k)∈AH

c jk)/|AH | is the average strength of the Hebbian graph edges. Mea-
sure H is calculated as:

H = 1−
ĉ.|AK\AH |+∑(j,k)∈AH\AK

c jk

ĉ.|AK|+∑(j,k)∈AH
c jk

whereAK\AH denotes the edge set which are inAK but not inAH and theAH\AK

denotes the edge set vice versa.
The Hebbian measure essentially determines the Kohonen edges that do

not match Hebbian ones, if values of H close to 1 indicate a good topology
preservation and vice versa.

QH measure: The QH measures is a hybrid measure, given byH/Q2

Comparing these indicators

Many articles have proposed to compare the different methods of measuring
topology preservation in SOM.

Goodhill compared results obtained with some of the methodsthat have been
proposed before 1995 [72] and showed one important caveat, namely that for
the same learning result, different measures could give different assessments.

54

3.2. TOPOLOGY OF SELF-ORGANIZING MAP

Therefore, it is difficult to decide which one is the best. In this paper[72], the
author also gave two suggestions to define a mapping that perfectly preserves
the neighborhood structure of the original data in the mapping space. The first
suggestion is that the mapping must preserve similarities,which means for each
pair of points in one space, its similarity should be equal tothe similarity of
the images of those points in the other space. The second suggestion is that
the mapping must only preserve similarity orderings, whichmeans, rather than
comparing the absolute values of the similarity between pairs of points in one
space and the similarity between their images in the other, it is only concerned
that their relative orderings within the two sets of similarities are the same. This
weak condition in fact imposes strong constraints on the mapping.

In [169], Polani compared the 6 measure proposed before 1997, including the
H, Q and QH measures introduced above. In the experimental conditions of this
work, the QH measure performed best, but no canonical measure can be given as
in the Goodhill article. The author also advise [169] that: “The results show that
in the current state of research one must proceed with great care when applying
some organization measure to new situations with no a prioriknowledge of the
structure of the training data.”

3.2.4 Discussion

The article of Villmann in 2001 [218] was devoted to the development of network
topologies that preserve the structure of data. In this data-driven context, the
network topology is thus constrained by the data under study.

In the context of complex networks however, a key issue concerns the general
performance of complex network classes: considering a given data set, do the
different complex network topology classes (regular, small-world, scale-free)
yield significant differences with respect to performance?

Furthermore, for complex data sets, defining the similarity(distance) among
the data in the input space can be very difficult. Indeed, two similar data may
represent different things as in the following example: Letus consider for
instance a handwritten digit data set where every digit is represented as a bitmap.
The similarity between the data is usually computed by the Euclidean distance.
However in many cases, images which are very similar with respect to their
bitmap representation can have different labels (i.e. represent different digits).
Therefore, if the SOM keeps these similarities in its preservation of neighborhood
relations, it may cause confusion for the following classification process. In such
a complex dataset, do the different complex network topology classes (regular,

55

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

small-world, scale-free) yield significant differences?

Another important issue is the following. In real-world large-scale neuron
networks, noise of neurons may appear and neurons may languish at any time.
Could the different complex network topologies be more robust when some part
(eventually large) of the neurons do not function correctlyi.e. can robustness to
noise or defect of the neural network depend on its topology?

In the following sections we investigate both issues through an experimen-
tal study on the relationship between complex topology following 2D-Watts and
Strogatz models and the performance of the corresponding SOMs on a supervised
learning problem (handwritten digit classification), and on its robustness with re-
spect to noise. After introducing the context in Section 3.3, Section 3.4 is devoted
to thedirect problem, i.e. observing the performances of networks with differ-
ent topologies. Theinverseproblem is addressed in Section 3.5: what topology
class emerges from the evolutionary optimization of the classification accuracy of
a class of networks?

3.3 Method and Experiments

3.3.1 A Simple Experiment with Classical Q H Measure

Before the experiments for hand written digits, a first experiment is performed
using classical Q H measures described in section 3.2.3.

One thousand real numbers are picked randomly in a 2D space within [0,1]2.
A 30× 30 size SOMs is then created for learning of this data set. During the
learning process, we use Q, H and QH measures (described in section 3.2.3) to
monitor the evolution of the SOM with various topologies (regular, small-world,
random).

Distance

In the classical SOM algorithm, theN neurons are regularly scattered on a regular
2d grid, that can be quadrangular, hexagonal or octogonal. Thetwo distances
that can be naturally defined between neurons, the Euclidiandistance and the
graph distance (the minimum number of hops between two neurons following
the graph connections), are completely equivalent. However, when the topology
diverts from that of a regular grid (e.g. links are added or suppressed), the

56

3.3. METHOD AND EXPERIMENTS

Figure 3.4: Illustration of 15× 15 Kohonen maps with various interconnection
topologies, ranging from regular (left), to small-world with rewiring probability
p = 0.04(center) and random (right) depending on a rewiring probability p.

situation changes dramatically. Because the goal here is to evaluate the influence
of the topology of the network on its learning performance, the distance between
two neurons will be their graph distance. In other words, while classical SOM
algorithms use regular grid networks for neuron positions and Euclidean distance
for learning, we define the distance between the neurons as the graph distance as
given by their complex interconnection network.

Figure 3.4 illustrates three kinds of interconnection topologies for 2D SOM
networks. In analogy with Watts and Strogatz algorithm (Figure 2.10), neurons
are first positioned on a square grid and each neuron is connected to its 4 nearest
neighbors on the grid. This defines a regular topology (Figure 3.4, left). Each
link is then rewired with probabilityp : its destination neuron is changed to a
uniformly randomly chosen neuron. Depending on the value ofp (0, 0.01, 0.02,
0.04, 0.08, 0.16, 0.32, 0.64, 0.99 in our test), the neuron interconnection network
thus varies from regular (left) to small-world (center) andtotally random (right).

Figure 3.5 shows the evolution of the Q Measure during the learning process.
The results indicate that in such a learning case, the regular topology gives the
best topology preservation with Q measures.

Figure 3.6 shows the evolution of the H measure during the learning process.
The situation is the same as with the Q measure above, i.e. theregular topology
gives the best topology preservation .

Figure 3.7 show the fitness by combining the Q measure and the HMeasure
during the learning process.

57

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

Iteration

Q

0 1000 2000 3000500 1500 2500

0.1

0.2

0.3

0.05

0.15

0.25

0.35

0.00
0.01
0.02
0.04
0.08
0.16
0.32
0.64
0.99

Q Measure

Figure 3.5: The fitness using Q Measures during the learning process. Plots for
different values of the rewiring probabilityp.

Iteration

H

0 1000 2000 3000500 1500 2500

0

0.1

0.2

0.3

0.4

0.05

0.15

0.25

0.35

0.00
0.01
0.02
0.04
0.08
0.16
0.32
0.64
0.99

H Measure

Figure 3.6: The fitness using H Measures during the learning process

58

3.3. METHOD AND EXPERIMENTS

Iteration

Q
H

0 1000 2000 3000500 1500 2500

0

100

200

300

400

500

600 0.00
0.01
0.02
0.04
0.08
0.16
0.32
0.64
0.99

QH Measure

Figure 3.7: The fitness using QH Measures during the learningprocess

This first experiment shows that when the topology of the training set is very
simple, the SOMs with the most simple topology can give the best performance
as judged by classical topology preservation measures. But if the topology of the
training set is more complex, e.g. with handwritten digits,so that the classical
topology measures cannot not be applied (since the topologyof the input data set
is too complex or hierarchic), the situation may be different. This issue is treated
in the following section, with our work on the MNIST databaseof handwritten
digits.

3.3.2 Experiments With MNIST database

SOM are usually used for unsupervised learning tasks and produce low-
dimensional representations of high-dimensional data [162]. They are thus
useful for visualization purposes. This section will detail the supervised learning
procedure that has been used here. To sum up, a label must be given to each
neuron of the network after the standard SOM unsupervised learning. To this
aim, we’ll used a supervised learning process. The classification of an unknown
example is then achieved by finding the best matching neuron (BMU) of the
network. The guessed class of the unknown image is then the label of this BMU.
More details are given below.

59

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

The task considered here is the recognition/classificationof handwritten
digits, using the well-known MNIST database: The MNIST database of hand-
written digits [130] has a training set of 60,000 examples, and a test set of 10,000
examples. It is a subset of a larger set available from NIST. The digits have been
size-normalized and centered in a fixed-size (28× 28) image. SOM will hence
be used here with partly supervised learning, in order to give an unambiguous
performance measure and estimate the corresponding topology/performance
relation. It should be noted that the goal here is not to reachthe best possible
performance for the MNIST problem (and indeed SOM cannot compete with
best-to-date published results) but to compare the relative performances of
different topologies on the same problem [130].

Each digit in the data base is described by aM = 28× 28 matrix of pixels
(integer gray level in [0,255]). TheN neurons of the SOM are scattered on a 2d
space. Each neuroni has an associatedM-dimensional weight vectorwi that is
initialized randomly and will be adjusted while learning the training set. The
different phases of the learning process go as follows.

3.3.3 Learning

This phase is the classical unsupervised SOM learning process which has been
introduced before (section 3.2.1). It classically go through the following steps:

1. Randomly initialize the weight vectors of all neurons

2. Randomly fetch an input image from the training set

3. For each node in the map

(a) Use Euclidean distance formula to find similarity between the input
image and the neuron’s weight vector item Track the BMU, i.e.,the
node that produces the smallest distance

4. Update the BMU and the neurons in the neighborhood of the BMU by
pulling them closer to the input vector

5. Incrementt and repeat from 2 whilet < Nmax

In the present work, the total number of learning stepsNmax was varied between
104 and 106, and the radius is decreased along learning iterations (seee.g. Figure

60

3.3. METHOD AND EXPERIMENTS

Figure 3.8: The visualization of SOM learning result duringthe learning process,
from the top left to top right, and bottom left to bottom right.The weight vectors
of every neuron was represented as a 28×28 image centered on the neuron posi-
tion. It was just a demo example with only 3000 learning steps. The numbers of
iteration for the six images were 0, 200, 500, 1000, 1800, 3000.

3.12 B or E).

If we visualize the learning result as a image (the weight vectors of every
neuron is represented as a 28×28 image centered on the neuron position) during
the learning process, we can get a more direct understandingof how the SOM
learning works. Figure 3.8 shows a 15× 15 size SOM, form the top left to top
right, and bottom left to bottom right are the visualizations of learning result
during the learning process. We can see at the beginning, since the weight vectors
of every neuron are randomly initialized, the visualization of SOM present a
complete fuzzy image; then with the SOM learning process, the neuron begin to
adjust it’s weights vectors from the training example according to the classical
SOM learning rule. The visualization of SOM become finally clear and the
cluster appear in the end of learning process.

61

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

3.3.4 Distance

The three figures in Figure 3.9 show the results of the learning phase (described
above) using the three topology classes of Figure 3.4. In these figures, the
weight vectorwi of each neuroni is represented as a small 28× 28 image,
centered on the neuron position in the 2d grid. In the regular network, the original
784-dimensional data images of handwritten digits have been projected on the
2d map so that the visual proximity between two digits is well rendered by the
Euclidean distance between the network nodes. When the rewiring probabilityp
increases, the image representations of the neuron weightsbecome increasingly
fuzzy. Furthermore, the visual proximity between two images becomes less
and less correlated to the Euclidean distance between the neurons, because it is
correlated to their graph distance.

Figure 3.10 illustrates an example of the influence of the topology on the size
of the neighborhood of the neurons. The three top figures showa regular topology
while the three bottom figures show a small word topology. From the left to right,
the three figures give the neighborhood of a randomly chosen neuron (left: one
step in graph distance, middle: four steps in graph distance, right: eight steps in
graph distance). This figure illustrates that in small-world or random topologies,
the neighborhood at a given radius of a neuron is composed of alarger number
of neurons than with regular topology. That means that the influence of a BMU
neuron is wider in a small-world topology. This property will be crucial for the
results shown thereafter.

For a given connectivity density, although the Random topology has the
smallest Mean Shortest Path (MSP), the influence of a BMU neuron may even
extend to every neuron, and thus forbids any learning (as demonstrated by our
next experiments). Thus one target of this study is to investigate if there exists a
optimal trade-off between the regular topology and the random topology – such
as small world topology for instance – for the given task.

3.3.5 Labeling

The major issue here however is that measuring the quality ofthe results obtained
with SOMs such as those presented in figure is not trivial. Here, we will use an
additional supervised training level to this aim.

The aim of this phase is thus to prepare the map obtained from the previous
unsupervised learning phase described above for the recognition/classification of

62

3.3. METHOD AND EXPERIMENTS

Figure 3.9: Results of the learning phase using the three topology classes shown
in Figure 3.3.5. The weight vectorwi of each neuroni is represented as a 28×28
image, centered on the neuron position in the 2d grid. For the random network,
some neurons are disconnected from the network, and thus do not learn from the
examples during the learning phase. Their weight vectors are thus kept random,
yielding the random images on the figure.

63

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

Figure 3.10: The three top figures show a regular topology (square) while the three
bottom figures show a small word topology with rewiring probability p = 0.04.
From the left to right, the three figures give the neighborhood of a randomly cho-
sen neuron.(left: one step in graph distance, middle: four steps in graph distance,
right: eight steps in graph distance). We can find in small-world topology, there
are more neurons which are connected with the same radius. Itmeans that the in-
fluence of a BMU neuron is more wilder in a small-world topology, with a smaller
MSP (mean shortest path).

64

3.3. METHOD AND EXPERIMENTS

handwritten digits, i.e., to be able to classify unknown examples. The label of
each neuron is assigned in the following way. Firstly, the BMUof each example
of the training set is computed (see Section 3.3.3). Secondly, for each neuron
of the network, a probability vector is computed, describing the different votes
of each class for this neuron as BMU. For example, if neuroni is the BMU of
20 (labeled) examples, out of which 16 are labeled “1” and 4 labeled “7”, the
probabilities attached to this neuron are computed aspi(1) = 16

20, andpi(7) = 4
20

(andpi(l) = 0 for other values ofl). Thebasiclabel for the neuron is then defined
as the class with higher probability, e.g. “1” in the preceding example. Neurons
that never were BMUs are given the basic label of the class fromwhich they are
at shortest distance inL2 norm (this case only concerns a very small number of
neurons and does not impact the classification accuracy).

Figure 3.11 illustrates an example of the influence of the topology. In the
three figures, the different color indicates the different labels of the neurons. The
left figure is a SOM with regular topology, the middle one has asmall-world
topology with low rewiring probability (p = 0.02, close to regular topology) and
the right figure has a topology with high rewiring probability (p = 0.32 which is
no longer small-world by the definition, but close to random topology). We can
see that in the regular topology, the neurons with same labelare close to each
other and the clusterings can be clearly identified. But in theright figure, the
different clusterings are mixed with others.

3.3.6 Classifying

Using either the whole probability vector, or the basic label, two strategies for
classifying unknown examples can be designed. In both cases, the test example is
presented to the network, then the distance between the example and each neuron
is computed, and finally theN nearest neurons from the examples are recorded
(N is a user-defined parameter).

Majority by numbers : The class given to the unknown example is the
basic label most often encountered among theN nearest neurons. Preliminary
experiments (for maps of 3,600 neurons) withN ranging from 1 to 500 showed
that the best performances are obtained forN = 1.

Majority by probability : Here, the probability vectorpi attached to each
neuroni is used to compute the probability that the test image belongs to classk
(k∈ [0,9]) using the following equation:

65

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

Figure 3.11: In the three figures, the different color indicate the different labels
of the neurons. The left figure is a SOM with regular topology,the middle one
has a small-world topology with low rewiring probability (p = 0.02, close to reg-
ular topology) and the right figure has a topology with high rewiring probability
(p = 0.32 which is no longer small-world by the definition, but closeto random
topology). We can see that in the regular topology, the neurons with same label
are close to each other and the clusterings can be clearly identified, except in the
right figure, where the different clusterings are mixed withothers.

Pk =
1
N

N

∑
i=1

pi(k)

The label of the test image is given by the highest probability Pk. For this strategy,
preliminary experiments reported that the best performance is obtained with
N ∈ [1−8].

The “Majority by probability” strategy is more computationally expensive
than the former. Moreover, the same preliminary experiments mentioned above
showed that its performance is not significantly better. Hence, all following
experiments will use the first strategy (“Majority by numbers”) with N = 1: the
class given to an unknown test example is simply the basic label of its BMU.

The performance (or fitness)F of the network can then be computed as the
misclassification error over the whole test set:

F = nerr/Ntest,

wherenerr is the number of incorrectly classified test examples andNtest the size
of the test set.

66

3.4. DIRECT PROBLEM

3.4 Direct problem

The goal of the first experiments is to compare the classification performance
of SOM built on different topologies, namely ranging from regular to random
topologies according to the Watts and Strogatz model (see Figure 2.10).

Figure 3.12-A shows plots of the evolution of the classification performanceF
during the (unsupervised) learning phase for networks of 1024 (32×32)neurons
with regular (rewiring probabilityp= 0, bottom curve) to small-world (intermedi-
ate curves) to fully random (p = 1, top curve) topologies. The initial learning rate
is η(0) = 0.008 (adjusted after a few preliminary runs) and the total number of
learning steps is 106. The radius of each neuron (i.e. the variance of the learning
rate) was varied as shown in figure 3.12-B. The full MNIST database was used
for those experiments, i.e. the size of training set is 60000and the size of test set
is 10000.

3.4.1 Influence of the radius

First of all, Figure 3.12-A shows that, at long learning times, the network
performance is clearly independent on the topology. This isnot surprising since
the role of the topology decreases with the radiusR. Indeed, the number of
neighbors within a radiusR of a given neuron increases when the rewiring prob-
ability p increases. However, this difference decays asR decreases. Important
differences are however obvious at short to intermediate learning times: the more
random, the less efficient the network at this time scale. This remark deserves
further analysis. Indeed, the performance of these random networks evolves
in a piecewise constant fashion. Comparing this evolution tothe simultaneous
decrease of the neighborhood radius (Figure 3.12-B) uncovers that performance
plateaus are synchronized to radius plateaus.
The more random the network, the lower its Mean Shortest Path. Hence, a
possible interpretation is that, for highp values, the influence of a given neuron
at short learning times extends over the entire 2d space, to almost every other
neuron. Thus, at short time scales, almost all neurons are updated each time a
new image is presented, which actually forbids any learningin the network. This
interpretation is supported by Figure 3.13-D, where the initial radius is five times
smaller than in Figure 3.12-A, everything else being equal.Here, the differences
in short time behaviors observed above have vanished.

67

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

Figure 3.12: Evolution of the performanceF during learning for SOM on com-
plex neighborhood network with large initial neighborhood radius. Neighborhood net-
works are constructed positioning neurons on a square grid, and linkingeach neu-
ron to its 8-nearest neighbors on the grid (Moore neighborhood). Eachlink is then
rewired to a (uniformly) randomly-chosen destination neuron with probabilityp =
0,0.002,0.004,0.008,0.016,0.032,0.064,0.256,1.000 (from bottom to top). PanelsA,
C show the evolution of the fitnessF for different noise levels (as indicated on each pan-
els). PanelsB displays the evolution of the neighborhood radius. Other parameters: map
sizeN = 1024 neurons, initial learning rateη(0) = 0.080, training and test sets of 30,000
and 10,000 examples, respectively.

68

3.4. DIRECT PROBLEM

3.4.2 Robustness against noise

Unlike most of computer-simulated ones, real-world networks (including neural
networks), involving a large number of computing units/neurons, will be subject to
noise and defects. In particular, we were interested in studying now noise affecting
the topology, and its impact on the computing performances of the network (here,
its classification performance). Noise is modeled here by deactivating a fraction
ν of the neurons at each learning step (the list of theNν deactivated neurons is
chosen uniformly for each learning step). All neurons are however considered
active for the evaluation phase (Section 3.3.6).

Figure 3.12-C shows the performance of the same networks during learning
with ν = 0.25 noise level (i.e. 25% of the neurons are insensitive to learning, at
each step) and the same large initial radius as in Figure 3.12-A. The differences
between both figures can be explained by looking again at the radius. Clearly,
because the deactivated neurons are protected from update,the effect of large
radius that is described above is strongly attenuated. In other words, the presence
of noise (here random node failures) actuallyimproves the performance of these
complex random networks at short learning times. That this effect is effectively
related to large radius sizes is confirmed by inspection of Figure 3.13C, which
shows that with small initial radius, this ’beneficial’ effect of noise is not observed
(compare with Figure 3.13D).

Another result from Figure 3.12 is that the effects of noise are restricted to
short-to-average learning times and almost disappear withlong learning times,
where the performances of all networks are similar (whatever the topology
randomness or initial radius). Hence, for long learning times, the SOM are robust
to neuron failure rates as high as 25%, and this robustness does not seem to
depend on their neighborhood topology.

Finally, Figure 3.14 shows the effects of network size on itsperformance. Each
point is averaged over 11 independent runs. While large SOM (N > 2,000) per-
form better with regular neighborhood networks, the situation is just the opposite
with small (N < 200) SOM, where random networks perform better than regular
ones. Small-world topologies are intermediate (not shown). Note however that
even for the extreme sizes, the difference of fitness betweenregular and random
topologies, though statistically significant (see caption), remains minute.

69

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

Figure 3.13: Evolution of the performanceF during learning for SOM on complex
neighborhood network with small initial neighborhood radius. Other captiondetails are
the same as in Figure 3.13.

70

3.5. INVERSE PROBLEM

0.3

0.2

0.1

F

8 9

10
2

2 3 4 5 6 7 8 9

10
3

2 3 4 5 6 7 8 9

10
4

Network size N

*

*

* * *

 regular
 random

Figure 3.14: PerformanceF vs number of neuronsN after 106 learning steps
for regular (rewiring probabilityp = 0, white circles) or random (p = 1, black
circles) topologies. Each point is an average over 11 randominitial weight and
topology realizations. Vertical bars are standard deviations. Stars indicate statis-
tically significant differences (unpairedt-test,p < 0.010). Other parameters as in
Figure 3.12-A.

3.5 Inverse problem

The inverse problem consists in optimizing the topology in order to minimize
the classification error. Evolutionary Algorithms [46] have been chosen for
their flexibility and robustness with respect to local minima. However, due
to their high computational cost, only SOM withN = 100 neurons could be
tested: according to the results of previous section, the best topology among
the Watts and Strogatz models for this size of network and this task is that of a
random network (see Figure 3.14). The purpose of the following experiments is
to find out whether optimization will tend to push the topology toward random
networks, or if other topologies, outside the Watts and Strogatz model, will appear.

3.5.1 The Algorithm

Evolutionary Engine: The algorithm used here is a Steady-State Genetic
Algorithm with 2-tournament selection and 6-tournament replacement: at each
generation, the best of two uniformly drawn networks undergoes variation (see
below), and replaces the worse of 6 uniformly drawn networksfor the population.

71

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

The initial population is composed of 100 different small-world networks (initial
with rewiring probabilityp = 0.050).

Variation operators: Evolutionary algorithms typically use two types of
variation operators: crossover, involving two or more parents to generate one
offspring, and mutation, that uses a single parent to createan offspring. However,
because no meaningful crossover operator could be designedhere since we
want to have the total number of connections fix during the optimization, only
mutation was used (no crossover operator is better than a poor crossover operator).

The mutation consists in random rewiring ofC% of uniformly chosen links.
C decreases exponentially during evolution (C(g) = 30(102.6)−g/gmax whereg
is the generation number andgmax is the total number of generations). Here,
gmax = 200,000. In these conditions,C(g) decreases from 102 rewired links in
total (g = 0) down to 1 single rewiring (g = gmax).

