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Ceci est un résumé en français du manuscrit de thèse. Le manuscrit complet (rédigé en

anglais) se situe à la suite de ce résumé.

Following is a french summary of the thesis. The complete manuscrit, written in en-

glish, is found after this summary.



Résumé Français

Introduction

Le domaine de l’Apprentissage par Renforcement (AR) [SB98, BT96] se trouve à

l’interface entre la théorie du contrôle, l’apprentissage supervisé et non-supervisé,

l’optimisation et les sciences cognitives. Alors que l’AR s’attaque à des objectifs ayant

des impacts économiques majeurs (par exemple le marketing [AVAS04], le contrôle de

centrales électriques [SDG+00], les bio-réacteurs [CVPL05], le contrôle d’hélicoptères

[NKJS04], la finance [MS01], les jeux vidéos [SHJ01b], la robotique [KS04]), les diffi-

cultés théoriques et pratiques sont nombreuses.

Formellement, l’AR considère un environnement décrit à partir de transitions ; étant

donné l’état courant du système étudié et l’action choisie par le contrôleur, la transi-

tion définit l’état suivant. L’environnement définit aussi la récompense perçue par le

système lorsqu’il évolue à travers les états visités. Le but de l’AR est de trouver une poli-

tique ou contrôleur, associant à chaque état une action de telle sorte qu’elle optimise les

récompenses reçues au court du temps. L’AR apprend une politique par exploration de

l’espace d’état × actions, soit réellement, soit en simulation.

Ce manuscript présente les contributions de cette thèse dans le domaine de

l’Apprentissage par Renforcement :

• Le châpitre 2 est consacré aux Réseaux Bayésiens (RBs), qui sont communément

utilisés comme outils de représentation des environnements en AR. Notre contri-

bution théorique est basée sur une nouvelle borne des nombres de couverture de

l’espace des RBs, incluant l’entropie structurelle du réseau, en plus du classique

nombre de paramètres. Les contributions algorithmiques concernent l’optimisation
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paramétrique et non paramétrique du critère d’apprentissage basé sur cette borne,

dont les mérites sont démontrés empiriquement sur des problèmes artificiels.

• Le châpitre 3 étudie la Programmation Dynamique Stochastique, en se concen-

trant sur les espaces continus d’états et d’actions. Les contributions concernent

l’optimisation non-linéaire, la regression et l’échantillonnage au travers d’études

expérimentales. Ces études sont toutes conduites dans notre plateforme OpenDP,

un outil pour comparer les algorithmes sur différents problèmes.

• Le châpitre 4 s’intéresse à un problème discret en grande dimension, le jeu de Go,

qui est communément considéré comme un des challenges majeurs à la fois en ap-

prentissage automatique et en intelligence artificielle [BC01]. Un nouvel algorithme,

inspiré du domaine de la théorie des jeux, appelé UCT [KS06], est adapté au con-

texte du Go. L’approche résultante, le programme MoGo, est le programme de Go

le plus performant au moment de l’écriture de cette thèse, et ouvre de prometteuses

perspectives de recherche.

La suite de ce résumé est organisé de la façon suivante. La première section présente

brièvement des notions fondamentales du domaine de l’AR. La section suivante présente

les contributions dans le domaine de l’apprentissage de modèle sous la forme de Réseaux

Bayesiens. Puis se trouve un résumé des résultats correspondant à la programmation dy-

namique dans le continu. A la suite se trouvent les contributions dans le domaine applicatif

du jeu de Go. Enfin la dernière section conclut et donne des perspectives à ce travail.

Notions Fondamentales

Markov Decision Process (MDP)

Les Processus de Décision de Markov (PDMs, Markov Decision Process en anglais) est

le concept le plus courant pour modéliser les problèmes d’apprentissage par renforcement.

Formellement, un PDM est défini comme un quadruplet (S ,A , p,r) où:

• S est l’espace d’état (peut être discret ou continu);
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• A est l’espace d’action (peut être discret ou continu);

• p distribution de probabilité de la fonction de transition;

• r est la fonction de récompense.

Le temps est supposé discret dans la suite. p est définie pour tout pas de temps t (on

note pt), et son domaine de définition est S × S ×A . Plus précisement, pour un pas de

temps t, un état s ∈ S et une action a ∈ A , pt(.|s,a) est la distribution de probabilité de

l’état suivant que l’on peut atteindre en prenant l’action a dans l’état s. En particulier,

∀t, ∀s ∈ S , ∀a ∈ A ,

Z

s′∈S
pt(s′|s,a) = 1ds′

La fonction de récompense r est définie pour tout pas de temps t (on note rt), et son

domaine de définition est S ×A . Plus précisément pour un pas de temps donné t, un état

s ∈ S et une action a ∈ A , rt(s,a) est la récompense immédiate obtenue en prenant l’action

a dans l’état s. rt(s,a) peut être aléatoire.

Certains PDMs peuvent être stationaires, i.e. p et r ne dépendent pas de t. Plus

précisement,

∃p : S ×S ×A → R, ∀t pt = p

et

∃r : S ×A → R, ∀t rt = r

La propriété principale des PDMs (stationaires ou pas) et la propriété de Markov, qui

dit que la distribution des états suivants et les récompenses ne dépendent que de l’état

courant et de l’action et pas des états et actions passés. En notant un historique ht =

(s0,a0, ...,st−1,at−1) et Ht l’ensemble des historiques pour un pas de temps donné t, la

propriété de Markov s’écrit:

∀t, ∀ht ∈ Ht , ∀st ,st+1 ∈ S , ∀at ∈ A , P(st+1|ht ,st ,at) = P(st+1|st ,at) = pt(st+1|st ,at)
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Politique

Une politique modélise les décisions prises par l’agent dans l’environnement. Une politique

est une fonction dont le domaine de définition est S , souvent notée π, et pour s∈ S , ∀t πt(s)

est une variable aléatoire sur A .

Une politique est stationnaire quand elle ne dépend pas du pas de temps t, i.e.

∃π, ∀t, ∀s ∈ S πt(s) = π(s).

Critères

Pour résoudre un PDM, c’est à dire construire une ”bonne” politique pour ce problème,

se pose la question du critère à maximiser. Les critères principaux sont une somme des

récompenses instantannées, éventuellement actualisées (c’est à dire quand les récompenses

futures sont exponentiellement diminuées par γt avec t la distance au moment futur et γ <

1). Voici les deux principaux critères utilisés dans la suite:

• Horizon fini T : E[∑T−1
t=0 rt ]

• γ-actualisé: E[∑∞
t=0 γtrt ]

Fonction de valeur

La fonction de valeur d’une politique π donnée en un état s est la valeur du critère choisi si

l’agent part de cet état s et suit la politique π jusqu’à la fin de l’épisode (si horizon fini ou

état absorbant), ou la limite en fonction du temps (si horizon infini).

Programmation Dynamique Stochastique (horizon fini)

Un algorithme classique à la base de nombreux algorithmes d’apprentissage par renforce-

ment est la programmation dynamique [Bel57]. Nous le présentons ici par son importance

et à cause de son utilisation dans la suite de la thèse. Pour simplifier, on se place dans le

cadre horizon fini.

Le modèle de l’environnement est ici supposé connu (i.e. on peut simuler chaque tran-

sition en n’importe quel état, sachant l’action). Le principe d’optimalité de Bellman dit
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que l’accès à la fonction de valeur de la politique optimale pour le pas de temps t + 1 est

suffisant pour calculer la fonction de valeur de la politique optimale pour le pas de temps

t. Comme la fonction de valeur de la politique optimale pour le dernier pas de temps est

triviale à calculer, par récurrence à l’envers dans le temps, on peut calculer la fonction

de valeur de la politique optimale pour tous les pas de temps. A partir de cette fonction

de valeur, la politique optimale est simplement celle qui est gloutonne sur cette fonction

de valeur. L’algorithme 1 illustre le principe dans le cas simple où les espaces d’états et

d’actions sont finis.

Algorithm 1 Programmation dynamique en espace d’états et d’actions finis
Entrée: un PDM, avec S et A finis, horizon fini T .
Initialiser ∀s ∈ S , VT (s) = 0
for t = T −1 descendant vers 0 do

for tout s ∈ S do
Vt(s) = supa∈A

(
rt(s,a)+

R
s′∈S pt(s′|s,a)Vt+1(s′)ds′

)
end for

end for
Sortie: ∀t, Vt = V ∗t .
Sortie: ∀t,∀s πt(s) = argmaxa∈A

(
rt(s,a)+

R
s′∈S pt(s′|s,a)Vt+1(s′)ds′

)
= π∗t (s).

Complexité: T ×|S |2×|A |.

Si S est continu ou trop grand, Vt(s) ne peut plus être calculé pour tout s∈ S , et le calcul

de l’intégrale n’est plus trivial. De plus si A est continu ou trop grand, le calcul de supa∈A

devient lui aussi difficile. Cela fait l’objet du Chapitre 3.

Modèles et Réseaux Bayesiens

Introduction

La représentation de l’environnement, i.e. le modèle de transition et des récompenses, joue

un rôle clé dans le succès de nombreuses méthodes de résolution du problème d’AR. Nous

nous intéressons plus particulièrement ici au formalisme des Réseaux Bayesiens (RBs)

[KP00] qui s’est imposé comme un formalisme populaire pour représenter de façon com-

pacte (factorisée) des distributions de probabilités en grande dimension. Le cas particulier
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des Réseaux Bayesiens Dynamiques [Mur02] peut alors servir à représenter des PDMs.

Les RBs sont issus d’un mariage entre la théorie des graphes et celle des probabilités.

Un RB est un graphe dirigé sans circuit, dans lequel chaque noeud représente une vari-

able aléatoire, et les dépendances conditionnelles sont représentées par les arcs. Plus

précisément, si A1, ...,An sont les variables aléatoires (on les confond avec les noeuds du

graphe), ordonnées dans un ordre topologique du graphe, et Pa(Ai) l’ensemble des parents

de Ai dans le graphe, alors on peut écrire:

P(A1, ...,An) =
n

∏
i=1

P(Ai|Pa(Ai))

Les contributions principales dans ce domaine sont les suivantes:

• La définition d’un nouveau critère d’apprentissage, distinguant l’apprentissage

paramétrique et non paramétrique (apprendre les paramètres ou la structure du RB).

• La preuve théorique et expérimentale des propriétés de robustesse (par rapport à la

structure) de ce critère.

• La proposition de plusieurs algorithmes pour assurer la faisabilité de l’optimisation.

• Des bornes non asymptotiques sur l’erreur d’apprentissage.

Problématique

Apprendre un RBs peut être fait dans plusieurs buts: (i) évaluer qualitativement des proba-

bilités, où la question ”cet événement apparait-il avec probabilité 10−30 ou 10−5 ?” prend

tout son sens; (ii) utiliser le RB pour calculer des espérances (gains ou pertes d’une stratégie

f (X) par exemple).

Dans le premier cas, l’évaluation d’un risque, la mesure des erreurs d’apprentissage

grâce à des logarithmes est naturelle, ce qui amène aux approches de maximum de vraisem-

blance.

Dans le second cas, on veut estimer EP( f ), où P est la vraie distribution de probabilité
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de la variable aléatoire X . Si Q est une approximation de P, d’après l’inégalité de Cauchy-

Schwartz:

|EP( f )−EQ( f )| ≤ ||P−Q||2×|| f ||2

Ainsi, optimiser une fonction monotone de la norme L2 entre P et Q (i.e. ||P−Q||2)

semble l’approche naturelle.

Dans le cas où la structure courante du RB n’est pas la bonne, les deux approches ont

des robustesses différentes. Le maximum de vraisemblance (approche ”fréquentiste”1 pour

l’estimation de probabilité) implique des résultats instables; minimiser ||P−Q||2 offre alors

une meilleure robustesse.

Ainsi la première contribution de cette partie est de proposer une fonction de coût non-

standard (en apprentissage de RB), de montrer ses liens avec le critère L2 et comment

l’utiliser en pratique.

Une seconde contribution est une mesure de complexité pour les structures de RBs,

prenant en compte un terme entropique structurel, en plus du classique nombre de

paramètres du modèle. Ce nouveau critère vient avec des résultats théoriques qui mon-

trent que:

• optimiser un compromis ad hoc entre cette mesure de complexité et l’erreur L2 em-

pirique conduit à une structure optimale en taille;

• la complexité de la structure d’un RB (définissant une famille de fonction: toutes

les lois de probabilités ayant ces indépendances conditionnelles) est lié au terme

entropique, permettant de distinguer des structures ayant le même nombre de

paramètres.

• la mesure de complexité ne dépend que de la classe de distribution modélisée par la

structure, i.e. on peut travailler sur les équivalents de Markov.

1L’approche fréquentiste pour estimer la probabilité d’un événement consiste simplement à compter com-
bien de fois cet événement particulier apparait divisé par le nombre total d’apparition d’événements.
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Résultats

Les approches paramétriques usuelles (section 2.3.1) conduisent asymptotiquement aux

paramètres optimaux dans le cas où la structure du RB correspond aux indépendances

conditionnelles de la distribution générant les données. L’avantage de cette méthode est

qu’elle est très rapide, et les paramètres de chaque variable ne dépend que des variables

locales (déterminer P(B|A) ne dépend que de la fréquence des couples A,B). Une première

contribution est de montrer cependant que cette approche est instable et non optimale pour

le critère L2 si la structure ne correspond pas à la décomposition de la loi jointe. Par oppo-

sition, la méthode proposée est plus chère en temps de calcul et basée sur un apprentissage

global des paramètres mais est consistente (section 2.7.2).

Les bornes de risque montrent que la probabilité d’une estimation d’erreur plus grande

qu’un certain ε est bornée par un certain δ dépendant de ε et du nombre d’exemples

d’apprentissage. De façon équivalente, ces bornes donnent le nombre d’exemples

nécessaires pour atteindre une erreur inférieure à ε avec probabilité au moins 1−δ.

Le cas des variables cachées (c’est à dire apparaissant dans le modèle, mais pas observ-

ables dans les exemples) est traité dans la section 2.6.5 en considérant le cas paramétrique

et non-paramétrique.

Un algorithme avec convergence asymptotique vers l’erreur L2 minimale est présenté en

section 2.7.4 (Thm 8). De plus, nous démontrons la convergence de l’algorithme vers une

structure minimale au sens défini par l’utilisateur (qui peut inclure les mesures classiques

de complexité).

La comparison de notre mesure de complexité et les mesures usuelles fait apparaitre des

termes principaux dans la mesure de complexité. Le nombre de couverture du RB associé

à une structure donnée est directement lié à la complexité de la structure. La borne donnée

par le théorème 7 dépend à la fois du nombre de paramètres R et de l’“entropie” H(r) de

la structure, où H(r) = −∑a
k=1

r(k)
R ln( r(k)

R ) et r(k) est le nombre de paramètres de chaque

noeud k (R = ∑k r(k)). Il est montré de plus empiriquement que H(r) est corrélé avec la

complexité de la structure pour R fixé.

La section 2.8 présente différents algorithmes pour optimiser le critère proposé. Ces

algorithmes sont basés sur une des méthodes quasi-Newton les plus standard, BFGS
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[Bro70, Fle70, Gol70, Sha70], et utilisent une estimation non-triviale de la fonction de

coût et de son gradient.

Enfin, l’approche est validée expérimentalement en section 2.9 en montrant sa perti-

nence statistique et son fonctionnement en pratique.

Programmation Dynamique Stochastique Robuste

Introduction

L’algorithme de programmation dynamique pour résoudre les PDMs est à la fois une des

plus anciennes méthodes, mais aussi à la base de nombreux algorithmes plus récents.

D’autre part, cet algorithme trouve sa place dans des applications d’optimisation en vraie

grandeur dans lesquelles la robustesse est importante et où les conditions d’utilisation de

cette méthode sont satisfaites (voir Chapitre 1).

Nous nous intéressons dans cette partie au cas continu, cas dans lequel chaque étape

de l’algorithme pose un problème difficile en soit. Les étapes qui sont plus partic-

ulièrement étudiées dans cette thèse sont l’optimisation (une fois Vt+1 connue, comment

calculer le supa∈A ), l’apprentissage (construire Vt à partir d’exemples (état, valeur) ), et

l’échantillonnage (comment choisir les exemples à partir desquels apprendre). Bien en-

tendu, ces trois étapes sont interdépendantes mais ont aussi leur particularités propres.

Optimisation

Le supa∈A est calculé de nombreuses fois pendant une résolution du problème par pro-

grammation dynamique. Pour T pas de temps, si N points sont requis pour approximer

efficacement chaque Vt , alors il y a T ×N optimisations. De plus, le gradient de la fonction

à optimiser n’est pas toujours disponible, à cause du fait que des simulateurs complexes

sont parfois employés pour calculer la fonction de transition. La fonction à optimiser est

parfois convexe, mais souvent ne l’est pas. De plus, des mixtures de variables à la fois

continues et discretes sont parfois à traiter.

Les exigences quand à l’optimisation sont principalement à propos de la robustesse. En

optimisation non linéaire, elle peut avoir plusieurs définitions (on suppose qu’on cherche à
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minimiser la fonction):

• Un premier sens est qu’une optimisation robuste est la recherche de x tel que la

fonction a des valeurs faibles dans le voisinage de x, et pas seulement en le point x.

En particulier, [DeJ92] a introduit l’idée que les algorithmes évolutionnaires ne sont

pas des optimiseurs de fonction, mais des outils pour trouver de large zones où la

fonction a des petites valeurs;

• un deuxième sens est l’évitement des optima locaux. Les méthodes déterministiques

itératives sont souvent plus sujettes aux optimas locaux que par exemple des

méthodes évolutionnaires; cependant, différentes formes de ”restarts” (relancer

l’optimisation d’un point initial différent) peut aussi être efficace pour éviter les op-

timas locaux;

• un troisième sens est la robustesse devant le bruit de la fonction à optimiser. Plusieurs

modèles de bruits et études peuvent être trouvés dans: [JB05, SBO04, Tsu99, FG88,

BOS04].

• une quatrième définition peut être la robustesse vis à vis de fonctions peu régulières,

même s’il n’y a pas de minimum local. Des algorithmes qui sont basés sur le rang

des valeurs des points visités (comme les algorithmes évolutionnaires) et non pas les

valeurs elles-mêmes, ne dépendent pas, par construction, des transformations crois-

santes de la fonction objectif. Ce genre d’algorithmes sont optimaux vis à vis de

ces transformations [GRT06]. Par exemple,
√
||x|| (ou des fonctions C∞ proches de

celle-ci) entraı̂ne un très mauvais comportement des algorithmes de type Newton,

comme BFGS, alors qu’un algorithme basé sur le rang a le même comportement sur√
||x|| que sur ||x||2.

• un cinquième sens possible est la robustesse par rapport aux choix non déterministes

de l’algorithme, ou en tout cas arbitraires (e.g. choix du point initial). Les algo-

rithmes à base de population (conservant à chaque itération non pas un point candi-

dat, mais plusieurs) sont plus robustes en ce sens.
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Apprentissage

La regression dans le cadre de l’apprentissage par renforcement apporte des problématiques

qui sont moins critiques dans le cadre de l’apprentissage supervisé classique. Les con-

traintes sont similaires à celles exposée pour l’optimisation, en particulier :

• De nombreuses étapes d’apprentissage ont a être effectuées, avec parfois un coût de

calcul pour un exemple (qui demande de simuler au moins une étape de la transition,

et plusieurs si une espérance doit être calculée) très élevé. Donc l’apprenneur doit

être capable de travailler avec peu d’exemples dans certains cas;

• la propriété de robustesse de l’apprenneur est critique c’est à dire que le pire cas entre

plusieurs apprentissages a plus de sens que l’erreur moyenne;

• l’existence de faux minima locaux dans la fonction d’approximation peut être

problématique pour les optimiseurs;

• la fonction de coût qu’il faut appliquer lors d’un apprentissage (L2, Lp, . . . ) n’est pas

bien connu même en théorie (voir [Mun05]).

Echantillonnage

Comme noté par exemple par [CGJ95b], la capacité de l’appreneur de choisir ses exemples

pour améliorer la qualité de l’apprentissage, est un point central dans l’apprentissage. Dans

ce modèle de l’apprentissage, l’algorithme est fait de : (i) un échantillonneur qui choisit

des points dans le domaine et (ii) d’un appreneur passif qui prend ces points et les labels.

Nous distinguons dans la suite deux types d’apprentissage actif :

• Approches ”aveugles” dans lesquelles les points sont choisis indépendamment de

l’appreneur et des labels. Cela correspond essentiellement à des suites de points bien

répartis dans le domaine par exemple de façon ”quasi-aléatoire” [CM04].

• approches ”non-aveugles”, où l’échantillonnage utilise la connaissance des labels des

points précédents et de l’appreneur pour choisir le ou les points suivants.
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Il est à noter que bien que plus générales, la supériorité des méthodes non-aveugles n’est

pas évidente. Notamment, explorer l’ensemble du domaine sans se focaliser sur une région

qui semble intéressante permet d’éviter certaines erreurs.

L’étude de l’échantillonnage dans le cadre la PD est intéressante en soit par rapport

au cadre de l’apprentissage supervisé, car le lien entre l’exploration et l’exploitation y est

beaucoup plus fort.

Résultats

Les contributions principales de cette partie se déclinent en deux catégories. D’abord, le

développement d’une plateforme opensource libre OpenDP offrant à la communauté un

environnement commun et avec de nombreux outils pour comparer les algorithmes. Cette

plateforme est utilisée pour effectuer une comparaison empirique de l’optimisation, appren-

tissage et échantionnage dans le cadre de la Programmation Dynamique (PD). D’autre part,

des résultats théoriques à propos des méthodes d’échantillonnage et une nouvelle méthode

d’échantillonnage active sont présentés.

Pour l’optimisation, les résultats expérimentaux démontrent comme attendu que les

propriétés de robustesse exposées plus haut sont primordiales. Ce sont les algorithmes

évolutionnaires qui ont souvent les meilleures performances. Plus précisement:

• Gestion de stocks en haute dimension. CMA-ES est un algorithme efficace quand

la dimension augmente et pour des problèmes assez réguliers. Il est moins robuste

qu’un algorithme évolutionnaire plus simple (appelé EA dans la thèse), mais apparait

un très bon candidat pour l’optimisation non-linéaire nécessaire dans les problèmes

(importants) de gestion de stocks en grande dimension, dans lesquels il y a assez de

régularités. L’algorithme BFGS n’est pas satisfaisant : en PD avec approximation,

la convexité et la dérivabilité ne sont pas des hypothèses réalistes, même si la loi

des coûts marginaux s’applique. Les expériences se sont déroulées en dimension de

4 à 16, sans heuristique pour réduire la dimension, ou une réécriture du problème

en dimension plus faible et les résultats sont clairement significatifs. Cependant,

l’algorithme CMA-ES a un coût computationnel élevé. Il est donc adapté aux cas où

la fonction à optimiser a un coût élevé, mais pourrait être moins intéressant dans les
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cas où la fonction objectif a un coût de calcul négligeable.

• Robustesse dans les cas peu réguliers. Les algorithmes évolutionnaires sont les

seuls à être plus efficaces que les optimisations par quasi-aléatoire de façon stable

dans les problèmes peu réguliers. L’algorithme appelé ”EA” n’est pas toujours le

meilleur, mais il est la plupart du temps meilleur que l’optimisation par recherche

aléatoire, ce qui est loin d’être le cas pour la plupart des autres algorithmes.

• Un outil naturel pour les problèmes ”bang-bang”2. Dans certains cas (tipique-

ment les problèmes ”bang-bang”) la discrétisation LD, introduisant un biais vers les

frontières, est de façon non surprenante la meilleure, mais est la pire sur d’autres

problèmes. Ce n’est pas un résultat évident, car cela montre que la méthode LD

fourni une façon naturelle de générer des solutions ”bang-bang”.

En apprentissage, l’algorithme SVM donne les meilleurs résultats pour un nombre

important de problèmes, et aussi obtient de loin les résultats les plus stables. C’est cohérent

avec les bons résultats de cet algorithme obtenus dans des benchmarks d’apprentissage

supervisé. De plus, le coût en temps de calcul dans ces expériences est limité. Cependant,

ce coût devrait augmenter rapidement avec le nombre d’exemples pour deux raisons.

D’abord, le temps d’apprentissage peut être quadratique en le nombre d’exemples, et donc

devenir prohibitif. L’autre source de coût en temps de calcul est moins souvent mis en avant

dans l’apprentissage supervisé, mais a dans ce contexte une grande importance : le temps

pour appliquer un appel de fonction. En effet, pour chaque état échantillonné, l’équation

de Bellman appelle N ×m fois la fonction Vt+1, avec m le nombre d’appels de fonction

autorisé dans l’optimiseur, et N le nombre d’appel à la fonction de transition pour calculer

l’espérance. Ainsi, avec n le nombre d’états échantillonnés et T l’horizon, la procédure de

PD complète a besoin de T ×n×N×m appels aux fonctions apprises. Le coût d’un appel

à un V représenté par un SVM est linéaire en le nombre de vecteurs de support, soit en

pratique dans les problèmes de regression, aussi linéaire en le nombre d’exemples. Avec

2Un problème est ”bang-bang” quand l’action optimale se trouve sur une frontière de l’espace d’action.
Pour un problème de conduite de voiture, cela voudrait dire que l’action optimale est d’accélérer à fond ou
de freiner à fond.
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α < 1 ce coefficient de linéarité, la procédure prend environ T ×αn2×N×m. Ainsi, le

coût total des appels de fonction est aussi quadratique en le nombre d’exemples utilisés à

chaque pas de temps, et ce terme est souvent dominant.

Les résultats de l’échantillonnage ne sont pas en compétition directe avec d’autres

améliorations de l’apprentissage par renforcement, mais sont plutôt orthogonales. La partie

théorique montre principalement qu’une part d’aléatoire est nécessaire, pour la robustesse,

mais que cette part d’aléatoire peut être modérée et que les bonnes propriétés de vitesse

de convergence des suites déterministes peuvent être conservées. Ces résultats sont à rap-

procher du fait (voir par exemple [LL02]) que de l’aléatoire doit être ajouté dans les suites

quasi-aléatoires pour plusieurs propriétés d’absence de biais.

Les conclusions expérimentales sont les suivantes :

• Notre nouvelle méthode d’échantillonnage appelée GLD est plus performante que

tous les autres échantillonneurs aveugles dans la plupart des cas. En particulier c’est

une extension naturelle pour tout les nombres de points et toute dimensionalité des

échantillonnages par grille régulières, et est différente et meilleure que les autres

approches à faible dispersion. Cette approche aveugle est la plus stable (première

dans la plupart des benchmarks); cependant, ses faiblesses se révèlent lorsque les

frontières ne sont pas pertinentes.

• Notre nouvelle méthode d’échantillonnage non aveugle est facile à utiliser ; il

est facile d’y ajouter de la connaissance experte (augmenter α pour explorer plus

le domaine, le réduire pour se concentrer sur les parties optimistes, changer le

critère, ajouter de la diversité à l’algorithme évolutionnaire). Cependant, les

expériences montrent que le critère testé ici n’est pas universel ; il fonctionne pour

le problème ”many-bots”, donnant des stratégies avec de meilleures performances

que toutes les techniques aveugles testées, mais obtient de mauvais résultats pour

d’autres problèmes. Ceci est plutôt décevant, mais nous pensons que les méthodes

d’échantillonnage non-aveugles demandent en général de la mise au point fine.

L’algorithme, en changeant le paramètre α passe continument de l’échantillonnage

aléatoire pur (ou potentiellement quasi-aléatoire, cela n’a pas été testé ici), jusqu’au
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sur-échantionnage des zones vérifiant une heuristique spécifiée par l’utilisateur.

Un des avantages de cette méthode est qu’elle semble fonctionner en dimension

raisonnablement grande, ce qui est un cas rare pour les méthodes d’apprentissage

actif, spécialement en regression.

Cas discret de grande dimension: Computer-Go

Introduction

Les jeux sont traditionnellement une source d’applications pour le contrôle optimal discret

et l’Apprentissage par Renforcement. Certains algorithmes d’AR (par exemple T D(λ)

et ses variantes) ont atteint un niveau de maı̂tre dans le jeu de dames [SHJ01a], Othello

[Bur99], et les échecs [BTW98]. Le Go et le Poker restent deux jeux dans lesquels les

programmes ne peuvent inquiéter les meilleurs humains.

Beaucoup d’approches basées sur l’AR contiennent : i) une exploration par structure

d’arbre de l’espace d’états ; ii) une fonction de valeur, pour évaluer les feuilles et les noeuds

de l’arbre. Le jeu de Go, un jeu Asiatique plusieurs fois millénaires qui jouit d’une grande

popularité à travers le monde, impose des challenges dans ces deux directions. D’un côté,

même si les règles sont simples (voir la figure 1), l’espace d’états est très grand et le nombre

moyen de coups possibles (et donc le facteur de branchement de l’arbre) est supérieur à

200. Au contraire, les règles des échecs sont plus complexes mais le nombre moyen de

coups possibles est environ 40. D’un autre côté, il n’y a pas de solution réellement efficace

pour modéliser et apprendre la fonction de valeur. Ainsi, l’algorithme alpha-beta ne donne

pas de bon résultats, contrairement aux échecs où par exemple DeepBlue [New96] dépend

essentiellement de alpha-beta. Ces deux raisons expliquent pourquoi le Go est considéré

comme un des grands challenges de l’intelligence artificielle, remplaçant les échecs dans

ce rôle [BC01]. Le tableau 1 montre le status actuel entre les meilleurs programmes et les

meilleurs humains dans plusieurs jeux célèbres.

Des progrès récents sont apparus pour l’évaluation des positions basée sur des ap-

proches par Monte-Carlo [Bru93a]. Cependant, cette procédure d’évaluation a une

précision limitée ; jouer le coup avec le plus grand score dans chaque position ne donne pas
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Jeu Année du premier prog. Niveau Date victoire
contre les et/ou

Nom du prog. (Auteur) humains Nom du prog.
Echecs 1962 Kotok-McCarthy M > H 1997 Deeper Blue
Backgammon 1979 SKG 9.8 (Berliner) M ≥ H 1998 TD-Gammon
Checkers 1952 (Strachey, Samuel) M >> H 1994 Chinook

≈ resolu
Otello 1982 IAGO (Rosenbloom) M >> H 1997 LOGISTELLO
Scrabble 1977 (Shapiro and Smith) M > H 1998 MAVEN
Bridge 1963 (Berlekamp) M ≈ H GIB
Poker 1977 (Findler) M << H POKI
Go 1970 (Zobrist) M << H MoGo

Table 1: Status du niveau des meilleurs programmes contre les meilleurs humains dans
plusieurs jeux populaires. La première colonne correspond aux noms des jeux. La seconde
colonne est l’année du premier programme jouant à ce jeu à un niveau intéressant, avec
parfois le nom du programme et le nom de l’auteur. La troisième colonne donne le status
actuel entre le meilleur programme (M) et le champion du monde (H). Si le programme est
meilleur que l’humain, alors la dernière colonne donne l’année et le nom du programme
ayant battu la première fois le champion du monde. Sinon, la dernière colonne donne le
nom du meilleur programme actuel.

la victoire. Une approche exploration/exploitation, basée sur le problème du bandit man-

chot est considérée. Dans ce modèle, plusieurs machines à sous sont disponibles, chacune

avec une certaine probabilité de victoire. Le joueur doit maximiser la somme totale de ses

gains [ACBFS95]. L’algorithme UCB1 [ACBF02] a été récemment étendu à un espace

structuré en arbre par Kocsis et Szepesvari (algorithme UCT) [KS06].

Les contributions de cette partie peuvent se décliner en deux ensembles. Le premier

concerne la politique de simulation utilisée dans l’évaluation par Monte-Carlo. Le second

concerne l’arbre de recherche par l’algorithme UCT.

Résultats

La politique de simulation

La méthode de Monte-Carlo permet d’approximer l’espérance de gain à partir d’une po-

sition, si on suit une certaine politique (de jeu). Cette approximation devient plus précise



19

Figure 1: (Gauche) Une position d’exemple pour le jeu de go sur plateau 9×9. Le noir et
le blanc jouent alternativement pour placer des pierres. Les pierres ne peuvent pas jamais
bouger mais peuvent être capturées si elles sont complètement entourées. Le joueur qui
entoure le plus de territoire a gagné la partie. (Droite) Les formes ont une place importante
dans la strategie du jeu de go. La figure montre (dans le sens des aiguilles d’une montre
en partant d’en haut à gauche) des formes locales de taille 1×1, 2×1, 2×2 and 3×3 qui
apparaissent dans la position de l’exemple.

à mesure que le nombre de simulation augmente, et converge vers l’espérance, mais cette

espérance n’est qu’une approximation de la ”vraie” valeur min-max de la position.

Nos contributions pour la politique de simulation se déclinent sous trois axes. Le pre-

mier est l’utilisation de séquences de coups forcés dans les simulations, grâce à des motifs

locaux. Cette modification augmente le niveau de jeu de façon très significative. D’autre

part, des résultats surprenants sont apparus : une politique de simulation qui a, comme

joueur, un niveau plus élevé, ne donne pas forcément de meilleurs résultats lorsqu’utilisé

dans Monte-Carlo. Nous utilisons notamment une politique dérivée d’une fonction de

valeur apprise par l’algorithme T D(λ) et une approximation linéaire. Une troisième con-

tribution correspond à quelques éléments théoriques montrant qu’une mémoire permet de

découpler le niveau de jeu d’une politique avec la précision de l’estimation par Monte-

Carlo.

Comprendre plus avant le lien entre politique et précision de l’estimation pourrait être

la clé des avancées supplémentaires.
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L’arbre de recherche

Le second ensemble de contributions correspond à la partie de l’algorithme de l’arbre de

recherche, UCT. Plusieurs améliorations sont proposées, la principale étant l’algorithme

”RAVE” (Rapid Action Value Estimation), qui est inspiré de l’heuristique ”All moves as

first” dans le computer go et est adaptée à UCT. Cet algorithme apporte plusieurs centaines

de points ELO d’amélioration du niveau de jeu 3 particulièrement quand seulement un petit

nombre de simulations par coup est disponible 4. Mais encore plus significativement, cela

permet d’atteindre un niveau relativement élevé sur des plateaux de jeu plus grands, qui

posent beaucoup plus de problèmes aux algorithmes basés sur Monte-Carlo/UCT. L’idée

est de considérer l’ensemble des coups joués par la politique dans une simulation Monte-

Carlo, et, dans une position donnée, en plus d’estimer la probabilité de gagner sachant

qu’on a effectué une action a au premier coup), on estime aussi la probabilité de gagner

sachant qu’on effectue a avant l’adversaire (mais pas forcément au premier coup). Ceci

peut être directement appliqué à d’autre problèmes où certaines actions peuvent permuter.

Conclusion et Perspectives

Cette thèse présente plusieurs contributions dans le domaine de l’apprentissage par ren-

forcement, ou domaines connexes.

La première partie (Chapitre 2) présente un modèle très populaire, les Réseaux

Bayesiens, cette famille de modèles graphiques pouvant tirer avantage de la structure du

problème, représentant par exemple un PDM factorisé à l’aide d’un Réseau Bayésien Dy-

namique, permettant ainsi de traiter des problèmes de plus grandes tailles. Tout d’abord, il

est montré que l’apprentissage peut être fait en utilisant une fonction de coût L2 plutôt

que le classique maximum de vraisemblance. Le premier avantage est que l’erreur

d’approximation d’une espérance calculée à partir d’un modèle est directement liée à cette

mesure L2 de l’erreur d’apprentissage. Le deuxième avantage est la convergence vers les

3Le classement ELO (http://en.wikipedia.org/wiki/Elo rating system) est un système de
classement où la probabilité de victoire est directement liée à la différence entre les rangs.

4Une version de MoGo limitée à seulement 3000 simulations par coup, i.e. jouant en moins d’une seconde
chaque coup a atteint un niveau de 2000 ELO sur le server ”Computer Go Online Server”
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paramètres optimaux (à structure fixée) lors de l’apprentissage à partir d’une structure

erronnée. Cependant, l’optimisation des paramètres est computationellement beaucoup

plus coûteuse que la méthode fréquentiste, et nous proposons des algorithmes pour rendre

l’apprentissage possible en pratique. D’autre part, nous démontrons des bornes sur l’erreur

d’apprentissage. A partir de ces bornes, est dérivé un nouveau score pour les structures et

nous montrons sa pertinence expérimentalement. Nous utilisons aussi ces résultats pour

proposer des algorithmes d’apprentissage basés sur les théorèmes.

La seconde partie s’intéresse à la Programmation Dynamique dans le cas d’espaces

d’états et d’actions continus. La première contribution est notre plateforme OpenDP,

pouvant être utilisée par la communauté comme un outil pour comparer les algorithmes

sur différents problèmes. La seconde contribution est une étude expérimentale sur

l’effet des algorithmes d’optimisation non-linéaires, l’apprentissage par régression et

l’échantillonnage, dans le cadre de la programmation dynamique en continu. Dans ces trois

étapes, la robustesse de l’algorithme est mise à l’épreuve pour obtenir un contrôle de qualité

après intégration. Dans ces tâches, les algorithmes évolutionnaires, les SVMs, et les suites

à faible dispersion donnent les meilleurs résultats dans respectivement l’optimisation, la re-

gression et l’échantillonnage. La troisième contribution correspond à quelques éclairages

théoriques sur l’échantillonnage, l’aspect stochastique qui doit être conservé, et une

nouvelle méthode d’échantillonnage orthogonale aux autres méthodes d’échantillonnage

améliorées en programmation dynamique.

La troisième partie traite un problème de contrôle en haute dimension, le jeu de

go. Ce problème est un grand challenge actuel pour l’apprentissage informatique. Les

méthodes présentées pourront potentiellement être aussi appliquées à d’autres domaines.

Les contributions de ce châpitre gravitent autour de l’algorithme UCT, son application

au jeu de go, puis des améliorations dans la recherche arborescente et la politique de

simulation permettant d’évaluer les positions. Ces contributions ont été appliquées

dans notre programme MoGo5. La première contribution concerne l’introduction de

séquences de coups forcés grâce à l’application de motifs dans la politique de simulation,

permettant une évaluation beaucoup plus précise des positions. Nous montrons cependant
5MoGo a gagné plusieurs tournois internationaux dans toutes les tailles courantes de goban, avec de plus

des résultats positifs contre des joueurs humains forts notamment dans les petites tailles de goban, et est le
programme le plus performant au moment de l’écriture de cette thèse.
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expérimentalement que la qualité de la politique de simulation en tant que fonction

d’évaluation n’est pas directement liée à son efficacité en tant que joueur. Nous proposons

quelques explications sur le plan théorique de ce résultat surprenant. La seconde contri-

bution principale concerne la généralisation des valeurs des actions à l’intérieur de l’arbre

de recherche. Cette généralisation augmente significativement les performances dans les

petites tailles de goban, mais surtout permet à l’algorithme de se montrer efficace même

dans les plus grandes tailles de goban.

Après avoir présenté à la fois un module d’apprentissage de modèle et un module de

prise de décision, une extension naturelle de ces travaux serait de les combiner dans une

application grandeur nature. Le jeu de poker propose un autre problème bien défini mais

difficile dans lequel, contrairement au jeu de go, un modèle de l’adversaire est nécessaire.

L’incertitude sur l’adversaire représente l’incertitude sur la fonction de transition du PDM

sous-jacent (les règles du jeu sont bien entendu supposées connues). Un stage en cours dans

notre groupe de recherche combine un arbre de recherche basé sur Monte-Carlo dans le

jeu Texas Hold’em à deux joueurs. L’adversaire peut être modélisé par un réseau bayésien,

utilisé comme outil pour approximer la probabilité de chaque action dépendant de variables

observables et cachées. Le critère d’apprentissage proposé dans le châpitre 2 est alors

approprié, puisqu’on s’intéresse à l’espérance du gain.

Etant donné que les problèmes rééls ont une structure sous-jacente, une des directions

de recherche les plus prometteuses pour les algorithmes basés sur UCT est de généraliser

les données entre les noeuds de l’arbre. L’idée serait d’apprendre en ligne une approx-

imation des valeurs des états spécialisée pour la distribution des états induite par UCT.

Ainsi, l’approximation est effective seulement pour un très petit sous-ensemble de tous

les états possibles, permettant une meilleure utilisation de la capacité d’approximation de

l’approximateur de fonctions que s’il était employé sur tout l’espace d’états.

Une autre direction de recherche est la parallélisation massive de l’algorithme UCT

sur un grand ensemble de machines. Bien que des implémentation sur des machines multi

processeurs à mémoire partagée ont été couronnées de succès, des études théoriques et pra-

tiques du comportement de l’algorithme dans le cadre de communications inter-machines

plus coûteuses pourrait bénéficier à des applications à grande échelle. La généralisation
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entre noeuds de l’arbre précédemment évoquée pourrait alors être utilisée pour minimiser

les données à échanger entre machines.

Cette thèse met l’accent sur les interactions de l’apprentissage par renforcement avec

d’autres domaines de recherche comme l’apprentissage supervisé, l’apprentissage non-

supervisé, l’optimisation dans le discret ou le continu, l’intégration numérique et la théorie

de l’apprentissage. Nous avons aussi mis l’accent sur l’importance d’applications grandeur

nature, et exploré comment des algorithmes simples pouvaient passer à l’échelle sur des

problèmes de plus grande taille. Nous pensons que tous ces éléments peuvent être intégrés

ensemble et que la performance d’un tel système pourraient être meilleure que la somme

de ses parties.
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Chapter 1

Introduction

Reinforcement Learning (RL) [SB98, BT96] is at the interface of control theory, super-

vised and unsupervised learning, optimization and cognitive sciences. While RL addresses

many objectives with major economic impact (e.g. marketing [AVAS04], power plant con-

trol [SDG+00], bio-reactors [CVPL05], Vehicle Routing [PT06], flying control [NKJS04],

finance [MS01], computer games [SHJ01b], robotics [KS04]), it raises deep theoretical and

practical difficulties.

Formally, RL considers an environment described from transitions; given the current

state of the system under study, given the current action selected by the controller, the

transition defines the next state. The environment also defines the reward collected (or the

cost undergone) by the system when going through the visited states. The goal of RL is to

find a policy or controller, associating to each state an action in such a way that it optimizes

the system reward over time. RL proceeds by learning a policy through exploring the state

× action space, either actually (in situ) or virtually (in silico, using simulations).

This manuscript presents the thesis contributions to the field of Reinforcement Learn-

ing:

• Chapter 2 is devoted to Bayesian Networks (BNs), which are commonly used as a

representation framework for RL policies. Our theoretical contribution is based on a

new bound for the covering numbers of the BN space, involving the network struc-

tural entropy besides the standard number of parameters. The algorithmic contribu-

tion regards the parametric and non parametric optimization of the learning criteria

1
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based on this bound, the merits of which are empirically demonstrated on artificial

problems.

• Chapter 3 investigates the Stochastic Dynamic Programming (SDP) framework, fo-

cussing on continuous state and action spaces. The contributions regard non-linear

optimization, regression learning and sampling through empirical studies. Those

studies are all conducted in our framework OpenDP, a tool to compare algorithms in

different benchmark problems.

• Chapter 4 focuses on a high-dimensional discrete problem, Computer-Go, which

is commonly viewed as one of the major challenges in both Machine Learning and

Artificial Intelligence [BC01]. A new algorithm derived from the Game Theory field,

called UCT [KS06] is adapted to the Go context. The resulting approach, the MoGo

program, is the world strongest Go program at the time of writing, and opens to

exciting perspectives of research.

The rest of this chapter is meant to introduce the scope of the thesis and provide the gen-

eral formal background for the other chapters. Specific bibliography will also be provided

for each chapter.

1.1 Markov Decision Process (MDP)

This section presents Markov Decision Processes (MDP), the most widely used framework

for Reinforcement Learning. Specific flavors of MDP will be introduced thereafter, namely

Model-free (section 1.2) and Model-based (section 1.3) approaches.

The MDP framework describes a control problem where an agent evolves in an envi-

ronment and aims to optimize some reward. As an example, a car driver (the agent) deals

with the physics laws, the map and the traffic (the environment); the agent’s goal is to min-

imize his time to destination while avoiding accidents. In order to do so, the agent applies

a policy (e.g. turn left and right, speed up, up to the speed limit). The success of a given

policy is assessed from the associated reward. Learning a good policy is the goal of RL

algorithms, and the most common RL algorithms will be presented in this section.

Formally, a MDP is a tuple (S ,A , p,r) where:
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• S is the state space (which can be discrete or continuous);

• A is the action space (which can be discrete or continuous);

• p is the probability transition function (defined below);

• r is the reward function (defined below).

While the time domain can be either discrete or continuous, the discrete time framework

will be considered in the rest of this chapter for the sake of simplicity; meanwhile, many

real-world applications can be described within the discrete time framework.

The probability transition function pt is defined at every time t from S × S ×A onto

R+. More precisely, for a given time t, a state s ∈ S and an action a ∈ A , pt(.|s,a) is the

probability distribution on S describing the subsequent states one can reach taking action a

in state s. In particular1

∀t, ∀s ∈ S , ∀a ∈ A ,
Z

s′∈S
pt(s′|s,a)ds′ = 1

Remark: In the case where S is continuous, pt(s′|s,a) must be interpreted as a density

rather than a probability (i.e. pt(s′|s,a) 6= P(s′|s,a);
R

s′∈S pt(s′|s,a)ds′ = P(s′ ∈ S|s,a)).

Along the same lines, in the case where the transition is deterministic pt(s′|s,a) might

become a Dirac distribution. For the sake of simplicity, in the rest of the chapter the

distinction between probabilities and probability density function will not be emphasized

unless necessary.

The reward function rt is similarly defined at every time t from S ×A onto R. More

precisely, for a given time t, a state s ∈ S and an action a ∈ A , rt(s,a) is the instantaneous

reward gathered by the agent taking the action a in state s at time t. Note that rt(s,a) can

be stochastic (a random variable) too.

By definition, the MDP is said to be stationary if the transition and reward functions do

1While the summation is denoted by an integral (
R

) for the sake of generality, it obviously corresponds to
a sum (∑) when considering a discrete state space.
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not depend on time t, that is:

∃p : S ×S ×A → R, ∀t pt = p

and

∃r : S ×A → R, ∀t rt = r

The main property of MDPs is the Markov property, namely the fact that the transition

and reward functions only depend on the current state and action, and not on the system

history (its past states and actions). Formally, a history denotes a (finite) sequence of (state,

action) pairs: ht = (s0,a0, ...,st−1,at−1). Noting Ht the set of all possible histories at time

t, the Markov property is defined as:

∀t, ∀ht ∈ Ht , ∀st ,st+1 ∈ S , ∀at ∈ A , P(st+1|ht ,st ,at) = P(st+1|st ,at) = pt(st+1|st ,at)

Remark: In some cases, i) the state space S and the action space A can depend on

the current time step; the action space A can depend on the current state. For the sake of

simplicity and with no loss of generality, we shall note S and A in the following instead of

S(t) and A(t,s).

1.1.1 Policy

A core notion of Reinforcement Learning, the policy models the agent’s decisions. A

policy is a function π associating to every time step t and each state s in S , a distribution

over actions in A . Policy π is called deterministic if ∀t, ∀s ∈ S , πt(s) is a Dirac distribution

on A . We then note πt(s) ∈ A by abuse of notation.

Likewise, policy π is called stationary when it does not depend on the time step t, i.e.

∃π, ∀t, ∀s ∈ S πt(s) = π(s).

Remark: While the agent’s decisions could depend on the whole system history, thanks

to the Markov property, for any policy π there exists a policy π′ which only depends on the

current state, and which has the same value function (see 1.1.3) as π. History-dependent

policies will therefore be discarded in the following.
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1.1.2 Criteria

Resolving an MDP problem proceeds by optimizing some criterion, the most standard of

which are described in the following. In many applications the goal can be described

naturally as a sum of instantaneous rewards.

Remark: While every criterion in the following obviously depends on the current pol-

icy, only the rewards rt will be involved in the analytic formulas below; the rt are viewed

as random variables depending on the actual policy.

Finite horizon

In this case, the time interval is limited, e.g. the time to perform the task at hand is known

in advance. Noting T the maximum number of time steps allowed to perform the task

(horizon), then the criterion to maximize is the expectation of the sum of rewards over all

time steps:

E[
T−1

∑
t=0

rt ]

γ-discounted

When the task is not naturally limited wrt time, another very natural criterion proceeds by

exponentially discounting the rewards of future time steps. This discount results in nice

convergence properties (thanks to the contraction properties of the operators, see below);

its interpretation is also very intuitive in economical terms, where the discount γ≤ 1 reflects

a positive interest rate (e.g. current reward (1 + ε)rt corresponds to rt+1 with interest rate

ε = 1/γ−1).