Fitness: The fitness is computed as the average misclassification error F (see
Section 3.3.6) over 5 learning phases, starting from 5 different initial weights.

Each network contains 10× 10 neurons, each neuron having 8 neighbors
(Moore neighborhood). The initial learning rate is set toη(0) = 0.35 for a
fast learning. However, in order to further decrease the computational time, the
learning algorithm is run during only 10000 learning steps (see discussion below),
using only 2000 examples from the training set, and the fitness is computed using
5000 examples from the test set.

This algorithm is summarized below :

• Initialize K networks: rewire 5% of a regular network (8 links per neuron
with its neighbors, 342 global)

• ForM "generations":

1. Draw uniformly 2 networks, select the best one (N)

2. N′ = mutation(N) (rewireC% of its links)

3. Computen times fitness(N′), get the mean

4. Draw uniformly 6 networks, replace the worst by the mutated off-
springN′

72

3.5. INVERSE PROBLEM

3.5.2 Results

As already mentioned, considering the small size of the SOM involved, one may
expect random networks to perform slightly better than regular ones (Figure 3.14).
The main statistics of the best networks obtained during 9 evolution runs are
plotted Figure 3.15.

The first remark from Figure 3.14-A is that indeed, the classification error
of the best topology in the population decreases along evolution, from 0.355 to
≈ 0.325, i.e. a> 9% improvement.

But the most interesting results can be seen when looking at the character-
istics of the best topologies that have emerged during evolution: Figure 3.15-B
shows an important decrease of the Mean Shortest Path, whileFigure 3.15-C
demonstrates a clear collapse (more than fourfold reduction) of the Clustering
Index. In other words, the topology evolves towards more randomness – as could
be expected from Figure 3.14.

Interestingly, there is another important change in the topology along evo-
lution, concerning the network connectivity distribution. Indeed, the standard
deviationσk of the connectivity distributionP(k) (whereP(k) is the probability
that a neuron chosen at random hask neighbors) almost triples during evolution
(Figure 3.15D). This means that the connectivity distribution of the networks
broadens (becomes less sharply peaked). In other words, artificial evolution
yields more heterogeneous networks. However, it should be kept in mind that this
result is highly dependent on the topology of the data themselves (here MNIST
database), and could be different with other data. Future works will be necessary
to investigate this interesting question.

3.5.3 Generalization w.r.t. the Learning Process

During the evolution process, the networks at each generation were trained
during 10,000 learning steps mainly for computational cost reasons. But how do
the evolved networks perform with learning protocols of different lengths (e.g.
one million steps)? In order to investigate this generalization ability, the 6 best
networks from the initialization phase and the 6 best networks obtained after
evolution were trained during respectively 10,000 (Figure 3.16) and one million
(Figure 3.17) learning steps. Note that the results obtained with 10,000 learning
steps are not a simple zoom-in of the results obtained with one million learning
steps, because the radiusR decays at different rates in these two cases (as shown

73

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

0.36

0.34

0.32

F

10
0 10

2 10
4 10

6

Generation #

0.4

0.2

0.0

C
lu

st
. I

nd
ex

 <
 C

 >

10
0 10

2 10
4 10

6

Generation #

3.2

2.8

2.4

M
S

P

10
0 10

2 10
4 10

6

Generation #

10

8

6

4

2

0

σ k

10
0 10

2 10
4 10

6

Generation #

A

B D

C

Figure 3.15: Time courses of the main network statistics during artificial evolu-
tion. Each time a mutation gives rise to a topology with a better fitness than the
best one in the current population, its fitness (A), average mean shortest path (B),
average clustering index〈C〉 (C) and the standard deviation of its connectivity
distributionσk (D) are plotted against the current generation number. Each panel
groups the results of 9 evolution runs.

in the bottom plots).

With 10,000 learning steps, the fitness obtained at the end of the learning
phase by the evolved networks are slightly better than thoseobtained with the
initial networks. Surprisingly, this improvement of the fitness is much clearer
when learning was performed over one million learning steps(Figure 3.17) -
albeit during evolution, these networks were trained using100-fold less training
steps-. At the end of the learning protocol, the average fitness of the 6 best
evolved networks is> 4% better than that of the 6 best initialized networks
(note that this figure is lower than the> 9% improvement above, because the

74

3.5. INVERSE PROBLEM

1.0

0.8

0.6

0.4

0.2

F
itn

es
s F

10x10
3

8x10
3

6x10
3

4x10
3

2x10
3

0x10
3

 Best 6 initializations
 Best 6 evolutions

0.4

0.3

0.2
10.0x10

3
9.6x10

3
9.2x10

3

15

10

5

0

R
ad

iu
s

10x10
3

8x10
3

6x10
3

4x10
3

2x10
3

0x10
3

Learning Steps

Figure 3.16: Evolution of the fitness during learning of the 6best networks from
the initialization phase (dashed lines) and the 6 best networks obtained after evo-
lution (full lines). The learning protocol consisted of 104 learning steps. The inset
shows magnified views of the results at the end of the learningphase. The evo-
lution of the neighborhood radius is also given in each case for comparison pur-
poses. Each curve is an average over 11 initial realizationsof the neuron weights.

12 networks were selected from 3 evolution runs only). In thecase of one
million learning steps, this difference increases up to∼ 8%. Finally, note that,
at the end of the learning period, the difference between thetwo populations is
statistically significant (p < 0.01, unpaired t-test) for both learning conditions
(10000 and one million steps). Hence, the networks selectedusing 104 learning
steps also outperform the initial networks for very different learning processes
(here 100-times longer). Further investigations are required to better understand
this phenomenon.

75

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

1.0

0.8

0.6

0.4

0.2

F
itn

es
s F

10x10
5

8x10
5

6x10
5

4x10
5

2x10
5

0x10
5

 Best 6 initializations
 Best 6 evolutions

0.4

0.3

0.2
10.0x10

5
9.5x10

5
9.0x10

5

15

10

5

0

R
ad

iu
s

10x10
5

8x10
5

6x10
5

4x10
5

2x10
5

0x10
5

Learning Steps

Figure 3.17: Same simulations as those in 3.16 except that the learning protocol
used during evolution consisted of 106 steps.

3.6 Conclusion

The objective of this chapter was to study the influence of topology in a case of
neural network defined on a complex topology. On the limited experiments pre-
sented here, it seems that the performance of the network is only weakly controlled
by its topology. Though only regular, small-world and random topologies, have
been presented, similar results have been obtained for scale-free topologies. This
suggests that for such learning task, the topology of the network is not crucial.

Interestingly, though, these slight differences can nevertheless be exploited by
evolutionary algorithms: after evolution, the networks are more random than the
initial small-world topology population. Their connectivity distribution is also
more heterogeneous, which may indicate a tendency to evolvetoward scale-free
topologies. Unfortunately, this assumption can only be tested with large-size net-
works, for which the shape of the connectivity distributioncan unambiguously

76

3.6. CONCLUSION

be determined, but whose artificial evolution, for computation cost reasons, could
not be carried out.

77

3. EVOLVING THE TOPOLOGY OF SELF-ORGANIZING MAP

78

Chapter 4

Evolutionary Optimization of Echo
State Networks

A possible alternative to fine topology tuning for Neural Network (NN) opti-
mization is to use Echo State Networks (ESNs), recurrent NNsbuilt upon a large
reservoir of sparsely randomly connected neurons. The promises of ESNs have
been fulfilled for supervised learning tasks. But reinforcement learning tasks,
such as control problems, require more flexible optimization methods – such as
Evolutionary Algorithms.

This chapter proposes to apply CMA-ES, the state-of-the-artmethod in
evolutionary continuous parameter optimization, to the evolutionary learning of
some ESN parameters (see Section 2.2.3). First, a standard supervised learning
problem is used to validate the approach and compare it to thestandard quadratic
approach. Further, thanks their flexibility, evolutionaryoptimization allow one
to optimize not only the standard outgoing weights, but also, or alternatively,
some other internal parameters of the ESN, sometimes leading to improved
results, as will be demonstrated here. The classical doublepole balancing control
problem (Section 4.4.1) is then used to demonstrate the feasibility of evolutionary
reinforcement ESN learning. Note that special care must be taken when using
CMA-ES for this specific problem, in order to lead the evolutionary ESN to-
ward results that are comparable with those of the best topology-learning methods.

4.1 Introduction

It has long been known to Neural Networks practitioners thata good design of the
topology of the network was an essential ingredient to a successful application

79

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

of Neural Networks, for a given learning task. In the framework of supervised
learning, the famous US Postal application [129, 31] demonstrated the need to
carefully craft the topology for the problem at hand (see also Section 2.3.2). On
the theoretical side, the recent studies ondeeprepresentations, as developed in
[22] for instance, proved that indeed, some types of topologies (e.g. shallow
one-layer perceptrons) require an exponential number of hidden units w.r.t. the
input dimension, in order to be able to achieve a given learning task, while deep
topologies might require as few as a linear number of layers for the same task.
The critical issue then becomes that of learning the appropriate weights, and
specific methods have to be used, as the standard backpropagation algorithm
becomes inefficient [23].

Echo State Networks [105], that was recently proposed for supervised learn-
ing of time series, can be seen as an alternative approach: instead of optimizing a
topology for a given task, it proposes to use a largereservoir of neurons that are
randomly (and sparsely) connected. Only the weights of the outgoing connections
are to be learned, transforming the learning process into a simple a quadratic
optimization problem that is easily solved by any gradient-based method . . . at
least in the supervised learning case.

The situation changes dramatically when addressing reinforcement learning
tasks, such as control tasks: no example of input-output of the network are
available, and hence the learning problem can no longer be set as a quadratic
problem. Even some tricks like BackPropagation Through Time[223] don’t
directly apply to recurrent neural network learning.

Evolutionary Computation provides a possible solution for such situations, as
long as some fitness for the sought controller is available

This chapter addresses the following issues: are Evolutionary Algorithms
(EAs) a viable method to train Echo State Networks in general, and for rein-
forcement learning tasks in particular – and how does it compare to the quadratic
learning in the supervised context? Furthermore, are Echo State Networks an
alternative to topology learning in the framework of ControlProblem? Finally,
as the flexibility of Evolutionary Algorithms allows them tolearn to adjust more
than just the weights of the outgoing connections of the ESN,does this improve
the leaning power of ESNs?

This chapter will start by introducing in Section 4.2 the Echo State Networks
and the standard supervised learning of their outgoing weights. To address the
first research issue listed above, the same experimental setting as the original
supervised learning of time series proposed in Jaeger’s seminal paper [105] will

80

4.2. RESERVOIR COMPUTING MODEL

be used in Section 4.3, and different reservoir sizes will beexperimented with.
But because EAs don’t require gradient information, using anEA in lieu of
a gradient method will offer more flexibility for ESN learning, allowing us to
optimize more than just the outgoing weights of the network,also optimizing
the spectral radius of the ESN, or the slope of the sigmoid at the origin for each
neuron.

Moreover, Evolutionary Learning opens up the field of reinforcement learning
to ESNs, that is optimizing the characteristics of the network when no direct
input-output examples are available, but only some possibly delayed reward, as is
the case in control problems.

In the reinforcement context, many works advocating different methods to
evolve a complete neural network (i.e. both topology and weights) have dealt
with the double pole balancing problem, as presented in Section 4.4.1, providing
a basis for comparison without the burden of re-doing all experiments. The same
control problem will be used in Section 4.4, the results of ESN evolutionary learn-
ing will be compared to those of the literature. Moreover, asin the supervised
case, experiments will involve the optimization of different parameters of the
ESN. Section 4.5 will further discuss the results in line with the developmental
and generative approaches it was compared to. Finally, Section 4.6 will sum up
the chapter and sketch directions for on-going and further researches.

4.2 Reservoir Computing Model

The paradigm underlying what is today known as Reservoir Computing (RC)
made Recurrent NNs accessible for practical applications asnever before,
and outperformed classical fully trained RNNs in many tasks [138]. Echo
State Networks (ESN) have been proposed by Jaeger in 2001 [105] with the
objective of endowing a neural network with rich dynamics behavioral patterns
while keeping learning complexity at a low level. An ESN is a discrete time,
continuous state, recurrent neural network using a sigmoidal activation function
for all neurons. A typical ESN is shown in figure 4.1: the inputlayer is totally
connected to the hidden layer; the hidden layer, and possibly the input layer,
are totally connected to the output layer. Moreover, thoughconsidered not
essential, the output layer can be connected backward to thehidden layer. In
this setup, the hidden layer, orreservoir, is randomly generated:N neurons are
randomly connected up to a user-defined density of connectionsδ . The weights
of those connections are randomly set uniformly in[−1,1], and are scaled so

81

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

Figure 4.1: Schematic view of an Echo State Network. Plain arrows stand for
weights that are randomly chosen and remain fixed, while dashed arrows represent
the weights to be optimized: either(K +N)×L if direct connections from inputs
to outputs are used, or simplyN×L if not, whereK, L andN are the number of
inputs, of outputs, and of neurons in the reservoir.

that the spectral radius of the connection matrix is less than a given valueρ < 1,
ensuring that the network exhibits the “echo state property”, i.e. stays out of
the chaotic behavior zone whatever the input sequence (see e.g. [106]). The
random construction of an ESN is thus determined by the 3 parametersN, δ andρ.

The main point in ESN is that only the weights going from the input and
hidden nodes to the output nodes are to be learned. If the problem hasK inputs
andL outputs and a reservoir of sizeN, this amounts eitherN or (K +N)×L free
parameters (depending on whether or not the input layer is directly connected
to the output layer). Moreover, any supervised learning problem using some
MSE objective is then reduced to a quadratic optimization problem that can be
efficiently and quickly solved by any deterministic optimization procedure, even
for very large values ofN. In some sense, an ESN can be seen as a universal
dynamical system approximator, which linearly combines the elementary dy-
namics contained in the reservoir [163]. ESNs have been shown to perform
surprisingly well in such context of supervised learning, in particular for problems
of prediction of times series.

For instance, Reservoir Computing (RC) has starkly outperformed previous

82

4.2. RESERVOIR COMPUTING MODEL

methods of nonlinear system identification, prediction andclassification, in pre-
dicting chaotic dynamics (three orders of magnitude improved accuracy [108]),
nonlinear wireless channel equalization (two orders of magnitude improvement
[108]), the Japanese Vowel benchmark (zero test error rate,previous best: 1.8%
[109]), financial forecasting (winner of the internationalforecasting competition
NN31), and in isolated spoken digits recognition (improvement of word error rate
on benchmark from 0.6% for the previous best system to 0.2% [215]).

We will first introduce the state of arts work of ESN in supervised learning
area.

4.2.1 A Chaotic Time Series Prediction by ESN

The first great success of ESN has been done with the Mackey-Glass system, a
popular chaotic dynamic system that is defined by a single nonlinear time delay
ordinary differential equation :

dy
dt

= α
yτ

1+yτ β − γy, γ,α,β > 0,

whereα,γ,τ,β are real numbers, andyτ represents the value of the variabley at
time (t − τ). Depending on the values of the parameters, this equation displays
a range of periodic and chaotic dynamics. In the chaotic systems modeling
community the parameters are often set toα = 0.2,γ = 0.1,β = 10. When
τ > 16.8, the system is a chaotic attractor. Depending on the value of τ, the
system varies form a mildly chaotic attractor (τ = 17, used normally) to a more
chaotic behavior (τ = 30). Figure 4.2 shows 600 consecutive time steps obtained
with τ = 17 andτ = 30

The task here is to create a system which can reproduce the given chaotic
attractor as precisely as possible in a predefined number of iterations.

ESNs show excellent results in Jaeger’s first technique report [105] with 400
units and state of art results with 1,000 units were also presented [108].

4.2.2 Researches on RC

Since the first report of Jaeger in 2001, Reservoir Computing (RC)attracted a lot
of research interest. RC methods have indeed been successfulwhen applied to
several benchmarks, often outperforming classical fully trained RNNs. And as
with all RC methods these good results were obtained with purely random (i.e.

1http://www.neural-forecasting-competition.com/NN3/index.htm

83

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

0 200 400 600

−0.6

−0.4

−0.2

0

0.2

0.4

0 200 400 600

−0.6

−0.4

−0.2

0

0.2

0.4

Figure 4.2: 600-step sections of the Mackey-Glass chaotic attractor system for
delaysτ = 17 (left) andτ = 30 (right).

non-optimized) reservoirs. However, the obvious success of random reservoir
does not imply that they are optimal and that they cannot be improved/optimized
further. Thus besides application studies, anther important stream of current RC
research on reservoir methods is devoted to optimal reservoir design, or reservoir
optimization algorithms.

Lukosevicius and Jaeger gave in 2007 an overview which presents most of the
works in this stream [138]. We briefly present below these works, inasmuch as
they are related to our own research.

Generic Reservoir Recipes

As mentioned in [105], in order to produce ’rich’ sets of dynamics, it is important
to create ’big’ reservoirs (that can display rich varied dynamics), that are
’sparsely’ (reservoir neurons are only loosely coupled) and ’randomly’ connected
(every generated reservoir is different from the other).

And the echo stateproperty of the reservoir is needed to insure that the
ESNs work. This condition makes sure that a previous state and a previous input
should vanish as time passes in the future instead of persistor get amplified (via
self-excitation). Jaeger proved that for most practical purposes, the echo state
property is assured if the reservoir weight matrix W is scaled so that its spectral
radiusρ(W) (i.e., the modulus of the largest eigenvalue) satisfiesρ(W) < 1 in
reservoirs using the tanh function as neuron active function, and for zero input. A
rather conservative rigorous sufficient condition of the echo state property for any
kind of inputsu(n) (including zero) and states x(n) (with tanh nonlinearity) being
σmax(W) < 1, whereσmax(W) is the largest singular value of W.

84

4.2. RESERVOIR COMPUTING MODEL

But this condition only ensures that the ESNs will not self-excite. The optimal
value ofρ(W) should be set depending on the amount of memory and nonlinearity
that the given task requires, and varies with the task. Jaeger gives a rule stating
thatρ(W) should be close to 1 for tasks that require long memory and accordingly
smaller for the tasks where a too long memory might in fact be harmful [105].

Small-world, scale-free and biologically-inspired connection topologies were
tested and compared with sparsely randomly connected ones,but no significant
differences were presented among there different topologies using the measure
and the experiment methods of the article [134].

For a conventional ESNs, one of the shortcoming is that the activations are
still coupled strongly even though the reservoirs are sparse. That makes ESNs
poor performers when dealing with different time scales simultaneously. In [229],
the reservoir was divided into partially decoupled sub-reservoirs, introducing
inhibitory connections among all the sub-reservoirs. Thissystem was shown to
successfully resolve the multi-time scale problem at hand.Note moreover that
other related works combine outputs from several separate reservoirs and will be
discussed in the following section.

In conventional ESN, the activation function of the neuronsis usually a Sig-
moidal function, but others types of functions were also used for different pro-
poses. For example, in Evolino [187] a Long Short-Term Memory type of RNNS
were used to preserve memory for long periods of time. Jaeger[105] also sug-
gested a version of a leaky integrator ESNs (LI-ESNs) which uses a leaky inte-
grator active function. This version is in fact a discretized version of a continuous
differential equation for a leaky integrator neuron that reads :

x(n) = (1−α∆t)x(n−1)+∆t f (Winu(n)+Wx(n−1))

Whenα = 1 and∆t = 1, one recovers the classical (non leaky) simple ESN.
The parametersα and∆t control the ’speed’ of the reservoir dynamics. Small
values ofα and∆t result in reservoirs that react slowly to the input. By changing
these parameters it is possible to shift the effective interval of frequencies in
which the reservoir is working.

Readouts from the reservoirs

In conventional ESN, the readout always has a single layer. The optimization is a
linear mapping form the reservoirs statesx(n) to target outputytarget(n) and there
exists for this aim many linear regression algorithms that are very fast, even for

85

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

a very large number of time stepsn to forecast, as the objective is simply here to
minimize the quadratic error between theWoutx(n) and theytarget(n).

Recently, however, some multilayer perceptrons (MLPs), trained by error
backpropagation, are beginning to be used as readouts. Theoretically they are
more powerful than a singer layer, but in practice, trainingby error backpropaga-
tion is much more difficult than linear regression with a single layer.

Another approach that has been proposed consists in combining several
readouts by averaging the outputs coming from several instances of ESNs (e.g.,
to refine the prediction of chaotic time series [108]). Thereis also an ESN-based
predictive classifier [200] which is reported to be much morerobust to noise than
a standard Hidden Markov Model for the task of spoken word recognition, by
using a set of competitively trained predictors for each class of the training set,
and then applying dynamic programming to find the optimal sequence of the a
opoutput of these predictors.

Finally, though the reservoirs may have thousands of units,they usually have
a single layer. It was suggested that for complex demanding tasks the adaptation
of a single reservoir might not be enough and a hierarchical architecture of ESNs
might be needed. Jaeger himself [107] proposed a first approach to this problem,
but this research is still in its infancy.

4.2.3 Discussion

In our opinion, at least three aspects need further investigation in the context or
Reservoir Computing in general, and ESN in particular.

Gradient Descent or Evolutionary Computing

As discussed in previous section, gradient decent algorithms have been used
to optimize the readout layer in the supervised learning field. The idea of
Evolutionary Learning for Echo State Networks amounts to replacing the gradient
descent that is used to optimize the outgoing weights in Jaeger’s approach
by an Evolutionary Algorithm (EA). This makes it possible toapply ESN in
Reinforcement Learning field. A first mandatory step in that direction is to
validate this approach on a supervised learning task, comparing the results with
those of the standard gradient method. This will be done in Section 4.3. Then a
reinforcement learning task will be experimented with in Section 4.4

86

4.3. SUPERVISED LEARNING OF ESN

The Evolutionary Algorithm that has been chosen for the optimization here is
the Covariance Matrix Adaptation Evolution Strategy, aka CMA-ES [87, 88, 85],
which has been introduced in detail in 2.2.3. As already discussed, the only
parameter of CMA-ES that needs to be set by the user is the number of offspring
λ , depending on the possible ruggedness of the fitness landscape at hand. The
default value, as set in [88], increases logarithmically with the dimensiond
of the problem (number of unknown parameters), asλ = 4+ 3ln(d). In the
supervised case of Section 4.3, involving problems of dimensions 30, 60 and 100,
the corresponding values ofλ are respectively 12, 15, and 17.

Auto Parameters Turning

In many ESN applications, the ESN parameters were chosen or fine tuned by hand
(most often through trial-and-error) and have fixed values.Jaeger [105] states that
ρ(W) should be close to 1 for tasks that require long memory and accordingly
smaller for the tasks where a too long memory might in fact be harmful. But the
optimalρ(W) is still unknown. One side effect of the Evolutionary Optimization
of ESN weights is that we will also here use EC to determine theoptimalρ(W).

Transfer Function

In conventional ESNs, the transfer function of all neurons is usually a Sigmoid
function (or, equivalently, the tanhfunction) with fixed slope. But because we are
using EC, and do not need any more we are also able to optimize the slopes of
every neuron. And this gives another point of entry into ESN optimization. So in
our study, we will also test this aspect on a supervised learning problem and on a
reinforcement learning case study.

4.3 Supervised Learning of ESN

In order to validate the Evolutionary approach to ESN learning, a first experiment
reproduces one of Jaeger’s initial setting [105], but usingan Evolutionary
Algorithm in lieu of some gradient-based quadratic optimization procedure. The
problem is that of a time series prediction.