Denoting γ ∈ [0,1) the discount factor, the reward is defined as:

E[
∞

∑
t=0

γtrt ]

This criterion also defines a “smooth horizon”, T = ∑∞
t=0 γt = 1

1−γ .
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Total

As a limit case of the γ-discounted criterion when γ→ 1, the total criterion is defined as:

lim
T→∞

E[
T−1

∑
t=0

rt ]

Clearly, this criterion is relevant iff it is not infinite, e.g. when the reward is zero after

some time step (which might depend on the policy).

Average

In some cases, we are only interested in the average reward, more specifically in the long

term average (discarding the beginnings of the history). Formally, the average reward is

defined as:

lim
T→∞

1
T

E[
T−1

∑
t=0

rt ]

In the following, we focus on the finite horizon and the γ-discounted criterions, as these

are the most commonly used on the one hand, and related to our applicative contexts on the

other hand.

1.1.3 Value functions

The crux of the RL problem is the value function V π(.) associated to a policy π; the value

function is used to compare different policies, and it plays a key role in many algorithms.

Several definitions, related to the above criteria (finite horizon, γ-discounted, total and av-

erage), are considered:

In the finite horizon case,

V π(s) = Eπ

[
T−1

∑
t=0

rt |s0 = s

]

with Eπ the expectation of realizations of MDP when following policy π. We will use E

for short when there is no ambiguity.
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Similarly, for the γ-discounted criterion:

V π
γ (s) = E

[
∞

∑
t=0

γtrt |s0 = s

]

One can define the value function starting at any time step. For the finite horizon case,

it becomes:

V π
t,T (s) = E

[
T−1

∑
t ′=0

rt ′|st = s

]

and for the γ-discounted:

V π
t,γ(s) = E

[
∞

∑
t ′=0

γt ′rt ′ |st = s

]

Similar definitions are provided for the other criterions.

Let V denote the set of all possible value functions for a given criterion.

Equivalently, the value function can be defined in terms of Q values, where

Qπ
t (s,a) = rt(s,a)+ γ

Z

s′∈S
pt(s′|s,a)V π

t+1(s
′)

Both definitions are equivalent (V π(s) = Ea∼π(s)Qπ(s,a)), with different strengths and

weaknesses in practice.

The major merit of Q functions is to enable action selection in a direct way, based on the

“only” optimization of Q whereas the use of V requires the additional use of the transition

function and the expectation computation.

In contrast, V is defined on S (whereas Q is defined on S ×A). The domain size can be

then much smaller.

In the following, the algorithms will be described using either the V or the Q functions,

preferring the simpler or most common description.
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1.1.4 Algorithms

With no loss of generality, let us consider the goal of maximizing the chosen criterion, and

let us denote π∗ the optimal policy (which exists, see below):

∀V ∈ V , ∀π, ∀s ∈ S , V (s) = V π(s)≤V π∗(s) = V ∗(s)

Note that finding π∗ or the associated value function V ∗ is equivalent in principle; once π∗

is given, V ∗ is computed thanks to the definition of V π∗ , and if V ∗ is given, then2.:

∀s ∈ S π∗(s) ∈ sup
a∈A

(
rt(s,a)+ γ

Z

s′∈S
pt(s′|s,a)V ∗(s′)ds′

)

In practice, V ∗ can only be known up to some approximation (especially in the con-

tinuous case) and the supa∈A is also an approximation in the continuous case (see section

3.3).

A key notion for solving MDP is the Bellman operator [Bel57], noted Lt (or L if the

problem is stationary) .

∀t, ∀V ∈ V , ∀s ∈ S , (LtV )(s) = sup
a∈A

(
rt(s,a)+

Z

s′∈S
pt(s′|s,a)V (s′)ds′

)

For the γ-discounted criterion, it becomes:

∀t, ∀V ∈ V , ∀s ∈ S , (Lγ,tV )(s) = sup
a∈A

(
rt(s,a)+ γ

Z

s′∈S
pt(s′|s,a)V (s′)ds′

)

Dynamic Programming (finite horizon)

Let us focus on the finite horizon and discrete time setting. A standard algorithm (referring

the interested reader to [Ber95, BT96] for a general introduction, and to [SB98] for many

extensions including Real Time Dynamic Programming (RTDP)), proceeds by building the

value function and learning an optimal policy, assuming that the MDP is either known or

modelled. The principles of this algorithm are furthermore the core of several classical

2Holds in the stationary case. If the MDP is non stationary, the equation remains the same but one must
know V ∗t for each time step t
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algorithms, described later on.

Indeed the Bellman’s optimality principle [Bel57] states that the value function of the

optimal policy at time step t is sufficient to build the value function of the optimal policy at

time step t−1. As stated before, the value function of the optimal policy is also sufficient to

build the optimal policy (except for the precision on the optimization step, i.e. computation

of supa∈A ).

Clearly the optimal action at the final time step T is the one which maximizes reward rT ;

therefore the value function of the final time step is easy to compute. By induction, thanks

to a backward through time computation, dynamic programming can be used to compute

the value function of the optimal policy V ∗ for every time step, and thus the optimal policy

π∗ itself.

Algorithm 2 describes the dynamic programming algorithm when S and A are finite;

other cases (where the spaces are infinite or highly dimensional) will be detailed in the

following.

Algorithm 2 Dynamic Programming in finite state and action spaces
Input: a MDP, with S and A finite, finite horizon T .
Initialize ∀s ∈ S , VT (s) = 0
for t = T −1 backwards to 0 do

for all s ∈ S do
Vt(s) = Lt+1Vt+1(s)

end for
end for
Output: ∀t, Vt = V ∗t .
Output: ∀t,∀s πt(s) = argmaxa∈A

(
rt(s,a)+

R
s′∈S pt(s′|s,a)Vt+1(s′)ds′

)
= π∗t (s).

Complexity: T ×|S |2×|A |.

Although the argmax (in πt(s) = argmaxa∈A
(
rt(s,a)+

R
s′∈S pt(s′|s,a)Vt+1(s′)ds′

)
) is

not uniquely defined, picking any action in the argmax set still leads to an optimal policy.

When the state space S is continuous or involves a large number of states, the above

algorithm faces a computational challenge, regarding:

A. The estimation of the value Vt(s) for each state s ∈ S .

B. The expectation
R

s′∈S pt(s′|s,a)Vt+1(s′)ds′.
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Symmetrically, if the action space A is continuous or highly dimensional, the computation

of supa∈A and argmaxa∈A of algorithm 2 becomes computationally heavy (see section 3.3).

Regarding the latter issue, i.e. computing the expectation
R

s′∈S pt(s′|s,a)Vt+1(s′), we

will use the term random processes to name the model of the transition function pt , used to

compute the value expectation itself.

Stochastic dynamic programming heavily relies on such random processes. The expec-

tation may be computed exactly using prior knowledge, e.g. if the physics of the problem

domain provides the transition model with a finite support. Monte-Carlo approaches can be

used based on an existing simulator (simulating several transitions and taking the empirical

average). Lastly, the transition function can be learned from data, e.g. using a dynamic

bayesian network (see Chapter 2). In the remainder of this chapter, we only assume the

existence of a transition model allowing the approximation/computation of the expectation

involved in the value function.

Regarding the optimization step (selection of the optimal action, supa∈A ), some

approximation might be needed too, depending on the action space and its representation,

and on the value function V . When this is the case, the approximation is encapsulated

within the L Bellman operator (see Algorithm 3).

Regarding the former issue, i.e. computing Vt(s) when state space S is large or con-

tinuous, standard supervised machine learning algorithms, more precisely regression algo-

rithms are used to compute it backwards. Let us denote A a regression algorithm; A takes

as input the Bellman image of the value function Lt+1Vt+1, and outputs the value function

Vt . Formally, both the input and output domains of A are RS (functions from S to R).

Several aspects must be considered in this regression stage. First of all, it makes sense

to use active learning; learner At might usefully choose its training examples, see sec-

tion 3.5. Secondly, it makes sense to consider different learning algorithms (or different

parametrization) at every time step, for the sake of computational efficiency and conver-

gence studies.

Although algorithm 3 looks simpler than algorithm 2, the complex issues are hidden in
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Algorithm 3 Approximate Dynamic Programming
Input: a MDP, finite horizon T .
Input: a sequence of learners At , t ∈ [[0,T −1]], At : RS → RS .
Initialize ∀s ∈ S , VT (s) = 0
for t = T −1 backwards to 0 do

Vt = AtLt+1Vt+1
end for
Output: ∀t, Vt .
Output: ∀t,∀s πt(s) = argmaxa∈A

(
rt(s,a)+

R
s′∈S pt(s′|s,a)Vt+1(s′)ds′

)
.

the At learners3. Note that the value function V and policy π are no longer guaranteed to

be optimal. The convergence of the process is not at stake, since there is a finite number of

iterations.

Let us define more formally the notion of convergence and optimality with respect to

V and π. Let n denote the number of examples used to learn the value function; let An
t , V n

t

and πn
t respectively denote the approximation operator, the approximated value function

and the corresponding policy. Let us consider the series V n
t as n goes to infinity. Let us

assume that An
t enforces some learning error ε(n) with respect to the L∞ norm; let us further

assume that we can perfectly compute the operator L (the expectation and the optimization

step supa∈A ). Then the value function V n
0 (iteration n and time step 0) has an L∞ error

bounded by T ε(n).

Therefore, if ε(n) goes to 0 as n goes to infinity, the approximate value function converges

toward the true one wrt L∞ norm, which implies that policy πn
t will also converge toward

the optimal one.

The noise-free assumption regarding the expectation and optimization can be relaxed; if

we instead bound the model and optimization errors (the respective bounds can easily be

introduced through e.g. Monte-Carlo expectation approximation, and random optimizers),

then V n
t and πn

t still converge toward the optimal ones with high probability.

The main difficulty raised by the above formalization is that most classical regression

procedures and bounds refer to some Lp norm p ≥ 1 rather than L∞ norm. The use of an

3One can argue that everything is discrete in a computer, making the distinction between continuous and
discrete framework only theoretical. However in practice we are never at the machine precision level, thus
continuous notions (e.g. gradient), which has no sense in discrete, hold in a computer.
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Lp norm requires one to define the underlying measure; due to the lack of prior knowledge,

the Lebesgue measure will be considered in the following4.

Unfortunately, the convergence of the learning error wrt Lp norm and Lebesgue measure

does not imply the convergence of V n
t and πn

t toward the optimal value function and policy,

as shown by the following counter-example.

Let S = [0,1], A = [0,1] and assume that there are only two time steps (noted

0 and 1). The reward is always 0 except in the final time step, where the reward

is 1 if and only if |s1− 1
2 | ≤ εp

2
5. Consider a deterministic transition function,

such that whatever the state s0 (at time step 0), action a0 leads to state s1 = a0

at time 1. The “true” value function at time step 1 V1(s1) is 1 for |s1− 1
2 | ≤ εp

2p

and 0 elsewhere.

Consider function V ′1 = −V1. By construction, ||V1 −V1
′||p = ε. Still, the

greedy policy based on V ′1 is not ε-optimal; rather, it is the worst possible

policy.

This example illustrates that for any given ε, there exists a problem in which

getting an approximation of the optimal value function at precision ε in Lp

norm does not guarantee any upper bound on the policy error.

Additional assumptions, e.g. related to the “smoothness” of the MDP, are required for

an efficient policy building using Lp -bounded learning of the value function (see [Mun07]).

Value iteration

The value iteration algorithm in infinite horizon is closely related to the stochastic dynamic

programming described in the previous subsection. The goal is to solve the Bellman’s

equation V = LV , i.e. to find the fixed point of operator L. When considering the stationary

case and a γ-discounted reward, the Bellman operator L is contractant; therefore the value

iteration algorithm proceeds by iteratively applying L to some initial value function V . Al-

gorithm 4 below considers finite state and action spaces. Following notations in algorithm
4Note that if the distribution of states, when the optimal policy is followed, was known, we could instead

use this distribution to define Lp.
5Note that the reward could be made continuous and even C∞ without changing the result. It would just

make the counter-example technically more complex.
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4, it terminates, ensuring that ||Vn−V ∗γ ||< 2γ
1−γε, with V ∗γ the value function of the optimal

policy for discount γ.

When the state space is large or continuous, some approximation is needed. See e.g.

[BD59, BT96] and [Mun07].

Algorithm 4 Value Iteration in finite state and action spaces
Input: a stationary MDP, with S and A finite.
Input: infinite horizon, γ-discounted, desired precision ε.
Initialize ∀s ∈ S , V0(s) = 0
Initialize n = 0
repeat

for all s ∈ S do
Vn+1(s) = LγVn(s)

end for
n← n+1

until ||Vn−Vn−1||< ε
Output: Vn.
Output: ∀s π(s) = argmaxa∈A

(
r(s,a)+ γ

R
s′∈S p(s′|s,a)Vn(s′)ds′

)
.

Policy iteration

Another standard algorithm, the so-called ”policy iteration” algorithm, is presented below

in the stationary case, γ-discounted reward and finite S and A (algorithm 5).

This algorithm originates from the policy improvement result, stated as follows. Let π
be a policy, and let π+ be defined as follows6:

∀s ∈ S , π+(s) ∈ argmaxa∈A

(
r(s,a)+ γ

Z

s′∈S
p(s′|s,a)V π(s′)ds′

)

Then one has:

V π+

γ ≥V π
γ

with V π+
γ = V π

γ ⇔ π = π∗

It follows that each policy iteration results either in a strictly better policy or the same

policy, and a finite sequence of policy improvements leads to the optimal policy (being

6Note that the ties in the argmax has to be broken in a systematic way in order to guarantee convergence.
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reminded that a finite MDP admits a finite number of policies).

The limitation of the approach is that the estimation of V π can be costly (first step in

the repeat loop in algorithm 5, ∀s ∈ S , Vn(s) = V πn
n (s)). This step is handled through either

Monte-Carlo approximation, or iterating operator I:

I(V )(s) = Eπ(s)

(
r(s,π(s))+ γ

Z

s′∈S
pt(s′|s,π(s))V (s′)ds′

)

in order to estimate its fixed point. The fixed point can also be computed by solving a

system of linear equations (operator I is linear): ∀s, I(V )(s) = V (s).

Algorithm 5 Policy Iteration in finite state and action spaces
Input: a stationary MDP, with S and A finite.
Input: infinite horizon, γ-discounted.
Initialize π0 an initial policy.
Initialize n = 0
repeat
∀s ∈ S , Vn(s) = V πn

n (s)
for all s ∈ S do

πn+1(s) = argmaxa∈A
(
r(s,a)+ γ

R
s′∈S p(s′|s,a)Vn(s′)ds′

)
.

end for
n← n+1

until πn = πn−1
Output: πn = π∗.

Next sections respectively present model-free and model-based methods for Reinforce-

ment Learning.

1.2 Model-free methods

By construction, model-free methods do not build any explicit model of the environment,

i.e. the transition (s,a)→ s′ and the reward functions are not explicitly represented.
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1.2.1 T D(0) algorithm

The so-called Temporal Difference (TD) algorithm first proposed by [Sut88] combines

Monte-Carlo and Dynamic Programming approaches. This algorithm is widely used thanks

to its efficiency and generality. It proceeds by iteratively updating the Q or V value function

(see 1.1.3), adjusting the function at hand depending on the prediction error.

Algorithm 6 describes the simplest TD algorithm, referred to as T D(0) and used to

learn the value function of a given fixed policy (prediction). For the sake of simplicity, let

us consider the stationary case, using a γ-discounted criterion (see section 1.1) with finite

state and action spaces.

Let π be a policy. Among the parameters of the algorithm are series αn(s) for each state

s, where αi(s) rules the size of each update step. It can be shown that function V converges

towards V π if ∀s ∈ S , ∑∞
i=0 αi(s) = ∞ and ∑∞

i=0 αi(s)2 < ∞ and if every states are visited

with a positive probability.

In practice, one most often chooses a constant series, ∀s∈ S , ∀n∈N, αn(s) = α, where

α is a small constant; while the algorithm is empirically efficient is such cases, there is no

longer any guarantee of convergence for the algorithm.

Algorithm 6 T D(0) for prediction
Input: a stationary MDP, with S and A finite. A fixed policy π
Input: infinite horizon, γ-discounted.
Input: A policy π, a initial state s0 ∈ S .
Input: A sequence αn(s), such that ∀s ∈ S , ∑n αn(s) = ∞ and ∑n αn(s)2 < ∞.
Initialize V0(s) arbitrarily, e.g. V0(s) = 0.
Initialize s = s0, n = 0
while true do

a← π(s).
Take action a, observe reward r and next state s′.
Vn+1(s)←Vn(s)+αn(s) [r− (Vn(s)− γVn(s′))].
s← s′, n← n+1.

end while
Output: V = V π

γ .
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1.2.2 SARSA algorithm

the “SARSA” algorithm presented below is an adaptation of TD(0), aimed at learning the

optimal policy π∗ [SB98]. This algorithm, referred to as On-Policy learning, proceeds

by iteratively updating the current policy πn based on the current (state, action) pair. In

contrast, in Off-Policy learning, updates are independent from the current policy; therefore

the learned policy might differ from the one used in the action selection step.

The Sarsa algorithm is also closely related to the policy iteration algorithm (Algorithm

5, section 1.1.4): iteratively and alternatively, i) prediction function Qn is updated; ii) the

policy is updated and biased towards the optimal policy wrt Qn. Formally, let us denote

πn a policy which acts consistently with Qn. A widely used method is to define πn as the

ε-greedy policy (0 ≤ ε ≤ 1) wrt Qn; with probability 1− ε the ε-greedy policy selects the

best action according to Qn (= argmaxa∈AQn(s,a)) and with probability ε, it uniformly

selects an action in A . The (very simple) ε-greedy policy guarantees that every action is

selected an infinite number of times with probability 1 irrespective of function Qn.

Obviously, in most cases an ε-greedy policy cannot be optimal (non-optimal actions always

have a probability > 0 to be selected). Under the condition that each state action pair is

visited an infinite number of times and the policy converges in the limit to the greedy policy

(e.g. setting πn to the 1
n -greedy policy on Q), convergence toward π∗ can be guaranteed

[SJLS00].

The Sarsa algorithm in the stationary, finite, γ-discounted MDP case is described below

(Algorithm 7).

1.2.3 T D(λ), Sarsa(λ) algorithms and eligibility traces

Both above algorithms, T D(0) and Sarsa, can be generalized into T D(λ) and Sarsa(λ) with

0 ≤ λ ≤ 1. The λ parameter controls the length of time over which prediction errors are

propagated. Each state is assigned an eligibility trace, indicating how often this state was

visited recently; more precisely, the eligibility trace is the γλ-discounted number of times

the state was visited.

When λ = 0 only a one-step prediction error is considered: in the T D(0) and Sarsa(0)

algorithms described above only the current error (r− (V (s)− γV (s′) or r− (Q(s,a)−



1.2. MODEL-FREE METHODS 17

Algorithm 7 Sarsa: T D(0) for control
Input: a stationary MDP, with S and A finite.
Input: infinite horizon, γ-discounted.
Input:
Let (α j) j∈N denote a sequence such that ∑∞

i=0 αi = ∞ and ∑∞
i=0 α2

i < ∞.
Define πn a policy depending on Qn
Initialize Q0(s,a) arbitrarily, e.g. Q0(s,a) = 0.
Initialize s = s0 (initial state in S ), n = 0
a← πn(s)
while true do

Take action a, observe reward r and next state s′.
a′← πn(s′)
Qn+1(s,a)← Qn(s,a)+αn [r− (Qn(s,a)− γQn(s′,a′))].
s← s′, a← a′, n← n+1.

end while
Output: Q = Q∗γ if πn explores each state-action pair an infinite number of times and
converges toward the greedy policy on Qn.

γQ(s′,a′)) respectively) is used to update the current state. When λ > 0 this prediction error

is applied to all states in each iteration, in proportion to their eligibility trace. The prediction

error is thus back-propagated to recently visited states. When λ = 1, the prediction error is

back-propagated to all visited states, and the algorithms are then equivalent to Monte-Carlo

prediction and Monte-Carlo control respectively.

The T D(λ) algorithm learns the value function for a given policy (Algorithm 8,

whereas the Sarsa(λ) algorithm learns a policy (Algorithm 9). While these algorithms

are more computationally expensive at each iteration (since each iteration requires a loop

over all states7), they converge more quickly wrt the number of time steps. Because an

additional experiment (involving the simulator or the real world) is more expensive than

the update operator, the T D(λ) and Sarsa(λ) algorithms are efficient and popular.

Several alternative updates of eligibility traces have been considered in the literature;

for example replacing traces can be used instead of the accumulating traces given in Algo-

rithm 8. Denoting the current state by sn, e(s)← γλe(s) if s 6= sn and e(s)← 1 if s = sn.

7A straightforward optimization is to only consider states with eligibility value > ε in the loop.
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Algorithm 8 T D(λ) for prediction
Input: a stationary MDP, with S and A finite.
Input: infinite horizon, γ-discounted.
Input: A policy π, a initial state s0 ∈ S , a sequence αn, λ ∈ [0,1].
Initialize V (s) arbitrarily, e.g. ∀s, V (s) = 0.
Initialize ∀s, e(s) = 0.
Initialize s = s0, n = 0
while true do

a← π(s).
Take action a, observe reward r and next state s′.
δ← r− (V (s)− γV (s′))
e(s)← e(s)+1.
for all s ∈ S do

V (s)←V (s)+αnδe(s).
e(s)← γλe(s).

end for
s← s′, n← n+1.

end while
Output: V = V π

γ .

1.3 Model-based methods

Model-based methods explicitly build a model of the environment and internally use a

planning algorithm to exploit this model. The contrast between model learning and value

function learning (as described in previous sections) can be sketched as follows.

While value function learning can be viewed as indirect learning (the agent only observes

the reward and the state/action pair), it easily derives a policy (e.g. the greedy policy based

on Q or V ).

Quite the contrary, model learning considers explicit information and can be handled

through supervised learning: one gets state s′ when taking action a in state s; therefore

updating the transition (s,a)→ s′ is trivial. However, this model does not trivially derive a

good policy.

Furthermore, model based methods allow for taking advantage of the possible factor-

izations in the environment. For instance, the notion of rotation of the robot can be grasped

more easily in terms of model (the effect is independent of its position), than in terms of
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Algorithm 9 Sarsa(λ): T D(λ) for control
Input: a stationary MDP, with S and A finite.
Input: infinite horizon, γ-discounted.
Input: λ ∈ [0,1].
Input:
Let (α j) j∈N denote a sequence such as ∑∞

i=0 αi = ∞ and ∑∞
i=0 α2

i < ∞.
Define πn a policy depending on Qn
Initialize Q0(s,a) arbitrarily.
Initialize ∀s,a, e0(s,a) = 0.
Initialize s = s0 (initial state in S ), n = 0
a← π0(s0)
while true do

Take action a, observe reward r and next state s′.
a′← πn(s′)
δ← r− (Qn(s,a)− γQn(s′,a′))
e(s,a)← e(s,a)+1
for all s ∈ S , a ∈ A do

Qn+1(s,a)← Qn(s,a)+αnδe(s).
e(s,a)← γλe(s,a).

end for
s← s′, a← a′, n← n+1.

end while
Output: Q = Q∗γ if πn explores each state-action pair an infinite number of times and
converges toward the greedy policy on Qn.
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value function (the value of the rotation indeed depends on the current position).

In summary, value functions are difficult to learn and easy to use, while models are easy

to learn and difficult to use.

Some classical model-learning algorithms are presented here, which inspired several

recent algorithms.

1.3.1 DYNA Architecture

The Dyna architecture, more a family of learning methods than an algorithm, originates

from Sutton’s Dyna-PI algorithm [Sut90]. This approach uses the policy iteration algo-

rithm (section 1.1.4) to learn the policy from the model.

The Dyna principle is to simultaneously build a model of the transitions and a model of

the expected rewards (using a value function, see previous subsections). At each iteration,

i) the current experience is used to update the model; ii) the current policy gives the next

action to take; iii) a incremental planner improves the current policy using the current

model.

The so-called Prioritized Sweeping algorithm [AWM93] helps improve the model up-

date efficiently, using a priority queue and sorting the states by (decreasing) prediction

error.

1.3.2 E3 algorithm

The Explicit Explore and Exploit algorithm (E3) [MK02] also builds an explicit model of

the environment. Here the exploration/exploitation dilemma is explicitly handled by main-

taining a list of known transitions; other transitions are referred to as unknown transitions.

Known transitions are the transitions which have been taken more than m times, where m

is determined from the desired confidence interval ±ε and risk tolerance δ after Chernoff

bound.

If the transition has been taken more than m times, then the probability of the estimate to be

wrong by more than ε is smaller than δ. A known state is a state in which every transition

is known.
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The exploration policy aims at the uniform selection of all actions in any unknown

state, by selecting the action which has been less often selected in this state (balanced

wandering).

The E3 algorithm comes with a formal proof of Probably Approximately Correct (PAC)

non asymptotic optimality; more precisely the proof concerns the quality of the policy

learned after a finite number n of experiences, while its quality refers to its behavior wrt

infinite horizon (with no learning after time n).

Let us consider the γ discounted case8.

Let M denote the real MDP, Rmax an upper bound on the rewards, T the ”horizon”9 and opt

the optimal return achieved by any policy on M within T time steps10. Let S be the current

set of known states. The known-state MDP, noted MS, is defined as follows: MS includes

all known states in M plus a single additional absorbing state s0; it includes all transitions

between known states in M; furthermore, every transition from some known state s to some

unknown state s′ in M is represented in MS as a transition from s to s0.

Informally, a policy is build on an approximation of MS, switching between exploitation

when the expected reward in the current approximation is almost optimal, and exploration

when it worthes discovering new states.

The approximation of the transition probabilities and rewards on S leads to an approxima-

tion M̂S of MS. This approximation is used to build an efficient policy on M̂S, and it is

shown that this policy is also approximately efficient on MS as follows. Let M′S be de-

fined as a copy of MS except for the reward function, set to Rmax for s0 and to 0 for all

other states. Define M̂′S as the current approximation of the optimal policy on M′S (i.e. the

policy leading to s0, i.e. getting out of S, as quickly as possible).

Then, at each iteration:

• When the current state s is unknown (s 6∈ S) apply balanced wandering and update S;

8While [MK02] dealt with the non-discounted case, the analysis of the discounted case was presented in
a longer version of [MK02].

9The horizon is defined as 1
1−γ . Formally, [MK02] defines T as the ε-return mixing time i.e. the smallest

T such as the per time step performance of the policy taken for all T ′ ≥ T is ε-close to the asymptotic
one. While [MK02] also give some ways to remove the dependency of the algorithm in T , T is kept in the
following for the sake of simplicity.

10The assumption of knowing opt can be removed, at the price of making more technically complex the
description of the algorithm.
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• when the current state s is known, a choice between exploitation and exploration is

taken:

– (Attempted Exploitation): compute off-line the optimal policy π̂ for M̂S, and its

reward at time step T in M̂S. If this reward is greater than opt−ε/2, then apply

π̂ for the next T steps. Else, choose the exploration:

– (Attempted Exploration): compute off-line the optimal policy π̂′ for M̂′S and

apply it for T steps. This policy will make the agent leave S with probability at

least ε/(2Rmax).

1.3.3 Rmax algorithm

In the same spirit as E3, the Rmax algorithm introduced by Brafman [BT01] similarly main-

tains the list of known states; the main difference compared to E3 is that Rmax does not

explicitly handle the Exploration vs Exploitation (EvE) tradeoff.

Formally, the MDP model MS is built as in E3, preserving all known states and tran-

sitions between them and adding an absorbing state. The underlying idea is simple: each

unknown state gets an expected reward value equals to Rmax, an upper bound on the re-

wards of this environment and is summarized absorbing state. Exploration is ensured as

unknown states offer a high reward. The optimal policy thus simply decides between stay-

ing in the know states or going as quickly as possible to some unknown state. This tradeoff

depends on the horizon time T = 1
1−γ : if the rewards of the known states are high and T

comparatively small, the exploration is not interesting. In the contrary, the Rmax reward of

the absorbing state representing the unknown states favors exploration. In addition to being

simpler, Rmax efficiently handles the EvE tradeoff and can be analyzed in a Game Theory

perspective. Actually, many algorithms facing the EvE tradeoff (e.g. multi-armed bandit

[ACBF02] or tree-structured multi-armed bandit [KS06]) are based on the same principle,

referred to as “Optimism in the face of uncertainty”.
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1.4 Summary

This introductory chapter has presented the domain of Reinforcement Learning, defining

its formal background, describing some of the major algorithms at the state of the art, and

discussing the many critical issues involved in the theory and practice of RL. Three of these

issues will be more particularly considered in this manuscript.

The first major issue is that of scalability. It has been emphasized all over this chapter

that the case of large finite, or continuous, action and state spaces, requires specific

approaches and strategies. In this context, it is advisable to take advantage of the prob-

lem structure, e.g. using Factored MDPs [CBG95, BH99], and representing the MDP as

a Dynamic Bayesian Network. This approach will be specifically investigated in Chapter 2.

A second critical issue regards the interplay of learning and decision, and the impact

of the learning approximation on the decision optimality. This issue defines another RL

challenge; the question is whether the stress should rather be put on the approximation

(e.g. using the best ML tools) or on the optimization (e.g. using efficient sampling) steps;

the difficulty is clearly that these steps are not independent. This issue will specifically

tackled in chapter 3, devoted to Stochastic Dynamic Programming in continuous state and

action spaces, focussing on non-linear optimization, regression learning and sampling.

A third issue concerns the Exploration vs Exploitation tradeoff. While this issue is

acknowledged a key one for both domains of Reinforcement Learning and Game Theory

(GT), little overlap between both domains has been considered in the literature until re-

cently [AO06]. The possible overlap will be investigated in Chapter 4, considering a major

challenge of AI since the end 90s, namely the domain of Computer-Go. This domain de-

fines a high dimensional discrete RL problem, which exemplifies many ML challenges.

A new algorithm inspired from GT, namely UCT [KS06] has been used and extensively

adapted to the game of Go. The resulting program, MoGo, is the world strongest go pro-

gram at the time of writing opening wide and exciting research perspectives.



Chapter 2

Data representation: Models and
Bayesian Networks

This chapter is devoted to the representation of the environment, a key aspect of dynamic

optimization problems as the success of most applications depends on the selected repre-

sentation.

Several formalisms are described (section 2.1), taking robotics and specifically robotic

mapping as motivating examples [FM02b, FM02a, Thr02]. This problem is representative

of Partially Observable Markov Decision Process (POMDP) (see section 2.1.2 and Figure

2.2), where the actual state of the environment can only be guessed from the observations.

In this case, robotic mapping is referred to as SLAM (Simultaneous Localization And

Mapping) [Thr02].

The chapter thereafter focuses on Bayesian Networks (BN) [KP00] and Dynamic

Bayesian Networks [Mur02], which have emerged as a popular formalism for compactly

representing and solving large scale Markov Decision Processes (MDPs). The main con-

tributions of the presented work concern:

• The definition of a new learning criterion, distinguishing the parametric and non

parametric learning aspects (learning the parameters and the structure of the BN).

• The robustness properties of this criterion (wrt the guessed/learned structure), proved

theoretically and empirically.

24
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• The proposal of several algorithms to ensure the tractability of the optimization.

• Non asymptotic risk bounds on the learning error.

2.1 State of the art

This section lists the standard formalisms enabling the probabilistic representation of the

environment1.

2.1.1 Hidden Markov Models (HMMs)

Let us first introduce Hidden Markov Models (HMMs), referring the interested reader to

the excellent tutorial [Rab89] for a comprehensive presentation. HMMs are a special case

of Dynamic Bayesian Networks (DBNs), again a special case of Bayesian Networks (BNs)

which are the central topic of this chapter.

Still, HMMs per se are directly or indirectly used as a model of environment in robotics

and other domains, and particularly so in robotic mapping [FM02b, FM02a, Thr02]. While

specific extensions of HMMs based on their factorization [GJ97],[BH01, HB01] or on a hi-

erarchical decomposition (see respectively [MTKW02] and [TRM01] for their application

in robotics), we here focus on the standard formalism.

An HMM is a stochastic finite automaton, involving a finite number of states noted

1 . . .K, where each state is associated a probability distribution on the observations. At

time step t, Xt is the current (hidden) state and Ot is the associated observation (a discrete

symbol or a real-valued vector). The HMM is characterized from:

• The initial state distribution π, where π(i) is the probability of being in state i at time

t = 1,

• The transition matrix T (i, j) = P(Xt = j|Xt−1 = i) (see Fig. 2.1),

• The distribution of the observations conditionally to the state, or observation model,

P(Ot |Xt).

1In a RL context, the reward function can be treated as an observation on these formalisms.
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Figure 2.1: Graphical representation of a simple HMM (from [Mur02]), not representing
the observation model. The four circles respectively represent the four states of the HMM.
The structure of the HMM is given by the five arrows, depicting the (non zero) transition
probabilities between nodes. The arrow from and to state 2 indicates the non zero proba-
bility of staying in state 2.

As the state space is discrete and finite, π represents a multinomial distribution. T

is a distribution matrix (each row sums to one) and represents a conditional multinomial

distribution. The set of pairs (i, j) such that T (i, j) > 0 is referred to as the structure2 of

the HMM.

In the case where observations are discrete symbols, the observation model is usually

represented as a matrix B(i,k) = P(Ot = k|Xt = i). When observations are real-valued vec-

tors (Ot ∈RL), the observation model is usually represented through Gaussian distributions,

with mean µ and covariance matrix Σ (Σ ∈ RL×L) depending on the state. Formally

P(Ot = o|Xt = i) = N (µi,Σi)(o) =
1√

(2π)L|Σ|exp
(
−1

2
(o−µ)′Σ−1(o−µ)

)

2.1.2 Partially Observable Markov Decision Processes (POMDP)

A Partially Observable Markov Decision Processes (POMDP) can be seen as an extension

of HMM, where the transition between states depends on the action At−1 performed at time

t− 1; the decision making process is concerned with the selection of the action among a

(usually) finite set of actions.

Accordingly, the transition matrix now defines the probability distribution for the state

Xt conditioned by state Xt−1 and action At−1, T (i, j,k) = P(Xt = j|Xt−1 = i,At−1 = k).

2It must be noted that the word structure has different meanings in the context of a HMM or a Bayesian
Network; see 2.1.5
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The observation model, as in the HMMs, depends only on the current state Xt and can

be written: B(i,k) = P(Ot = k|Xt = i).

Fig. 2.2 depicts a POMDP (extracted from [TMK04]).

Figure 2.2: A POMDP in a robotic mapping application (from [TMK04], omitting the
observations). The environment is a corridor with two crossings, alternatively represented
as a flat POMDP (top) or a hierarchical POMDP (bottom). Each state, depicted as a circle,
corresponds to a particular location and orientation of the robot (orientation given by the
arrow inside the circle). Dashed lines indicate the transitions between states depending on
the actions (rotation or translation) of the robot. White (resp. black) circles correspond to
the entry (resp. exit) states.
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2.1.3 Predictive State Representations (PSRs)

Predictive state representations (PSRs) [MLL01] are also concerned with the representation

of discrete-time dynamic systems. The main difference between PSRs and HMMs is that

the states refer to the past trajectory of the system in HMM, whereas they are defined

in terms of what comes next (the next possible observations) in PSR and in Observable

Operator Models (OOMs [Jae00]) alike. Specifically, the state of the system in PSRs is

defined as a set of observable outcome predictions.

In other words, the PSR states are concerned with what may happen in the future,

whereas HMM states characterize what happened in the past.

Following the definitions in [MLL01], the dynamic system at hand involves a discrete

set of actions noted A , where the observations range in a discrete set O. A test is a sequence

of actions-observations, e.g. a1o1a2o2...anon; which does not necessarily start at time step

t = 1. When it starts at time step 1, a test is referred to as history. The environment is

defined as a probability distribution over the set of all possible tests. The probability of

a test is the probability of observing the o1, ...,on (in that order) given that the actions

a1, ...,an are taken (in that order).

Given a set Q of tests (Q = {τ1, ...,τq}) the prediction vector is the function as-

sociating to a history h, the probability of each test conditioned by h (vector p(h) =

[P(τ1|h),P(τ2|h), ...,P(τn|h)]). This prediction vector is called a predictive state repre-
sentation (PSR) if and only if it forms a sufficient statistic for the environment, i.e., if and

only if for any test τ there exists a projection function fτ : [0,1]q 7→ [0,1] such as for any

test τ and history h

P(τ|h) = fτ(p(h))

A linear PSR is a PSR for which there exists a projection vector mτ for every test τ,

such that for all histories h:

P(τ|h) = fτ(p(h)) = p(h)mT
τ

The expressivity of PSR is higher than that of POMDP, as stated by the following

theorem [MLL01]:
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Theorem 2.1.1 (POMDP⊂ PSR ([Jae00, MLL01])) For any environment that can be

represented by a finite POMDP model, there exists a linear PSR with number of tests no

larger than the number of states in the minimal POMDP model.

The above theorem states that linear PSRs can describe the same environments as

POMDPs do, with no more states; furthermore, in some cases (e.g. in the factored MDPs

[SC98]), the number of states of the PSR can be exponentially smaller than that of the

equivalent POMDP [MLL01].

More generally, PSRs are proved to be strictly more general than POMDPs and nth-

order Markov models [SJR04]. Due to the relative novelty of these models, there are open

problems regarding the learning of compact PSRs and their use for action selection.

PSRs learning has been pioneered by [SLJ+03], using a gradient-based method for

optimizing the parameters of a linear PSR; the main limitation of this work is that it as-

sumes the tests to be given. The discovery problem (finding the tests of the PSR) was first

addressed by [JS04], considering linear PSRs; the approach relies on the existence of a

”reset” operator which can put the dynamical system in a fixed state.

More recently [BMJ+06] succeeded in learning a PSR using non exploration policies,

showing that an accurate model could be built with a significantly reduced amount of data.

Few works have been exploring the planning problem using PSRs, the first one being

[IP03] using a policy iteration algorithm. [MRJL04] presents an iterative pruning algorithm

and a Q-learning algorithm adapted to PSRs. As the state space of the PSR is continuous3,

the algorithm requires function approximation. The function approximators used were

CMACs [Alb71], a grid-based method that uses r overlapping grids, each spanning the

entire space of prediction.

2.1.4 Markov Random Fields

Markov Random Fields (MRFs) represent relationships between random variables using

graphical models (the relationship wrt Bayesian Networks will be discussed in next sec-

tion).

3Even with the world state space is discrete, a state of a PSR is a probability distribution, so is continuous.
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Let A = {A1, ...,An} denote a set of n random variables4, with S its power set.

A MRF is defined from:

• A neighborhood system, N = {N(Ai), i = 1, ...,n}, associating to each variable Ai in

A its neighborhood N(Ai)⊂ A , with Ai ∈ N(A j) iff A j ∈ N(Ai);

• A potential function f , mapping each subset of variables to R ( f : S 7→ R).

The neighborhood system is commonly represented through a graph G = (A ,E), where

{Ai,A j} is an edge in E iff Ai ∈ N(A j) (equivalently A j ∈ N(Ai)).

The above defines a MRF iff the potential function f is positive, and every variable Ai

only conditionally depends on the variables in its neighborhood:

∀s ∈ S, f (s) > 0 (positivity) (2.1)

and

∀i = 1 . . .n,P(Ai|A \Ai) = P(Ai|N(Ai)) (markovianity) (2.2)

The positivity is assumed for technical reasons and can usually be satisfied in practice.

For example, when the positivity condition is satisfied, the joint probability of any random

field is uniquely determined by its local conditional probabilities [Bes]. The markovianity

is here to model the locality of interactions between variables.

Thanks to the positivity property, potential function f can be written as an exponential

function, often using a Gibbs distribution (MRF is then referred to as a Gibbs Random

Field). Formally,

∀s ∈ S, f (s) = Z−1e−
1
T U(s)

where

Z = ∑
s∈S

e−
1
T U(s)

is the normalizing constant called the partition function, T is a constant called the temper-

ature and U(s) is the energy function.

4As usual when dealing with graphical models, we, by abuse of notation, use A to denote either the set
of random variables or the set of nodes. Likewise, we use Ai to denote the ith variable or the corresponding
node in the graph.
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Figure 2.3: A grid-structured Markov Random Field (MRF). Each node represents a ran-
dom variable, the neighborhood of which is given by the adjacent nodes. Left, center and
right graphics depict a given node and the associated neighborhood.

Fig. 2.3 shows an example of MRF where the neighborhood of each node is the four

nearest nodes in a 2D topology.

Some useful variants of Markov Random Fields are Conditional Random Fields

[LMP01, Wal04, TD04], where each random variable can also be conditioned upon a set of

global observations. The potential function f then also depends on the observations. This

form of the Markov Random Field is more appropriate ([TD04]) for producing discrimina-

tive classifiers.
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2.1.5 Bayesian Networks

Bayesian networks5 (BNs), widely acknowledged for their ability of representing and rea-

soning on uncertain environments, are viewed as a marriage between the graph theory and

the probability theory. The interested reader is referred to [Pea91, Pea00, NWL+04] for a

comprehensive presentation of bayesian networks.

A BN is made of two components: the structure of the BN is a directed acyclic graph;

and the conditional probabilities which can be represented by tabular or parametric models

like Gaussian.

A very classical and simple example of BN is based on the following set of rules:

• If it is raining or sprinklers are on then the street is wet.

• If it is raining or sprinklers are on then the lawn is wet.

• If the lawn is wet then the soil is moist.

• If the soil is moist then the roses are OK.

These rules relate a set of random variables (it is raining, sprinklers are on, the street is

wet, etc) and their relations can be represented by a graph (Fig. 2.4). Some probabilities

can be put on these rules (e.g. expressing the probability for the roses to be OK if the soil

is moist: P(roses = ok|soil = moist) = 0.7)).

Given the conditional probabilities on the set of rules (Fig. 2.4), the BN can be used to

do reasoning, i.e. computing the probability of some variable knowing some others. For

example, knowing that the roses are OK, what can be said about the state of the lawn?

Answering such questions (e.g. computing P(lawn = wet|roses = OK) and P(lawn =

dry|roses = OK)) is referred to as inference.

Let R,S,L be the variables representing respectively roses,sold, lawn, it comes:

P(R,S,L) = P(R|S,L)P(S|L)P(L)

= P(R|S)P(S|L)P(L) for R is independent of L knowing S (2.3)

5In spite of their name, Bayesian Networks are not ”Bayesian” in the sense of the Bayesian decision
theory [Rob94]; the word Bayesian here refers to the use of the ”Bayes rule”.
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We have to work through soil first.

• P(roses = OK|soil = moist) = 0.7 and P(roses = OK|soil = dry) = 0.2;

• P(soil = moist|lawn = wet) = 0.9 then P(soil = dry|lawn = wet) = 0.1

• P(soil = dry|lawn = dry) = 0.6 then P(soil = moist|lawn = dry) = 0.4

We now compute P(R,S,L) = P(R|S)P(S|L)P(L) (from equation 2.3):

• For R=ok, S=moist, L=wet, 0.7×0.9×P(L = wet) = 0.63P(L = wet)

• For R=ok, S=dry, L=wet, 0.2×0.1×P(L = wet) = 0.02P(L = wet)

• For R=ok, S=moist, L=dry, 0.7×0.4×P(L = dry) = 0.28P(L = dry)

• For R=ok, S=dry, L=dry, 0.2×0.6×P(L = dry) = 0.12P(L = dry)

Then, as

P(R = ok,L = wet) = P(R = ok,S = moist,L = wet)+P(R = ok,S = dry,L = wet)

it comes

P(R = ok,L = wet) = (0.63+0.02)P(L = wet)

.

We also have P(R = ok,L = dry) = (0.28+0.12)P(L = dry).

Now P(L|R = ok) = P(L,R)
P(R=ok) = αP(L,R = ok) with α = 1

P(R=ok) the normalizing con-

stant.

Hence, P(L = wet|R = ok) = 0.65α and P(L = dry|R = ok) = 0.3α. As

P(L = wet|R = ok)+P(L = dry|R = ok) = 1

(these are probabilities), it follows α = 1
0.95 .

Hence P(L = wet|R = ok)≈ 0.68 and P(L = dry|R = ok)≈ 0.32.

In other words, given that roses are ok the lawn is likely to be wet.

This calculus exemplifies the use of BN for inference.
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Figure 2.4: Classical example of a Bayesian Network
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2.2 Scope of the problem

Identifying the structure and the parameters of bayesian networks can be based on expert

knowledge, on data, or both. The rest of the chapter focuses on the second case, that

is, learning a law of probability from a set of examples independently and identically

distributed according to this law. Although many algorithms exist for learning bayesian

networks from data, we address specific issues here.

Indeed, a bayesian model can be designed with different goals in mind: i) in order to

evaluate probabilities (does a given event happen with probability 10−30 or 10−5?); ii) in

order to evaluate expectations (gains or losses of strategy f (X)).

In the first case, the point is to evaluate a risk; it comes naturally to use logarithms,

amenable to maximum likelihood approaches.

In the second case, the point is to estimate EP( f ), where P is the true probability dis-

tribution of random variable X . It might then be sufficient to use some approximation Q of

P, since (Cauchy-Schwartz inequality)

|EP( f )−EQ( f )| ≤ ||P−Q||2×|| f ||2

In such cases, optimizing a monotonous function of L2 norm (||P−Q||2) seems to be the

natural approach.

In the case where the current BN structure is not the right one, both approaches have

very different robustness. Typically, maximum likelihood (frequency approach for proba-

bility estimation) leads to very unstable results; minimizing ||P−Q||2 offers a much better

robustness (see 2.7.2 for details).

Therefore, the first contribution proposed in this chapter is a non-standard and tractable

loss function for bayesian networks, with evidences of the relevance of this loss function

for the L2 criterion.

A second contribution is a complexity measure for bayesian networks models, involving

a structural entropic term besides the standard number of parameters of the model. This

new complexity measure is backed with theoretical results showing that:
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• optimizing an ad hoc compromise between this complexity measure and the empiri-

cal L2 error asymptotically leads to an optimal-in-size structure;

• the sample complexity of the network is directly related to the entropy term, and this

term enables to distinguish among networks with same number of parameters (which

get same scores after the usual measures);

• the complexity measure only depends on the class of distributions that is modeled by

the network, i.e. we can work on Markov-equivalent structures.

The rest of this chapter is organized as follows: section 2.3 is a survey of BN learn-

ing and discusses our contribution compared to the state of the art; section 2.4 gives an

overview of the presented results.

In section 2.5 we introduce formally the problem and the notations. Section 2.6 first

recalls some classical results of learning theory and presents our result about evaluation

of VC-dimensions and covering numbers. We then generalize our results to more general

bayesian networks, with hidden variables, in section 2.6.5. Section 2.7 shows corollaries

applied to structure learning, parameters learning, universal consistency, and others. Sec-

tion 2.8 presents algorithmic details. Section 2.9 presents empirical results.

2.3 BN: State of the art

The problem of learning a bayesian network can be decomposed into a non-parametric and

a parametric learning tasks ([NWL+04]):

• Non-parametric learning is concerned with identifying the structure of the network,

i.e. a graph;

• Given the structure, parametric learning is concerned with identifying the conditional

probabilities among variables, i.e. the BN parameters.

The non-parametric learning task is clearly a more challenging problem than the para-

metric one.
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2.3.1 Parametric learning

Given a Bayesian Network structure, i.e. a directed acyclic graph, the conditional proba-

bilities for each variable can be learned from the data.

The classical approach for learning parameters is likelihood maximization. Classically

decomposing the joint probability as a product, this leads to independently estimate each

term of the product based on the dataset. This method asymptotically converges toward the

true probability, if the considered structure is the true one. [Das97] studies 6 the sample

complexity, i.e. how many examples are necessary to achieve a given accuracy.

The main other method, the bayesian method, aims instead at the most probable param-

eters given the data; using Bayes theorem, this amounts to biasing the most likely parame-

ters with a prior. The prior most used in the literature is the Dirichlet distribution (see for

example [Rob94]), because the Dirichlet prior is the conjugate prior7 of the multinomial

distribution.

2.3.2 Structure learning

While structure learning is NP-complete [Chi96], various methods have been proposed to

efficiently learn the structure of a bayesian network under some restrictions.