4.3.1 Jaeger’s Original Settings

In this toy example, a single-channel sinusoidal input is given byu(n) = sin(n/5).
The target is to train the network to produce a single-channel output,

87

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

Input: u(n) = sin(n/5)

Output: 1/2u(n)7

Figure 4.3: The input signalu(n) = sin(n/5) in red and the target output
yteach(n) = 1

2u7(n) in blue

yteach(n) = 1
2u7(n), as shown in Figure 4.3

The network output is given by the following equation:

y(n) = tanh(
N

∑
i=1

wout
i ∗xi(n))

wherewout
i denotes the weight of the i-th output connection, andxi(n) is the state

of i-th neurone at time stepn. The activity function is the standard sigmoid func-
tion with slope 2:

tanh(x) =
2

1+e−2x −1

The reservoir used in Jaeger’s original paper has a size of 100 neurons. The
neurons of the reservoir are randomly connected, and the weights are set to
values of 0, +0.4 and -0.4 with probabilities 0.95, 0.025, 0.025 respectively,
thus reaching a sparse connectivity of 5% (further works on ESNs rather used
uniform initialization of the non-zero weights in[−1,1]). The weights are then
scaled so that the spectral radius of the connection matrix of the reservoir is
|ρmax| ≈ 0.88< 1.

The input weights (from the input to all neurons in the reservoir) are set to
+1 or−1 with equal probability. No direct links from inputs to outputs, and no
backward links from outputs back into the reservoir are usedhere either.

88

4.3. SUPERVISED LEARNING OF ESN

As in Jaeger’s work, the fitness to be minimized is the Mean Square Error
of the network. The bootstrapping is done the following way:the states of all
neurons in the reservoir is initialized to zero; the networkis then run for 100 time
steps without measuring the error; finally, the MSE is computed on the next 200
time steps as

MSEtrain =
1

200

300

∑
n=101

(y(n)−arctanh(yteach(n)))2

4.3.2 Which parameters to optimize?

In Jaeger’s original paper, only the output weights were optimized, leading
to a quadratic optimization problem of dimensionN, the size of the reser-
voir. The optimization was done using a gradient method (more precisely,
the Fit function from Mathematica©). The reported result is a training error
msetrain ≈ 3.3∗ 10−15. When the trained network was tested on test data, the
reported test error ismsetest ≈ 3.7∗10−15.

However, as already mentioned, whereas gradient method canonly solve
reliably convex problems, CMA-ES can reliably find good global quasi-optima of
non-convex problems, leading to different other option to choose which parame-
ters to optimize, as already demonstrated beneficial in the case of feed-forward or
small recurrent NNs [189, 54].

The Spectral Radius

In particular, a critical parameter in ESN tuning seems to bethe maximal value
allowed for the spectral radius. To ensure “echo state” property, this radius must
be smaller than 1, but different values have been proposed inthe literature for
different problems. Hence it seems a good idea to use the spectral radius as
a free parameter, to be optimized by CMA-ES: it only adds one dimension to
the problem. The procedure goes as follows: when a set of parameters is to be
evaluated, the weights of the recurrent connection inside the reservoir are first
scaled so that the spectral radius of the connection matrix takes the value of the
additional optimized parameter, the same way it was done during the initialization
of the reservoir itself. Then the response of the ESN is computed as usual, using
the scaled weights.

89

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

The Sigmoid Slopes

Because an Echo State Network is a set of dynamical systems that are linearly
combined to generate the desired output, it seems plausiblethat modifying the
slopes of all neurons independently might allow the ESN to better fit the target.

The transfer function of in internal neuron becomes tanha(x) =
2

1+e−ax − 1.

Jaeger’s original sigmoidal function was tanh, corresponding to the casea = 2.

However, if both the output weights and the sigmoid slopes are optimized, the
dimension of the optimization problem is doubled. Hence, a first experiment was
to optimize the slopes alone (and the problem still has as dimension the number
of neurons in the reservoir), before running the complete experiment, optimizing
both the slopes and the output weights.

4.3.3 The experiments

Four variants of evolutionary optimization of an ESN have been compared:
the standard optimization of the output weights, denotedStd in the following,
which hasN unknown parameters,N being the reservoir size; the optimization
of the output weights plus the spectral radius, denotedRho, of dimensionN +1;
the optimization of the sigmoidal slopes denotedSlopes, of dimensionN; and
the optimization of both the output weights and the slopes, denotedFull, of
dimension 2∗N.

Two reservoir sizes have also been chosen:N = 100 as in Jaeger’s original
paper, that then provides a basis for comparison, andN = 30, that allows more
systematic comparison, in particular regarding theFull variant, as no meaningful
better results could be obtained using that variant in the caseN = 100.

However, because of the small reservoir size, the average connectivity was
increased, to ensure that each neuron has the same average number of connections
than in theN = 100 case, leading to setting the weights to values of 0, +0.4
and -0.4 with probabilities 0.864, 0.068, 0.068 respectively. The same maximal
spectral radius of|ρmax| ≈ 0.88< 1 was used for both reservoir sizes (except for
theRho variants of course).

90

4.3. SUPERVISED LEARNING OF ESN

4.3.4 Comparative Measures

One surprising issue in Jaeger’s original paper is that there is no statistical
analysis whatsoever: indeed, even if the optimization problem is quadratic, and
has a unique global solution that the gradient method will reliably find, the
network itself is randomly built, and different networks might have different
optimal value for the MSE fitness.

In any case, because CMA-ES, like all EAs, is a stochastic optimization
procedure, no strong conclusion can be drawn without doing athorough statistical
analysis of the performances. Hence 15 different networks have been used, and
for each network, 5 runs of CMA-ES were launched with different random seeds
(and hence starting points).

A first global performance measure is given by the now standard SP1 measure,
an estimator for the success performance used in [85] and analyzed in [8]: it is
defined as the number of evaluations needed to reach a given fitness level, divided
by the proportion of runs that did reach that fitness value, and hence can be
viewed as the computational effort that is required to reacha given performance
level.

Moreover, the variability over the reservoir topology willalso be assessed, by
studying in detail the different results obtained by the 5 runs for each of the 15
networks.

4.3.5 Results

Figures 4.4 and 4.5 show the SP1 plots for reservoirs of 100 and 30 neurons,
respectively, and all evolution variants, except theFull method that could not
be applied for the reservoir size of 100. The first result, fora reservoir size of
100, simply confirms that CMA-ES can be as precise as the gradient method
reported in [105], though undoubtedly requiring a much greater computational
effort: indeed, a factor of 7 to 10 in the computational cost between CMA-ES
and BFGS was reported in [88] for quadratic functions ... whenusing numerical
derivation – whereas the analytical gradient is available here. In a few cases,
though, CMA-ES was able to find better solution than our local gradient-based
method, that was stopped by precision thresholds.

However, the two other plots on Figure 4.4 are rather disappointing, as
increasing the search space didn’t allow to improve the precisions: neither the

91

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

Fitness

S
P

1

-1510 -1310 -1110 -910 -710 -510 -310 -110

110

310

510

710

910 Std
Slopes
Rho

Reservoir size = 100

Figure 4.4: Comparative SP1 measures for the caseN = 100, in log-log scale. The
Full variant is not represented.

Fitness

S
P

1

-1310 -1110 -910 -710 -510 -310 -110

210

410

610

810
Std
Slopes
Rho
Full

Reservoir size = 30

Figure 4.5: Comparative SP1 measures for the caseN = 30, in log-log scale, for
all 4 variants.

92

4.3. SUPERVISED LEARNING OF ESN

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

F
it

n
es

s

1.00.80.60.40.20.0

Spectral radius

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

F
it

n
es

s

1.21.00.80.60.40.20.0

Spectral radius

Figure 4.6: Correlation between the final value of the spectral radius at the end of
a run of theRho method and the corresponding fitness, in the caseN = 100 (left)
andN = 30 (right). The best fitness in the caseN = 100(left) is found where the
spectral radius is between 0.6 and 0.8, and in the caseN = 30(right), the optimal
spectral radius is centered around 0.96

Slopes nor theRho variants are able to reach a better precision, theRho method
being the worse.

The situation is different on Figure 4.5: In the case of a reservoir size of 30,
theStd method could not go below 10−12 while theSlopes and theFull variants
were able to reach values below 10−13. This, however, has a cost, and requires
almost 100 times more evaluations when measured with SP1 (due to the fact that
very few runs do find such low values). However, here again, the Rho variant
didn’t produce any good result, requiring about a 100 times larger computational
effort than theStd method to reach its best value, slightly below 10−11.

A possible explanation is that, though theRho variant solves a problem that
is only one dimension larger than that of theStd method, the additional variable
is interacting intricately with all other variables, whereas the quadratic problem
solved by theStd method is separable. Figure 4.6 confirms this hypothesis
demonstrating a clear correlation in bothN = 100(left) and N = 30(right)
versions between the final value of the spectral radius at theend of a run of the
Rho method and the corresponding fitness: lowρ have a poor fitness, indicating
that CMA-ES had some hard time increasing variableρ, and found an easier
descent direction by increasing the output weights. This isconfirmed by the
average absolute values of the outgoing weights: in the caseof 100 (resp. 30)
neurons in the reservoir, the average of the absolute valuesof all outgoing weights
over all runs of theRho variant is 1.7×103 (resp. 6.3×103), while it is of order

93

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

Fitness

N
um

be
r

of
 r

un
s

re
ac

hi
ng

 a
 g

iv
en

 fi
tn

es
s

-1510 -1010 -510 010

0

1

2

3

4

5

Reservoir size 100 - Std

Fitness

N
um

be
r

of
 r

un
s

re
ac

hi
ng

 a
 g

iv
en

 fi
tn

es
s

-1510 -1010 -510 010

0

1

2

3

4

5

Reservoir size 100 - Slopes variant

Fitness

N
um

be
r

of
 r

un
s

re
ac

hi
ng

 a
 g

iv
en

 fi
tn

es
s

-1510 -1010 -510 010

0

1

2

3

4

5

Reservoir size 100 - Rho variant

Figure 4.7: Cumulative figures withN = 100 neurons, each line of those plots
represents the 5 runs for one network, the Y-axis being the number of runs that
actually reached the X-axis fitness value. The top left figureis the Std variant, the
top right is the Slopes variant and the bottom is the Rho variant

of magnitude 10 for all other variants and reservoir sizes.

This is confirmed by the other plots of Figure 4.7 and Figure 4.8 : each line of
those plots represents 5 runs for one single network, the Y-axis being the number
of runs that actually reached the X-axis fitness value. All variants (for both sizes
of the reservoir) except theRho method, show almost no dispersion (i.e. the
performance of CMA-ES on each network is independent of the starting point)
while theRho method displays a very large dispersion. Another remark on those
plots is that, for a given method, the range of optimal valuesreached for the MSE
is larger in the caseN = 30 than in the caseN = 100, even for theStd variant.
However, even in the caseN = 100, the best MSE reached by theStd or the
Slopes variants for different networks can vary by almost 2 orders of magnitude
from the best network to the worst.

94

4.4. REINFORCEMENT LEARNING OF ESN

4.3.6 Discussion

The result show that:, for such a simple time series problem,the size of ESN
is a crucial parameter for getting a better learning precision. When the size of
ESN is large enough (as withN = 100), the dynamical states within the ESN are
already rich enough for solving the problem, and theStd version can obtain the
best results. But whenN is small (e.g.,N = 30), it is more important to create rich
dynamic states by varying the spectral radius (Rho variant) or the slopes (Slopes
variant). A largeN may be not a problem for such supervised time series problem,
but as will be detailed in next section, it will be in the case of reinforcement
learning, when the simulation is very costly.

Another conclusion for this section is the interesting correlation between the
final Rho value and the fitness. We also need to mention that in the caseN = 100,
theρ used byStd version is taken from Jaeger’s suggestion, and in that point it is
already an optimized value. For choosing an optimalρ for a specific task, Jaeger
made a generic suggestion: if we need short memory in a dynamic environment,
theρ should be small, and vice versa. The optimalρ is often chosen by trial and
error. In our experiments, the optimalρ in Rho version forN = 100 is very closed
to theρ value which is chosen by Jaeger. This suggests that EAs are a possible
method for choosing the optimalρ for a given task.

4.4 Reinforcement Learning of ESN

4.4.1 The Pole-balancing Benchmark

This Section introduces the Pole-balancing problem and briefly recalls compara-
tive results that have been obtained by different Neuro-Evolution techniques in the
recent years, for getting a more detailed comparison between the Neuro-Evolution
techniques surveyed in section 2.3.2, and also for preparing the experiments on
evolving ESN for reinforcement learning.

The pole-balancing problem (aka inverted pendulum) is a classical control
task that has been used as a benchmark for reinforcement learning for more than
40 years [183, 2, 225, 78, 71, 204, 101, 45, 70, 117]. In the early research, there
was only one pole connected. The car position (x), car speed (˙x), the joint angle
(θ1) and the joint angle speed (θ̇1) are normalized and become the inputs of the
controllers. However, at the end of last century, this problem finally proved to be
rather easy to solve. So in order to increase the difficulty, the speed information
of car and pole were removed from the inputs. This did not add much to the
difficulty, and people thus turned to the double pole problem, adding a second
pole with different length to the system. In this case the twopoles have to be

95

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

Fitness

N
um

be
r

of
 r

un
 r

ea
ch

in
g

a
gi

ve
n

fit
ne

ss

-1510 -1010 -510 010

0

1

2

3

4

5

Reservoir size 30 - Std

Fitness

N
um

be
r

of
 r

un
 r

ea
ch

in
g

a
gi

ve
n

fit
ne

ss

-1510 -1010 -510 010

0

1

2

3

4

5

Reservoir size 30 - Slopes variant

Fitness

N
um

be
r

of
 r

un
 r

ea
ch

in
g

a
gi

ve
n

fit
ne

ss

-1510 -1010 -510 010

0

1

2

3

4

5
Reservoir size 30 - Rho variant

Fitness

N
um

be
r

or
 r

un
 r

ea
ch

in
g

a
gi

ve
n

fit
ne

ss

-1510 -1010 -510 010

0

1

2

3

4

5
Reservoir size 30 - Full variant

Figure 4.8: Cumulative figures withN = 30 neurons, each line of those plots
represents the 5 runs for one network, the Y-axis being the number of runs that
actually reached the X-axis fitness value. The top left figureis theStd variant,
the top right is theSlopes variant, the bottom left is the is theRho variant and the
bottom right is theFull variant.

96

4.4. REINFORCEMENT LEARNING OF ESN

balanced simultaneously. Similarly, and again in order to increase the difficulty,
the speed information are removed from the inputs. This finalproblem, also
known as the double pole balancing without velocity problem, is the most difficult
version of currently used pole balancing problems.

The double pole balancing problem without velocity problemis used by Stan-
ley and Miikkulainen [203] to compare different neuroevolution methods that
evolve both the topology and the weights of neural networks:Gruau’s Cellular
Encoding (CE, [78]), Gomez and Miikkulainen’s Enforced Sub Populations (ESP,
[71], Stanley and Miikkulainen’s Augmenting Topologies (NEAT, [203]). More
recently, Dürr, Mattiussi and Floreano have used the same test problem to com-
pare their system AGE [45] with the previous approaches, while C. Igel [101] has
evolved the weights of a totally connected recurrent neuralnetwork with fixed
topology for the same task. A brief presentation of there methods has been given
in section 2.3.2.

In all experiments (in this chapter as well as in previous works), the ordinary
differential equations that model this mechanical system were integrated numeri-
cally using a fourth-order Runge-Kutta method with a constant step size of 0.01s.

The system consists of two parts, the first part is a car whose mass is 1kg
and has one degree of freedom along thex axis, the second part consists of
one or two poles of different lengths (l1 = 1m, l2 = 0.1m) and different masses
(m1 = 0.1kg,m2 = 0.01kg) that are connected to the car by hinges. The poles
have one degree of freedom, namely the joint angle (θ1) (resp. θ2) with the
vertical direction. The command is a forceFx (Fx ∈ [−10N,10N]) that is applied
to the cart and the challenge is to keep the poles up (i.e. within given bounds for
the joint angles) as long as possible.

But this criterion leads to some problems since some good solutions fall
quickly when the initial conditions have changed. In order to study the generality
of solution, a new evaluation criterion has been proposed. An individual passes
the first test if it succeeds in keeping the system into the success domain
during 100 000 time steps. It is then tested with a true generalization test,
involving 625 different initial positions from where the controller must balance
the system and stay within the success domain for 1000 time steps. The initial
conditions are chosen such that the normalized values forx, ẋ ,θ1 and θ̇1 are
∈ 0.05,0.25,0.5, ,0.75,0.95 (the 625 values correspond to a full factorial Design
Of Experiment). And if the best individual in the populationsucceeds for at least
200 of those 625 trials, the run is stopped, and the individual that passed those
200 trials successfully is returned as the solution. The number of trails passed by
the solution is also called theGeneralization.

97

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

Figure 4.9: Balancing double poles

Comparative Results of Neuro-Evolution methods

For the double poles balancing without velocity problem, the optimizing results
of different models are as following (different methods arecompared by their
average number of Evaluation for finding the success solution):

Table 4.1: Published performance results of evolving ANNs methods on the dou-
ble pole balancing with no velocity information and evolving the weights and
topology simultaneously. The number of neurons is fixed during the optimization
(3 and 11 are the smallest and largest number of hidden neurons reported by Igel).

Method # Eval. Std Dev. Generalization
CE [78] 840000 n.a 300
ESP [71] 169466 n.a 289

NEAT [204] 33184 21790 286
AGE [45] 25065 19499 317

Igel [101] 3Nhidden 6061 250
Igel [101] 11Nhidden 25254 226

98

4.4. REINFORCEMENT LEARNING OF ESN

4.4.2 Fitness(es)

The idea of the fitness function in the double pole experiment, as in all control
problems, is that an individual that maximizes the fitness should have very
good generalization capabilities. However, standard fitness in such situations
usually average the performance of the controller over manytrials from different
starting positions, an extremely costly procedure. In order to avoid such heavy
computational cost, many, if not all, previous works in the evolutionary literature
addressing the double pole balancing problem [78, 71, 204, 101, 45] have used
a simplified fitness where the controller performance only depends on its ability
to maintain the poles up during a single trial. Only the best individual in the
population (for this fitness) is then evaluated through generalization tests.

However, though this simplified fitness does save a lot of computational
resources, we agree with [45] that it is a poor fitness with respect to the overall
goal of the optimization, in that it is not clear that individuals maximizing this
fitness will perform any good when it comes to generalizationtests. We will
hence propose another fitness that additionally captures the generalization ability
of the controller.

We will now in turn introduce both fitnesses.

The “Cheap“ Fitness Function

A single trial is run for every individual in the population,starting from the same
state (θ1(0) = 4.5o, θ̇1(0) = θ2(0) = θ̇2(0) = x(0) = ẋ(0) = 0). The simulation
is continued until either the system leaves the success domain x∈ [−2.4m,2.4m]
andθ1,θ2 ∈ [−36o,36o], or a maximum of 1000 time steps is reached.

The fitness functionFcheapis then a sum of two components:

Fcheap= 0.1
t

1000
+0.9 fstable, with

fstable=







0 if t < 100
0.75

∑t
i=t−100(|x

i|+ |ẋi|+ |θ i
1|+ |θ̇ i

1|)
otherwise

wheret denotes the number of time steps the system remains inside the success
domain.

99

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

The Generalization Fitness

In preliminary tests, we found that some controllers can obtain a very high fitness
without ever passing the second test, while some controllers passed all 200 gen-
eralization tests with a rather lowFcheap. Hence we have also used a fitness that
takes into account all 3 tests describe above. Of course, itscomputation involves
all 3 tests, including the stabilization during 100,000 times steps, and the 625
trials from different starting positions. The fitness valueis then given by

Fnew= Fcheap+
#Iter

100,000
+30

#Success
625

(4.1)

where #Iter is the number of iterations among the 100,000 where the system is
maintained in the success domain, and #Successis the number of generalization
trials that the controller passes. The value 30 was chosen bytrial and error.
Note that the latter means that individuals that are successful on more than
625/30≈ 21 generalization runs will have a high fitness now.

4.4.3 Experimental conditions

The size of the reservoir was fixed here to 20 neurons: initialexperiments
indicated that larger reservoirs did not improve the results – an assumption that
will be revisited in Section 4.5.

To study the variability with respect to the reservoir topology, as in Section
4.3, 20 different reservoirs were generated, and 11 independent runs of CMA-ES
were made for each reservoir.

Each reservoir was initialized as described in section 4.3.1, except for the
fixed weights: here, the 10% non-zero weights of the reservoir as well as the
in-coming weights were randomly initialized in[−1,1].

At the beginning of each run, the activity of all neurons in the reservoir was
zeroed, and the network was run for 20 iterations (the numberof neurons) before
the control actually began and the fitness started to accumulate.

As mentioned in Section 2.2.3, CMA-ES is almost a parameterless algorithm.
Only the population size (in fact, number of offspringλ) is to be tuned [88].
Hence, after some preliminary experiments that seemingly demonstrated that a
large population was needed, a first series of experiments was run, withλ = 256,
and weird results were obtained (described below in section4.4.4). A second

100

4.4. REINFORCEMENT LEARNING OF ESN

series of experiments was then launched, following Igel’s advice to give a lower
bound of 0.05 to the step-sizeσ during the CMA-ES run. Indeed, the standard
population size was then sufficient to obtain solutions thatpassed all 3 tests of the
fitness function (see previous Section 4.4.2). Moreover, asexplained also in that
Section, both the “cheap fitness” and the new “generalization fitness” (denoted
simply “new fitness” in the following) were tried for both CMA-ES settings. And
for all (CMA-ES – fitness) pair, all 4 variants of the evolutionary ESN learning
described in Section 4.3.2 were run – except theSlopes method with the default
CMA-ES setting, for reasons that will be explained later.

4.4.4 Results and Discussion

Table 4.2: Experimental results for the double pole balancing. The five top lines
refer to the (λ = 256, σmin = 0) CMA-ES setting, the four bottom lines to the
setting whereλ = 13 takes its default value andσmin = 0.05. The fitness used is
the cheapFcheap.

Cheap Fitness
Method Avg. Std. Genera- % Avg. BB

Eval. Dev. lization success Force Rate
Std - 0.95 16128 5127 246 8.2% 9.1 78.6%
Std - 0.60 16248 7121 250 13.2% 8.0 64.3%
Rho 35903 9695 265 25.0% 4.4 24.2%
Slopes 38214 8741 247 1.8% 0.23 0%
Std - Opt 17888 6671 264 11.8% 8.3 68.4%
Std - 0.95 14960 6291 234 6.8% 0.61 1.16e-5
Std - 0.60 16639 17037 225 6.8% 0.44 0.59%
Rho 23571 10175 241 52.7% 2.9 12.3%
Std - Opt 19168 21782 232 9.5% 0.62 3.83e-6

All results are summarized in Table 4.2 (the results using Cheap fitness) and
in Table 4.3 (the results using New fitness). For each table, the CMA-ES settings
is in horizontal and the corresponding fitness is in vertical, the five top lines refer
to the (λ = 256, σmin = 0) CMA-ES setting, the four bottom lines to (λ = 13
(default value),σmin = 0.05) setting.