Two types of approaches have been proposed for structure learning:

• The first one identifies dependencies (and independencies and conditional dependen-

cies) among the random variables, and thereof deduces the structure of the graph;

• The second one relies on a score function, mapping every BN structure on the real

value space; a “good” structure is found by optimizing the score function.

Since the space of all structures is super-exponential, heuristics must be defined in the

latter, optimization based, approach (e.g. considering tree structures only, sorting the nodes,

greedy search). The search can also be done in the space of Markov equivalent structures

6This work is particulary relevant as this approach also uses Covering Numbers, but for a different metric.
7A class of prior probability distribution is said to be conjugate to a class of likelihood functions if the

posterior distributions are in the same family as the prior.
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(in which structures that encode the same probability law are identified), which has better

properties ([Chi02a]).

As our approach is based on a complexity measure which derives a score on BN struc-

tures, it belongs to the latter type of approaches. Notably, the proposed score is constant on

Markov-equivalent structures.

While some works consider the influence of latent variables [GM98], the proposed

complexity measure only takes into account the entropy of the dependency graph. The

entropy is consistent with the number of latent variables; in particular, the bounds we pro-

vide hold in the latent variable case, although the score is the same as if all variables were

observable. A direction for further improvement is based on [GM98], considering the sta-

tistical properties of networks with latent variables.

Learning dependencies

The task is to identify the independence (conditionally or not) among the variables; among

the best known algorithms are IC and IC* [Pea00], PC [SGS93], and more recently BN-PC

of Cheng et al. [CBL97a, CBL97b, CGK+02].

Classically, the independence test is the χ2 test. For hidden variables, the method is

more complex as one must distinguish several types of dependencies; this issue goes be-

yond the scope of the presented work.

Score-based algorithms

Score-based approaches are generally based on Occam’s razor principle, where the score of

the structure measures its “complexity”. Accordingly, the algorithm optimizes some trade-

off between the empirical error associated to the structure (quantified through the marginal

likelihood or an approximation thereof [CH97]) and its complexity. This optimization can

also be seen as a Bayesian model selection, selecting the structure S maximizing probability

P(S,D) = P(D|S)P(S) where D is the dataset; here, P(D|S) measures the probability of the

dataset given S, while P(S) corresponds to the prior on S, biased toward simpler structures.

Taking the log we get logP(S,D) = logP(D|S)+ logP(S), i.e. the sum of likelihood and

the score of the structure logP(S).
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The best known scores for bayesian networks are listed below:

• AIC criteria [Aka70] or BIC [Sch78] use essentially Dim(bn) to penalize the com-

plexity of the bayesian network, where the “dimension” Dim(bn) of the bayesian

network simply is the number of parameters;

• The Minimum Description Length (MDL) principle [Ris78] uses the number of arcs

and the number of bits used to code the parameters.

• The bayesian approach relies on a prior on the BN space. For example, the bayesian

Dirichlet score [CH92a] assumes a Dirichlet prior on the parameters. Some variants

exist (e.g. BDe [HGC94] or BDgamma [BK02]), using hyperparameters or priors on

child/parent relations (given for example by an expert).

Given a score function, structural learning algorithms explore the structure space to

find the structure with optimal score. One of the most common algorithms is the hill climb-

ing one [Bun91], starting from an initial structure (given by an expert, another method,

or the empty or full structure), computing the score of neighbor structures, replacing the

current structure with its best neighbor and iterating until the stopping criterion is satisfied

(resources exhausted or no more improvement).

The so-called K2 algorithm [CH92b] is a variant of the above greedy algorithm,

parametrized from an a priori ordering over the variables, an upper bound on the num-

ber of parents, and a score function (besides the dataset). For each variable in the given

order, K2 performs a hill climbing search, iteratively finding and adding the parent which

maximizes the score, stopping when the upper bound on the number of parents is reached,

or when the score does not improve anymore.

Other variants of the hill-climbing algorithm have been used, e.g. based on the variable

neighborhood search [LMdC01]. Simulated annealing has also been used as optimization

algorithm [JN06]; the difference with hill-climbing algorithms is that simulated annealing

accepts no-better score structures with a probability which decreases along time, thereby

enabling it to reach a local optimum with better quality.

Branch-and-bound algorithms [Suz96, Tia00] are more sophisticated algorithms, also

extending the hill-climbing algorithms in order to better escape from local optima.
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Population-based algorithms have also been applied to the problem of structure learn-

ing. All of them are stochastic algorithms ranging from genetic algorithms [LPY+96,

MLD99], ant colonies optimization [dCFLGP02] to estimation of distributions algorithms

[PLL04, RB03].

Instead of performing model selection (finding the structure with the highest score), the

bayesian approach rather averages several structures, the main difficulty being to determine

the number of structures to take into account. [FK03] uses a Monte-Carlo Markov Chain

method to approximate the average efficiently in the space of permutations of the variables.

[FGW99] estimates confidence intervals on features (edges) of an induced model based

on the bootstrap method.

The greedy algorithms defined in [Chi02b] and [CM02] consider the space of Markov

equivalent networks instead of the space of structures. Two structures are equivalent if they

can encode the same probability laws, with the same conditional independencies (more on

this in section 2.6.4).

2.4 Overview of results

Usual parametric learning approaches (section 2.3.1) asymptotically lead to the optimal

parameters if the BN structure is the right one. The advantage of the most usual frequentist

approach is that it is very fast and only involves local variables (determining P(B|A) only

depends of the frequency of A,B-value combinations). A first contribution is to show how-

ever that this frequentist approach is unstable and not-optimal for some natural criterions if

the structure does not match the decomposition of the joint law. By contrast, the proposed

method, computationally harder and based on a global fitting of the parameters, is shown

to be consistent (section 2.7.2).

The consistency result is based on risk bounds, showing that the probability of an error

estimation larger than some ε is bounded by some δ depending on ε and the number of

training examples. Equivalently, such bounds derive the sample complexity of the approach,

i.e. the number of examples required to get an error lower than ε with probability at least

1−δ.

The case with hidden variables is addressed in section 2.6.5, considering both the
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parametric and non-parametric learning tasks (section 2.7.3).

An algorithm providing universal consistency and asymptotic convergence towards the

minimal L2 error, asymptotically in the number of i.i.d examples is presented in section

2.7.4 (Thm 8). Moreover, we prove the convergence of the algorithm towards a minimal

structure, in the sense of a user-defined complexity-measure (including classical optimality

measures).

The comparison between our complexity measure and the usual ones gives insights into

the main factors of structural complexity. The covering numbers of the BN associated to

a given structure (Lemma 1) are directly related to the complexity of the structure. The

bound established in Thm 7 depends on both the number of parameters R of the structure,

and the “entropy” H(r) of the structure, where H(r) = −∑a
k=1

r(k)
R ln( r(k)

R ) and r(k) is the

number of parameters of node k (R = ∑k r(k)). It is shown empirically that (Fig. 2.10)

H(r) is correlated with the sample complexity R being fixed. Contrasting with the AIC,

BIC and MDL measures (section 2.3.2), the proposed measure thus captures an aspect of

complexity which goes beyond the number of parameters; the influence of the structure

entropy is depicted on Fig. 2.5.

Figure 2.5: Scores of BN structures and influence of the entropy term. Both structures
have the same number of parameters (R = 14). As they have different distributions of the
parameters over the structure, they are associated different entropy terms; the right hand
structure is considered ”simpler” by our score.

Section 2.8 presents some algorithms handling the optimization of the proposed loss
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criterion. These algorithms are based on the most standard quasi-Newton method [Bro70,

Fle70, Gol70, Sha70], referred to as BFGS and relying on some non-trivial estimation of

the loss function and its gradient.

Finally, the presented approach is empirically validated in section 2.9, showing both the

statistical relevance of our approach and its tractability.

2.5 Problem definition and notations

For the sake of clarity and with no loss of generality, only binary random variables will

be considered in the following. Let us first introduce the notations before presenting some

preliminary results.

2.5.1 Notations

Let A1, . . . Ap be p binary random variables. Let U denote a subset of {1, ..., p} and AU be

the product of variables Ai for i in U.

We make the distinction between a Bayesian Network (BN), that is, a directed acyclic

graph (DAG) and an instance of BN, defining the joint probability distribution over vari-

ables A1, . . . Ap as the product of their conditional distributions as follows:

• a bayesian network noted BN is defined as a Directed Acyclic Graph (A ,E) where

A = {A1, . . . ,Ap} is the set of nodes, corresponding to the random variables, and

the set of edges E models the conditional dependencies between these variables.

Formally, we denote Pa(i) = { j ∈ {1, ..., p} s.t. (A j,Ai) ∈ E} the set of variable

indices j such that A j is a parent of Ai in the graph. By definition of an acyclic graph,

i 6∈ Pa(i) and there is no sequence i1, i2, . . . , ik such that i j+1 ∈ Pai j and ik = i1. With

no loss of generality, it will be assumed that the indices are ordered after the DAG,

that is, every j in Pa(i) is such that j < i.

• an instance of Bayesian Network noted ibn, built on a BN(A ,E), defines a joint
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probability distribution on A as

ibn(A) = ∏
j

P(A j|APa( j))

For the sake of simplicity and by abuse of notations, an instance ibn built on some

BN(A ,E) will be said to “belong” to this BN, and will be noted ibn ∈ BN. To every state

v = (v1, . . . ,vp)∈ {0,1}p, ibn associates the probability Q(v) = P(A1 = v1, . . . ,Ap = vp)∈
[0,1]. Equivalently, ibn can be defined as a 2p-dimensional vector Q (Q ∈ [0,1]2

p
) of L1

norm 1 (||Q||L1 = 1). It will be noted Qi, (i ∈ {1, . . . ,2p}), for the ith component of the

vector Q, or Q(v), (v ∈ {0,1}p), when Q is treated as a function.

The number of parameters of a bayesian network BN, noted R = p(BN) = ∑i 2|Pa(i)|,
where notation |U | stands for the cardinal of set U .

Let P denote a law of probability ; let a sample of examples be independent and iden-

tically distributed (iid), and let P̂ denote the corresponding empirical law, that it, the set of

Dirac masses located at the examples.

Let us further denote E (respectively Ê) the expectation operator associated to P (resp.

P̂). Finally, let V be a multinomial random variable distributed according to P. Then let

1v = I{V=v} where I is the characteristic function8.

For Q a vector in [0,1]2
p

with ||Q||L1 = 1 (equivalent to a joint distribution over random

variables (A1, . . . ,Ap), ie Q(v) = Pr(A1 = v1, ...,Ap = vp)), we define the loss of Q noted

L(Q) as follows:

L(Q) = E( ∑
v∈{0,1}p

(Q(v)−1(v))2)

The empirical loss of Q noted L̂(Q) is similarly defined as:

L̂(Q) = Ê( ∑
v∈{0,1}p

(Q(v)−1(v))2)

Further, we associate to each BN the squared error L(BN) defined as the minimum, over

all bayesian networks ibn built on structure BN, of L(ibn): L(BN) = minibn∈BNL(ibn).

81 is equivalently a function from {0,1}p to {0,1}, with ∀v ∈ {0,1}p, P(1(v) = 1) = P(A1 =
v1, . . . ,Ap = vp)
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2.5.2 Preliminary lemmas and propositions

The definitions above allow us to bound the loss with respect to the empirical loss, using

the following Lemma.

Lemma: Let us define

N(Q) = ∑
v∈{0,1}p

(P(v)−Q(v))2 N̂(Q) = ∑
v∈{0,1}p

(P̂(v)−Q(v))2

Then:

L(Q) = N(Q)+1− ∑
v∈{0,1}p

P(v)2

L̂(Q) = N̂(Q)+1− ∑
v∈{0,1}p

P̂(v)2

Proof: We have:

L(Q) = E( ∑
v∈{0,1}p

(Q(v)−1(v))2)

= ∑
v∈{0,1}p

E((Q(v)−1(v))2)

= ∑
v∈{0,1}p

[
var(Q(v)−1(v))+E(Q(v)−1(v))2]

= ∑
v∈{0,1}p

[
P(v)(1−P(v))+(Q(v)−P(v))2]

= 1− ∑
v∈{0,1}p

P(v)2 +N(Q)

(2.4)

The same applies for L̂ . ¤

The following two propositions then hold.

Proposition A: Let δ be a positive real value, 0 < δ < 1 and let supδ X denote the 1− δ
quantile of X (Pr(X < supδ X) > 1−δ).
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Let x∗ ∈ argminL = argminN9. For all x̂ ∈ argmin L̂ = argmin N̂, with probability at least

1−δ10,

L(x̂)≤ L(x∗)+2sup
δ
|L− L̂ |

Proof: The result follows from the three inequalities below; with probability at least 1−δ,

the two first hold:

L̂(x∗)≤ L(x∗)+ sup
δ
|L− L̂ |

L(x̂)≤ L̂(x̂)+ sup
δ
|L− L̂ |

L̂(x̂)≤ L̂(x∗)

¤

From the Lemma and Proposition A, it is straightforward to see:

Proposition B: With same notations as in Proposition A, it comes:

N(x̂)≤ N(x∗)+2sup
δ
|L− L̂ |

As shown by these propositions, the empirical loss is closely related to the natural cost

functions (N and N̂), while being computable from the data.

2.6 Learning theory results

This section describes the theoretical results we obtained in the statistical learning frame-

work, bounding the approximation error of a bayesian network using the two key notions

of Vapnik-Cervonenkis dimension (VC-dim) and covering numbers. Let us first briefly

introduce the formal background and notations in statistical learning.

9We recall that the argument of L is a probability distribution over {0,1}p
10L̂ being the empirical loss function, L̂ is a random variable, depending on the random sample. Hence,

x̂ ∈ argmin L̂ = argmin N̂ is also a random variable.



46CHAPTER 2. DATA REPRESENTATION: MODELS AND BAYESIAN NETWORKS

2.6.1 Introduction

The VC dimension ([VC71]), the most classical tool of learning theory, relates the learning

accuracy to the size of the (hypothesis) search space. While VC-dim was first introduced

in classification problems (the hypotheses map the instance space onto a discrete domain),

it has been extended to regression problem and real-valued functions (see e.g. [Vap95b]).

Taking inspiration from [WJB02, NSSS05], we use VC-dim to bound the loss of a Bayesian

Network in section 2.6.2. Better bounds, based on the use of covering numbers (see e.g.

[KT61]), are given in section 2.6.3.

The results we obtained follow the general Probably Approximately Correct (PAC)

framework. The goal is to bound some quantity, usually the approximation error, by some

small ε > 0 with some confidence 1−δ(ε), or some risk δ(ε), e.g.,

P(X > ε) < δ(ε)

Equivalently, for some fixed risk δ > 0 and some threshold ε(δ), the bound states that with

risk δ (or with confidence 1−δ), X is less than ε(δ).

Up to some fixed risk δ, the largest difference between empirical and expected loss

(respectively L̂ and L) within a function family F is often decreasing in 1√
n , where n is the

number of examples. Let us denote F(F ,δ) the smallest real value ∆ > 0 such that

P(sup
h∈F
|L̂(h)−L(h)| ≥ ∆/

√
n)≤ δ

Note that, although F(F ,δ) depends upon n, the dependency in n can be omitted in many

cases (i.e. the supremum on n is not a bad approximation). This notation is mainly to

simplify the PAC bounds writing. Therefore we shall refer to F(F ,δ) in the following.

2.6.2 Bounds based on VC dimension

Let HBN denote the set of bayesian networks ibn built on structure BN. With probability at

least 1−δ:

sup
ibn∈HBN

|L̂(ibn)−L(ibn)| ≤ F(HBN ,δ)/
√

n
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The application (a1, . . . ,aa) 7→ log P(A1 = a1, . . . ,Aa = aa) is linear in the log of the param-

eters of the bayesian network. Since the combination with a monotonic function preserves

the VC dimension, the VC dimension of HBN , viewed as a family of applications mapping

the state space {0,1}p onto [0,1], is upper bounded by the number of parameters of BN.

This shows:

Theorem C: The VC dimension of the set HBN of instanced bayesian networks is

upper bounded by the number of parameters of BN, noted R. So thanks to classical results

of learning theory, for a number of examples n greater than R,

P(∃ibn ∈ HBN / |L̂(ibn)−L(ibn)| ≥ ε) < 8(32e/ε) log(128e/ε))R exp(−nε2/32)

Proof: These results are classical in learning theory. See e.g. [AB99, Th18.4 and 17.4].

2.6.3 Bound based on covering numbers

Covering numbers are as widely used as VC-dim in learning theory. Although inequalities

of large deviations based on covering numbers are very loose and conservative, yet they are

usually much tighter than those based on VC-dimension. Basically, the covering number

N (H,ε) denotes the number of balls of radius ε needed to cover the search space H (Fig.

2.6).

Introduction

Let N (F ,ε) denote the number of ε-balls (i.e. balls of radius ε) for a chosen distance d

needed to cover function space F . Given a set of such balls, the set of their centers is

referred to as ε skeleton of F and noted S(F ,ε).

Theorem C’: With same notations as for Thm C, and R denoting the number of param-

eters, the covering number of HBN for the metric d(ibn1, ibn2) = E(|ibn1(A)− ibn2(A)|)
is upper bounded by e(R+1)(4e/ε)R.

Proof: These results are classical in learning theory. See e.g. [AB99, Th18.4, p251].



48CHAPTER 2. DATA REPRESENTATION: MODELS AND BAYESIAN NETWORKS

Figure 2.6: Covering function space F with balls of norm ε. The number of such balls
needed to cover F , aka the covering number, reflects the complexity of F . It depends on
the norm chosen and increases as ε decreases.

Then, with L and L̂ respectively a loss function and the corresponding empirical loss

function (e.g. L and L̂ defined as previously), and assuming that L and L̂ map F onto

[0,2]11, the following results hold:

1. the risk, for any function f in F , to have a deviation |L( f )− L̂( f )| more than 2ε, is

bounded by 2exp(−2nε2);

∀ f ∈ F ,Pr(|L̂( f )−L( f )|> 2ε)≤ 2exp(−2nε2)

2. The risk to have at least one of the centers of the balls having a deviation more than

2ε is upper bounded by 2N (F ,ε)exp(−2nε2);

Pr(∃ f ∈ S(F ,ε) s.t. |L̂( f )−L( f )|> 2ε)≤ 2N (F ,ε)exp(−2nε2)

11Which holds true with F = HBN and L , L̂ defined as previously.
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3. If d( f ,g) ≤ ε⇒ |L( f )−L(g)| ≤ 2ε and d( f ,g) ≤ ε⇒ |L̂( f )− L̂(g)| ≤ 2ε12, then

the risk to have at least a function in F having a deviation more than 8ε is upper

bounded by 2N (F ,ε)exp(−2nε2).

∀ f ∈ F ,Pr(|L̂( f )−L( f )|> 8ε)≤ 2N (F ,ε)exp(−2nε2)

The above is straightforward by associating to every f its nearest neighbor g in the ε
skeleton S(F ,ε), and noting that:

|L̂( f )−L( f )| ≤ |L̂( f )− L̂(g)|+ |L̂(g)−L(g)|+ |L(g)−L( f )| ≤ 2ε+4ε+2ε = 8ε

The risk of having a function in F with deviation greater than ε is then upper bounded by

δ = 2N (F ,ε/8)exp(−2n(ε/8)2).

Then it comes:

Proposition (maximal deviation for a given covering number):

√
nF(F ,δ)≤ inf{ε| log(2N (F ,ε/8))−nε2/32≤ logδ}

Many variants of the above result are presented in the literature, see e.g. [Vid97a] and

[AB99].

For a given structure BN, we shall now bound the covering number of F = HBN with

respect to the L1 norm (noted N1(HBN ,ε)), and use these results to bound the learning error.

Covering number of F = HBN

As noted in section 2.5.1, the bayesian structure BN is based on a directed acyclic graph

(DAG) which induces an ordering on the variables (ranking every variable or node after its

12Which holds true with F = HBN , L , L̂ defined as previously and the chosen distance d thanks to Lemma
2.
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parent nodes).

Let (Ek)K
k=1 denote a partition of nodes compatible with the DAG, such that:

• ∀Ai ∈ Ek,A j ∈ Ek′ ,(k ≤ k′)⇒ (i≤ j)

• There is no edge between two nodes of a same Ek:

∀Ai ∈ Ek,A j ∈ Ek′ ,(i ∈ Pa( j))⇒ (k < k′)

Such a partition (Ek)K
k=1 always exists13. To each subset Ek of the partition we associate

its depth k and the index lk of the node with highest index in Ek. By convention, E0 = /0
and l0 = 0. In the sequel, Ek is referred to as the kth level of the bayesian network.

Bounding the covering number of HBN is the subject of Thm 6 and 7, relying on Lem-

mas 1-5. Let us first introduce the following notations.

• nk denotes the number of nodes of the bayesian network in level k (nk= |Ek|,

• li is the number of nodes in levels E1, . . .Ei (li = ∑i
k=1 nk),

• Fk denotes the set of functions from {0,1}lk onto [0,1]lk defined by the first k layers

of the bayesian network,

• Tk is the set of conditional probability tables associated to variables in Ek (the CPT

defining P(Ai|Pa(i)) for Ai ∈ Ek),

• rk is the number of rows of Tk (rk = ∑Ai∈Ek
2|Pa(i)|).

Lemma 1:
The covering number of Fk wrt norm L1 can be expressed wrt the covering number of Fk−1

wrt norm L1 and the covering number of Tk wrt norm L∞:

N1(Fk,2nkε′+ ε)≤N1(Fk−1,ε)N∞(Tk,ε′)

13For instance Ek can be reduced to the kth node in a topological order, with K = p. Many other partitions
may exist, depending on the structure of the bayesian network.
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Lemma 2:
|L(Q)−L(Q′)| ≤ 2||Q−Q′||L1

|L̂(Q)− L̂(Q′)| ≤ 2||Q−Q′||L1

Lemma 3:
N∞([0,1]h,ε)≤ d 1

2ε
eh

Lemma 4:
N∞(Tk,ε)≤ dnk

2ε
erk

Lemma 5:
Let K be the number of levels Ek; then

ln(N1(FK,εK))≤
K

∑
k=1

rk ln(dnk2nk−1

∆k
e)

where (εk)K
k=1 is a series of positive real values, εk−1 < εk, with ∆k = εk− εk−1.

Theorem 6:
Let R = ∑K

k=1 rk. Then

ln(N1(FK,ε))≤
K

∑
k=1

rk ln(nk2nk−1 + ε)−
K

∑
k=1

rk ln(εrk/R)

Theorem 7:
The above upper bound on the covering number is minimized for the partition (Ek)

p
k=1

made of singletons. The upper bound thus becomes:

ln(N1(FK,ε))≤
p

∑
k=1

rk ln(1+ ε)−
p

∑
k=1

rk ln(εrk/R) = R ln((1+ ε)/ε)+RH(r)

where H(r) =−∑p
k=1(rk/R) ln(rk/R)

Remark: Note that the above upper bound involves a term log((1/ε)R). The bound

on N1 then exponentially increases with the number of parameters R as could have been
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expected. The second term, the entropy of vector (rk)
p
k=1, expresses that the covering

number is at its minimum when the rk distribution is as uniform as possible. Note also that

asymptotically (ε close to 0), the upper bound mostly depends on the total number R of

parameters, in the spirit of the BIC/AIC criteria [Sch78, Aka70].

These results will be combined to design a new penalization term, referred to as struc-

tural complexity penalization (section 2.6.3).

Proof of lemma 1:
Let k≥ 1 be fixed. Let Pa(Ek) be the set of nodes that are parents of at least one node in Ek.

Let X ⊂ [0,1]d be the set of d-dimensional vectors with L1 norm 1, and d = 2∑k−1
i=1 |Ei|= 2lk−1 .

It is clear that every instanced bayesian network ibn built on BN up to level k− 1 can be

viewed as an element of X . Let Y similarly denote the set of d′ dimensional vectors with

L1 norm 1, and d′ = 2lk ; Y likewise represents the set of all instanced bayesian networks

built on BN up to level k.