For each variant, the 220 runs (11 runs for each of the 20 different reservoir
initializations) are here grouped together, and the four columns of each sub-table
show the average number of evaluationsaveraged over the successful runs

101

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

Table 4.3: Experimental results as same as in Table 4.2 except the fitness used is
the new oneFnew. The five top lines refer to the (λ = 256, σmin = 0) CMA-ES
setting, the four bottom lines to the setting whereλ = 13 takes its default value
andσmin = 0.05

New Fitness
Method Avg. Std. Genera- % Avg. BB

Eval. Dev. lization success Force Rate
Std - 0.95 27770 12522 234 44.5% 9.1 78.6%
Std - 0.60 27152 14696 236 62.7% 9.1 82.1%
Rho 35275 7481 233 99.5% 7.0 40.6%
Slopes 51712 13672 208 19.1% 2.0 0.18%
Std - Opt 26683 15395 243 64.5% 9.283.6%
Std - 0.95 16303 11511 209 82.3% 2.4 5.7%
Std - 0.60 16886 11073 211 87.3% 2.0 5.0%
Rho 19796 6770 224 91.4% 3.4 11.0%
Std - Opt 15965 11813 208 86.8% 2.0 4.3%

Table 4.4: Experimental results
Standard Fitness

Method Success % BB Rate
Std 8.2% 78.6%
Rho 25.0% 24.2%
Slopes 1.8% 0%
Std 6.8% 1.16e-5
Rho 52.7% 12.3%

Table 4.5: Experimental results
New Fitness

Method Success % BB Rate
Std 44.5% 78.6%
Rho 99.5% 40.6%
Slopes 19.1% 0.18%
Std 82.3% 5.7%
Rho 91.4% 11.0%

102

4.4. REINFORCEMENT LEARNING OF ESN

(columnAvg Eval.), its standard deviation (Std Dev.), the number of tests (out
of 625) passed during the third generalization test (Generalization), and, most
importantly, the percentage of success (% success), i.e. of runs where the best
individual did pass the 3 generalization tests. The other 2 columns will be detailed
later.

First of all, it should be noted that only Table 4.2 (CheapFitness) can be
compared to the published results of Table 4.4.1, because the experiments in the
second column didn’t use the same fitness.

The first striking result is the poor performance of the largepopulation size
with no bound onσ (first 5 lines of results of Table 4.2): only a small fraction
of all runs did pass the 3 generalization tests, from 25% for the Rho method to
as little as 1.8% for theSlopes method. Since the Avg. Eval. is only averaged
over the successful runs and because of the poor success rate, compared to other
published results (Table 4.4.1), this result is very disappointing. If we compare to
other algorithms, the SP1 need to be computed to make a fair comparison. In the
simplest way the SP1 can be cursorily computed asSP1 = Avg.Eval./success%.
(we need to notice that it is just a cursorily one because for the unsuccessful
runs, their evaluation number could be more or less than the average evaluations
number of success runs.). With this equation the best resultis from the Std-0.60
version whose SP1 is 16248/0.132 = 123090, it is almost 4 times larger by
comparing with NEAT.

Things get a little better for the second CMA-ES setting with alower
threshold onσ (4 last lines of the Table), at least when looking at the performance
of theRho variant: more than half of the runs succeeded, with an average cost of
23571 evaluations, which amounts to an SP1 value of about 45300. This is still
worse than NEAT and AGE, but within the same order of magnitude.

However, those weak success rates are to be related with the statement in [45]
that “each run has to be restarted 10 times on average to find a solution”. But on
the other hand, NEAT [203], and Igel [101] at a very low cost, consistently found
a solution that passed all tests.

As expected, the results really improve when using the new fitness, that takes
into account the generalization ability of the network: with the first CMA-ES
setting, theRho variant almost always find a solution (except for one run out of
220), and theStd and theSlopes variants improve a lot over their results with the
cheap fitness.

103

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

More importantly, using both the new fitness and a lower boundfor σ allows
all variants to reach performances at the level of those of NEAT, AGE, or the
totally recurrent network with 9 neurons or more – though of course those results
cannot really be compared, as they were obtained using a different fitness. Indeed,
the SP1 values forStd-0.60,Std-0.95, andRho variants respectively are 19342,
19808 and 21658, even though slightly moreRho runs fail to find a solution.

Controller Behaviors In order to try to understand those striking differences, the
behavior of each controller was analyzed – and the results are summarized in the
last 2 columns of each sub-table: columnAvg. Force gives the average (over the
100000 times-steps of test 2 and the successful trials of 1000 time steps out of
the 625 generalization test 3) of the absolute value of the force to be applied to
the cart, (in Newton, in[0,10]); the last column,BB rate gives the percentage of
time steps where the controller gave a ”Bang-Bang“ command, i.e. a force whose
absolute value is higher than 9 N.

It now clearly appears that all successful controllers thatlearned without a
lower bound onσ exhibit a behavior that is very close to a complete bang-bang
control – and this is even more so with the new fitness. On the other hand, the
Rho variant manages to find intermediate behaviors, while thefew successful
runs of theSlopes variant can balance the double pole and pass all testswhile
spending an incredibly low energy (the average force is close to 0, which means
the car is almost motionless during the simulation!). Note,however, that the new
fitness, because it favors generalization more than decrease of movement (as does
the cheap fitness alone), allows theRho andSlopes methods to find many more
solutions passing the generalization tests, but the corresponding controllers need
larger forces and are “closer from bang-bang”.

When there is a lower bound onσ , however, no method whatsoever finds any
bang-bang solution. Moreover, theStd method in fact exhibits controllers using
smaller forces (on average) than theRho method. Note that theSlopes variant
was not tried (yet) for this setting.

Interestingly, the average squared weights reaches valuesas high as 1011 for
the results of bothStd variants with the new fitness and CMA-ES unboundedσ ,
and as low as 69 and even 7 for theSlopes andRho variants respectively in the
same conditions. But averaging here hides the most interesting phenomenon: as
can be seen on Figure 4.10, that shows the average histogramsof forces values:
the Std variants are clearly bang-bang, theSlopes method demonstrates a very
smooth behavior with all forces around 0, and surprisingly,the Rho method
shows both modes, indicating that it found both kinds of solutions.

104

4.4. REINFORCEMENT LEARNING OF ESN

Those findings give some hints about the actual fitness landscapes, and might
help to explain the results.

Fitness landscapesFrom the above study on the weights of the solutions, it
seems that bang-bang solutions are frequent, deep and wide local optima w.r.t.
the output weights: indeed, they correspond to regions of the search space with
very high values of all weights, giving saturated output neurons, and small
modifications of those weights are not likely to move the search away from
such local optimum. This explains why CMA-ES, without a lowerbound on
σ , prematurely converges into one of those wells. Adding a lower bound on
σ prevents a too early stagnation, and favors exploration, thus allowing the
algorithm to find better optima for the fitness at hand . . . and in the long run,
smooth optimizers are better optima than bang-bang commands.

The situation is different for theSlopes variant, that cannot reach any of the
bang-bang commands, because its output weights are fixed (with low values).
Hence it can only find smooth controllers, but its degrees of freedoms are too
limited to make this search efficient. The most interesting case is that of theRho
method: it seems that adding this additional variable givesthe algorithm sufficient
flexibility to be able to discover both kinds of solutions (see Figure 4.10), thus
favoring exploration increases its chances to find smooth controls. In some sense,
even with a smallσ , modifying ρ might be enough to find a shortcut toward a
smooth solution later in the run than by modifying all weights individually.

Spectral Radius It has always been advocated by ESN pioneers that the upper
bound on the spectral radius was an important feature for successful ESN use,
and the results for bothStd variants with different spectral radius seem to confirm
this. In Table 4.2 of the version with Cheap fitness, if we don’tset the low bound
for σ , the success rate of Std-0.60 is better than the success rateof Std-0.95.
(13.2 % vs 8.2 %) while in Table 4.3 when the new fitness is used,the success
rate of Std-0.60 is also better than the success rate of Std-0.95. (62.7 % vs 44.5 %).

However, the most remarkable fact here is that for all settings (CMA-ES
tuning and fitness), theRho variant, that explicitly optimizes the Spectral Radius,
almost always gives the best results. This is surprising when comparing to
the situation in the supervised context (Section 4.3.5), where theRho variant
performed the worst of all.

Further experiments were run, using theStd variant but fixing the Spectral
Radius to the final value found by theRho method (see the lines ”Std – Opt“ in

105

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

Force (Newton)

D
is

tr
ib

ut
io

n

-10 0 10
0

0.1

0.2
Std-0.60
Std-0.95
Rho
Slopes

Sigma min=0

Force (Newton)

D
is

tr
ib

ut
io

n

-10 0 10
0

0.1

0.2
Std-0.60
Std-0.95
Rho

Sigma min=0.05

Figure 4.10: The distribution of the output force (averagedover the successful
trials out of the 625 generalization tests) for the different variants. The high peaks
at both ends of the domain illustrate a bang-bang behavior, while a peak around
0 demonstrate a smooth control. The Rho variant is the only oneto find both
behaviors (for different runs) whether or notσ is lower-bounded or not (see text
for more details). The above are the results for the ”cheap fitness“, but the results
of the new fitness exhibit the same tendencies.

106

4.4. REINFORCEMENT LEARNING OF ESN

Table 4.2). Though it generally slightly improves the results over an arbitrary
value like 0.6 or 0.95, it does not allow to reach the same level of performance
than theRho method itself. The important feature is thatρ can be modified
during the optimization, and not the final value it reaches.

Figure 4.11 show the finalρ value for the success runs of fourRho versions,
the top two figures are the result with the cheap fitness, the left one withλ = 256
andσmin= 0.0 and the right one withλ = 13 andσmin= 0.05, each color represent
an ESN. In this case there are not many runs can find the successsolutions, but
with σmin = 0.05 the results is already much better.

The bottom two figures are the result with the New fitness, the left one with
λ = 256 andσmin = 0.0 and the right one withλ = 13 andσmin = 0.05, we can
find clearly that there are much more success runs than with the cheap fitness.
This result may indicate that in our test, each randomly created ESN (with some
constraints) has the ability to solve the double-pole balancing without velocity
problem, if given enough information.

This result is proved by the following test: if evolution (using the new fitness)
is continued after the first network has passed the 200-testsof test3: all resulting
networks are able to successfully solve more than 500 out of the 625 test cases,
with a peak at 555 for one network. This is a good advantage about the Rho
variant, which seems to be able to provide controllers that generalize very well.
Unfortunately, the other published results do not provide results of this kind, ex-
cept for one sentence in [45] that mentions that one network successfully solved
525 test cases.

Finally, Figure 4.12 shows the finalρ and the number of evaluation of the
bestRho version, whereλ = 13 andσmin = 0.05 by using New fitness. Each
color represent a ESN, the dot is the average of the optimalρ and the number
of evaluation, the bars is the range of the different runs. One can see that each
network has its specific optimal value forρ, and that each network does behave
differently (the range of optimalρ, the range of number of evaluation, etc.) even
though all the learning parameters are identical. This suggest that the topology of
ESN might have an important role for such a learning task, at least when the size
of ESN is small.

CMA-ES settings It has been said (Section 2.2.3) that CMA-ES was almost a
parameterless algorithm. However, the experiments presented above are another
example of the dangers of black-box use of any algorithm: because of the
characteristics of the fitness landscape, the best results were obtained when
using CMA-ES in a very atypical way, favoring exploration andforbidding

107

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

Rho

E
va

lu
at

io
ns

0 10.5
10000

20000

30000

40000

50000

60000

70000 Successful runs - Cheap fitness

Rho

E
va

lu
at

io
ns

0 10.5 1.5

10000

30000

50000

70000 Successful runs - Cheap fitness

Rho

E
va

lu
at

io
ns

0 10.5
10000

20000

30000

40000

50000

60000

70000 Successful runs - New fitness

Rho

E
va

lu
at

io
ns

0 10.5 1.5

10000

30000

50000

70000 Successful runs - New fitness

Figure 4.11: Rho variant , final values ofρ for the runs which successfully find
the solutions, withλ = 256 andσmin = 0.0, Cheap (top left) and new (bottom left)
fitness,λ = 13 andσmin = 0.05, Cheap (top right) and new (bottom right) fitness.

108

4.4. REINFORCEMENT LEARNING OF ESN

4x10
4

3x10
4

2x10
4

1x10
4

E
va

lu
a

tio
n

s

1.10.90.70.50.3

spectral radius ρ

Figure 4.12: The finalρ and the number of evaluation of the bestRho version,
whereλ = 13 andσmin = 0.05 by using New fitness. Each color represent a ESN,
the dot is the average of the optimalρ and the number of evaluation, the bars is
the range of the different runs.

109

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

exploitation by keepingσ far from 0. But this relates to the fitness design, not to
the optimization algorithm used.

Reservoir topologiesThe influence of the initialization of the topology of the
reservoir is clear: for instance, among the 55 runs that passed all tests for the
Rho variant with CMA-ES first setting (25% of the 220 runs), 40 were obtained
from 4 reservoirs out of 20, and 10 reservoirs could not generate a single success
during the 11 runs that were launched. Together with the differences noted in
the supervised learning context (though their statisticalsignificance could not be
measured due to the too small number of experiments), this makes a clear picture
that the topology of the reservoir matters. Why, and how to take advantage of this
fact, is the object of further work.

4.5 ESN vs Developmental Methods

Quite different results could be observed on the double poleproblem for different
(random) settings of the connections (i.e. the non-zero weights), for the same
value of the density of connection. The question is now open:whereas reservoir
computing has been proposed as a possible alternative to finetuning of the
topology of Neural Networks, it might be the case that tuningthe topology of the
reservoir allows to obtain more efficient ESNs. Further workwill address this
research question, and two main directions can be imagined.

The network can be built using classes of topologies (e.g. small world,
scale free, . . .); identifying classes of network that are efficient for a given
type of problem (i.e. such that randomly built networks fromthis class have a
very high probability to solve the problem at hand) would indeed relieve the
programmer from the task of optimizing the topology, restricting the search space
to a parameter space, where CMA-ES proved to be an efficient tool.

It might be the case, however, that for reservoir computing,problem-specific
topology tuning is nevertheless required anew for each problem. The main
difficulty will then be to design efficient techniques for tuning the topology of
large networks, as most existing methods do not really scaleup to hundreds
of neurons or more. Some hints have been recently given with Hyper-NEAT
[201] on the one hand, and with the different approaches based on Genetic
Regulatory Networks, starting with AGE [45], though other GRNapproaches can
be envisioned, too (see [156, 157] and the discussion in Section 2.3.2).

110

4.6. CONCLUSION

But the benefit of using such approaches still remains to be uncovered, and in
particular special care will need to be paid to comparing reservoir approaches with
the straightforward fully connected recurrent network approach: as witnessed
by Igel’results for the double pole balancing problem [101], the latter, thanks to
CMA-ES, is able to solve quite a large class of control problems that were at
some point thought to be difficult.

4.6 Conclusion

This chapter has demonstrated the feasibility of evolutionary learning of Echo
State Networks. Moreover, the flexibility of EAs opens new paths for optimizing
not just the outgoing weights of the ESN.

In a supervised context, the results on a standard time series prediction
problem reach the same precision when optimizing the outputweights than the
original results obtained using quadratic optimization, and other optimization fail
to improve this precision. With a smaller reservoir, however, optimizing also the
slopes of the transfer functions of all neurons allows us to reach better prediction
accuracy, at a high computational cost, though.

For reinforcement tasks, the good news is that the Evolutionary Learning of
ESNs works. Moreover, optimizing more than just the outgoing weights does
improve the results. Furthermore, there seems to be a high dependency of the
results on the topology of the reservoir, at least for the small sizes experimented
with here.

Hence, the results presented here do not satisfactorily answer the question
of where ESNs stand between the two extremes of neuroevolution today: on
the one hand, the evolutionary optimization of the weights of a fully recurrent
neural network (as proposed in [101]), with which evolutionary learning of
ESNs shares the ease of implementation (a straightforward application of the
now state-of-the-art CMA-ES for parameter tuning); and on the other hand,
the carefully crafted developmental systems that evolve the topology of highly
efficient NNs for a given task [204, 45]. Further experimentsusing more reliable
test problems, and using larger reservoir sizes, are neededto definitely address
this issue.

Indeed, a side take-home lesson from this chapter regards the usefulness of
the double pole balancing problem as a benchmark for evolutionary control in

111

4. EVOLUTIONARY OPTIMIZATION OF ECHO STATE NETWORKS

general: the answer is clearly negative for us now (but had been claimed by others
before), at least with the kind of fitness used up to now to tackle the problem.
The lack or correlation between that fitness and the generalization tests that the
system is asked to pass to be declared successful introducesa too high random
part in the evaluation of the results, as there is no promise that the good fitness
will lead to the good generalization, and also as they are many ways to minimize
the fitness, leading to unpredictable generalization properties.

112

Chapter 5

Feature Selection in a Cortex-Like
Object Recognition Model

In this chapter, we will introduce our work regarding a visual object recognition
model which is inspired by the biology of visual cortex. Thismodel, originally
proposed by T. Serre and T. Poggio [198], is basically a feed-forward hierarchical
neural network that alternates between template matching stages and maximum
pooling operations. The long term goal for us is to study the relationship between
the model’s topology and performance. But for the reason of high computation
cost, the first step will be the question of how to decrease thecomputational cost
while preserving the system performance, using a multi-evolutionary algorithm
and applying the result in the framework of a PASCAL visual multi-object
recognition challenge [140] (VOC2008).

In this model, the network output consists of standard features that are passed
to a linear combination algorithm for the final classification task itself. The coef-
ficients of this linear combination will be obtained by evolutionary optimization,
using CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [87, 88, 103]
detailed in Section 2.2.3.

The results show that optimizing the selection of 200 optimal features among
1000 randomly chosen ones, we are able to maintain the performance of the sys-
tem on the VOC2008 challenge, while decreasing the computational cost by 2
orders of magnitude. Even if our results in VOC2008 are not very strong from the
perspective of their performance on the classification tasks at hand, considering
the simplicity of the model being applied shows that there still is a large room for
progress in the future: we simply used the default model settings, and there are
lots of parameters that could be adjusted.

113

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

5.1 Cortex-Like Object Recognition

Complex visual object recognition is an important domain in computer science,
in both theory and practice. However, in spite of decades of hard work, the
best machine vision systems are still not competitive with humans and pri-
mates [99, 166, 219, 198]. Therefore building a bio-inspired computer vision
system is an attractive research direction.

Serre and Poggio proposed a cortex-like feed-forward model[194, 195] which
was directly inspired by the image processing mechanisms ofcortex and showed
excellent results in a series of image classification tasks [196, 198]. In this section,
we will briefly present their model.

5.1.1 Visual Object Recognition in the Cortex

The primary regions for the treatment of visual informationby the cortex
of primates (regionsV1 and V2) are located in the occipital lobe, in the
rearmost part of the skull [115]. Visual information is thentransmitted
to higher-level treatment regions through two distinct (albeit partly con-
nected) neural routes : the ventral and dorsal streams. The dorsal stream
(V1 → V2 → MT → posterior parietal cortex), sometimes called the “where
pathway” is associated with object location in space and motion, while the ventral
stream (V1→V2→V4→ inferior temporal cortex), sometimes called the “what
pathway” is associated with form recognition and object representation. Being
interested here in object recognition/classification tasks, we will emphasis the
latter.

As a first approximation, basic processing of information inthe ventral stream
is feedforward, at least for the first stages of visual processing. This hypothesis
is supported by the short time spans required for a selectiveresponse to appear
in the inferior temporal (IT) cortex cells [165]. Indeed, asemphasized in [100]:
“Through a variety of recognition tasks, the activity of small neuronal populations
in monkey IT contains surprisingly accurate and robust information just over very
short time intervals (as small as 12.5 ms) and only about 100 ms after stimulus
onset”.

The ability to learn and categorize scenes as well as the objects within is an
essential and important functionality of human. In this framework, the immediate
recognition task consists in recognizing an object within ascene in a very short
time delay. For this task in particular, it has been suggested that the ventral stream
may have invariance properties for the object to be recognized, which means

114

5.1. CORTEX-LIKE OBJECT RECOGNITION

that if the same object is located at different positions in space, or zoomed in or
out within the scene, the system is still able to recognize it. The processing is
probably based on a rapid and parallel detection of disjunctive sets of unbound
features of the target category [212, 228] : an object is firstcharacterized by a
set of line segments that compose it; the process then detects each line segment
in parallel; the object is then recognized through the distribution in space of the
detected line segments. More recently, a psychophysical experiment [52] found
that during immediate recognition processing, spatial information on the location
of the objects may be absent, which would mean that the dorsalstream is not
implicated in such immediate recognition tasks. Moreover that means the human
observers may correctly detect a target object in a rapid sequence of images, but
not be able to recover even its approximate location [52].

Another fundamental property of the ventral pathway is thatneuron tuning
becomes increasingly complex along the feedforward path. Neuronal tuning des-
ignates the fact that any given neuron responds preferentially to a subset of stimuli
within its receptive field. In the primary visual areas, neurons have simple tuning.
For example, a neuron in V1 may fire to any vertical stimulus inits receptive field.
In the higher visual areas, neurons have more complex tuning. For example, in
the inferior temporal cortex (IT), a neuron may fire only whena certain object
appears in its receptive field.

Based on these research results, Riesenhuber, Serre and Poggio elaborated
a theory of the feedforward path of object recognition in cortex, that accounts
for the first 100-200 milliseconds of processing in the ventral stream of primate
visual cortex [175, 194]. Riesenhuber and Poggio proposed the model in 1999
and showed that it is able to duplicate the tuning propertiesof neurons in several
visual cortical areas [175]. This first model’s performancewas only evaluated on
simple artificial stimuli without real world image degradations such as change
in illumination, clutter, etc. Hence, Serre and Poggio extended the model in
2005 and obtained successful results on a variety of large-scale real-world
object recognition databases with performances that compare favorably with
state-of-the-art systems, whether bio-inspired and not [194]. We will present this
model in the following section.

5.1.2 Standard Model Features (SMFs)

The model itself attempts to summarize – in a quantitative way – a core of well-
accepted facts about the ventral stream in the visual cortex:

1. Visual processing is hierarchical, and aims at building invariance to position

115

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

and scale first and then to viewpoint and other transformations.

2. Along the hierarchy stream, the receptive fields of the neurons (i.e., the part
of the visual field that can potentially elicit a response from the neuron) as
well as the complexity of their tuning properties (i.e., theset of stimuli that
elicit the maximal response of the neuron) increases.

3. The initial processing of information is feed-forward (for immediate recog-
nition tasks, i.e., when the image presentation is rapid andthere is no time
for eye movements or shifts of attention).

4. Plasticity and learning probably occur at all stages and certainly at the level
of infratemporal (IT) cortex and prefrontal cortex (PFC), the top-most layers
of the hierarchy.

In the present report, we used a simplification of the model from [194], given
in [198] and that consists of four feedforward layers of neuron networks. Basi-
cally, the model has two types neurons : so-called simple S units and complex
C units. The S units combine their inputs with a bell-shaped tuning function to
increase selectivity. The C units pool their inputs througha maximum (MAX)
operation to increase invariance. The main idea behind thismodel is that by care-
fully tuning the parameters, the model can get a good balancebetween selectivity
and invariance.

Figure 5.1 shows a schematic illustration of the model, taken from Serre and
Poggio ’s article [198].

5.1.3 Model Details

S1 units:

Hubel and Wiesel first described the classical simple cells of the primary visual
cortex (V1) almost 50 years ago [99]. These cells optimally respond to contrasted
bars or gratings with a preferred orientation [115] . Gabor functions, described
by the equation 5.1, have been shown to provide a good approximation for the
response of cortical simple cells [112].