Let y be a vector in Y , i.e. a probability distribution on the nodes in the first k levels. Let

x denote the probability distribution on the nodes in the first k−1 levels marginalized from

y. Let’s note likewise y′ ∈Y and the corresponding x′ ∈ X . By construction, y is constructed

from x through the conditional probability tables P(Ai|Pa(i)) for Ai in Ek, which can be

viewed as an element t of Tk. t ′ ∈ Tk corresponds to the construction of y′ from x′, giving

y = t(x) and y′ = t(x′). It thus comes

||y− y′||L1 = ||t(x)− t ′(x′)||L1 ≤ ||t(x)− t ′(x)||L1 + ||t ′(x)− t ′(x′)||L1︸ ︷︷ ︸
=||x−x′||L1

≤ ∑2nk
i=1 ||x||L∞||t(x)− t ′(x)||L∞ + ||x− x′||L1

≤ 2nk ||t− t ′||L∞ + ||x− x′||L1

It follows:

N1(Fk,2nkε′+ ε)≤N1(Fk−1,ε)N∞(Tk,ε′)
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Proof of lemma 2:

|L(Q)−L(Q′)|= |E ∑
i
(Qi−1i)2−∑

i
(Q′i−1i)2| ≤ E|∑

i
(Qi−1i)2−∑

i
(Q′i−1i)2|

≤ 2E|∑
i
|(Qi−1i)− (Q′i−1i)|| ≤ 2E|∑

i
|Qi−Q′i|| ≤ 2∑

i
|Qi−Q′i|

The same holds for L̂.

Proof of lemma 4: Consider some fixed k.

An element t of Tk can be viewed as the product of elements t(i) in T (i)
k = P(Ai|Pa(i)),

where t(i) defines the probability of ∧(Al = al) for Al ranging in Pa(i)∪Ai. By construction

t(i) belongs to [0,1]|Pa(i)| and its L1 norm is 1. Let t and u be two elements in Tk. It comes

||t−u||L∞ = ||t(i1)× ...× t(ink )−u(i1)× ...×u(ink )||L∞

≤ ||t(i1)× ...× t(ink )−u(i1)× t(i2)× ...× t(ink )||L∞

+ . . .+ ||u(i1)× ...× t(ink )−u(i1)× ...×u(ink )||L∞

≤ ||t(i1)−u(i1)||L∞ + . . .+ ||t(ink )−u(ink )||L∞

Therefore

||t−u||L∞ ≤ nk× suplk−1< j≤lk ||t( j)−u( j)||L∞

Finally, as t lives in [0,1]rk , after Lemma 3 it comes:

N∞(Tk,ε)≤ d 1
2 ε

nk

e∑i |2Pa(i)| = dnk

2ε
erk

Proof of lemma 5:

After Lemma 4,

N∞(Tk,ε)≤ dnk

2ε
erk

Let K be the number of levels.

After Lemma 1, ∀ε,ε′ > 0, ∀1≤ k ≤ K:
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N1(Fk,2nkε′+ ε)≤N1(Fk−1,ε)N∞(Tk,ε′)

Therefore, replacing 2nkε′+ ε by ε, and ε′ by ε′/2nk :

N1(Fk,ε)≤N1(Fk−1,ε− ε′)N∞(Tk,
ε′

2nk
)

Further replacing ε′ by ε− ε′:

N1(Fk,ε)≤N1(Fk−1,ε′)N∞(Tk,
ε− ε′

2nk
)

Setting ε = εk,ε′ = εk−1 gives, for all ε = εK ≥ 0 (reminding that rk = 2nk),

ln(N1(FK,ε)) ≤ ∑K
k=1 rk ln(N∞(Tk,εk− εk−1))

≤ ∑K
k=1 rk ln(nk2nk−1

εk−εk−1
)

≤ ∑K
k=1 rk ln(nk2nk−1

∆k
)

Proof of theorem 6:

Tranforming Lemma 5, it comes:

ln(N1(FK,ε))≤
K

∑
k=1

rk ln(nk2nk−1 +∆k)−
K

∑
k=1

rk ln(∆k)

Bounding ∆k by ε,

ln(N1(FK,ε))≤
K

∑
k=1

rk ln(nk2nk−1 + ε)−
K

∑
k=1

rk ln(∆k)

As we want to maximize term ∑rk ln(∆k) subject to constraint ∑∆k = ε, the Kuhn-Tucker

condition gives ∆k = rk
∑k rk

and finally:

ln(N1(FK,ε))≤
K

∑
k=1

rk ln(nk2nk−1 + ε)−
K

∑
k=1

rk ln(εrk/R)
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Proof of theorem 7: Theorem 6 holds true conditionally to the fact that the partition is

compatible with the DAG structure (Ek ∩Pa(k) = /0). We show that the upper bound (left

hand side) reaches its minimum when the partition is made of singletons.

Let si denote the number of parameters in the CPT of variable Ai. By definition, for all

1≤ k ≤ K, rk = ∑Ai∈Ek
si.

Let us denote k(i) such as Ek(i) includes variable Ai. After Theorem 6 it comes:

ln(N1(FK,ε)) ≤ ∑K
k=1

[
∑Ai∈Ek

si ln
(

R(nk2nk−1+ε)
ε ∑Ai∈Ek

si

)]

≤ ∑p
i=1 si ln(

R(C(Ek(i))+ε)
ε∑{ j / Ai∈Ek( j)}s j

)

where

C(Ek) = (|Ek|)2|Ek|−1

Let us assume that some Ek is not a singleton (Ek includes m variables, |Ek|= m); with

no loss of generality, k = 1. With no loss of generality, let A1, . . .Am denote the variables in

E1 and assume that variable A1 reaches the minimal complexity in E1 (s1 = argmin{si,Ai ∈
E1}).

Let us split E1 into two subsets, where the first subset is made of the singleton E ′1 = {A1}
and E ′′1 = E1 \{A1}. Note that if the former partition was compatible with the DAG struc-

ture, the latter one is compatible too. The right hand side in Thm 6 respectively correspond-

ing to E1 and E ′1,E
′′
1 are written below:

r.h.s.(E1) = ∑m
i=1 siln

(
C(E1)
∑m

i=1 si

)

= s1 ln
(

C(E1)
∑m

i=1 si

)
+∑m

i=2 siln
(

C(E1)
∑m

i=1 si

)

r.h.s.(E ′1) = s1ln( 1
s1

)

r.h.s.(E ′′1 ) = ∑m
i=2 siln

(
C(E ′′1 )
∑m

i=2 si

)
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Computing the difference d between the former and latter r.h.s gives:

d = ∑m
i=2 si ln

(
C(E1)∑m

i=2 si
C(E ′′1 )∑m

i=1 si

)
+ s1 ln

(
C(E1)s1

∑m
i=1 si

)

= A ln
(

C(E1)A
C(E ′′1 )(A+B)

)
+B ln

(
C(E1)B

A+B

)

where A = ∑m
i=2 si

B = s1

Therefore, with λ = A
A+B :

d
A+B

= λ ln(λC(l)/C(l−1))+(1−λ)ln(C(l)(1−λ))

The above expression reaches its minimum for λ = C(E ′′1 )
1+C(E ′′1 ) . As the minimum is positive

(0 ≤ ln( C(E1)
1+C(E ′′1 ))), it comes that the r.h.s. in Theorem 6 is lower for the splitted partition,

which concludes the proof.

Summary of the results

The above results provide an upper bound on the covering number for the set of bayesian

networks built on a given structure BN, associated to a total number of parameters R =

∑p
i=1 si.

Theorem 7 states that for all ε > 0:

ln(N1(FK,ε))≤
p

∑
i=1

si ln(1+ ε)−
p

∑
i=1

si ln(εsi/S) (2.5)

Lemma 2 states that the approximation error L and its empirical estimate L̂ are Lips-

chitz; d( f ,g)≤ ε⇒ |L( f )−L(g)| ≤ 2ε and d( f ,g)≤ ε⇒ |L̂( f )− L̂(g)| ≤ 2ε hold true. It

thus follows, after the results stated in subsection 2.6.3, that the risk of having a deviation

between L and L̂ greater than ε in function set F can be upper bounded as follows:

Pr(|L( f )− L̂( f )| ≥ ε)≤ δ = 2N1(F ,ε/8)exp(−2n(ε/8)2)



2.6. LEARNING THEORY RESULTS 57

Therefore,

F(F ,δ)≤√n inf{ε| log(2N1(F ,ε/8))−nε2/32≤ logδ}

And finally:

P( sup
h∈BN

|L̂(h)−L(h)|> ε)≤ 2N1(BN,ε/8)exp(−nε2/32) (2.6)

Using equation (2.5), equation (2.6) can be solved in ε. Letting R denote the number of

parameters in BN, H the corresponding entropy, n the number of examples involved in the

computation of the empirical estimate and δ the desired confidence, it comes:

C = 2(H− 1
R

log(δ/2)) B =
4n
R

exp(C)

A =−R×WLambert(B)−2log(δ/2)+2RH ε =
8

exp(−A/(2R))

ε = 8
(

δ
2

)− 1
R

exp


−1

2
WLambert


4n

R
e2H

δ
2

2
R


− 1

R
+H




Where WLambert is the function such as WLambert(x)× eWLambert(x) = x.

It follows that the generalization error is upper bounded by the sum of the empirical er-

ror L̂ and the complexity term ε(R,H(r),n,δ) as above. When the number R of parameters

is large, the complexity term is dominated by 4exp(H).

The difference, compared to standard structural risk minimization, goes as follows.

Structural risk minimization classically proceeds by minimizing L̂(s)+ R(m(s)) where R

is some regularization term, m is some complexity measure, s is the structure, L̂(s) is the

minimal empirical error with structure s. Knowing the covering numbers of {s;m(s)≤M}
as a function of M enables to derive the regularization criterion R(.) such that minimizing

L̂(s)+R(m(s)) ensures universal consistency.

The proposed approach is based instead on the covering number associated to a fixed

structure BN, as opposed to, the set of all structures with complexity upper bounded by

some quantity M. This difference will be dealt with either (i) a priori choosing a sequence

of embedded structures (see Corollary C3 below, 2.7.3); or (ii) spreading the risk δ among
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structures with a given number of parameters. Considering ε(R,H(r),n,δ/N) where N is

the number of structures with less than R parameters will lead to bound the deviation L− L̂

uniformly on all structures with less that R parameters14.

The next step is to show that the complexity term in equation (2.6) is constant over

Markov-equivalent structures.

2.6.4 Score-equivalence: the score is the same for Markov-equivalent
structures

Two bayesian networks are Markov-equivalent if they encode the same probability laws

[Chi02a]; Therefore, it is important that the complexity term in equation (2.6) is fully

compliant with the equivalence classes. Let G denote a DAG, and Dim(G) the number of

parameters in the bayesian network with structure G .

The rest of this section shows that two Markov-equivalent graphs have same number

of parameters R, same entropy H(r) and same empirical approximation error L̂; proofs use

Lemma 1, Theorem 2 and Theorem 3 from [Chi95].

Reminder

For the sake of readability, let us remind that G = (U,EG) an acyclic directed graph (DAG)

i.e. a bayesian network. Pa(x)G denotes the set of the parent nodes of node x in G . We

note G ≈ G′ if the bayesian networks based on G and G ′ are equivalent.

Definition (definition 2 in [Chi95]) An edge e = x → y ∈ EG is covered in G if

Pa(y)G = Pa(x)G ∪{x}.
Lemma A (lemma 1 in [Chi95]) Let G be a DAG containing the edge x→ y, and let

G ′ be the directed graph identical to G except that the edge between x and y in G ′ is y→ x.

Then G ′ is a DAG that is equivalent to G if and only if x→ y is a covered edge in G .

Lemma B (theorem 2 in [Chi95]) Let G and G ′ be any pair of DAGs such that G ≈G′.
There exists a sequence G ,G1 = r1(G), . . . ,GN = rN(GN−1) = G ′, where ri only reverses

an edge in Gi−1 and

14Dividing confidence δ by the number N of such structures provides very conservative bounds; finer-
grained approaches, unequally spreading the risk, are more appropriate [LB03].
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• The edge reversed by ri is a covered edge in Gi−1.

• Each ri(G) is a DAG and ri(G)≈ G ′.

• Every Gi is a DAG and is equivalent to G ′.

Lemma C (theorem 3 in [Chi95]) If G ≈ G′ then Dim(G) = Dim(G ′).

Results

Lemma C shows that two equivalent structures have same number of parameters.

In order to show that two equivalent structures G and G ′ have same entropy, after

Lemma B it is enough to show that reversing an edge x→ y which is covered in G does not

modify the entropy. Denoting rG(x) the number of parameters of node x in G , it comes

• rG(y) = 2rG(x).

• By symmetry, y→ x is covered in G ′, therefore Pa(x)G ′ = Pa(y)G ′∪{y}, and rG ′(x) =

2rG ′(y).

• Since the only difference between G and G ′ concerns edge y→ x:

– the only changing terms in H(r) is those corresponding to x and y.

– and also rG(y) = 2rG ′(y)

• Therefore rG ′(y) = rG(x) and rG ′(x) = rG(y)

Which concludes the proof: G and G ′ have same entropy.

Finally, as two equivalent structures of bayesian networks encode the same space of

probability distributions, their empirical loss is equal.

Therefore, all learning criteria only depending on R, H(r) and L̂ are Markov-equivalent.
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2.6.5 Results with hidden variables

Let us consider the case where the probability law involves hidden variables: hidden vari-

ables are not considered (as they are not observed) when computing L or L̂. It must be

emphasized that learning a BN with hidden variables is significantly different from learn-

ing a BN only involving the subset of observed variables. Typically, a network with one

hidden variable B and d observed variables A1 . . .Ad where each Ai depends on B, only

involves 2d + 1 parameters; it would require many more parameters to be modelled as a

BN only considering the Ais.

Let us represent a BN over p variables as a vector (with L1 norm 1) of dimension

2p (assuming, as in all this chapter, that all variables are binary). A BN involving p− d

hidden variables can be represented as a vector of dimension 2d , where d is the number

of observed variables, by marginalizing the probabilities over the hidden variables. It is

clear that marginalization is 1-Lipschitz, that is: if x and y are two BN with p variables

among which d are non-hidden, x̃ and ỹ are the laws derived from x and y and expressed as

vectors of dimension 2d , then ||x̃− ỹ||1 ≤ ||x−y||1. For each instantiated network ibn ∈ BN

we associate ˜ibn the instantiated network after marginalization of all hidden variables. We

note B̃N = { ˜ibn/ibn ∈ BN}.

Therefore, the deviation between the true and the empirical error can be bounded as

follows. Proposition maximal deviation in a bayesian network with hidden variables:

The risk to have a deviation at least ε for a ˜ibn ∈ b̃n is upper bounded as follows:

P( sup
˜ibn∈ ˜BN

|L̂( ˜ibn)−L(B̃N)|> ε)≤ 2N1(BN,ε/8)exp(−nε2/32)

.

Remarks: Note that, despite the fact that ĩbn involves only d < p variables, the bound

remains the same as when p variables are considered. The alternative, if the number of

hidden variables is very large, would be to consider the covering number associated to

vectors of dimension 2d (F({0,1}d,δ)) instead of the covering number of the bayesian nets

built on bn.
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2.7 Algorithm and theory

The theoretical results presented in the previous section will be used, in the same spirit as

covering numbers are used in statistical learning theory, to derive:

• non-parametric non-asymptotic confidence intervals;

• universally consistent algorithms.

Several corollaries are presented in the next sections; after the remark in the previous

subsection, these results also hold when hidden variables are involved.

2.7.1 Model selection: selecting BN structures

The first algorithm is concerned with model selection among several bayesian net struc-

tures.

Algorithm 10 Model selection
Input: n data points, risk δ, m BN structures bn1, . . . ,bnm
Initialize b̂n = bn1.
Initialize bestValue = infibn∈bn1 L̂(ibn)+F(bn1,δ)/

√
n.

for i = 2 to m do
value = infibn∈bni L̂(ibn)+F(bni,δ)/

√
n

if value < bestValue then
b̂n = bni
bestValue = value

end if
end for
ˆibn = argminibn∈b̂n L̂(ibn)

Output: ˆibn.

This model selection algorithm first selects the structure b̂n by minimizing the empirical

error (the minimal empirical error reached for this structure) penalized by a term depending

upon the complexity of the structure. The second step is to determine the best bayesian net

for this structure, i.e. the one with minimal empirical error.

Corollary C1: Given the model space H = {bn1, . . . ,bnm} and n data examples, Algo-

rithm1 selects the best Bayes net îbn built on a model in H up to some approximation error,
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with high probability. Formally, with probability 1−mδ and for ε = 3maxi F(bni,δ)/
√

n,

∀ibn ∈ H,L( ˆibn)≤ L(ibn)+ ε

Proof:

Let us denote ibn∗ the BN with minimal error (ibn∗ = argminibn∈H L(ibn)) and îbni the

BN with minimal empirical error among the BN built on bni (̂ibni = argminibn∈bni
L̂(ibn)).

The deviation bound on every bni states that, for ε = 3supF(bni,δ)/
√

n:

P(L(îbni)− L̂( ˆibni) > ε/3)≤ δ

Therefore, with probability 1−mδ, the above simultaneously holds for i = 1 . . .m. As

îbn is among the îbni, it follows that

L(îbn)≤ L̂(îbn)+ ε/3

By definition of îbn (built on bni0 and ibn∗ (built on bn∗), one has:

L̂(îbn)+F(bni0)/
√

n≤ L̂(ibn∗)+F(bn∗,δ)/
√

n

Therefore

L(îbn)≤ L̂(ibn∗)+2ε/3

and finally

L( ˆibn)≤ L(ibn∗)+ ε

This result is the basis for model selection among several BN structures, in the spirit of

the celebrated ”structural risk minimization” [Vap95a].
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2.7.2 Parameters learning algorithm: consistency of the minimization
of L̂

Denoting as before the example distribution as P, considering n examples i.i.d. sampled

from this distribution P, noting P̂ the empirical distribution and L̂ the empirical loss, the

standard frequentist approach to learn the bayesian network parameters proceeds as fol-

lows. Let bn a bayesian network structure, ibn an instantiation of bn, where ibn(B) denotes

the joint probability given by ibn for some set of variables B, then the learned îbn is such

that:

∀i, ibn(Ai,Pa(i))/ibn(Pa(i)) = P̂(Ai,Pa(i))/P̂(Pa(i))

The approach we propose is based on the minimization of the L̂ loss function, i.e,

ˆibn = argmin
ibn∈bn

L̂(ibn)

Next corollary shows that i) the minimization of the empirical loss function is consis-

tent; ii) the frequentist approach is not consistent.

Corollary C2: With same notations as above, for any distribution P,

L(argmin
ibn∈bn

L̂)→ inf
bn

L

For some distributions P, calibrating bn coefficients after P̂ asymptotically leads to a non-

optimal ibn.

L({ibn s.t. ibn(Ai,Pa(i))/ibn(Pa(i)) = P̂(Ai,Pa(i))/P̂(Pa(i))} 6→ inf
bn

L

Proof: The convergence L(argminibn∈bn L̂)→ infbn L follows immediately from the fact

that the covering number for any ε is finite. The VC-dimension is finite, which implies the

almost sure convergence of the empirical loss.

A counter-example is exhibited for the second result, graphically illustrated on Figure

2.7. Let P be the law defined by: P(A = true∧B = true) = a, P(A = f alse∧B = f alse) =
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1−a, and P = 0 otherwise. Assume that bn = {P(A),P(B)}, i.e., bn assumes the indepen-

dence of variables A and B.

Calibrating bn after P̂ leads to ibn(A) = P̂(A)→ a, ibn(B) = P̂(B)→ a.

Denoting x = ibn(A), y = ibn(B), the square loss of ibn is given as:

L2(ibn) = (xy−a)2 + x2(1− y)2 + y2(1− x)2 +((1− x)× (1− y)− (1−a))2

Taking the derivative of the above wrt x or y shows that the derivative is not 0 at the

optimum (x = a,y = a) unless a = 1
2 .

Another limitation of the frequentist approach is related to the estimation of rare events

and their consequences, e.g. P(B|A) cannot be estimated if A never occurs. Quite the

opposite, the presented approach directly deals with rare events.

Figure 2.7: Consistency of global optimization. Considering the toy bayesian network (up
left: target; up right: learned), the loss function L is represented vs the parameters of the
learned BN, respectively x = P(A0 = 1) and y = P(A1 = 1). The frequentist approach leads
to learn x = y = p, which is not the global optimum of L.
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2.7.3 Universal consistency and bound

Let us assume the existence of some heuristics E, ranking the dependencies among subsets

of variables; given the set of variables Ai and their respective parent variables Pa(i), E

selects the variable Ai and A j such that adding A j to the parent variables Pa(i) results in an

admissible bayesian structure.

Such a heuristic, e.g. based on a validation set, can be used for model selection as

follows. Noting E(bn) the bayesian structure defined by enriching bn with the additional

dependency A j→ Ai:

Algorithm 11 PAC learning in Bayesian Networks
Input: n data points, risk δ, desired precision ε(n)→ 0, heuristic E.
Initialize b̂n = empty graph.
while F(E(b̂n),δ)/

√
n < ε(n) do

b̂n = E(b̂n)
end while
îbn = argminibn∈b̂n L̂(ibn).
Output: îbn, an instantiated bayesian network (structure+parameters).
Bound: L(îbn)≤ L̂(îbn)+F(b̂n,δ)/

√
n.

Corollary C3: Assuming that heuristic E leads to a bayesian network structure in-

cluding the probability law in a finite number of steps (infibn∈bn L(ibn) = in fibnL(ibn)) (15),

then

• with confidence at least 1−δ, L(îbn)≤ L̂(îbn)+F(b̂n,δ)/
√

n

• L( ˆibn) converges to the minimal loss (infibn L(ibn)) irrespective of the structure bn,

asymptotically with the number n of examples.

The proof follows from the convergence of F(bn,δ)/
√

n to 0 since F(bn,δ)/
√

n <

ε(n)→ 0 as n→ ∞.

15this is a small and natural hypothesis as the heuristic can simply lead to the complete graph (each variable
Ai has A j, j < i as parents) between observable variables if the number of dependencies is sufficiently large.
Note that does not mean that the resulting structure will be optimal, in the sense that it encodes exactly the
same dependencies as the probability law.
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2.7.4 Universal consistency and convergence to the right network of
dependencies

This section is devoted to learning bayesian networks and enforcing two major properties:

i) universal consistency (the empirical loss converges toward the minimal loss asymptoti-

cally with the number of examples); ii) optimal parsimony, meaning that the size (discussed

below) of the network converges toward the optimal one.

The latter property is particularly relevant, as it is difficult to guarantee convergence

to a non-redundant structure. Several definitions of “size” can be considered, in relation

with various penalization schemes. Under the working hypotheses below, we show that the

penalization term can be defined by the user; for specific types of penalization, theorem

8 generalizes the standard results related to parameter optimality and inclusion optimality

[CM02]. Let U denote a function mapping the set of instantiated bayesian network onto

the real value space R, such that two bayesian networks based on same structure have same

image (∀(ibn1, ibn2) ∈ bn U(ibn1) = U(ibn2)).

Let R′(ibn) be a function similarly mapping the set of instantiated bayesian network

onto the real value space R, user-defined, such that R′(ibn) reflects the complexity of ibn.

For example, R′(ibn) can be the number of parameters of the bayesian network (see e.g.,

2.7.5).

Let R(n) be a function of n decreasing to 0 as n goes to infinity, and define R(ibn,n) =

R′(ibn)R(n).

By abuse of notation, in the following U−1(n) will denote the set of instantiated

bayesian networks such that U(ibn)≤ n.

Working hypotheses

• H0: for n sufficiently large, ibn∗ ∈U−1(n);

• H1: limn→∞ supibn∈U−1(n) R′(ibn)R(n) = 0;

• H2: limn→∞ F(U−1(n),1/n2)/
√

n = 0;

• H3: limn→∞ F(U−1(n),1/n2)/(R(n)
√

n) = 0;

Under these assumptions, algorithm 11 is extended as follows in algorithm 12.
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Algorithm 12 Learning in BN with UC and parsimony guarantees
Input: n data points, application U , application R.
optimize L̂(ibn)+R(ibn,n) under the constraint U(ibn)≤ n.
Let îbn be one of these optima.
Output: ˆibn, an instantiated bayesian network (structure+parameters).

Let us show that the above algorithm is universally consistent and guarantees the con-

vergence toward the optimal structure.

Theorem 8: universal consistency and convergence to the right structure Let îbn

be constructed after algorithm 12, i.e.

îbn ∈ argmin
U(ibn)≤n

L̂(ibn)+R(ibn,n)

1. universal consistency: if H0, H1 and H2 hold, then L(̂ibn) almost surely goes to the

minimal loss L∗;

2. convergence of the size of the structure: if H0, H1, H2 and H3 hold, then R′(̂ibn)

converges to min{R′(ibn) s.t. L(ibn) = L∗}.

Proof:
Define ε(bn,n) = supibn s.t. U(ibn)=n|L̂(ibn)−L(ibn)| . We first prove that algorithm 12

is universally consistent under hypothesis H0, H1, H2.

L(̂ibn) ≤ L̂(̂ibn)+ ε(bn,n)

≤ inf
ibn′∈bn

L̂(ibn′)+R(ibn′,n)−R(ibn,n)+ ε(bn,n)

≤ inf
ibn′∈bn

L(ibn′)+ ε(bn,n)+R(ibn′,n)−R(ibn,n)+ ε(bn,n)

≤ inf
ibn′∈bn

L(ibn′)+R(ibn′,n)+2ε(bn,n)

Thanks to H1, we only have to prove that ε(bn,n)→ 0 almost surely. By definition of

F(., .),

P(ε(bn,n)≥ F(bn,1/n2)/
√

n)≤ 1/n2
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Since for any ε, H2 implies that for n sufficiently large, F(bn,1/n2)/
√

n < ε, it follows

that P(ε(bn,n) > ε)≤ 1/n2.

Thanks to the Borell-Cantelli lemma, the sum of the P(ε(bn,n) > ε) being finite for

any ε > 0, ε(bn,n) almost surely converges to 0, which concludes the proof of universal

consistency.

Let us now consider the convergence of the size of the structure.

As stated by H0, U(ibn∗) = n0 is finite. Let us consider n≥ n0 in the following.

L̂(ibn)+R(ibn,n) ≤ L̂(ibn∗)+R(ibn∗,n)

R′(ibn)R(n) ≤ R′(ibn∗)R(n)+ L̂(ibn∗)− L̂(ibn)

R′(ibn)R(n) ≤ R′(ibn∗)R(n)+L∗+2ε(bn,n)−L(ibn)

R′(ibn) ≤ R′(ibn∗)+2ε(bn,n)/R(n)

It remains to show that ε(bn,n)/R(n)→ 0 almost surely, which is also done using Borell-

Cantelli lemma. By definition of F(., .), P(ε(bn,n)≥ F(bn,1/n2)/
√

n)≤ 1/n2.

Hypothesis H3 implies that for any ε and n sufficiently large, F(bn,1/n2)/(R(n)
√

n) <

ε, and so P(ε(bn,n)/R(n) > ε) ≤ 1/n2. Thanks to the Borell-Cantelli lemma, the sum of

the P(ε(bn,n)/R(n) > ε) being finite for any ε > 0, ε(bn,n)/R(n) almost surely converges

to 0.

We prove optimality for some criterion R′. Let’s now see some links to classical opti-

mality criteria.

2.7.5 Links to classical optimality criteria

For a given structure bn:

• if there exists a instantiated bayesian network based on bn such that ibn coincides

with the true data distribution P, bn is called an I-map of P. Equivalently, all (condi-

tional or marginal) independencies given by bn are included in P.

• Inversely, if all (conditional or marginal) independencies of P are in bn then bn is

called a D-map of P.
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• if both above conditions are fulfilled, then bn is called a P-map of P.

One of the objectives when learning the structure of a bayesian network is to have a

good approximation of the joint law P. However, asymptotically one only needs bn to be

an I-map of P. By definition of ibn∗ and after the lemma of section 2.5.2, it follows that

ibn∗ is an I-map of P.

Another and more critical objective is to learn a structure capturing as many indepen-

dencies of the law as possible. Let bn≤ bn′ (respectively bn < bn′) denote the fact that the

set of laws that can be represented by bn is a subset (resp. a strict subset) of the laws that

can be represented by bn′; equivalently, every (conditional or marginal) independency of

bn′ is also part of bn.

A structure bn which has the minimal number of parameters among the I-maps of P is

called parameter-optimal. A structure bn which is minimal for ≤ among the I-maps of P is

called inclusion-optimal.

When law P can be represented by a bayesian network, (that is, there exists a P-map of

P), it is well known that the parameter-optimal and inclusion-optimal structures coincide

and they are Markov-equivalent (section 2.6.4, [Chi02a]).

In this case, by setting R′(bn) to the number of parameters of structure bn, H1 holds;

therefore ibn converges towards ibn∗, a P-map of P.

When there exists no P-map for P, there can be multiple inclusion-optimal models and

multiple parameter-optimal models. But after [CM02] (theorem 2, derived from [Chi02b]),

all parameter-optimal models are also inclusion-optimal. Again, setting R′(bn) to the num-

ber of parameters of structure bn, leads ibn to converge towards a parameter-optimal model.

Finally, it is worth noting that the score proposed in section 2.6.3 is asymptotically

consistent (in the sense of [CM02]): the dominant term becomes the number of parameters

as the number of examples goes to infinity.

2.8 Algorithmic issues

The results in the previous sections show that optimizing the empirical loss L̂ provides

better generalization properties than the usual frequentist approach, at least for some rea-

sonable loss functions.
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Unfortunately, in its basic form L̂ is difficult to evaluate and to optimize. This section

aims at addressing these limitations, through proposing:

• other more practical formulations of L̂, and algorithms for computing it (section

2.8.1),

• methods for adapting these algorithms to the computation of the gradient (section

2.8.2).

• optimization methods (section 2.8.3), including adaptive precision (based on esti-

mates of the precision of the computation of the gradient) and BFGS.

Despite these efforts, the proposed criterions are less amenable to optimization than

the standard KL-divergence: while the use of L2-norms avoids some stability problems

of the KL-divergence, and is more tailored to the evaluation of expectations, it remains

computationally harder and neglects rare events.

2.8.1 Objective functions

The methodology proposed is based on:

• a reformulation of the loss function L̂;

• an exact method for the computation of L̂;

• a Monte-Carlo method for the approximation of L̂;

• a method inspired by the quota method for the computation of L̂;

Introduction

Lemma: Let Q denote a probability function over p binary variables, S its L2 norm (S =

∑i∈{0,1}p Q(i)2), n the number of examples noted x1, . . .xn, then

L̂(Q) = 1+S +
−2
n

n

∑
j=1

Q(x j)
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Proof: L̂(Q) = 1
n ∑n

j=1 ∑i∈{0,1}p(Q(i)− 1(x j)i)
2 with 1(x j) the vector 1 representing

the example x j, and 1(x j)i the ith coordinate of 1(x j).

L̂(Q) = 1
n ∑n

j=1

(
(Q(x j)−1)2 +∑i∈{0,1}p,i 6=x j

Q(i)2
)

= 1
n ∑n

j=1

(
1−2Q(x j)+∑i∈{0,1}p Q(i)2

)

= 1+S + 1
n ∑n

j=1−2Q(x j)

While term ∑n
e=1−2Q(ie) can be computed linearly wrt the number of examples n

and the number of variables p, term S is not as easily dealt with. Other formulations are

therefore proposed to compute S in a tractable way.

Remark: The literature has extensively considered the computation of sum of probabil-

ities, e.g. for inference based on marginalization. As S is a sum of squared probabilities, ap-

proaches related to bayesian inference and described in [LS88, Coz00, KFL01, GHHS02]

can be applied and enforce huge gains in terms of both computational effort and precision.

Properties of the objective function

The objective function L̂(Q), to be minimized, is the sum of the empirical loss

∑n
j=1−2Q(x j) and the quadratic term S. The convexity of L̂(Q) thus depends on the empir-

ical term. While this objective function is not necessarily convex (see a counter-example in

Fig. 2.8), it was found to be “almost convex” in all experiments we did.

The computation of the gradient will be examined in section 2.8.2.

Exact method for the evaluation of S

An algorithm based on the decomposition of the product law is proposed in this section

to compute term S. The number of required operations depends on the BN structure; the

simpler the structure, the lesser the computational complexity of computing S.

This algorithm proceeds iteratively, maintaining two lists of set of nodes respectively

called the front F and the back C. During the process, the partial sum of squared proba-

bilities corresponding (related to S) are computed for all assignments of variables in F . F

and C are initialized to the empty list. Thereafter, at each time step t = 1 . . . p, F and C
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Figure 2.8: Non-convexity of the empirical loss L̂. Left: L̂(x,y), where x and y denote the
two parameters of a toy BN. Right: L̂(x,x) (diagonal cut of the left hand graph, showing
the non-convexity of L̂.

are iteratively updated by i) selecting a variable at after the rules detailed below; ii) adding

at to F and updating F accordingly; iii) computing the partial sum of squared conditional

probabilities for all assignments of variables in the front.

More precisely, for each time step t ∈ 2 . . . p let us define:

• Ft is a list of ft subsets, F t = (F t
1 , ...,F t

ft ), where F t
i is a subset of {1, ..., p}; F1 = ().

• Ct similarly is a set of ft subsets Ct
i , for i = 1 . . . ft where Ct

i ⊂ {1, ..., p}; C1 = ().

• at is selected among the last variables (in topological order after the BN structure)

such that either they have no successor, or all their successors have been selected in

previous steps (= as for s < t). In case several such at exist, at is chosen in order to

minimize the size of C′t (see below);

• It is the set of indices i such that Ct
i contains at , It = {i/at ∈Ct

i}⊂ {1, ..., ft}. It can be

seen as the set of indices i for which a modification in the computed sums will occur

because a variable in the corresponding element of the front depends on the value

of at (0 or 1). In the following lists, elements of indices i 6∈ It are not be modified

between step t and t + 1, whereas elements of indices i ∈ It include the effect of the

variable at .
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• C′t is a set of variables, defined as the union of Ct
i for i ranging in It , union the parent

nodes of at (C′t =
S

i∈It C
t
i
S

Pa(at)\{at}).

• Ct+1 is built from the Ct
i not containing at and adding C′t (Ct+1 = (Ct

i )i6∈It ,1≤i≤ ft .(C
′
t)

where a.b is the concatenation of lists a and b);

• St contains the values of partial sum of squared conditional probabilities for all possi-

ble assignments of the variables in the front. An assignment is represented as a func-

tion from the set of variables to {0,1}. St = (St
i)1≤i≤ ft , where St

i maintains the partial

sums of squared conditional probabilities for every assignment of variables in the ith

element of front F t . Each St
i is a function from an assignment to [0,1]. St+1 is defined

as: St+1 = (St
i)i6∈It ,1≤i≤ ft

.
(

c′ ∈ 2C′t 7→ ∑1
at=0 P(at |c′)2 ∏i∈It St

i(c
′
|domt

i
)
)

(where a|b is

the restriction of a to the domain b)

• F t+1 is built from the F t
i such that i 6∈ It and adding

S
i∈It F t

i ∪ {at}: F t+1 =

(F t
i )i6∈It ,1≤i≤ ft

.
(S

i∈It F t
i ∪{at}

)
;

• ft+1 is the length of F t+1

• domt+1 = (domt
i)i6∈It ,1≤i≤ ft

.(C′t)

Figure 2.9: Illustration of the exact method algorithm (see text for the definition of each
notation).

It is shown by induction that S is equal to the product of the St :

For any t ∈ {1, p}, for any 1≤ i≤ ft , St
i associates to every c ∈ 2Ct

i (i.e. every assignment
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of variables in Ct
i ) the sum of squared probabilities of variables in F t

i conditionally to c.

More precisely: ∀t ∈ {1, p}, ∀1 ≤ i ≤ ft , St
i : c ∈ 2Ct

i 7→ ∑
v∈2Ft

i
P(v|c)2 This implies the

consistency of the algorithm (see Figure 2.9).

Approximate methods for the computation of S

Because L̂ (and likewise its gradient, section 2.8.2) are hard to compute, this section

presents an efficient approximation of L̂. Since L̂ is the sum of the (computationally ex-

pensive) term S and a term with fast exact computation (section 2.5.1), the approximation

focuses on term S.

This approximation is based on rewriting S = ∑2p
i=1 Q(i)2 as S = EQ(i), E being the

expectation under the law Q; therefore, this expectation can be approximated using a finite

sample drawn according to law Q (Monte-Carlo method) or a refinement thereof (Quota

method). Both methods are presented below; they can be used to compute S or its gradient

∇S (see section 2.8.2), both of them being necessary either for the gradient descent or for

the BFGS method.

Formally, we shall denote ̂̂L the estimate of L̂ where S is replaced by an empirical mean

on a finite sample. Likewise, g = ∇L̂ denotes the exact gradient of L̂ and ĝ = ∇̂L̂ the

approximate gradient.

Monte-Carlo method for the computation of S The Monte-Carlo approach straight-

forwardly proceeds by simulating the law Q associated to the network and averaging the

results. S is thus approximated by ∑n
j=1 Q(e j)2 where e j are i.i.d among {0,1}p with dis-

tribution of probability Q.

The variance can be estimated along the same lines. Let us consider the case of ∇L̂ for

the sake of readability, the case of L̂ being similar. By definition, with d the dimension of

the gradient,

||ĝ−g||2 =
d

∑
i=1

(ĝi−gi)2

Handling ĝi−gi as σiNi√
n (approximation for the central limit theorem), where Ni is a Gaus-

sian variable with mean 0 and variance 1, and further assuming that the Ni are independent,
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it comes:
E||ĝ−g||2 = 1

n ∑i σ2
i EN2

i = 1
n ∑i σ2

i as EN2
i = 1

Var||ĝ−g||2 = 1
n2 ∑i σ4

i Var(N2
i ) = 2

n2 ∑σ4
i as Var(N2

i ) = 2

It follows that ||g− ĝ||2 can be upper bounded by the sum of its average and standard

deviation, that is 1
n

(
∑σ2

i +
√

2∑σ4
i

)
.

Quotas Method for the computation of S A more stable solution is defined as follows.

Let us assume that the variables are ordered in topological order, and let us consider the 2p

possible values (assignments) of the whole set of variables, taking in lexicographic order.

The probabilities corresponding to those assignments are noted q1, q2, . . . , q2p .

With n the sample size (determining the accuracy of the approximation), let us de-

fine xi = i−1
n for i = 1, . . . ,n. For i = 1, . . . ,n, let j(i) ∈ {1, . . . ,2p} be such as j(i) =

argmin{ j|∑ j
h=1 qh ≥ xi}. Then S is approximated as Ŝ = ∑n

i=1 q2
j(i).

Thanks to the fact that the lexicographic order of assignments is consistent with the

ordering of variables in the BN, this sum can be computed very efficiently (for each i, j(i)

can be computed in O(p)), with the simple procedure described in algorithm 13.

2.8.2 Computation of the gradient

When computing the gradient of L̂, the most difficult part is to compute the gradient of S.

This section presents an efficient evaluation of ∇S, along the same lines as in section 2.8.1.

Consider the following high-level definition of S:

S = ∑
j

S j

where j ranges over all possible assignments of the p variables. For each j, and the cor-

responding assignment (A1 = a1, ...,Ap = ap), S j = P(A1 = a1, ...,Ap = ap)2. For each j,

we define I j and I′ j the sets of parameter indices appearing in P(A1 = a1, ...,Ap = ap) =

∏k P(Ak|APa(k)), where each P(Ak|APa(k)) corresponds to a parameter. If a parameter, with

indice i, is involved in P(A1 = a1, ...,Ap = ap) = ∏k P(Ak|APa(k)), then i ∈ I j if Ak = 1 and

i ∈ I′ j if Ak = 0. We have by definition: ∀ j; I j∩ I′ j = /0 and ∀i; |{ j; i ∈ I j∪ I′j}|= 1.
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Algorithm 13 Quota Method
Input: number of samples n, a BN.
Initialize Ŝ = 0
for i = 1 to n do

xi = i−1
n

Initialize p = 0
Initialize q = 1
for k = 1 to p do

q = q×P(Ak = true|APa(k) = aPa(k))
if xi− p < q then

ak = true
else

ak = f alse
p = p+q

end if
end for
Ŝ = Ŝ + 1

nq2

end for
Output: Ŝ.

It comes:

S j = ∏
i∈I j

p2
i ∏

i∈I′ j
(1− pi)2

Then:

∂S j

∂pi
=





0 if i 6∈ I j∪ I′ j
2S/pi if i ∈ I j

=−2S/(1− pi) if i ∈ I′ j

(2.7)

Therefore, Monte-Carlo method can be adapted as follows to the computation of ∇S:

• draw examples as in the computation of L̂;

• for each example, adapt the at most p parameters that are concerned (one per vari-

able).

The computational complexity is that of computing S multiplied by p. The quota
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method can be adapted in the same way.

The exact method can be adapted as follows:

• for each parameter pi of the bayesian network:

– set the value of the parent variables, such that pi is relevant;

– evaluate S for the bayesian network with these fixed values;

– use equation 2.7 to compute ∂S/∂pi.

As BFGS can approximate the Hessian very efficiently using successive gradient com-

putations, computing the gradient of S is sufficient to apply the optimization algorithms

below.

2.8.3 Optimization

Two optimization algorithms have been considered to minimize L̂. The baseline algorithm,

based on gradient descent is the simplest approach for non linear optimization. Secondly,

we used BFGS, a standard non-linear optimization algorithm which i) is superlinear in

many cases; ii) only needs the gradient; as mentioned above it approximates the Hessian

thanks to the successive values of the gradient.

We used Opt++ and LBFGSB, freely available on the web, as BFGS optimization soft-

wares. The experimental validation results presented in the next section are obtained with

LBFGSB, a limited BFGS algorithm for bound-constrained optimization.

2.9 Experiments

This section is concerned with the experimental validation of the presented approach, start-

ing with the goals of experiments and detailing the empirical results obtained on real and

artificial problems, using i) the new learning criteria (section 2.6) and ii) the learning algo-

rithms optimizing these criteria (section 2.7).

All experiments are launched on a PC Pentium IV with 3.0 GHz.
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2.9.1 Goals of the Experiments

The experiments are meant to assess both the statistical significance of the presented criteria

and the computational complexity of the presented algorithms.

Specifically, a first question regards the quality of the entropy-based criterion (section

2.6), and whether it makes a significant difference compared to the standard criterion based

on the dimension of the BN parameters.

A second question regards the efficiency of the presented algorithms. Does BFGS

efficiently optimizes L̂? More generally, how do the algorithms for the computation of S

and ∇S behave? This question will be examined by comparing the exact method with the

Monte-Carlo approach, using uniform or quota-based sampling (presented in sections 2.8.1

and 2.8.1), depending upon i) the dimension of the target BN; ii) the size of the training set.

Lastly, our goal is to compare the L̂-based learning criterion with the local method

(frequentist), and see whether the theoretical superiority of the former criterion is confirmed

in practice.

2.9.2 The entropy-based criterion

A theoretical result (theorem 7, section 2.6.3) is that the deviation L− L̂ is bounded above

by a term depending on the entropy of the network besides the standard complexity of the

network measured by its number of parameters.

The relevance of this bound is assessed experimentally along the following experimen-

tal setting. A bayesian network is randomly constructed as follows:

• a permutation of variables is randomly drawn, uniformly among all permutations;

• for each variable (node) v in this order, and each previous variable w, w is added to

the set of parent of v with probability 1
2 ;

• each parameter pi is uniformly drawn in [0,1].

A training set D and a testing set T with respective sizes 2000 and 100000 are generated

after the distribution defined by the bayesian network.
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For a number k = 81 of parameters, m = 30 BN structures with k parameters are gener-

ated16; for each such hypothesis `i:

• its entropy noted Hi is computed;

• the parameters are learned (by optimizing L̂) and the empirical error L̂i measured on

D is recorded;

• the corresponding generalization error Li is measured on T .

The deviation Li− L̂i, averaged over the m learners is reported vs k. Fig. 2.10 displays

the deviation vs the entropy, for a fixed number of variables (10) and a fixed number of

parameters (81). The correlation between the deviation and the entropy is clear, while

the entropy term does not appear in the existing learning criteria considered for learning

Bayesian Networks. This result successfully validates the merit of the presented criteria.

Figure 2.10: Positive correlation of the loss deviation L− L̂ averaged on 30 BN (± standard
error) with the BN entropy, for a fixed number of variables and parameters.

2.9.3 Algorithmic Efficiency

A second objective is to assess the computational efficiency of the algorithms devised for

the computation of S and ∇S, namely i) the exact method; ii) the Monte-Carlo method; iii)

16The generation process of those structures is the same as described above, with a reject if the number of
parameters is not k.
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the quota-based method. All three algorithms are first considered in isolation and thereafter

inside the optimization loop.

The experimental setting is as follows. 10 bayesian networks are randomly generated

with a number of variables ranging in [20,50], where the i-th node has four parents: two

parents are randomly drawn in [i− 6, i− 3] and the other 2 parents are the i− 2-th and

i−1-th nodes.

Preliminary experiments on the approximations of ∇S

Table 2.9.3 displays the results obtained for each algorithm for various problem sizes (num-

ber of nodes and sample size).

Algorithm Time Relative error

nb nodes=20, sample size = 10000

Exact 0.68± 0.07 0.

Monte-Carlo 0.04 ± 0.003 0.07 ± 0.02

Quotas 0.04 ± 0.005 0.01 ± 0.003

nb nodes=30, sample size = 10000

Exact 1.85± 0.15 0.

Monte-Carlo 0.06± 0.004 0.11± 0.02

Quotas 0.06± 0.000 0.05± 0.03

nb nodes=50, sample size = 30000

Exact 6.26± 0.33 0.

Monte-Carlo 0.29± 0.01 0.19± 0.04

Quotas 0.30± 0.01 0.17± 0.04

These results experimentally validate the exact method as the error is 0 for each run.

They also show that the quota-based method improves on the Monte-Carlo method for

small problem sizes while it obtains similar results on larger problems. As widely acknowl-

edged for quasi-Monte Carlo methods (see e.g. [Sri00]), their results are often similar to

that of vanilla Monte-Carlo approaches in large dimensions.

With respect to the computational effort, both approximate methods are comparable

and faster than the exact method by an order of magnitude (factor 17 to 30). Only the
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quota-based method will be used in the next section.

Optimization through the approximate computation of S and ∇S

The next objective is to show that the optimization algorithm based on the approximate

methods above is reliable. Formally, the algorithmic goal is to determine the optimal pa-

rameter values through minimizing L̂ (the objective function, section 2.5.1). The minimiza-

tion is done using BFGS, based on the approximation of S and ∇S using the quota-based

approximation algorithm. ∇̂L̂ and Var(∇̂L̂) respectively denote the estimates of ∇̂L̂ and its

variance through the quota method.

The algorithm computes ˆ̂L (the approximation of L̂) using the quota method; and it

optimizes it using BFGS. The number of samples (used in the quota method) is increased

when the variance Var(∇̂L̂) is too high, typically when

Var(∇̂L̂)≥ α×||∇̂L̂||2

for α = 0.1.

The approximation-based algorithm is compared to the exact algorithm, where the exact

method is used to compute L̂ and ∇L̂.

Note that the structure of the target BN (section 2.9.3) favors the exact method as the

network has limited width (each node has 4 parents, whereas there are up to 50 variables).

Figure 2.11 displays the comparative results of the BFGS optimization based on the

approximate and exact computation of L̂ and ∇L̂. Thanks to the particular structure of the

network, the exact method remains very efficient even for 30 nodes, while the approximate

method is significantly faster than the exact one. Indeed, in the general case, the exact

approach becomes intractable and only the approximate method can be used.

As a proof of concept, these experiments demonstrate the practical efficiency of the pro-

posed approach, based on the BFGS optimization of the approximate loss and its gradient,

for small size problems. As noted in section 2.8.1, the adaptation of inference algorithms at

the state of the art would be needed to handle large size bayesian networks in the presented

framework, and will be considered as a perspective for further research.
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Figure 2.11: BFGS optimization of L̂ using exact and approximate computation of hatL
and ∇L̂, versus computational time. Left: 20 nodes; Right: 30 nodes, with same target BN
as in section 2.9.3.

2.9.4 Loss-based learning
A last objective is to assess the relevance of the proposed criterion and learning algorithms

wrt the minimal prediction loss. This objective is empirically investigated on 10 artifi-

cial problems and considering 50 randomly generated BN structures h1, . . .h50. For each

problem:

• The target distribution tc is randomly defined as a bayesian network, involving 10

variables and where the DAG is generated as in 2.9.3.

• A training set of n examples is generated after tc, where n ranges in [100,900].

• The hi parameters are optimized based on the training set, using the learning algo-

rithm detailed in the previous section.

Taking inspiration in [PA02], the performance criterion is set to the regret, namely the

difference between the prediction loss of h∗i minus the prediction loss of the true target

concept.