F(x,y) = exp(−
x2

o + r2y2
o

2σ2)×cos(
2π
λ

xo) (5.1)

with xo = xcos(θ)+ysin(θ)andyo = −xsin(θ)+ycos(θ) (5.2)

In the model, the first S1 layer consists in a multidimensional array of simple S1
units, where each simple S1 unit is modeled using eq. 5.1. In the simplest model,
Serre and Poggio adjusted the Gabor parameters (aspect ratio r, effective widthσ ,

116

5.1. CORTEX-LIKE OBJECT RECOGNITION

Figure 5.1: Scheme of the model. A gray-value image passes through the four
layers - S1, C1, S2, C2, form left to right. S1 analyzes the imageby orientations
and 16 scales. Then at layer C1, the image is subsampled through a local MAX
pooling operation over a neighborhood of S1 units in both space and scale, but
with the same preferred orientation. S2 units are essentially RBF units, each hav-
ing a different preferred stimulus cross all positions and scales. Finally the C2
layer performs a MAX pooling operation with the same selectivity of S2 units,
yielding the C2 unit responses.

117

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

Figure 5.2: Summary of the S1 and C1 SMFs Parameters

wavelengthλ and preferred orientationθ) according to the tuning properties of V1
simple cells, that were determined experimentally by two different groups [213,
214, 186, 185]. The sizes of these Gabor filters ranged from 7×7 to 37×37 pixels
by steps of two pixels. Four discrete preferred orientations (0o,45o,90o,and 135o)
were used, thus leading to 64 different S1 receptive field types in total (16 scales
× 4 orientations).

C1 units:

The next layer consists of C1 units. It corresponds to the so-called cortical
complex cells, which already show tolerance to position andsize experimentally.
Because they pool the outputs from S1 cells that are neighborsin the previous
layer, the receptive fields of C1 cells is twice as large as thatof simple cells.
Basically, the C1 cells implement a MAX operation of the S1 simple cells they
are connected too. That means the response of a complex unit corresponds to the
response of the strongest cell from the previous S1 layer with the same orientation
and from the same scale band.

C1 units are organized in scale bands. Scale band 1 contains C1 cells con-

118

5.1. CORTEX-LIKE OBJECT RECOGNITION

nected to S1 cells with sizes 7×7 and 9×9, scale band 2 contains C1 cells con-
nected to S1 cells with sizes 11×11 and 13×13 and so on.... Hence there are 8
scale bands in layer C1 for 16 scales in layer S1 (see figure 5.2). The response of a
C1 unit in scale band 1, for instance, is computed by subsampling the output of the
S1 cells of size 7×7 and 9×9 that are situated beneath the C1 cell, within a grid
of size 8×8 pixels. The output of this C1 cell is just the max of these 64×2 S1
cells. Note that C1 responses are not computed at every possible pixel locations
in the image: C1 units overlap by an amount of∆S pixels (∆S depends on the scale
band considered, see figure 5.2). The overlap∆S diminishes the total number of
cells in layer C1, thus avoiding too many redundant cells in this layer. This makes
the computations at the next stage more efficient. Again, these arrangements were
adjusted so that the tuning of the C1 units matches the tuning of actual complex
cells as measured experimentally (see [197] for details).

Figure 5.3 is an example given by Serre [194] that schematizes how scale and
position tolerances are obtained at the C1 level. Thanks to the MAX operation
of the horizontal bar (that of the “A” letter), the C1 cell displays the same output
whatever the location of the horizontal bar within its receptive fields (ie the under-
lying S1 cells it pools over). Tolerance to scale changes is obtained with the same
mechanisms.

Learning stage:

Before using the S2 layer,N (e.g., 1,000 here) prototypes or patches are clipped
and stored during a specific learning process. The learning process consists
of presenting to the network to a large number of images from the database
and computing the network response up to layer C1. A patch is defined as the
response to a given image of all the C1 cells within a contiguous region within
layer C1. During the learning stage, a large pool of patches corresponding to
neighborhoods of various sizes and located at random positions, are extracted
from each image. The patches are furthermore extracted across all 4 orientations,
i.e., a patchPo, of sizen× n in fact represents the output ofn× n× 4 C1 cells
to a given image. In the following, we extracted patches of four different sizes:
4×4, 8×8, 12×12 and 16×16. The final step consists in selecting at random
(uniform distribution)N patches amongst the stored ones.

Note that an important question for both neuroscience and computer vision
regards the choice of the unlabeled images from which the patches are extracted
as well as how to select theN patches among all the stored ones. In other words,
the issue amounts to find how to learn in such an unsupervised way a vocabulary
of elementary visual features. We will present below results on the use of an
evolutionary method in this perspective.

119

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

Figure 5.3: An example given by Serre in [194] showing how scale and position
tolerances are obtained at the C1 level: Each C1 unit receives inputs from S1 units
at the same orientation (e.g., 0 degree) arranged in bands. For each orientation,
a band S contains S1 units in two different sizes and various positions (grid cell
of size NS

C1 ×NS
C1). From each grid cell (see left hand side) one measurement

is obtained by taking the maximum over all positions: this allows the C1 unit
to respond to a horizontal bar anywhere within the grid, providing a translation-
tolerant representation. Similarly, taking a max over the two sizes (see right hand
side) enables the C1 unit to be more tolerant to changes in scale.

120

5.1. CORTEX-LIKE OBJECT RECOGNITION

S2 units:

Each cell in layer S2 computes the Euclidean distance between one of the selected
patchPi and the response of Layer C1 to a new (unknown) image. To this aim,
the response of S2 cell layer consists of a Gaussian Radial Basis Function (RBF)
φ(x) = exp

(

−‖x−Pi‖
2
)

, wherePi is the real-valued vector Patchi and x the
response of layer C1 to the current image.

Each S2 cell pools over afferent C1 units from a local spatial neighborhood
across all four orientations. Layer S2 thus contains 8×N maps, each representing
the response of one of the 8 scale bands of Layer C1 compared to one patchPi out
of theN selected ones.

C2 units:

The final layer, layer C2, computes the global maximum of the all S2 units over
all scales and positions. As explained above, one S2 map measures the match
between a selected prototypePi and the input image at every position for a given
scale band. One C2 units only keeps the maximal value of the S2 maps across all
scale bands for a given patchPi. The final system output for a new image is thus
aN-dimensional vector, whereN is to the number of patches extracted during the
learning stage. Note that one C2 unit expresses the maximum ofa S2 map over
the whole image, which implies that its response is not dependent on the object
location within the image.

The Classification Stage:

Hence every new image passes the feedforward system and yields a N-value
vector in the output of layer C2, whose elements are calledStandardModel
Features (SMFs). The SMFs are then further passed to a simplelinear classifier
(SVM or boosting in the original article). This part of the learning is a simple
supervised learning, since all the labels are given for the training set, and the
fitness to be optimized is just the misclassification rate.

5.1.4 The Perspectives of the Model

Serre et al. [198] list three major perspective directions that could be followed to
further improve the performance of their architecture :

• Addition of extra layers (e.g., S3, C3, S4, etc.)

• Applying a standard feature selection technique.

121

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

• Auto parameters tuning through learning.

In our study (see above), we focused on the second item of thislist, i.e. de-
velop strategies to select the patches (standard features)in an optimal way: from
the 1000 randomly chosen patches, we will try to select as fewas possible while
maintaining the classification rate. And it could significantly reduce the high com-
putational cost of this model.

5.2 PASCAL Visual Object classes Challenge
(VOC08)

The image database we used is from the PASCAL Visual Object classes Challenge
2008 [140]. The goal of this challenge is to recognize objects from a number of
visual object classes in realistic scenes (i.e. not pre-segmented objects). There are
twenty object classes (e.g. Figure 5.4):

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Two main tasks are:

• Classification: For each of the classes, predict the presence/absence of at
least one object of that class in a test image.

• Detection: For each of the classes, predict the bounding boxes of each object
of that class in a test image (if any).

The VOC2008 database contains a total of 10,057 annotated images. The data
is released in two phases:

1. Training and validation data with annotation are released with the first de-
velopment kit before the competition;

2. Test data without annotation is released later. After completion of the chal-
lenge, annotation for the test data will be released.

122

5.2. PASCAL VISUAL OBJECT CLASSES CHALLENGE (VOC08)

Figure 5.4: Examples of the 20 classes of VOC challenge

5.2.1 Classification/Detection Image Sets

Table 5.1 summarizes the statistics of the main image sets. Each line gives the
statistic of each target class. The column “train” means training set and the column
“val” means validation set, while the column “trainval” gives a sum number of
both training and valid sets. The column “img” means how manyimages have
the target class, while the column “obj” counts how many target objects exists in
these images. The number of “obj” is always larger than the number of “img”
since within the same image can exist more than one target object (e.g. a picture
of family in the “Person” class will always have more than 2 persons (obj) in the
same picture (img)).

Table 5.1 summarizes the number of objects and images for each class and
image set. The data have been split into 50% for training/validation and 50% for
testing. The distributions of images and objects by class are approximately equal
across the training/ validation and test sets.

123

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

Table 5.1: Statistics of the main image sets. Object statistics list only the “non-
diffcult” objects used in the evaluation.

train val trainval
img obj img obj img obj

Aeroplane 119 159 117 157 236 316
Bicycle 92 133 100 136 192 269

Bird 166 239 139 237 305 476
Boat 111 170 96 166 207 336

Bottle 129 229 114 228 243 457
Bus 48 61 52 68 100 129
Car 243 426 223 414 466 840
Cat 159 186 169 192 328 378

Chair 177 313 174 310 351 623
Cow 37 61 37 69 74 130

Diningtable 53 55 52 55 105 110
Dog 186 238 202 239 388 477

Horse 96 139 102 146 198 285
Motorbike 102 137 102 135 204 272

Person 947 1996 1055 2172 2002 4168
Pottedplant 85 178 95 183 180 361

Sheep 32 67 32 78 64 145
Sofa 69 74 65 77 134 151

Train 78 83 73 83 151 166
Tvmonitor 107 138 108 136 215 274

Total 2113 5082 2227 5281 4340 10363

124

5.2. PASCAL VISUAL OBJECT CLASSES CHALLENGE (VOC08)

5.2.2 Classification Task

We participated in the classification task of the VOC2008 challenge. In this task,
for each of the twenty object classes, the goal is to predict the presence/absence of
at least one object of that class in a test image. The output from the system should
be a real-valued confidence of the object’s presence so that aprecision/recall
curve can be drawn. And the result of the challenge was judgedby the average
precision (AP). The following Section explains how to compute the AP in detail.

For each image, the system is expected to output a real-valuethat represents
the confidence of the object presence within the image and that we refer to as the
VOC confidence. This VOC confidence could be interpreted as the probability
that there is at least one target object with the image. For all classes, we first
construct the vectorVconfidence, where thei-th elementVcon f idence,i gives the VOC
of imagei. Vconfidence is then sorted by decreasing order, so thatVcon f idence,i >
Vcon f idence, j ∀i > j.

The next step consists in comparing the real-valued probabilities of target
object inVconfidenceto their real label. Two vectors,Vt andVf are created to this
aim. Each elementVt,i indicates how many positive images (those images that
indeed have the target object) exist between element 0 and elementi of the sorted
Vconfidence. Vf vector collects the same information for negative images (those
images that do not have the target object). For instance, if there are 150 positive
and 50 negative images before element 200 ofVconfidence, the 200th element ofVt

will be 150 and the 200th element ofVf will be 50.

The final results are stored in vectorsVprecision and Vrecall. Vprecision
vector registers the percentage of positive image before the same po-
sition element of Vconfidence: Vprecision,i = Vt,i/i (for the example above,
Vprecision,200= 150/200= 0.75). Vrecall is justVt divided buy the total number of
positive images in the image set. Therefore the first elementof Vrecall is close to
0 and the last one is always 1.

To investigate these final vectors, one can plot each elementi of Vrecall as a
function of i. If the system can give good confidence, this curve will startfrom
0 and quickly increase to 1 in a very short time.Vprecision can be plotted the
same way. A perfect system is expected to produce a curve starting from 1, then
decreasing to the percentage of positive images.

Here we give an example of these results: let us say we have 1000 images and
half of them have the target object. We illustrate in figure 5.5 how to interpret
the quantifiers above with three kinds of classifiers. The first one is the best

125

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

n

re
ca

ll

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

n

re
ca

ll

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

n

re
ca

ll
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

n

pr
ec

is
io

n

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

n

pr
ec

is
io

n

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

n

pr
ec

is
io

n

Figure 5.5: An illustration of the behavior of 3 synthetic classifiers. The top
row shows theVrecall curves and the bottom one theVprecision curves for the best
possible classifier (first column), a random classifier (middle column) and the
worst possible classifier (third column).

classifier ever possible. With this classifier, the 500 positive images are sorted
in front of the list and are the first 500 elements ofVconfidence. In this case,
Vrecall,i = i/500 ∀i < 500 andVrecall,i = 1 ∀i ≥ 500, while Vprecision,i decays
rapidly from 1 to the total percentage of positive images in the set. The second
classifier is the worst one possible and puts the 500 positiveimages at the end of
the Vconfidence. The recall curve is zero up to 500 then increases linearly, while
the precision curve is zero up to 500 then increases to the total percentage of
positive images in the set. Finally, the last classifier (middle column in the figure)
is just a random one, giving a random confidence to each image.The recall curve
increases slowly to 1, reaching it only for the last image, while the precision
curve decreases rapidly to the total percentage of positiveimages in the set.

An alternative representation consists in plotting the precision/recall in the
same figure, i.e. plotting, for eachi, Vprecision,i as a function ofVrecall,i. Figure

126

5.2. PASCAL VISUAL OBJECT CLASSES CHALLENGE (VOC08)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

Figure 5.6: Precision/recall curve, the x-axis is the recall values and the y-axis
is the corresponding precision value, the left is from best classifier, the middle is
from the random classifier and the right is from the worst classifier

5.6 shows the result for the three cases illustrated above. The average preci-
sion (AP) is then computed from these precision/recall curves. In practice, the
range of recall is divided into 11 sub-parts :{0}, [0.1,1.0], [0.2,1.0], ... [0.9,1.0]
and 1.0. The AP is the average of the largest precision value in eachsub-parts:
AP= 1

11 ∑10
i=0max(precision∈ recall([i

10,1])). The AP fitness is also called VOC
fitness in this chapter.

For the three synthetic classifiers illustrated above, the AP fitness is :APbest=
1.0, APrandom= 0.5234 andAPworst = 0.5.

An example code for computing the precision/recall and AP measure is pro-
vided in the development kit [140].

Note that, in the system developed by Poggio and collaborators, the final clas-
sification stage results in a simple binary response : the input image is guessed
to contain (output = 0) or not to contain (ouput=1) one objectbelonging to the
image class under study (car, plane...). In our case however, the above mentioned
definition of fitness is based on a real-valued confidence indicator and not a bi-
nary answer, e.g. whether the target is guessed to exists in the image scene or not.
We thus first use an Evolutionary Algorithm to optimize a linear classifier that
produces the VOC confidence for every images, then compute the AP (average
precision) of the training set and validation set. For this optimization step, the
fitness is simply the AP, to be maximized: the EA seeks to optimize the coeffi-
cient of the final linear classifier so as to maximize the AP. A second layer will
be added on top of this EA, trying to select the patches in an optimal manner. A
second evolutionary algorithm will wrap the system described above, resulting in
amulti-evolutionary algorithm.

127

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

5.3 Experiments

5.3.1 Using EC Algorithms with SMF Model

As explained in the previous section, instead of giving an unambiguousYes or
No answer for the question whether there exists a target object in the test image,
the VOC challenge requests an intermediate fitness (the VOC confidence) for the
probability that the target object exists in the image, in order to be able to sort
the ensemble of images and compute the final fitness (AP). Thiskind of fitness
is useful for real-world applications (e.g. image search engines), but it cannot
be directly applied to the conventional SMFs model with SVM classifier. Since
the relationship between the VOC confidence and the AP fitnessis nonlinear,
and almost no prime knowledge about the relationships between them can be
used directly, Evolutionary Algorithms seems to be a good choice for this kind
of problem. The EC algorithm here is used to optimize a monolayer linear
combinator to create VOC confidence for each image, and the final fitness used
by EA is the AP fitness.

Therefore in our study, we apply evolutionary optimizationusing CMA-ES
(see Section 2.2.3) to optimize the VOC confidence for all object classes. In a
first step, we will use CMA-ES to optimize the weights of a linear combination
(Section 5.3.3). But because there are 1000 features gathered from the random
choice of patches in layer C1, and in order to try to reduce the complexity of the
overall algorithm, we will also implement a multi-level Evolutionary Algorithm
(Multi-Evolutionary algorithm for short) to optimally select a small subset (200
here) of those 1000 features while preserving the recognition accuracy. This will
be presented in Section 5.3.4

5.3.2 Pre-training of SMFs model

We will first briefly present the pre-training process for theSMFs model before
applying our optimization approach.

Because the VOCdevkit is released in Matlab code and the demo program
released by Serre is also in Matlab code, we build our own program in Matlab on
the basis of the Serre’s version1 and keep the original parameters settings. The
pre-training process is as follows:

• First, all training and validation images have to be normalized to a gray

1The author gratefully acknowledges Thomas Serre, McGovernInstitute for Brain Research,
MIT, for kindly providing the Matlab code of his program

128

5.3. EXPERIMENTS

pixel image and resized so that the larger axis is 140 pixels while keeping
the ratio between X and Y axes constant. This was done on all the 10,363
images (see Table 5.1).

• Second, the normalized images are processed through the S1, and C1 layers
with the original parameters given in Figure 5.2. The final output for every
images is saved for the next step.

• Third, for each image among the 20 classes, we select those images from
the training set that contain at least one example of the class object (car,
plane...). These images are used to generate 1,000 patches from the C1
outputs. With 4 patch sizes (4×4, 8×8, 12×12 and 16×16) this means
that we select 250 patches per patch size at random positionsof the output
of Layer C1.

• Fourth, each image from both the training and the validation sets yields a
S2 map by using the previous C1 patches. Since there are 1,000 patches
for each class, the C2 layers will give a vector whose size is 1,000 for each
object class. This vector gives the probability of the imagehaving an object
which is similar compared to the randomly chosen C1 patches.

• Finally, for every one of the 5082 training images and everyone of the
5281 image from validation set, we have 20 1,000-dimensional vectors (20
object classes and 1000 randomly chosen patches) that can beused later for
optimization.

5.3.3 Linear Combination using CMA-ES

In this first version (referred to as theCMA version in the following), each image
in each object class is thus associated to a 1,000-dimensional vector, the output of
the C2 layer. The goal is then to aggregate those 1000 scalar values into a single
value, that will be given as the VOC confidence for the competition. The idea is
to use optimize a linear combination of those 1000 values in order to optimize the
VOC confidence, and an Evolutionary Algorithm is our preferred choice.

However, because a search space of dimension 1,000 is too large for a con-
ventional CMA-ES, we will apply here a specific version of CMA-ES proposed
in [103] and computationally less expensive (but also less robust), the(1+ 1)-
CMA-ES. The (1+ 1)-CMA-ES generates one offspring from the unique parent
and keeps the best of both – see Section 2.2.3). It uses an improved variant of the
one-fifth success rule for the step-size adaptation in placeof the usual path length
control, and an incrementalo(n2) Cholesky update of the covariance matrix re-
placing the originalo(n2) covariance matrix update altogether with the iterative

129

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

o(n3) eigendecomposition of the covariance matrix. That make it possible to ap-
ply (1+1)-CMA-ES for a 1000 dimensions problem where the standard algorithm
would reach its limit in terms of CPU cost.

The search space here is hence the 1000-dimensional space ofthe weights of
the linear combinations of the original 1000 features from the C2 layer, and the
fitness is the resulting AP (Average Precision) that is obtained when this linear
combination is used as VOC confidence to rank the images.

In spite of using the modified(1 + 1)-CMA-ES, this CMA version has
nevertheless a high computational cost because of the dimension of the search
space. Hence, in order to cope with this cost, we only run one optimization
for each object class (whereas CMA is a stochastic optimization algorithm, and
should thus be ran several times on the same data in order to get reliably robust
results).

During the optimization, the Average Precision was computed for both the
training set and the validation set. Figures 5.7, 5.8 and 5.9present the results of
the first 10,000 iterations for each class (the fitness only changes very slightly
after the first 10,000 iterations). The individuals with thebest fitness on both the
train sets and the valid sets are then used to classify the test set, and the obtained
results were submitted to the VOC2008 challenge.

Looking at Figures 5.7, 5.8, and 5.9, we find that during the evolution, the
Average Precision of the (unique) individual in the population increases, which
supports that for such large dimensions (1,000), the(1+ 1)-CMA-ES can still
find the way to optimize the solution. However, the red line ofVOC fitness (AP)
on validation set increases at the beginning, but then failsto continue this initial
trend: the Average Precision is only marginally improved onthe training set. In-
terestingly, the Average Precision does not decrease either: there seems to be no
danger of overfitting, even though the generalization results are disappointing.

5.3.4 Multi-Evolutionary Optimization

Using and handling 1,000 standard features has a certain computational cost. In
this Section, we present another approach to Average Precision optimization, that
will be called theMEVO version, that tries to tackle this issue without degrading
the recognition results. The basic idea is that most probably, because the 1000
features were chosen randomly at layer S1, only a few of them are useful for the
recognition task. In order to try to validate our hypothesisthat many features could
be dropped without decreasing the recognition rate, we implemented a two-level
MEVO, to optimally select 200 standard features (patches) (other trials with 500
and 900 features lead to similar results).

130

5.3. EXPERIMENTS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

F
itn

es
s

Figure 5.7:Behavior of theCMA version for classes 1-8 (aeroplane bicycle bird boat bottlebus
car cat). The blue line presents the Average Precision of current solution of the(1+1)-CMA-ES
on the training set and the red line presents its Average Precision on the validation set.

131

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s

Figure 5.8: Behavior of theCMA version for classes 9-14 (chair cow dining-table
dog horse motor bike). The blue line presents the Average Precision of current
solution of the(1+ 1)-CMA-ES on the training set and the red line presents its
Average Precision on the validation set.

132

5.3. EXPERIMENTS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation

F
itn

es
s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

Figure 5.9: Behavior of theCMA version for classes 15-20 (person potted-plant
sheep sofa train tv). The blue line presents the Average Precision of current so-
lution of the (1+ 1)-CMA-ES on the training set and the red line presents its
Average Precision on the validation set.

133

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

The main optimization loop in MEVO consists in an Evolutionary Algorithm
that optimizes the choice of those 200 features among the 1,000 available ones.
In order to compute the fitness of any of such 200 subset of features, an inner
evolutionary loop uses the same CMA-ES optimization for theCMA version to
optimize the linear combination of these 200 chosen features with respect to the
Average Precision. This optimized Average Precision is thefitness of the subset
of 200 individuals for the outer EA.

The outer EA (the main optimization loop) searches the spaceof 1000-bits
long strings that contain exactly 200 1’s and 800 0’s, a 1 indicating that the corre-
sponding feature belongs to the subset of selected features. The evolution engine
is a (10+ 70)ES: 10 parents generate 70 offspring, and the best 10 are retained
to become the parents of the next generation. No crossover operator is used in
our experiment. The only variation operator is the bit-exchange mutation operator
which swaps a randomly chosen 1 with a randomly chosen 0 in thestring. This
operator makes sure that the total number of chosen featuresis always 200.

The fitness of a given subset (a bitstring) is computed using theCMA version
above: a linear combination is obtained using the(1+1)-CMA-ES to maximize
the Average Precision – and this optimized AP is returned as the fitness of the
corresponding bitstring.

To each subset (or 1000-long bitstring) is associated a 1000-dimentional
real-valued vectora which stores the optimal values for the weights of the
linear coefficients giving the VOC confidence, result of the inner-loop CMA-ES
optimization. The next application of CMA optimization on anoffspring of this
individual will use those stored values as the starting point of the next CMA-ES
optimization in order to save computation times.

The Average Precision of the best individual of the offspring population (out
of 70), both in training set (blue) and in validation set (red), are presented in
Figure 5.10, 5.11 and 5.12. We find that the fitness in trainingset increases quickly
at the beginning of the optimization, and then stops increasing. This may suggest
that it is not a hard task to chose 200 optimal features from 1,000 randomly chosen
features for the training set. But their generalization ability is poor as the fitness in
validation set does not increase much. Furthermore, a lot ofpeaks are observed.
This might correspond to the selection of special features,which are harmful or
benefit only for part of the validation set.

Since there is no significant improvement for the best individual in validation
set, the individual which has the best train+valid fitness were applied to the test
set, and the results were submitted to the VOC2008

134

5.3. EXPERIMENTS

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

0 20 40 60 80 100 120 140 160

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s

0 50 100 150 200 250 300
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s

0 20 40 60 80 100 120 140 160 180
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Generation

F
itn

es
s

0 50 100 150 200 250 300
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s

0 50 100 150 200 250

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Generation

F
itn

es
s

0 20 40 60 80 100 120 140 160
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

F
itn

es
s

0 50 100 150 200 250 300

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

F
itn

es
s

Figure 5.10:Behavior of theMEVO version for classes 1-8 (aeroplane bicycle bird boat bottle
bus car cat). The blue line presents the Average Precision ofcurrent solution of the(1+1)-CMA-
ES on the training set and the red line presents its Average Precision on the validation set.

135

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

0 20 40 60 80 100 120 140 160 180
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

F
itn

es
s

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

F
itn

es
s

0 50 100 150 200 250
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Generation

F
itn

es
s

0 50 100 150 200 250 300
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Generation

F
itn

es
s

0 20 40 60 80 100 120 140 160

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

F
itn

es
s

0 20 40 60 80 100 120 140 160 180
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

F
itn

es
s

Figure 5.11: Behavior of theMEVO version for classes 9-14 (chair cow dining-
table dog horse motor bike). The blue line presents the Average Precision of cur-
rent solution of the(1+1)-CMA-ES on the training set and the red line presents
its Average Precision on the validation set.

136

5.3. EXPERIMENTS

0 50 100 150 200 250
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Generation

F
itn

es
s

0 50 100 150 200 250 300
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation

F
itn

es
s

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
itn

es
s

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

F
itn

es
s

0 20 40 60 80 100 120 140 160 180

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Generation

F
itn

es
s

0 50 100 150 200 250
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Generation

F
itn

es
s

Figure 5.12: Behavior of theMEVO version for classes 15-20 (person potted-
plant sheep sofa train tv). The blue line presents the Average Precision of current
solution of the(1+ 1)-CMA-ES on the training set and the red line presents its
Average Precision on the validation set.

137

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

We will give the final test results and then compare these two methods in the
next section.

5.3.5 Results

Table 5.2 shows the final results for the 18 different participants’ algorithms that
participated to the VOC 2008 challenge (our two own methods are indicated with
bold faces). We immediately note that our two methods do clearly not compete
with the best methods for each class. Nevertheless, our results are comparable to
those of several other methods participating in the challenge. Furthermore, one
must keep in mind that all the other methods (even among thosethat show worse
results than ours) are developed by research groups with a long-lasting expertise
in computer image analysis. We only leveraged the self-training properties of
the original neural network-based method and almost parameter-free evolutionary
strategies, to reach, with no a priori expertise on computervision, a similar level
of performance than several of these groups. We think that this is an encouraging
indication of the promises of this research direction. Moreover we think that our
methods still offers a wide room for improvement. To this aim, let us first proceed
in the following to a deeper analysis of our results.

5.3.6 Result Analysis

In Table 5.3, we summarize the VOC fitness results of theCMA version and the
MEVO versions of our approaches, with separate comparison of theresults on the
training set, the validation set, and the test set. We also list the corresponding best
fitness results among all participants of VOC 2008.

In Figures 5.13 and 5.14, we further give similar information with histograms
of the performance of CMA and MEVO, comparing their fitness on the training
set (deep blue), validation set (sky blue), and test set (yellow) to the best VOC
2008 fitness (brownish red).

From these tables and figures, we find that the results of MEVO on the train-
ing set are statistically better than that of CMA. On the otherhand, comparing the
results obtained on the validation set and on the test set, nostatistical difference
can be seen any more, but most of the time, the MEVO version seems to general-
ize better than the CMA version (with some noteworthy exceptions like the cow
class!) : using only 200 features allows to slightly overfit the training set, with-
out degrading too much the generalization results, even improving them on many
classes.

However, when compared with the best VOC08 results, our test result look
much worse. Furthermore, for several object classes, our results on the training
set are better than the best VOC08 results (e.g. CMA version forclasses 5, 6, 10,

138

5.3.E
X

P
E

R
IM

E
N

T
S

aero bicycle bird boat bottle bus car cat chair cow dining doghorse motor person potted sheep sofa train tv

plane table bike plant monitor

BerlinFIRSTNikon 72.4 37.4 51.1 57.4 24.5 38.5 53.9 44.7 46.2 25.6 28.6 40.3 57.0 53.5 83.0 21.0 21.4 28.6 66.2 50.2

CASIA_LinSVM 50.8 21.5 31.8 41.8 18.3 7.7 35.7 40.6 30.6 4.9 7.1 31.5 29.3 22.0 73.4 7.9 13.7 11.6 18.9 31.0

CASIA_NeuralNet 47.6 12.7 28.4 35.3 12.7 5.8 31.6 34.5 22.7 3.7 6.0 23.6 21.9 16.1 69.1 8.1 5.0 8.7 15.9 15.1

CASIA_NonLinSVM 35.1 19.7 24.2 40.5 13.7 3.8 30.5 37.1 30.2 5.8 6.2 31.1 20.4 26.3 74.5 5.1 14.4 9.3 10.3 21.8

ECPLIAMA 54.9 25.3 31.1 29.8 18.9 21.4 33.7 25.5 28.4 - - 21.2 27.7 30.5 68.5 - - - 31.7 26.6

FIRST_SC1C 36.6 16.8 17.3 26.9 7.6 14.0 29.0 28.5 22.9 4.3 8.023.2 14.8 30.3 64.5 10.3 5.5 13.2 9.6 24.0

FIRST_SCST 36.6 16.8 17.3 26.9 7.6 14.0 29.0 28.5 22.9 4.3 8.023.2 14.8 30.3 64.5 10.3 5.5 13.2 9.6 24.0

INRIASaclay_CMA 52.4 15.0 23.6 33.9 10.2 10.3 32.7 32.4 26.4 13.2 16.0 22.2 18.5 27.3 64.8 8.6 4.4 7.9 20.0 30.4

INRIASaclay_MEVO 50.2 19.5 17.9 32.1 13.0 14.9 34.2 30.6 23.1 4.4 14.8 21.0 13.1 26.1 65.7 7.6 7.4 17.5 16.5 30.6

LEAR_flat 80.1 51.8 60.5 66.9 29.1 52.0 57.4 58.6 48.7 31.0 39.2 47.6 64.2 64.6 87.0 28.6 33.3 42.6 73.1 59.8

LEAR_shotgun 81.1 52.9 61.6 67.8 29.4 52.1 58.7 59.9 48.5 32.0 38.6 47.9 65.4 65.2 87.0 29.0 34.4 43.1 74.3 61.5

SurreyUvA_SRKDA 79.5 54.3 61.4 64.8 30.0 52.1 59.5 59.4 48.9 33.6 37.8 46.0 66.1 64.0 86.8 29.2 42.3 44.0 77.8 61.2

TKK_ALL_SFBS 77.9 47.3 52.4 61.0 27.9 45.5 53.5 55.5 47.6 26.8 40.8 46.1 58.6 58.3 83.5 26.4 24.3 39.2 70.3 56.9

TKK_MAXVAL 76.7 47.3 51.6 60.8 28.3 44.6 54.2 55.5 47.8 21.2 39.2 46.1 58.8 55.9 83.3 26.4 24.3 41.9 70.2 52.4

UvA_FullSFS 79.8 53.0 61.3 65.7 28.9 46.5 58.4 58.9 47.7 25.435.4 45.2 64.2 59.6 87.0 31.0 35.3 44.6 74.7 60.9

UvA_Soft5ColorSift 79.7 52.1 61.5 65.5 29.1 46.5 58.3 57.4 48.2 27.9 38.3 46.6 66.0 60.6 87.0 31.8 42.2 45.3 72.3 64.7

UvA_TreeSFS 80.8 53.2 61.6 65.6 29.4 49.9 58.5 59.4 48.0 30.1 39.6 45.0 67.360.4 87.1 30.1 41.5 45.4 74.3 59.8

XRCE 78.9 48.0 58.7 65.2 29.0 44.8 56.1 56.3 43.7 32.8 30.4 39.7 61.2 61.7 86.8 22.9 34.2 44.2 68.4 59.1

Table 5.2: Statistics of the main image sets. Object statistics lists only the “non-diffcult” objects used in the evaluation.

139

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

aero bicycle bird boat bottle bus car cat chair cow

plane

C Train 67.0 40.6 35.0 54.4 36.0 60.4 44.6 54.9 42.5 57.8

M Val 58.4 30.3 22.8 33.3 21.8 30.8 38.0 31.1 33.6 30.4

A Test 52.4 15.0 23.6 33.9 10.2 10.3 32.7 32.4 26.4 13.2

M

E Train 69.1 44.5 41.4 61.6 42.6 59.3 49.7 52.0 50.2 73.4

V Val 57.4 29.6 24.0 39.9 22.4 39.9 38.2 31.4 36.9 30.9

O Test 50.2 19.5 17.9 32.1 13.0 14.9 34.2 30.6 23.1 4.4

Best of VOC08 81.1 54.3 61.6 67.8 30.0 52.1 59.5 59.9 48.9 33.6

dining dog horse motor person potted sheep sofa train tv

table bike plant

C Train 42.5 35.9 32.3 48.1 77.1 38.4 57.8 51.39 43.3 55.0

M Val 32.1 26.5 25.2 30.4 69.3 18.7 35.3 25.6 26.0 37.0

A Test 16.0 22.2 18.5 27.3 64.8 8.6 4.4 7.9 20.0 30.4

M

E Train 50.0 37.6 43.7 54.9 75.8 41.2 56.7 61.0 58.3 58.3

V Val 31.4 29.4 25.6 36.3 68.6 22.2 40.7 26.2 33.0 37.2

O Test 14.8 21.0 13.1 26.1 65.7 7.6 7.4 17.5 16.5 30.6

Best of VOC08 40.8 47.9 67.3 65.2 87.1 31.8 42.3 45.4 77.8 64.7

Table 5.3: Statistics of the main image sets. Object statistics lists only the “non-
difficult” objects used in the evaluation.

140

5.3. EXPERIMENTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Object Class

F
itn

es
s

Train
Valide
Test
Best

Figure 5.13: CMA version by comparing the fitness in training set (deep blue),
valid set (sky blue), test set (yellow) and the best VOC 2008 fitness (brownish
red). The X axis is the 20 index of object class and the Y axis isthe VOC fitness.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Object Class

F
itn

es
s

Train
Valide
Test
Best

Figure 5.14: MEVO version by comparing the fitness in training set (deep blue),
valid set (sky blue), test set (yellow) and the best VOC 2008 fitness (brownish
red). The X axis is the index of 20 object class and the Y axis isthe VOC fitness.

141

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

11, 16, 17 and 18, and MEVO version for class 5, 6, 9, 10, 11, 16,17 and 18).
But even for these classes, the results on the test set are really worse. This may
indicate that the optimization processes do some sort of over-fitting after all, and
the MEVO approach selects features that are too specific of the training set, thus
failing to generalize well.

In agreement with the latter hypothesis, this generalization issue seems to
depend on the object class, too. Indeed, Figure 5.13 and Figure 5.14 show that,
for classes 1, 3, 4, 7, 8, 14, 15 and 20, the differences between the performance
on the validation set and the fitness on the test set are much smaller or can even
be reversed (yielding. better performance on the validation set).

Finally, we emphasize that the good news here is that using only 200 selected
features/patches among the 1,000 randomly chosen ones, ourresults are as good
as using all the 1,000 features. Since the CMA is much faster on200-dimensional
problems than with 1000-dimensional ones, decreasing the total number of
patches by an optimal selection mechanism would enable us todevelop strategies
to optimize the topology of the SMF model itself, which is currently out of reach
for computational cost reasons.

In theory, reducing the problem dimensionality fromN1 to N2, the computa-
tional cost associated with CMA-ES can be reduced by(N1/N2)

2 [103]. In our
case, withN1 = 1,000 andN2 = 200 this theoretical limit would represent an
improvement by a factor 125 in the computation cost. In practice, this rate may
however vary according to a lot of others experimental condition, such as the com-
putation cost of simulation and the implementation of the program. We find that
in our case, on an Intel(R) Xeon(R) CPU 2.50GHz computer, one evolution run
of CMA with 200 dimensions takes 488mson average, while the same task with
1000 dimensions needs 81150mson average to complete. The ratio is thus≈ 166.
We emphasize that this ratio is just based on a few experiments and is expected
to depends on a lot of other experimental condition. But it still means that the
computation cost may be reduced by circa 2 orders of magnitude if we use the
optimal features in this optimization problem.

5.4 Conclusion

In this chapter, we presented the SMF model for the recognition of visual object
and applied this model to the VOC 2008 challenge. The resultsshow that the
auto-selection feature can reduce the computation cost andkeep the performance
of system. But the generalization capacity of the system seems to depend on the

142

5.4. CONCLUSION

feature selected. Future work will try to optimize the topology of the connec-
tions between the layers of the SMF model, and to optimize theparameters whose
values in the current work were taken without modification from ref. [198].

143

5. FEATURE SELECTION IN A CORTEX-LIKE OBJECT RECOGNITION MODEL

144

Chapter 6

Conclusion

This dissertation has introduced our study of three different artificial neural
networks models: Self-Organizing Map (SOM, Chapter 3), EchoStates Network
(ESN, Chapter 4) and Standard Model Features (SMF, Chapter 5).We will now
summarize our findings, and sketch some directions for further research.

6.1 Summary of Results

6.1.1 Evolving SOM Topology

The first part of our work, Chapter 3, directly addressed issueof the influence
of the topology on Self-Organizing Maps. The task we considered for SOM net-
works was the classification of handwritten digits. A modification of the original
SOM practice was to change the neighborhood relationship from Euclidian dis-
tance to graph distance for weight updates, so that topologymodification resulted
in modified dynamics.

In a first step, we empirically explored the influence of small-world-like topol-
ogy modification of the standard regular SOM topology on the performance for
the task at hand. The small-world topology is created by rewiring the connec-
tions of a regular SOM network with a probabilityρ. By varying the rewiring
probability, we tracked the performance of different topologies in the handwritten
digits recognition task and found out that, in this class of topologies, topology
has a small impact on the performance. Furthermore, it does not seem to influ-
ence the robustness to neuron failures, at least for long learning times. This result
may indicate that the performance of the network is only weakly controlled by its
topology, at least for such learning tasks.

We then addressed the inverse problem, and evolved SOM topologies of the

145

6. CONCLUSION

same class with the goal of maximizing the performance on thehandwritten dig-
its recognition. The evolutionary algorithm used a direct representation of the
network topology, where mutation directly manipulates theconnections. Unfor-
tunately, because of the high computation cost of such evolutions, we could only
apply such evolutionary algorithm to find the optimal topology of a small net-
work (100 neurons). At the end of optimization, however, theperformance of
the best network is improved by almost 10%. All evolved networks are ’more
random’ than the initial small-world topology population,and display a more het-
erogeneous degree distribution, which may indicate a tendency to evolve toward
scale-free topologies. Unfortunately, in order to confirm this tendency with less
ambiguity, larger networks should be considered.

6.1.2 Evolving Parameters and Hyper-parameters of ESN

Reservoir Computing is an alternative to the fine tuning of NNs topology for each
task, and has recently received a lot of attention. The original idea of Echo State
Networks, as proposed by Jaeger, is to rely on random sparse connections within a
very large network and to simply combine them linearly. The topology is governed
by some hyper-parameters, and only the out-going weights are optimized, leading
to a quadratic optimization problem in the supervised learning case. The question
remains about how to tune those hyper-parameters for a giventask - and whether
the ESN approach can be efficient in other contexts, e.g., some reinforcement
learning tasks.

In Chapter 4, we demonstrated the ability of CMA-ES, the state-of-the-art
method in evolutionary continuous parameter optimization, to efficiently optimize
ESN parameters and hyper-parameters for both the standard supervised learning
context already used in previous studies and for the double-pole balancing,
a typical reinforcement learning task. Indeed, the flexibility of Evolutionary
optimization allowed us to optimize not only the outgoing weights but also, other
ESN parameters (the Readout, Spectral Radius, Slopes of the neurons active
function).

The combination of ESN and CMA-ES was first tested on a standardtime
series prediction problem, and validated against the quadratic optimization
approach. With the standard parameter setting of an ESN with100 neurons, the
results show that CMA-ES can reach the same precision when optimizing the
output weights than the original results obtained using quadratic optimization.
With a smaller reservoir, surprisingly, optimizing only the slopes of the transfer
functions of all neurons allowed us to reach even a better prediction accuracy,
though at a higher computational cost.

146

6.1. SUMMARY OF RESULTS

In the context of the double-pole balancing, the results of CMA-ES applied to
ESN optimization are compared to those of the best topology-learning methods
in neuro-evolution. For such a reinforcement learning task, the good news is that
Evolutionary Learning of ESN does work: our results are at the level of the best
published results of neuro-evolution methods. Moreover, optimizing more than
just the outgoing weights does improve the results. Furthermore, there seems to
be a high dependency of the results on the topology of the reservoir, at least for
the small sizes experimented with here.

6.1.3 Feature Sub-Sampling in SMF Bio-Inspired Approach

The issue of the topology of the information processing workflow has received
many inspirations that are strongly influenced by the study of actual biological
processes, when sufficient information has been gathered bybiologists. This is
the case for the biology of visual cortex, and Chapter 5 has concentrated of a
bio-inspired model of the visual cortex proposed for objectdetection by Serre
and Poggio. Here, the topology is specifically designed to match the recently
researches of the biological process. However, several degrees of freedom remain
in the proposed topology, leaving room for improvement.

We applied the Standard Model Features of Serre and Poggio tothe PASCAL
Visual multi-Object recognition Challenge (VOC2008), and concentrated on the
possible selection of some of the random features that are used in the model, in an
attempt to decrease its huge computational complexity.

First, a specific variant of the CMA-ES algorithm was used to optimize the
final layer of the model: because of the non-linearity of the VOC confidence,
the measure of quality proposed within the PASCAL Challenge, the problem of
optimizing even a linear combination of the 1000 features for this specific criterion
could hardly be solved by traditional methods. Then, a higher-level evolutionary
algorithm was used to select a small fractions of those random features while
maintaining the same quality of recognition results: the fitness used by this EA
was obtained by running CMA-ES on the corresponding subset offeatures and
measuring the resulting VOC-confidence.

The results of this Multi-Evolutionary algorithm demonstrated that using only
with 20% of the original features, the system could obtain the same performance
than with all the features, requiring less computational effort. This result opens
the path for the longer-term goal about this model: optimizealso the topology of
the SMF model, as this was not possible with the current cost of the method when
using all features.

147

6. CONCLUSION

6.2 Perspectives

We will here give some hints about possible research directions that emerged from
our work, both at the fundamental and at the practical levels.

6.2.1 Fundamental Issues

One of the main difficulty we faced in Chapter 3 was to find an appropriate fitness
measure for the performance of SOMs. Especially, when the input data set has a
complex topology which may not be already clearly understood. How to measure
the approximation between the topology of network and the topology of the data
set is a difficult task. This is why we turned to using SOMs in a classification task,
which is not what they have been designed for. A new more specifical quantitative
measure method is required for unsupervised learning, thatwill allow us to hope-
fully evolve optimized SOM topologies, and to maybe confirm that some types of
scale-free topologies are better suited than the regular one, at least in some cases.
But it would also help to compare SOMs to other dimension-reduction algorithms.

Regarding our work on the ESN, more research is obviously needed to un-
derstand the relationship between the hyper-parameters and the performance of
reservoirs, both from a theoretical and a practical viewpoint. Even the simple
question of the reservoir size is still open: for what tasks are larger-size reservoirs
helpful? On the practical side, we could not even try to solvethe direct problem
in reinforcement learning context – i.e., experimental investigate a wide range of
reservoir sizes on the same problem.

The problem of optimizing the reservoir topologies is stillopen, too, and
seems to be even more out to reach in terms of computational cost. Several is-
sues remain open. We would like to investigate the generative approaches based
on Genetic Regulatory Networks, as discussed at the end of Section 2.3.2. Two
approaches can be envisioned. The straightforward approach would be to directly
evaluate the evolved topologies on the reinforcement learning problem at hand,
with the huge CPU cost this implies. But, if some statistical characteristics of ef-
ficient reservoirs have been previously identified, some topologies meeting those
requirements could first be evolved, without the need for costly simulations, and
only in a second phase the evaluation would be made on the reinforcement learn-
ing task. Recent experiments have demonstrated the feasibility of the first phase
of this plan [156, 157], and CPU cost is the only barrier to the second phase (see
below).

Another possible extension of ESN research, as pointed in [138], regards the
single-layer architecture of current reservoirs: “Even ifthe reservoirs may have
thousands of units, it has still a single layer. It suggests that for demandingly

148

6.2. PERSPECTIVES

complex tasks the adaptation of a single reservoir might notbe enough and a
hierarchical architecture of ESNs might be needed.” [138] The possible combi-
nation between Reservoir Computing and Deep Network is another appealing
future research direction . . . that will undoubtedly also require some orders of
magnitude more CPU resources.

The evolutionary computing vision system presented in Chapter 5, the system
may benefit from further advances in the biological knowledge of the natural vi-
sual system. In the SMF model presented here, the parametersand the topology
of the system were completely hand-designed, and we have only accomplished a
small step in the pruning of the set of random features. But thecomplete topology
could be self-turned by an evolutionary process, especially if we can reduce the
CPU cost even more. Evolving the network topology between thelayers, self-
turning the system parameters together with self-selection of the C1 feature is
hence a promising direction for future research.

Another issue in object recognition research is that of the sample set of images:
only raw images are available at the moment, whereas a universal object data base
may be helpful for the future study of the SMF model.

6.2.2 Practical Issues

Balancing the Double Pole

As many published work used this problem as a benchmark, it made sense to keep
the same problem settings and use the same fitness definition to compare one’s
algorithms with previous work. However, one important issue concerns the ade-
quacy of the classical fitness used up to now to tackle this problem. Considering
the results presented in Chapter 4, the answer is clearly thatit is not adapted to the
goal (note that such an answer has already been claimed by others before). Indeed,
the correlation between the fitness and the generalization tests that the system is
demanded to pass to be declared successful, is possibly deceptive. It introduces
a too high random part in the evaluation of the results: indeed, we often found
that the best individual of the population cannot pass the test of generalization,
but other individuals, with lower fitness, could successfully pass the test. An-
other inconvenience of the problem is that it doesn’t regardthe control behavior
of the successful solution. From the view of engineering, the solution with less
consumption of energy is better in practice, as in the Figure4.10 showing the
distribution of the output force. Hence we propose to incorporate the total energy
minimization into the fitness – possibly leading to a multi-objective problem.

Another way to go would be to use other benchmarks for reinforcement
learning tasks, from the 2D pole balancing, that seems at themoment still

149

6. CONCLUSION

challenging, to video-game role playing, that could not only be challenging, but
could also attract many good students.

Distributed Computing

In a more general perspective, another issue that we have faced in all our studies
is the computation cost for evolving large neural networks.For example, when
we evolved the topology of SOM networks (Chapter 3), even though we used a
Client-Server approach written in C++ and running on more than20 recent CPUs,
the whole evolutionary run tookseveral weeksbefore giving the final results.
Similar CPU costs were necessary for the work in other Chapters: One run of
optimization of ESN could take serval days, which is untractable considering that
several different networks have to be tested, each for at least 11 times in order to
be able to draw statistically meaningful conclusions. Thiswas the main limitation
regarding the sizes of the networks that were used there.

At the end of the age of Moore’s law, as the speed of single CPU has almost
stopped to increase, it seems that the three following technologies may be useful
to construct new ANN simulation frameworks – while requiring new algorithmic
designs.
Multi-thread The tendency of CPU designers is to add more and more cores
to the basic commercialized CPUs. But in order to directly benefit from those
architectures, multi-threading requires some precautions in terms of memory
access to avoid conflicts and/or endless locks.

Message Passing InterfaceMessage Passing Interface (MPI) is a specification
for an API that allows many computers to communicate with oneanother. It is
used in computer clusters and supercomputers, and ultimately can be used on
GRIDS. MPI was created by William Gropp, Ewing Lusk and others[73]. The
famous MOGO computer go program got a speedup of about 25 by using 30
computers in parallel with MPI [65]. In [79], the authors give a general guide
for this new technique. For a Evolutionary Algorithms addressing reinforce-
ment learning problems, there is always a big computation cost for the fitness
simulation. Parallel simulation by using MPI with large computational grids
might useful for such optimization task. However, here again care must be taken
about the algorithm: it is known that increasing the population size of CMA-ES
does not always result in improving the convergence speed. Specific studies are
necessary to actually take advantage of a huge number of CPUs.

Graphical Processing Units(GPU) have been designed as specialized multi-

150

6.2. PERSPECTIVES

cores SIMD architectures for graphical processes. Nevertheless, they can now
be programmed with almost general-purpose languages (e.g., CODA® language
by NVIDIA ®) and are hence becoming more and more popular in the EC com-
munity, e.g. the Computational Intelligence on Consumer Games and Graphics
Hardware (CIGPU) workshop organized in GECCO 20091. Unfortunately, the
SIMD architecture requires a complete rewriting of all algorithms. However, they
seem well suited for the simulation of large Neural Networks(the most recent
Geforce Gtx 295 has 480 processors) where they could speed upby several orders
of magnitude the simulation time of very large networks.

Ideally, clusters of computers, each being equipped with some highly efficient
multi-core architectures like the GPU could help fulfillingthe research agenda
that was set for this work, regarding how the topology oflarge Neural Networks
influence their computational capacities, and whether it ispossible to optimize
their topologies to reach breakthrough results.

1http://www.sigevo.org/gecco-2009/workshops.html, http://www.gpgpgpu.com/gecco2009/

151

6. CONCLUSION

152

Bibliography

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learningalgorithm for
boltzmann machines.CognitiveScience, 9:147–169, 1985.

[2] C. W. Anderson. Learning to control an inverted pendulum using neural
networks.IEEEControlSystemsMagazine, 9(3):31–37, April 1989.

[3] J. A. Anderson. A simple neural network generating an interactive memory.
MathematicalBiosciences, 14:197–220, 1972.

[4] P. Angeline. Subtree crossover: Building block engine ormacromutation?
In J. Koza, K. Deb, M. Dorigo, D. Fogel, M. Garzon, H. Iba, and R.Riolo,
editors,GeneticProgramming1997, pages 9–17. Morgan Kauffman, 1997.

[5] A. Auger. Contributions théoriqueset numériquesÀ l’optimisation
continueparalgorithmesÉvolutionnaires. PhD thesis, Université Paris 6,
December 2004. in French.

[6] A. Auger. Convergence results for (1,λ)-SA-ES using the theory ofϕ-
irreducible markov chains.TheoreticalComputerScience, 334(1-3):35–69,
2005.

[7] A. Auger, C. L. Bris, and M. Schoenauer. Dimension-independent con-
vergence rate for non-isotropic(1,λ)−es. In E. Cantu-Paz et al., editor,
Proc.GECCO’2003, pages 512–524. LNCS 2723 and 2724, Springer Ver-
lag, 2003.

[8] A. Auger and N. Hansen. Performance evaluation of an advanced local
search evolutionary algorithm. InProc.CEC’05, 2005.

[9] A. Auger and N. Hansen. A restart cma evolution strategy with increasing
population size. InProc.CEC’05, pages 1769–1776. IEEE Press, 2005.

[10] A. Auger, N. Hansen, J. Perez Zerpa, R. Ros, and M. Schoenauer. Ex-
perimental Comparisons of Derivative Free Optimization Algorithms. In

153

BIBLIOGRAPHY

Jan Vahrenhold, editor,8th InternationalSymposiumon Experimental
Algorithms, LNCS, pages 3–15. Springer Verlag, 2009.

[11] A. D. Back and T. Chen. Universal approximation of multiple nonlinear
operators by neural networks.Neural Comput, 14(11):2561–2566, Nov
2002.

[12] T. Bäck. Evolution strategies: an alternative evolutionary algorithm. In J.-
M. Alliot et al,, editor,Artificial Evolution,EA’95, number 1063 in LNCS,
pages 3–20. Springer Verlag, 1995.

[13] T. Bäck. Evolutionary Algorithms in Theory and Practice. New-
York:Oxford University Press, 1995.

[14] T. Bäck and M. Schütz. Evolution strategies for mixed-integer optimization
of optical multilayer systems. In J. R. McDonnell et al., editor,Proc.EP’95.
MIT Press, 1995.

[15] T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms for
parameter optimization.EvolutionaryComputation, 1(1):1–23, 1993.

[16] T. Baeck, D. Fogel, and Z. Michalewicz, editors. Handbook of
EvolutionaryComputation. Oxford University Press, 1997.

[17] W. Banzhaf. Artificial regulatory networks and genetic programming.
In R. Riolo and B. Worzel, editors,GeneticProgrammingTheory and
Practice, pages 43–52. Kluwer Publishers, 2003.

[18] W. Banzhaf, P. Nordin, and R. Keller. Genetic Programming: an
Introduction. dpunkt, Heidelberg, 1998.

[19] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286:509, 1999.

[20] H. Bauer and K. R. Pawelzik. Quantifying the neighborhoodpreservation
of self-organizing feature maps.IEEE Transactionson NeuralNetworks,
3(4):570–579, July 1992.

[21] M. F. Bear, B. Connors, and M. Paradiso.Neuroscience:Exploring the
Brain (Third Edition). Lippincott Williams & Wilkins, February 2006.

[22] Y. Bengio, O. Delalleau, and N. L. Roux. The curse of highlyvariable
functions for local kernel machines. InNIPS18. MIT Press, 2006.

154

BIBLIOGRAPHY

[23] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise
training of deep networks. InNIPS19, pages 153–160. MIT Press, 2007.

[24] P. Bentley and D. W. Corne, editors.CreativeEvolutionarySystems. Mor-
gan Kaufmann, 2001.

[25] P. J. Bentley, editor.EvolutionaryDesignby Computers. Morgan Kaufman
Publishers Inc., 1999.

[26] H.-G. Beyer. The Theory of Evolution Strategies. Natural Computing.
Springer Verlag, 2001.

[27] H.-G. Beyer and K. Deb. On the desired behaviors of self-adaptive evolu-
tionary algorithms. In M. Schoenauer et al., editor,Proc.PPSNVI, pages
59–68. LNCS 1917, Springer Verlag, 2000.

[28] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang. Complex
networks: Structure and dynamics.PhysicsReports, 424:175–308, 2006.

[29] J. Bohland and A. Minai. Efficient associative memory using small-world
architecture.Neurocomputing, 38–40:489–496, 2001.

[30] S. A. Braitenberg V. Anatomy of the cortex: Statisticsand geometry.
Berlin: Springer, 1991.

[31] C. Burges, J. Ben, J. Denker, Y. LeCun, and C. Nohl. Off line recognition
of handwritten postal words using neural networks.Intl Journalof Pattern
RecognitionandArtificial Intelligence, 7(4):689–704, 1993.

[32] N. A. Carlson. Foundationsof PhysiologicalPsychology. Needham
Heights,Massachusetts:Simon & Schuster, 1992.

[33] G. Castellano and A. M. Fanelli. An iterative pruning algorithm for feedfor-
ward neural networks.IEEE Transactionson NeuralNetworks, 8(3):519–
531, 1997.

[34] T. P. Caudell and C. P. Dolan. Parametric connectivity: Training of con-
strained networks using genetic algorithms. In J. D. Schaffer, editor,ICGA,
pages 370–374. Morgan Kaufmann, 1989.

[35] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont.Evolutionary
Algorithmsfor SolvingMulti-ObjectiveProblems. Kluwer Academic Pub-
lishers, 2002.

155

BIBLIOGRAPHY

[36] L. D. Costa and M. Schoenauer. Bringing evolutionary computation to
industrial applications with. In G. Raidl et al., editor,Proc.GECCO’09.
ACM Press, 2009.

[37] N. Cramer. A representation for the adaptive generationof simple sequen-
tial programs. In L. J. Eshelman, editor,Proceedingsof the6th International
Conferenceon GeneticAlgorithms, pages 183–187. Morgan Kaufmann,
1985.

[38] D. E. Rumelhart and J. L. McClelland, editor.Parallel Distributed
Processing,volume1:Foundations. MIT Press, Cambridge, MA, 1986.

[39] H. de Garis. Genetic programming : building artificial nervous systems
using genetically programmed neural networks modules. In R.Porter and
B. Mooney, editors,Proceedingsof the 7th InternationalConferenceon
MachineLearning, pages 132–139. Morgan Kaufmann, 1990.

[40] K. Deb. Multi-Objective OptimizationUsing EvolutionaryAlgorithms.
John Wiley, 2001.

[41] K. Deb and R. W. Agrawal. Simulated binary crossover for continuous
search space.ComplexSystems, 9:115–148, 1995.

[42] K. DeJong.TheAnalysisof theBehaviorof a Classof GeneticAdaptive
Systems. PhD thesis, University of Michigan, Ann Harbor, 1975.
DissertationAbstractInternational, 36(10), 5140B. (University Microfilms
No 76-9381).

[43] K. DeJong. Evolutionary Computation. A unified Approach. MIT Press,
2006.

[44] Z. Deng and Y. Zhang. Complex systems modeling using scale-free highly-
clustered echo state network. InIJCNN’06, pages 3128–3135, 2006.

[45] P. Dürr, C. Mattiussi, and D. Floreano. Neuroevolution with Analog Ge-
netic Encoding. In Th. Runarsson et al., editor,PPSNIX, pages 671–680.
LNCS 4193, Springer Verlag, 2006.

[46] A. Eiben and J. Smith.Introductionto EvolutionaryComputing. Springer
Verlag, 2003.

[47] A. E. Eiben and M. Schoenauer. Evolutionary computing.Information
ProcessingLetters, 82(1):1 – 6, 2002.

156

BIBLIOGRAPHY

[48] A. E. Eiben, C. H. M. van Kemenade, and J. N. Kok. Orgy in thecomputer:
Multi-parent reproduction in genetic algorithms. InProc.ECAL, pages
934–945, 1995.

[49] L. J. Eshelman. The chc adaptive search algorithm: How to have safe
search when engaging in nontraditional genetic recombination. In G. J. E.
Rawlins, editor,FOGA, pages 265–283. Morgan Kaufmann, 1990.

[50] G. R. et al., editor.Workshop on Black-Box Optimization Benchmarking at GECCO’09.
ACM, 2009.

[51] N. H. et al. Comparison of evolutionary algorithms on a benchmark func-
tion set. CEC’05 Special Session, 2005.

[52] K. K. Evans and A. Treisman. Perception of objects in natural scenes: is
it really attention free?J Exp PsycholHum PerceptPerform, 31(6):1476–
1492, Dec 2005.

[53] L. F., R. Fergus, and P. Perona. Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101
object categories. InProc.Conferenceon ComputerVision and Pattern
RecognitionWorkshop, pages 178–178, 27–02 June 2004.

[54] A. Fadda and M. Schoenauer. Evolutionary chromatographic law identifi-
cation by recurrent neural nets. In J. R. McDonnell, R. G. Reynolds, and
D. B. Fogel, editors,Proc.4th Conf.on EvolutionaryProgramming, pages
219–235. MIT Press, 1995.

[55] S. Fahlman and C. Libiere. The cascade-correlation learning architec-
ture. In D. Touretsky, editor,Advancesin NeuralInformationProcessing
Systems2, pages 524–532. Morgan Kaufmann, 1990.

[56] S. S. Fels and G. E. Hinton. Glove-talk: a neural networkinterface between
a data-glove and a speech synthesizer.IEEE TransNeuralNetw, 4(1):2–8,
1993.

[57] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale-invariant learning. InProc. IEEE ComputerSociety
ConferenceonComputerVision andPatternRecognition, volume 2, pages
II–264–II–271, 18–20 June 2003.

[58] D. Floreano and C. Mattiussi. Evolution of analog networks using lo-
cal string alignment on highly reorganizable genomes. InProc.Conf. on
EvolvableHardware,EH’04, 2004.

157

BIBLIOGRAPHY

[59] D. Floreano and F. Mondada. Evolution of homing navigation in a real mo-
bile robot. IEEETransactionsonSystems,Man,andCybernetics, 26:396–
407, 1994.

[60] D. Fogel.EvolutionaryComputing:TheFossileRecord. IEEE Press, 1998.

[61] D. Fogel and L. Stayton. On the effectiveness of crossover in simulated
evolutionary optimization.BioSystems, 32:171–182, 1994.

[62] D. B. Fogel. Evolutionary computation: toward a new philosophyof
machineintelligence. IEEE Press, New York, 1995.

[63] L. J. Fogel, A. J. Owens, and M. J. Walsh.Artificial IntelligenceThrough
simulatedEvolution. John Wiley and Sons, New York, 1966.

[64] B. Freisleben and P. Merz. New genetic local search operators for the TSP.
In H.-M. Voigt et al., editor,Proc.PPSNIV, LNCS 1141, pages 890–899.
Springer Verlag, 1996.

[65] S. Gelly, J. B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian. The
parallelization of monte-carlo planning. InProceedingsof theInternational
Conferenceon Informaticsin Control,AutomationandRobotics(ICINCO
2008), pages 198–203, 2008.

[66] J. Gero. Adaptive systems in designing: New analogies from genetics and
developmental biology. In I. Parmee, editor,AdaptiveComputingin Design
andManufacture, pages 3–12. Springer Verlag, 1998.

[67] D. Goldberg.TheDesignof Innovation:Lessonsfrom andfor Competent
GeneticAlgorithms. Kluwer Academic Publishers, 2002.

[68] D. E. Goldberg.Geneticalgorithmsin search,optimization,andmachine
learning. Addison-Wesley, Reading, MA, 1989.

[69] F. Gomez.RobustNonlinearControl throughNeuroevolution. Tech. rep.
ai-tr-03-303, University of Texas at Austin, 2003.

[70] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Efficientnonlinear con-
trol through neuroevolution. InProc.EuropeanConferenceon Machine
Learning(ECML, 2006.

[71] F. J. Gomez and R. Miikkulainen. Solving non-markovian control tasks
with neuro-evolution. InIJCAI, pages 1356–1361, 1999.

158

BIBLIOGRAPHY

[72] G. Goodhill, S. Finch, and T. Sejnowski. Quantifying neighbourhood
preservation in topographic mappings. Technical report, Institute for Neu-
ral Computation Technical Report Series, No. INC-9505, 1995.

[73] E. Gropp, W. Lusk and A. Skjellum. Using MPI: portable parallel
programmingwith the message-passinginterface. MIT Press In Scien-
tific And Engineering Computation Series, Cambridge, MA, USA.307 pp.
ISBN 0-262-57104-8, 1994.

[74] S. Grossberg. Contour enhancement, short term memory, and constancies
in reverberating neural networks.Studiesin AppliedMathematics, 52:213–
257, September 1973.

[75] S. Grossberg.Competitivelearning:Frominteractiveactivationto adaptive
resonance, pages 213–250. Ablex Publishing Corp., 1988.

[76] F. Gruau. NeuralNetwork SynthesisUsing Cellular EncodingAnd The
GeneticAlgorithm. PhD thesis, Ecole Normale Superieure de Lyon, 1994.
L’universite Claude Bernard-lyon I and Of A Diplome De Doctorat and M.
Jacques Demongeot and Examinators M. Michel Cosnard and M. Jacques
Mazoyer and M. Pierre Peretto and M. Darell Whitley.

[77] F. Gruau and D. Whitley. Adding learning to the cellular development
of neural networks: Evolution and the baldwin effect.Evolutionary
Computation, 1(3):213–233, 1993.

[78] F. Gruau, D. Whitley, and L. Pyeatt. A comparison betweencellular encod-
ing and direct encoding for genetic neural networks. In J. K.et al., editor,
Proc.GP’96. MIT Press, 28–31 1996.

[79] L. Hablot, O. Glück, J.-C. Mignot, S. Genaud, and P. Vicat-Blanc Primet.
Comparison and tuning of MPI implementations in a grid context. Research
Report RR-6200, INRIA, 2007.

[80] H. Hamda, O. Roudenko, and M. Schoenauer. Multi-objective evolutionary
topological optimum design. In I. Parmee, editor,EvolutionaryDesignand
Manufacture, pages 121–132. Springer Verlag, 2002.

[81] H. Hamda and M. Schoenauer. Topological optimum designwith evolu-
tionary algorithms.Journalof ConvexAnalysis, 9:503–517, 2002.

[82] P. J. B. Hancock. Genetic algorithms and permutation problems: a compar-
ison of recombination operators for neural net structure specification. In
Proc.of the Int’l Workshopon Combinationsof GeneticAlgorithms and

159

BIBLIOGRAPHY

NeuralNetworks(COGANN-92, pages 108–122. IEEE Computer Society
Press, 1992.

[83] N. Hansen. Benchmarking a BI-Population CMA-ES on the BBOB-2009
Function Testbed. In G. R. et al., editor,WorkshopProceedingsatGECCO,
pages 2389–2395. ACM, 2009.

[84] N. Hansen. References to cma-es applications, 2009+.

[85] N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multi-
modal test functions. In X. Yao et al., editors,PPSNVIII, pages 282–291.
LNCS 3242, Springer Verlag, 2004.

[86] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time com-
plexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES).EvolutionaryComputation, 11(1):1–18, 2003.

[87] N. Hansen and A. Ostermeier. Adapting arbitrary normalmutation distri-
butions in evolutionstrategies: the covariance matrix adaptation. InProc.
CEC’96, pages 312–317. IEEE Press, 1996.

[88] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation
in evolution strategies.EvolutionaryComputation, 9(2):159–195, 2001.

[89] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the adaptation of arbi-
trary normal mutation distributions in evolution strategies: The generating
set adaptation. In L. J. Eshelman, editor,Proc.6th ICGA, pages 57–64.
Morgan Kauffman, 1995.

[90] A. Harp, T. Samad, and A. Guha. Towards the genetic synthesis of neural
networks. In J. Schaffer, editor,Proc.Third ICGA, pages 360–369. Morgan
Kaufmann, 1989.

[91] D. O. Hebb.TheOrganizationof Behavior:A NeuropsychologicalTheory.
Wiley, New York, June 1949.

[92] B. Heisele, T. Serre, M. Pontil, T. Vetter, and T. Poggio.Categorization by
learning and combining object parts. InAdvancesin Neural Information
ProcessingSystems14, pages 1239–1245. MIT Press, 2002.

[93] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep
belief nets.NeuralComput, 18(7):1527–1554, Jul 2006.

160

BIBLIOGRAPHY

[94] G. E. Hinton and T. J. Sejnowski. Optimal perceptual inference. In
Proceedingsof the IEEE ComputerSociety Conferenceon Computer
Vision andPatternRecognition, page 448453, 1983.

[95] J. H. Holland.Adaptationin NaturalandArtifical Systems. University of
Michigan Press, Ann Arbor, MI, 1975.

[96] J. J. Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. InProc.NationalAcademyof Sciences, pages
2554–2558, 1982.

[97] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators.Neural Networks, pages 359–366,
1989.

[98] K. Hornik, M. Stinchcombe, and H. White. Universal approximation of
an unknown mapping and its derivatives using multilayer feedforward net-
works. NeuralNetworks, 3:551–560, 1990.

[99] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex.J Physiol, 160:106–154,
Jan 1962.

[100] C. P. Hung, G. Kreiman, T. Poggio, and J. J. DiCarlo. Fast readout of object
identity from macaque inferior temporal cortex.Science, 310(5749):863–
866, Nov 2005.

[101] C. Igel. Neuroevolution for reinforcement learning using evolution strate-
gies. InProc.CEC’03, pages 2588–2595. IEEE Press, 2003.

[102] C. Igel, N. Hansen, and S. Roth. Covariance matrix adaptation for multi-
objective optimization.EvolutionaryComputation, 15(1):1–28, 2006.

[103] C. Igel, T. Suttorp, and N. Hansen. A computational efficient covariance
matrix update and a (1+1)-cma for evolution strategies. InGECCO’06:
Proceedingsof the 8th annualconferenceon Geneticand evolutionary
computation, pages 453–460, New York, NY, USA, 2006. ACM.

[104] G. Inc., editor.GlencoeHealth2ndEdition. Mission Hills, 1989.

[105] H. Jaeger. The "echo state" approach to analysing and training recurrent
neural networks. Technical report, GMD Report 148, GMD - German Na-
tional Research Institute for Computer Science, 2001.

161

BIBLIOGRAPHY

[106] H. Jaeger. Tutorial on training recurrent neural networks. Technical report,
GMD Report 159, Fraunhofer Institute AIS, 2002.

[107] H. Jaeger. Discovering multiscale dynamical features with hierarchical
echo state networks. Technical report, Technical report 10, School of En-
gineering and Science, Jacobs University, 2007.

[108] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting chaotic systems
and saving energy in wireless communication.Science, 304(5667):78–80,
Apr 2004.

[109] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert. Optimization and
applications of echo state networks with leaky-integratorneurons.Neural
Network, 20(3):335–352, Apr 2007.

[110] F. Jiang, H. Berry, and M. Schoenauer. Optimising the Topology of Com-
plex Neural Networks. In J. et al., editor,ECCS07, 2007.

[111] F. Jiang, H. Berry, and M. Schoenauer. The impact of network topology on
self-organizing maps. In L. Xu, E. D. Goodman, G. Chen, D. Whitley, and
Y. Ding, editors,GECSummit, pages 247–254. ACM, 2009.

[112] J. P. Jones and L. A. Palmer. An evaluation of the two-dimensional gabor
filter model of simple receptive fields in cat striate cortex.J Neurophysiol,
58(6):1233–1258, Dec 1987.

[113] T. Jones and S. Forrest. Fitness distance correlationas a measure of prob-
lem difficulty for genetic algorithms. In L. J. Eshelman, editor,Proceedings
of the6th InternationalConferenceonGeneticAlgorithms, pages 184–192.
Morgan Kauffman, 1995.

[114] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH,
4:237–285, 1996.

[115] E. R. Kandel.Principlesof NeuralScience. McGraw-Hill Education, June
2000.

[116] S. Kaski, J. Kangas, and T. Kohonen. Bibliography of self-organizing map
(som) papers 1981-1997.NeuralComputingSurveys, 1:1–176, 1998.

[117] Y. Kassahun, J. de Gea, M. Edgington, J. H. Metzen, and F. Kirchner. Ac-
celerating neuroevolutionary methods using a kalman filter. In GECCO’08:
Proceedingsof the 10th annualconferenceon Geneticand evolutionary
computation, pages 1397–1404, New York, NY, USA, 2008. ACM.

162

BIBLIOGRAPHY

[118] B. Kim. Performance of networks of artificial neurons: the role of cluster-
ing. Phys.Rev.E, 64:045101, 2004.

[119] H. Kitano. Designing neural networks using genetic algorithms with graph
generation system.ComplexSystems, 4(4):461–476, 1990.

[120] J. M. Kleinberg. Navigation in a small world.Nature, 406(6798), 2000.

[121] J. Kodjabachian and J.-A. Meyer. Evolution and development of modular
control architectures for 1-D locomotion in six-legged animats.Connection
science, 10:211–237, 1998.

[122] T. Kohonen. Correlation matrix memories.IEEE Transactionson
Computers, 21:353–359, 1972.

[123] T. Kohonen. An adaptive associative memory principle. IEEETransactions
onComputers, 4:444–445, April 1974.

[124] T. Kohonen.Self-OrganizationandAssociativeMemory. Springer-Verlag,
1989.

[125] J. R. Koza.Geneticprogramming:on the programmingof computersby
meansof naturalselection. MIT Press, Cambridge, MA, 1992.

[126] J. R. Koza and al. GeneticProgrammingIII: Automatic Synthesisof
AnalogCircuits. MIT Press, 1999.

[127] P. D. Kuo, W. Banzhaf, and A. Leier. Network topology andthe evolution
of dynamics in an artificial genetic regulatory network model created by
whole genome duplication and divergence.Biosystems, 85(3):177–200,
Sep 2006.

[128] K. J. Lang, A. H. Waibel, and G. E. Hinton. A time-delay neural network
architecture for isolated word recognition.NeuralNetw., 3(1):23–43, 1990.

[129] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hub-
bard, and L. D. Jackel. Handwritten digit recognition with aback-
propagation network. In D. Touretzky, editor,NIPS’89. Morgan Kaufmann,
1990.

[130] Y. LeCun and C. Cortes. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

163

BIBLIOGRAPHY

[131] V. Lefort, C. Knibbe, G. Beslon, and J. Favrel. A bio-inspired genetic
algorithm with a self-organizing genome: The rbf-gene model. In K. Deb
et al., editor,Proc.GECCO’04, number 3103 in LNCS, pages 406–407.
ACM SIGEVO, Springer Verlag, 2004.

[132] V. Lefort, C. Knibbe, G. Beslon, and J. Favrel. Simultaneaous optimization
of weights and structure of an rbf neural network. In E. Talbiet al., editor,
Artificial Evolution’05.Selectedpapers, number 3871 in LNCS. Springer
Verlag, 2005.

[133] J. Leskovec and E. Horvitz. Worldwide buzz: Planetary-scale views on an
instant-messaging network. Technical report, Microsoft Research Techni-
cal Report MSR-TR-2006-186, Microsoft Research, 2007.

[134] B. Liebald. Exploration of effects of different network topologies on the
esn signal crosscorrelation matrix spectrum. Master’s thesis, Bachelor’s
thesis, Jacobs University Bremen, 2004.

[135] W. Liebert, K. Pawelzik, and H. G. Schuster. Optimal embeddings of
chaotic attractors from topological considerations.EPL (Europhysics
Letters), 14(6):521–526, 1991.

[136] B. Linares-Barranco, A. Andreou, G. Indiveri, and T. Shibata. Guest edi-
torial - special issue on neural networks hardware implementations. IEEE
TransactionsonNeuralNetworks, 14(5):976–979, 2003.

[137] F. Lopez-Munoz, J. Boya, and C. Alamo. Neuron theory, thecornerstone of
neuroscience, on the centenary of the nobel prize award to santiago ramun
y cajal. BrainResBull, 70(4-6):391–405, Oct 2006.

[138] M. Lukosevicius and H. Jaeger. Overview of reservoir recipes. Technical
report, Technical Report 11, School of Engineering and Science, Jacobs
University Bremen, 2007.

[139] M. Lunacek, D. Whitley, and A. Sutton. The impact of global structure on
search. In G. Rudolph et al., editor,Proc.PPSNX, number 5199 in LNCS,
pages 498–507. Springer Verlag, 2008.

[140] E. M., V. G. L., W. C.K.I., W. J., and Z. A. The PASCAL Visual
Object Classes Challenge 2008 (VOC2008) Results. http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html.

[141] S. M. The small world problem.PsychologyToday2, pages 60–67, 1967.

164

BIBLIOGRAPHY

[142] C. D. M. Tomassini, M. Giacobini. Evolution and dynamics of small-world
cellular automata.ComplexSystems, 15:261–284, 2005.

[143] W. Maass, T. Natschllger, and H. Markram. Real-time computing without
stable states: a new framework for neural computation basedon perturba-
tions. NeuralComput, 14(11):2531–2560, Nov 2002.

[144] J. Mao and A. K. Jain. Artificial neural networks for feature extraction
and multivariate data projection.IEEE TransNeuralNetw, 6(2):296–317,
1995.

[145] S. Martin, J. Rivory, and M. Schoenauer. Synthesis of optical multi-layer
systems using genetic algorithms.AppliedOptics, 34:2267, 1995.

[146] C. Mattiussi. Evolutionary synthesisof analognetworks. PhD thesis,
n.3199, EPFL, Lausanne, 2005.

[147] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. 1943.Bull MathBiol, 52(1-2):99–115; discussion 73–97,
1943.

[148] P. McGraw and M. Menzinger. Topology and computational performance
of attractor neural networks.Phys.Rev.E, 68:047102, 2003.

[149] P. Merz and J. Huhse. An iterated local search approachfor finding prov-
ably good solutions for very large tsp instances. In G. Rudolph et al., editor,
Proc.PPSNX, number 5199 in LNCS, pages 929–939. Springer Verlag,
2009.

[150] Z. Michalewicz. Genetic Algorithms + Data Structures= Evolution
Programs. Springer Verlag, New-York, 1992-1996. 1st-3rd edition.

[151] M. Minsky and S. Papert.Perceptrons. MIT Press, Cambridge, MA, 1969.

[152] D. J. Montana and L. Davis. Training feedforward neural networks us-
ing genetic algorithms. InProceedingsof the 11th InternationalJoint
ConferenceonArtificial Intelligence, page 762–767, San Francisco: Kauf-
mann, 1989.

[153] L. G. Morelli, G. Abramson, and M. N. Kuperman. Associative memory
on a small-world neural network.Eur.Phys.J.B, 38:495–500, 2004.

[154] D. E. Moriarty and R. Miikkulainen. Forming neural networks through
efficient and adaptive coevolution.EvolutionaryComputation, 5(4):373–
399, 1997.

165

BIBLIOGRAPHY

[155] J. M. Murre and D. P. Sturdy. The connectivity of the brain: multi-level
quantitative analysis.Biol Cybern, 73(6):529–545, Nov 1995.

[156] M. Nicolau and M. Schoenauer. Evolving Scale-Free Topologies using
a Gene Regulatory Network Model. InIEEE Congresson Evolutionary
Computation, pages 3748–3755. IEEE Press, 2008.

[157] M. Nicolau and M. Schoenauer. Evolving Specific Network Statisti-
cal Properties using a Gene Regulatory Network Model. InEuropean
ConferenceonComplexSystems’08, 2008.

[158] S. Nolfi and D. Floreano.EvolutionaryRobotics. MIT Press, 2000.

[159] S. Obayashi. Pareto genetic algorithm for aerodynamic design using
the Navier-Stokes equations. In D. Quadraglia, J. Périaux,C. Poloni,
and G. Winter, editors,GeneticAlgorithms and Evolution Strategiesin
EngineeringandComputerSciences, pages 245–266. John Wiley, 1997.

[160] S. Obayashi. Pareto solutions of multipoint design ofsupersonic wings
using evolutionary algorithms. In I. Parmee, editor,AdaptiveComputing
in DesignandManufactureV, pages 3–15. Springer-Verlag, 2002.

[161] P. Oikonomou and P. Cluzel. Effects of topology on network evolution.Nat
Phys, 2(8):532–536, 2006.

[162] M. Oja, S. Kaski, and T. Kohonen. Bibliography of self-organizing map
(som) papers: 1998-2001 addendum.NeuralComputingSurveys, 1:1–176,
2002.

[163] M. Ozturk, D. Xu, and J. Principe. Analysis and Design of Echo State
Networks.NeuralComputation, 19(1):111–138, 2007.

[164] B. Paechter, R. Rankin, A. Cumming, and T. C. Fogarty. Timetabling the
classes of an entire university with an evolutionary algorithm. In T. B. et al.,
editor,Proc.PPSNV, LNCS 1498. Springer Verlag, 1998.

[165] D. I. Perrett, J. K. Hietanen, M. W. Oram, and P. J. Benson. Organization
and functions of cells responsive to faces in the temporal cortex. Philos
TransR SocLond B Biol Sci, 335(1273):23–30, Jan 1992.

[166] D. I. Perrett and M. W. Oram. Neurophysiology of shape processing.Image
Vision Comput., 11(6):317–333, 1993.

[167] D. Polani. On the choice of organization measures for self-organizing fea-
ture maps. Technical report, Technical report, 1995.

166

BIBLIOGRAPHY

[168] D. Polani. Fitness functions for the optimization of self-organizing maps.
In T. Bäck, editor,Proceedingsof theSeventhInternationalConferenceon
GeneticAlgorithms (ICGA97), San Francisco, CA, 1997. Morgan Kauf-
mann.

[169] D. Polani and J. Gutenberg. Organization measures forself-organizing
maps. InProceedingsof WSOM’97,Workshopon Self-OrganizingMaps,
Espoo,Finland,June4-6, pages 280–285. Helsinki University of Technol-
ogy, Neural Networks Research Centre, Espoo, Finland, 1997.

[170] M. J. D. Powell.TheNEWUOA softwarefor unconstrainedoptimization
without derivatives, pages 255–297. Number 83 in Large-Scale Nonlinear
Optimization. Springer Verlag, 2006.

[171] M. J. D. Powell. Developments of newuoa for minimization without deriva-
tives. IMA Journalof NumericalAnalysis, 2008.

[172] N. J. Radcliffe. Equivalence class analysis of geneticalgorithms.Complex
Systems, 5:183–20, 1991.

[173] N. J. Radcliffe and P. D. Surry. Fitness variance of formae and perfor-
mance prediction. In L. D. Whitley and M. D. Vose, editors,Foundations
of GeneticAlgorithms3, pages 51–72. Morgan Kaufmann, 1995.

[174] I. Rechenberg.Evolutionsstrategie:OptimierungtechnischerSystemenach
PrinzipienderbiologischenEvolution. frommann-holzbog, Stuttgart, 1973.
German.

[175] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition
in cortex.Natureneuroscience, 2(11):1019–1025, November 1999.

[176] E. Ronald and M. Schoenauer. Genetic lunar lander : an experiment in
accurate neuro-control. In Y. Davidor, H.-P. Schwefel, andR. Manner,
editors,Proc.PPSNIII, pages 452–461. Springer-Verlag, LNCS 866, 1994.

[177] F. ROSENBLATT. The perceptron: a probabilistic model for information
storage and organization in the brain.PsycholRev, 65(6):386–408, Nov
1958.

[178] M. Rosenman. Evolutionary case-based design. In C. Fonlupt et al., editor,
Artificial Evolution’99, pages 53–72. Springer Verlag, LNCS 1829, 1999.

[179] O. Roudenko, T. Bosio, R. Fontana, and M. Schoenauer. Optmization of car
front crash members. InArtificial Evolution’01, pages 202–214. Springer
Verlag, LNCS 2310, 2002.

167

BIBLIOGRAPHY

[180] G. Rudolph. Convergence of non-elitist strategies. In Z. Michalewicz, J. D.
Schaffer, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings
of theFirst IEEE InternationalConferenceon EvolutionaryComputation,
pages 63–66. IEEE Press, 1994.

[181] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.Learning Internal
Representationsby ErrorPropagation. MIT Press, 1986.

[182] D. E. Rumelhart and J. L. Mcclelland.ParallelDistributedProcessing:
Explorationsin the Microstructureof Cognition : Foundations(Parallel
DistributedProcessing). MIT Press, August 1986.

[183] Schaffer and Cannon. n the control of unstable mechanincal systems. InIn
AutomaticandRemoteControl III: Proceedingsof theThird Congressof
theInternationalFederationof AutomaticControl, 1966.

[184] J. D. Schaffer, D. Whitley, and L. J. Eshelman. Combinations of genetic
algorithms and neural networks: a survey of the state of the art. In Proc.
COGANN-92Combinationsof GeneticAlgorithmsandNeuralNetworks
InternationalWorkshopon, pages 1–37, 6 June 1992.

[185] P. H. Schiller, B. L. Finlay, and S. F. Volman. Quantitative studies of single-
cell properties in monkey striate cortex. ii. orientation specificity and ocular
dominance.JNeurophysiol, 39(6):1320–1333, Nov 1976.

[186] P. H. Schiller, B. L. Finlay, and S. F. Volman. Quantitative studies of
single-cell properties in monkey striate cortex. iii. spatial frequency. J
Neurophysiol, 39(6):1334–1351, Nov 1976.

[187] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training recur-
rent networks by evolino.NeuralComput, 19(3):757–779, Mar 2007.

[188] M. Schoenauer. Evolutionary computation: Basic algorithms. Notes from
Master Course at University Paris-Sud.

[189] M. Schoenauer and E. Ronald. Genetic extension of neural net training:
transfer functions and renormalisation coefficients. In J.-M. Alliot et al.,
editor,First ConferenceonArtifical Evolution. Cepadues, 1994.

[190] M. Schoenauer and E. Ronald. Neuro-genetic truck backer-upper con-
troller. In Proc.1st Intl Conf. on EvolutionaryComputation. IEEE Press,
1994.

[191] H.-P. Schwefel.Numericaloptimizationof Computermodels. John Wiley
& Sons, Ltd., Chichester, 1981.

168

BIBLIOGRAPHY

[192] Science Magazine.ComplexSystems, volume 284, No 5411 ofSpecial
Issue. Science, 2 April 1999.

[193] Y. Semet and M. Schoenauer. On the benefits of inoculation, an example in
train scheduling. InGECCO06, pages 1761–1768. ACM Press, 2006.

[194] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, andT. Poggio. A
theory of object recognition: computations and circuits inthe feedforward
path of the ventral stream in primate visual cortex. InAI Memo2005-036
/ CBCL Memo259,MIT, 2005.

[195] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, andT. Poggio.
A quantitative theory of immediate visual recognition.Prog Brain Res,
165:33–56, 2007.

[196] T. Serre, A. Oliva, and T. Poggio. A feedforward architecture accounts for
rapid categorization.ProcNatl AcadSci U S A, 104(15):6424–6429, Apr
2007.

[197] T. Serre and M. Riesenhuber. Realistic modeling of simple and complex
cell tuning in the hmax model, and implications for invariant object recog-
nition in cortex. Technical report, Massachusetts Institute of Technology,
July 2004.

[198] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust
object recognition with cortex-like mechanisms.IEEE TransPatternAnal
MachIntell, 29(3):411–426, Mar 2007.

[199] D. Simard, L. Nadeau, and H. Kroger. Fastest learning in small-world
neural networks.Phys.Lett. A, 336:8–15, 2005.

[200] M. D. Skowronski and J. G. Harris. Automatic speech recognition using a
predictive echo state network classifier.NeuralNetw, 20(3):414–423, Apr
2007.

[201] K. Stanley. Compositional Pattern Producing Networks: A Novel Ab-
straction of Development.GeneticProgrammingandEvolvableMachines,
8(2):131–162, 2007.

[202] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based encod-
ing for evolving large-scale neural networks.Artificial Life, Jan 2009.

[203] K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning
through evolving neural network topologies. In W. B. Langdonet al., editor,
Proc.GECCO’02, pages 569–577. Morgan Kaufmann, 2002.

169

BIBLIOGRAPHY

[204] K. O. Stanley and R. Miikkulainen. Evolving neural networks through
augmenting topologies.EvolutionaryComputation, 10(2):99–127, 2002.

[205] D. Stauffer, A. Aharony, L. da Fontoura Costa, and J. Adler. Efficient
Hopfield pattern recognition on a scale-free NN.Eur. Phys.J. B, 32:395–
399, 2003.

[206] S. W. Stepniewski and A. J. Keane. Pruning back-propagation neural net-
works using modern stochastic optimization techniques.NeuralComputing
andApplications, 5:76–98, 1997.

[207] S. H. Strogatz. Exploring complex networks.Nature, 410(6825):268–276,
2001.

[208] R. S. Sutton. Two problems with backpropagation and other steepest-
descent learning procedures for networks. InProc.8th Annual Conf. of
CognitiveScienceSociety, pages 823–831, 1986.

[209] R. S. Sutton and A. G. Barto.ReinforcementLearning: An Introduction.
MIT Press, 1998.

[210] Y. Takefuji. Neuralnetworkparallelcomputing. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1992.

[211] D. Thierens. Dimensional analysis of allel-mixing revisited. In H.-M.
Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors,Proc.PPSN
IV, pages 255–265. Springer Verlag, 1996.

[212] A. M. Treisman and G. Gelade. A feature-integration theory of attention.
CognPsychol, 12(1):97–136, Jan 1980.

[213] R. L. D. Valois, D. G. Albrecht, and L. G. Thorell. Spatial frequency selec-
tivity of cells in macaque visual cortex.Vision Res, 22(5):545–559, 1982.

[214] R. L. D. Valois, E. W. Yund, and N. Hepler. The orientation and direction
selectivity of cells in macaque visual cortex.Vision Res, 22(5):531–544,
1982.

[215] D. Verstraeten, B. Schrauwen, and D. Stroobandt. Reservoir-based tech-
niques for speech recognition. InProc.InternationalJointConferenceon
NeuralNetworksIJCNN ’06, pages 1050–1053, 16–21 July 2006.

[216] J. Vesanto. Som-based data visualization methods.Intelligent Data
Analysis, 3:111–126, 1999.

170

BIBLIOGRAPHY

[217] T. Villmann, R. Der, and T. Martinetz. A new quantitative measure of topol-
ogy preservation in kohonen’s feature maps. InProc.IEEE International
Conferenceon NeuralNetworksIEEE World Congresson Computational
Intelligence, volume 2, pages 645–648, 27 June–2 July 1994.

[218] T. Villmann and E. Merenyi. Extensions and modifications of the kohonen-
som and applications in remote sensing image analysis. In U.Seiffert and
L. Jain, editors,Self-OrganizingMaps:RecentAdvancesandApplications,
pages 121–145. Springer-Verlag, 2001.

[219] G. Wallis and E. T. Rolls. A model of invariant object recognition in the
visual system.Prog.Neurobiol, 51:167–194, 1996.

[220] D. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ net-
works. Nature, 393:440–442, 1998.

[221] M. Weber, M. Welling, and P. Perona. Unsupervised learning of models
for recognition. InProc.1stEuropeanConf.on ComputerVision, volume
1042 ofLNCS, pages 18–32. Springer Verlag, 2000.

[222] S. Weigenda, D. E. Rumelhart, and B. A. Huberman. Generalization by
weight-elimination with application to foreasting. InAdvancesin Neural
InformationProcessingSystems3, pages 875–882, 1991.

[223] P. J. Werbos. Backpropagation through time: what it does and how to do it.
Proceedingsof theIEEE, 78(10):1550–1560, Oct. 1990.

[224] D. Whitley. The GENITOR algorithm and selective pressure: Why rank-
Based allocation of reproductive trials is best.InternationalConferenceon
GeneticAlgorithms’89, pages 116–121, 1989.

[225] D. Whitley, S. Dominic, R. Das, and C. W. Anderson. Geneticreinforce-
ment learning for neurocontrol problems.Mach.Learn., 13(2-3):259–284,
1993.

[226] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural
networks: optimizing connections and connectivity.ParallelComputing,
14(3):347–361, August 1990.

[227] L. D. Whitley, F. Gruau, and L. D. Pyeatt. Cellular encoding applied to
neurocontrol. In L. J. Eshelman, editor,ICGA, pages 460–469. Morgan
Kaufmann, 1995.

[228] J. M. Wolfe and S. C. Bennett. Preattentive object files: shapeless bundles
of basic features.Vision Res, 37(1):25–43, Jan 1997.

171

BIBLIOGRAPHY

[229] Y. Xue, L. Yang, and S. Haykin. Decoupled echo state networks with lateral
inhibition. NeuralNetw, 20(3):365–376, Apr 2007.

[230] X. Yao. Evolving artificial neural networks.Proceedingsof the IEEE,
87(9):1423–1447, Sept. 1999.

[231] T. Yu, L. Davis, C. Baydar, and R. Roy, editors.EvolutionaryComputation
in Practice. Number 88 in Studies in Computational Intelligence. Springer
Verlag, 2008.

[232] K. Ziemelis, editor.Complexsystems, volume 410, No 6825. Nature In-
sight, Nature Insight, 8 March 2001.

172

	Introduction
	Background
	Artificial Neural Networks
	History
	Learning Methods
	Network Topology
	Recent research

	Evolutionary Computing
	Key Issues
	Historical Trends
	An Adaptive Evolution Strategy: CMA-ES
	Applications

	Evolving Artificial Neural Network
	Evolving Connection Weights
	Evolving Network Topologies

	Topology of Complex Networks
	Small World Topology
	Scale Free Topology
	Applications to ANNs

	Research Questions

	Evolving the Topology of Self-Organizing Map
	Introduction
	Topology of Self-Organizing Map
	Kohonen Maps
	An Example with Color Data
	Quantitative measure of topology preservation in SOM
	Discussion

	Method and Experiments
	A Simple Experiment with Classical Q H Measure
	Experiments With MNIST database
	Learning
	Distance
	Labeling
	Classifying

	Direct problem
	Influence of the radius
	Robustness against noise

	Inverse problem
	The Algorithm
	Results
	Generalization w.r.t. the Learning Process

	Conclusion

	Evolutionary Optimization of Echo State Networks
	Introduction
	Reservoir Computing Model
	A Chaotic Time Series Prediction by ESN
	Researches on RC
	Discussion

	Supervised Learning of ESN
	Jaeger's Original Settings
	Which parameters to optimize?
	The experiments
	Comparative Measures
	Results
	Discussion

	Reinforcement Learning of ESN
	The Pole-balancing Benchmark
	Fitness(es)
	Experimental conditions
	Results and Discussion

	ESN vs Developmental Methods
	Conclusion

	Feature Selection in a Cortex-Like Object Recognition Model
	Cortex-Like Object Recognition
	Visual Object Recognition in the Cortex
	Standard Model Features (SMFs)
	Model Details
	The Perspectives of the Model

	PASCAL Visual Object classes Challenge (VOC08)
	Classification/Detection Image Sets
	Classification Task

	Experiments
	Using EC Algorithms with SMF Model
	Pre-training of SMFs model
	Linear Combination using CMA-ES
	Multi-Evolutionary Optimization
	Results
	Result Analysis

	Conclusion

	Conclusion
	Summary of Results
	Evolving SOM Topology
	Evolving Parameters and Hyper-parameters of ESN
	Feature Sub-Sampling in SMF Bio-Inspired Approach

	Perspectives
	Fundamental Issues
	Practical Issues