The results, displayed in Figure 2.12, show that on average parametric learning based

on the L̂ optimization decreases the prediction error by a factor 2 compared to naive (fre-

quentist) learning. Note that this gain does not rely on structural learning (optimizing the

DAG structure too), which is usually one or several orders of magnitude more expensive

than parametric learning.
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Figure 2.12: Regret (Generalization error - best possible generalization error: L− L(g)
with g the BN generating the data.) vs the number of training examples, averaged over 10
problems and 50 hypotheses for each problem. Left: best result for naive (frequentist) and
global (our method) learning; Right: average over learners.

2.10 Conclusion

The theoretical and empirical contributions presented in this chapter relate to the structural

and parametric learning of bayesian networks.

• As an alternative to the standard frequentist approach, we have proposed a new learn-

ing criterion based on the prediction loss L, with some evidences of its relevance for

some applications (section 2.2).

• In relation with the prediction loss (more specifically, in order to bound the deviation

between the empirical and expected loss), the covering numbers of bayesian networks

have been revisited. New bounds involving both the number of parameters of the

BN and its complexity, referred to as structural entropy, have been proved (theorem

7, section 2.6). While the number of parameters is widely acknowledged a factor of

complexity (in the spirit of the BIC/AIC criteria), to our best knowledge the structural

entropy term is original. Furthermore, despite the fact that statistical learning theory

classically derives loose bounds, the relevance of the structural entropy term has been
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empirically evidenced (section 2.9.2).

• The minimization of the empirical loss deviation, defines a parametric learning

framework which improves on the standard frequentist approach, both theoretically

(section 2.7.2) and experimentally (section 2.9.4). Further, this same framework,

increased in the spirit of the structural risk minimization [Vap95a], can be used for

structural learning; an algorithm with universal consistency guarantees, enforcing the

a.s. convergence towards a minimal size structure, has been presented (theorem 8).

While the optimization of this new learning criterion provides better theoretical

guarantees, it is clearly more computationally expensive than the frequentist approach.

Therefore, a second contribution of the chapter relates to the algorithmic aspects and

tractability of the presented approach. One exact algorithm, taking advantage of the

structure properties, and two approximate algorithms (based on Monte-Carlo and quotas

methods) have been proposed in order to compute the empirical loss and its gradient

(section 2.8). The accuracy of these approximations has been empirically investigated, and

a proof of concept showing the good behavior of a BFGS optimization algorithm based on

these approximations has been conducted on small size bayesian networks (section 2.9.3).

The presented approach opens several avenues for further research:

• While the bounds based on statistical learning theory are much too conservative in

the general case, they often suggest appropriate penalization policies. In our case,

regularizing the loss function based on the R term (number of parameters of the

network) and the entropy H(r) term appears to be relevant. Formally, the theoretical

results in section 2.6 suggest the use of R(1+H(r)/ ln(1/ε)) as regularization, where

ε is an estimate of the precision.

• The presented approach deals with datasets where some conjunctions of parents are

not present (then P(Ai|APa(i)) is not defined for some values of the parents Pa(i)).

• The presented approach deals with latent variables without requiring any modifica-

tion, avoiding the use of EM-based approach to estimate the distribution of the latent

variables.
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• As opposed to standard approaches, the weakness of the proposed approach regards

the precise estimate of specific states (e.g. whether some variable assignment occurs

with probability 10−3 or 10−7), which is better addressed e.g. using KL-divergence.

In contrast, the strength of the proposed approach concerns the estimation of macro-

events. For instance let us consider the overall fault probability, summarizing the

many possible different faults, each of which being modeled by one binary random

variable. Characterizing the overall fault probability can be handled with the pre-

sented approach.

• Last but not least, the scalability of the presented approach in order to learn large

size bayesian network will be considered using adaptations of existing inference al-

gorithms. Indeed, inference algorithms are designed to compute efficiently (taking

advantage of the network structure) sum of probabilities (marginalization), while the

S term is a sum of squared probabilities. Those issues are known under the factor

graphs and sum-product terminologies [AM97, KFL01]. Bayesian inference works

described in [LS88, Coz00, KFL01, GHHS02] can be applied and enforce huge gains

in terms of both computational effort and precision.



Chapter 3

Robust Dynamic Programming

This chapter focuses on Stochastic Dynamic Programming. As pointed out by Sutton and

Barto [SB98], one of the two main threads in reinforcement learning “concerns the problem

of optimal control and its solution using value functions and dynamic programming”. Dy-

namic Programming addresses three interdependent objectives: learning the value function,

optimizing the action, and sampling the environment.

The central claim of the chapter is that all three objectives must be considered in a

integrated way; the overall result depends on the integration of the learning, optimization

and sampling modules as much as on their standalone performance.

The contribution of the chapter is twofold. On the one hand, a repository of some promi-

nent algorithms developed for learning, optimization and sampling has been defined and in-

tegrated in an open source platform called OpenDP1. Likewise, a repository of benchmark

problems with controllable complexity and inspired from diverse real-world problems, has

been developed. Principled experimentations, investigating the combined behaviors of the

considered algorithms on these benchmark problems, provide extensive observations about

when a method should be used, and how to best combine methods.

On the second hand, a theoretical study of role of randomness in sampling methods is

presented.

The chapter is structured as follows. Section 3.1 presents and discusses Stochastic Dy-

namic Programming. Section 3.2 describes the repository of algorithms and benchmark

1OpenDP, http://opendp.sourceforge.net

86
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problems integrated in the OpenDP platform. Section 3.3, 3.4 and 3.5 detail results respec-

tively about the optimization, learning and sampling steps.

3.1 Stochastic Dynamic Programming

As mentioned in Chapter 1, at the core of many reinforcement learning and control ap-

proaches is the value function V (respectively Q), approximating the expected cost or re-

ward for a given state (resp., a pair (state, action)). The value function, anticipating the

potential benefits associated to a state or an action in a given state, is the cornerstone of

control methods; note that a direct approach (optimizing a sequence of actions) has expo-

nential complexity in the number of time steps, aka horizon.

Stochastic Dynamic Programming (SDP), briefly introduced in Chapter 1 (the inter-

ested reader is referred to [SB98, BT96, Roy01] for a comprehensive presentation), one of

the oldest techniques used to compute optimal strategies, is used in many real-world ap-

plications with significant economic impact, such as power supply management or energy

stock management. It turns out that the SDP approaches have not been thoroughly investi-

gated in RL or in the neighbor community of approximate-dynamic-programming (ADP),

despite the fact that SDP techniques might open to many more industrial realizations of

reinforcement learning. Its main weakness, a poor scalability wrt the size of the domain, is

addressed through learning techniques (see below) or ad hoc domain restriction heuristics

[BBS93, SB98].

Let us recall the main equation of Dynamic Programming, already introduced in Chap-

ter 1. Slightly different, though still standard, notations are used to better emphasize the

points studied in this Chapter.

Let f denote the dynamic system, st the state at time step t, at the decision taken at

time step t, and ct the instantaneous cost function. ct(st ,at) gives the instantaneous cost

for taking decision at in the state st , and ft(st ,at) is the state reached when taking decision

at in the state st . State ft(st ,at) and cost ct(st ,at) can be random variables (at t, st and at

fixed). Only finite horizons will be considered in this Chapter, t = 1 . . .T .

Stochastic dynamic programming is based on equation 3.1, describing the backward
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through time computation of the value function V :

Vt(st) = inf
at

E[ct(st ,at)]+E[Vt+1( ft(st ,at))] (3.1)

Indeed, this equation can not be applied directly to construct the value function; for one,

the state space is usually infinite. We will use in the following a particular SDP technique,

also known as fitted value iteration, involving learning techniques, building Vt(s) based on

a finite sample (si,Vt(si)), i = 1 . . .n. Basically, SDP thus involves three core tasks:

• Sampling, i.e. selecting the examples (si,Vt(si)) used for learning;

• Regression, i.e. actually constructing Vt(s) based on the available sample;

• Optimization, i.e. solving the above equation wrt at , assuming that st and an approx-

imation of Vt+1 are known.

This chapter focuses on the interdependencies of these three tasks, which will be de-

tailed respectively in sections 3.3, 3.4 and 3.5. Let us first discuss the main pros and cons

of SDP, and the underlying random process.

3.1.1 Pros and Cons

Compared to other approaches (Chapter 1), the pros of the SDP approach are: i) its robust-

ness with respect to the initial state; ii) a stable convergence by decomposition among time

steps (as opposed to fixed point iterations); iii) learning is based on noise-free examples,

up to the optimization accuracy and the precision of Vt(.).

The SDP applicability is limited as it relies on the following requirements:

• Cost function ct must be known. The cost function might be modeled based on the

physics of the application domain, or learned from data (see Chapter 2)2;

• the transition function must be known, be it either modeled based on the physics of

the application domain, or learned from data3;
2While no analytical characterization of the cost function is required, one must be able to compute the

cost associated to any pair (state, action), independently of any trajectory actually visiting this state.
3Again, no analytical characterization of the transition function is required; still, one must be able to

simulate the transition function at any state of the state space.
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• the value function must be learned offline;

• the approach is not anytime, i.e. an early stopping of the process does not give any

guarantee about the quality of the current result.

When these assumptions are not satisfied, SDP is not competitive compared to model-free

online algorithms, e.g. T D(λ) algorithm (Chapter 1). However, it must be emphasized that

these requirements are satisfied in quite a few important application domains4.

Before describing the core sampling, learning and optimization aspects of SDP, let us

discuss stochastic aspects thereof.

3.1.2 Random Processes

We use the term random process to denote the model of the exogenous part of the transition

function, ie the part of the state independent of the action. In a control problem involving

a power plant, the exogenous part would be the weather: the weather is part of the state, as

for example the demand will depend on the weather. The weather can be predicted from

past scenarios, but the weather does not depend on the decisions we can take.

As another example, the ”Arm” problem involves a ball to be caught by a controlled

arm. The random process is the description of the ball moves; a scenario, i.e. an example

or sequence of observations, is a trajectory of the ball. The ball movement does not depend

on the action of the arm.

The random process is learned by assuming that trajectories are independent from each

other. Let S j
i denote the state of the random process at time step j in the i-th scenario. Let

Rt denote the state of the random process at time step t; the predicted state at time t + 1,

Rt+1, is estimated by retrieving the trajectory S·k closest to Rt :

Rt+1 = Sk
t+1 with k = argmin

`
|St

`−Rt |

In the ball example, that means that from the records of the ball trajectories, and for

a given time t, to predict the position of the ball at time t + 1 we look for the scenario in

4For instance, in applications such as power supply management, the model of the physical phenomenon
is available, including the cost and the transition functions.
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which the position of the ball was the closest to the current ball position Rt . With Sk this

scenario, the predicted ball position is Sk
t+1, i.e. the position the ball had in the chosen

scenario.

While the modelling of the random process can (and should) be done in a much more

sophisticated way, this aspect will not be considered further in the following, as our focus

is on the optimization, Bellman value learning and sampling techniques in SDP.

3.1.3 The core of SDP

Referring to equation 3.1, we shall call:

• Optimization, the computation of the infat for known st and Vt+1(.). So the ”optimiza-

tion” in the following refers to real function optimizations, but in a SDP framework

(optimization at one step will has consequences over other time steps);

• Learning, the regression of the Bellman function, i.e. the approximation of the Vt(.)

from examples (si
t ,y

i
t), with yi

t = infat c(si
t ,at) + EVt+1( f (xi

t ,at)). It is supervised

regression learning but again in a SDP framework;

• Sampling, the choice of the si
t used for learning, and from which the optimization is

performed.

Optimization

Equation 3.1 is intensively used during a dynamic programming run. For T time steps, if N

examples are required for efficiently approximating each Vt , T ×N optimization problems

are solved. Note that the optimization objective function is not necessarily differentiable

(as complex simulators might be involved in transition function f ) and not necessarily

convex; moreover, the optimization problem might be a mixed one, involving continuous

and boolean variables (e.g. power plant management involve boolean variables).

The main requirement on the optimizer regards its robustness, meant as its worst-case

performance. Indeed, due to the many iterations of eq. (3.1), an optimization failure at

some time step can hinder the SDP process more severely than many small errors.
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Learning

Reinforcement learning commonly involves regression algorithms, as opposed to interpo-

lation or discretization-based learning techniques.

Learning in the RL framework, and more specifically in the SDP framework, brings in

new quality criteria and constraints compared to standard supervised learning. In particular:

• Many learning steps have to be performed and the computational cost of one example

might be high (at it often involves one simulation step, and can possibly require many

simulation steps if it involves the computation of some expectation). Therefore the

learning algorithm must be able to learn efficiently from few examples.

• Another critical requirement for the learning algorithm is robustness, in the sense of

the L∞ approximation error; indeed, learning errors can create false local minima,

which will be back propagated through time. Accordingly, the standard mean square

error criterion, classically minimized by regression algorithms, is not relevant here.

If the dynamics of the environment are smooth, this requirement can be unnecessary

[Mun07].

Sampling

As pointed out in e.g. [CGJ95b], the ability of the learner to select examples and modify

its environment in order to get better examples is one of the key sources of efficiency

for learning systems. Such efficient learning systems typically involve (i) a sampler or

active learner, that chooses instances in the domain, and has them labelled by some oracle

(e.g. the domain expert or the environment); and (ii) a passive learner that exploits the

examples, i.e the pairs (instance, label), to construct an estimation of the oracle (target

concept in the classification case, target function in the regression case).

Various forms of active learning have been proposed:

1. Blind approaches include methods which do not take into account the labels [CM04],

and only select instances that are well distributed in the domain, e.g. in a quasi-random

manner; here, the learning process is a three-step process: i) sample the instances; ii) call

the oracle to label them; iii) learn the target concept/function;
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2. Non-blind approaches, in which the sampler uses the former examples in order

to choose the next instances to be labelled; possibly, the passive learner is embedded in

the active learner or sampler. Non-blind approaches use various criteria; [LG94] selects

instances where the current estimation of the target function reaches a maximum degree

of uncertainty; [SOS92] chooses instances that maximally decrease the size of the version

space. Other approaches include [SC00], with application to Support Vector Machines

(SVM), and [CGJ95a], with application to Neural Nets.

3.2 OpenDP and Benchmarks

The section presents the Reinforcement Learning Toolbox5 called OpenDP, together with

the benchmark problems considered in the extensive experimental study detailed in next

section.

3.2.1 OpenDP Modules

For the sake of generality, OpenDP handles continuous, discrete or mixed state and action

spaces. Although any kind of controller can in principle be integrated in OpenDP, the main

focus has been on Stochastic Dynamic Programming (SDP), motivated by the real-world

industrial applications using such an algorithm and their economic and ecological impact.

The OpenDP Toolbox integrates many existing libraries together with our own imple-

mentations, Its contents is decomposed into optimization, learning and sampling compo-

nents. Additionally, a visualization module (Appendix A) enables to visually inspect a

value function, compare the algorithm performances, assess the confidence of the opti-

mization using the Veall test [MR90], and so forth.

5OpenDP is an opensource software under GPL license, freely available at http://opendp.
sourceforge.net/. OpenDP is written in C++, using Qt library. It works under Linux and Windows
operating systems (Fig. A.4).
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Optimization module

The optimization module includes gradient based methods, evolutionary computation al-

gorithms, and Monte-Carlo or quasi Monte-Carlo methods. All methods are available as

plugins of existing libraries, or have been developed specifically for OpenDP:

• Gradient based methods include:

* an implementation of the BFGS algorithm in the LBFGS library [BNS94, BLN95];

* several implementations of quasi Netwon methods in the Opt++ library (http:

//csmr.ca.sandia.gov/opt++/);

• Evolutionary algorithms include:

* Open Beagle, developed by Christian Gagné [Gag05] (http://beagle.gel.

ulaval.ca/);

* Evolutionary Objects, developed in the EvoNet framework [KMRS02] (http:

//eodev.sourceforge.net/);

* a home-made Evolutionary Algorithm;

• Quasi-Random methods involve low discrepancy/low dispersion sequences [LL02]

(more on this in section 3.5);

• Lastly, the Derivative-free optimization algorithm CoinDFO, which builds a model

of the objective function (http://projects.coin-or.org/Dfo).

Learning module

The learning module includes the main regression libraries and algorithms available at the

time of writing:

• Weka [WF05] is the most comprehensive machine learning library, and one of the

most used (http://www.cs.waikato.ac.nz/ml/weka/). It includes dozens of re-

gression algorithms of all kinds;

• Torch (http://www.torch.ch/) includes Support Vector Machine algorithms, Neu-

ral Networks, and K-Nearest Neighbors;
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• Fast Artificial Neural Network Library (FANN) (http://leenissen.dk/fann/) is

a comprehensive suite of learning algorithms for neural networks.

Sampling module

OpenDP includes several sampling methods, which will be detailed in section 3.5:

• based on low discrepancy sequences (section 3.5.4);

• based on low dispersion sequences (section 3.5.4);

• active sampling methods (section 3.5 and following).

3.2.2 Benchmarks problems

A suite of benchmark problems is integrated in OpenDP, making it easy to systematically

assess the algorithms presently included in the Toolbox and the future ones. The suite is

meant to comprehensively illustrate different algorithmic issues (Table 3.2.2). It involves

diversified problems inspired from real-world ones; specifically, the two stock management

problems are inspired from real-world power plant applications. Lastly, the dimension

of almost every problem is tunable in order to effectively assess the scalability of every

applicable method and heuristics6.

All problems involve continuous state and action spaces. Some problems involve an

exogenous random process (section 1); the state space (involved in the learning of the value

and transition functions) is thus decomposed into two parts, the state space stricto sensu

and the model of the random process (which is not controllable by definition). It is worth

noting that none of these problems is trivial, i.e. they all defeat greedy strategies (selecting

the action that optimizes the instantaneous cost in every time step does not work).

The seven problems in the suite are detailed below with their difficulties.

• Stock management: aims at the optimal use of k stocks to satisfy the demand (k = 4

in the baseline experiments). The state space is Rk (the stock levels). The action

6The interested reader will find the code and parameters in the OpenDP source code, and a basic manual
to run the experiments.
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State space Random Action space Number of Number
Name dimension process dimension time steps scenarios

(basic case) dimension (basic case)
Stock Management 4 1 4 30 9

Stock Management V2 4 1 4 30 9
Fast obstacle avoidance 2 0 1 20 0

Many-obstacles avoidance 2 0 1 20 0
Many-bots 8 0 4 20 0

Arm 3 2 3 30 50
Away 2 2 2 40 2

Table 3.1: The OpenDP benchmark suite, including seven problems. Columns 1 to 3
indicate the size of the state, random process state and action spaces. Column 4 indicates
the time horizon and Column 5 is the number of scenarii used to learn the random process.

space is Rk, describing for each stock the positive/negative (buy/sell) decision. The

random process is the (exogenous) demand. The cost function is a smooth one,

aggregating the price of the goods and penalties when the demand is not satisfied.

The difficulty of this problem lies in the learning and optimization steps: accurately

estimating the cost function and precisely optimizing the value function.

• Stock management V2: is very similar to the previous problem, but easier; it in-

volves different constraints and cost function.

• Fast obstacle avoidance: aims at controlling a bot in order to reach a target position

while avoiding a (single) obstacle. The bot speed is constant; the action is the direc-

tion to be taken by the bot (continuous, in [0,2π]). The state space R2 describes the

bot position; there is no detection of the obstacle (ie the position of the obstacle has

to be learned and modelled through the Bellman value function). The cost function

aggregates the time needed to reach the target and (large) penalties if the bot hits the

obstacle. This problem is is a rather simple one; the difficulty lies in the identification

of the obstacle position, relying on the learning and sampling steps.

• Many obstacles avoidance: is similar to the previous problem, but more difficult as

it involves many obstables.
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• Many-bots: aims at controlling k bots in a 2D map involving simple, not moving,

obstacles (k = 16 in the baseline experiments). The state space is R2k (the 2D coor-

dinates of each bot). The action space is [0,2π]k (the direction angle of each bot; the

bots have same constant speed). The cost function aggregates i) the sum of the dis-

tances between each bot (aiming at a flock behavior where the bots are close to each

other); ii) their distance to a target position; iii) penalties for obstacle hitting. The

main difficulty comes from the cost function, including many local optima (when

bots are close from each other, but far from the target) in a large state space. This

heavily multi-modal landscape thus makes the optimization step challenging.

• Arm: aims at controlling an arm to reach a moving target. The arm is made of

k connected segments in a 2D plane (k = 2 in the baseline problem). The first

segment has one extremity fixed at position (0,0), and can make a free 2π rota-

tion. Other segments have their rotation in [−π/2,+π/2]. The state space thus is

[0,2π]× [−π/2,+π/2]k−1. The target is a random process in R2. The cost is com-

puted from the distance d between the moving extremity of the arm and the center of

the target, and defined as min(d,C) where C is a constant. The main difficulty of the

problem lies in the cost function; its structure and the value of constant C create large

optimization plateaus (where the cost is constant) where greedy optimization can but

wander hopelessly. The challenge is on the learning step, that must be very efficient

and allow an efficient propagation back through time. An additional difficulty comes

from the interdepencies and constraints among the segment angles, specifically chal-

lenging the optimization step.

• Away: is similar to the previous problem with two differences: i) the goal is to avoid

the target instead of reaching it; ii) the target is moving much faster.
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3.3 Non-linear optimization in Stochastic Dynamic Pro-

gramming (SDP)

This section focuses on the thorough evaluation of optimization methods in the Stochastic

Dynamic Programming framework. We first briefly review the state of the art, before dis-

cussing the main aspects of “robust optimization” in relation with SDP. The optimization

algorithms involved in OpenDP are described and comparatively assessed on the bench-

mark suite.

The main contribution of this section lies in the extensive empirical assessment pre-

sented. While many papers have been devoted to Approximate Dynamic Programming

[PP03, Cai07, Pow07, EBN06], some papers only report on applying one algorithm to

some problems; when comparing several algorithms, some papers consider problems fa-

voring one of the algorithms. Furthermore, most papers discard the optimization aspects,

sometimes handled through discretization and sometimes just not discussed.

The goal of this section thus is to show the major impact of the optimization step on the

overall SDP result, and to understand where the real difficulties are.

3.3.1 Introduction

Large scale SDP applications, such as energy stock-management, define continuous op-

timization problems that are usually handled by traditional linear approaches: i) convex

value-functions are approximated by linear cuts (leading to piecewise linear approxima-

tions (PWLA)); ii) optimal decisions are computed by solving linear problems. However,

this approach does not scale up as the curse of dimensionality badly hurts PWLA. New

approaches, specifically new learning methods must thus be considered. As a side effect,

as the Bellman function is no longer a convex PWLA, the action selection task concerned

with minimizing the (expectation of the) cost-to-go function, can no longer be achieved

using linear programming.

The continuous action selection task thus defines a nonlinear programming problem.

The problem of non-linear optimization for continuous action selection, which has received
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little attention to our best knowledge7, is the focus of this section. We compare several non-

linear optimization algorithms together with discretization-based approaches, to assess the

impact of the action-selection step in the SDP framework.

3.3.2 Robustness in non-linear optimization

“Optimization objective function” and “fitness” are used interchangeably in this section.

While robustness is perhaps the most essential demand on non-linear optimization, it

actually covers very different requirements:

1. Stability. The result x should be such that i) x fitness is satisfactory; ii) the fitness

is also satisfactory in the neighborhood of x. Stability is a very important requirement

e.g. in optimal design. Optimization stability has been extensively discussed in the field

of Evolutionary algorithms; in particular, [DeJ92] argues that Evolutionary algorithms are

interested in areas with good fitness, more than in function optimization per se.

2. Avoidance of local minima. Iterative deterministic methods such as hill climbing are

prone to fall down in local minima; multiple restart techniques (relaunching the algorithm

with a different starting point) are commonly used to overcome this drawback.

3. Resistance to fitness noise. Various models of noise and an extensive discussion

about noise-related robustness can be found in [JB05, SBO04, Tsu99, FG88, BOS04].

4. Resistance to unsmooth landscape. Gradient-based methods hardly handle unsmooth

or discontinuous fitness functions, e.g. due to the use of penalties. In contrast, Evolution-

ary algorithms most often depend on fitness ranks (i.e. the construction of new instances

only depends on the ranks of the current instances in the population, as opposed to their

actual fitness values), and are therefore invariant under monotonous fitness transformations

[GRT06]. In practice, Evolutionary algorithms make no difference between ||x||2 or ||x||
optimization, whereas the latter fitness severely hinders standard Newton-based methods

like BFGS [Bro70, Fle70, Gol70, Sha70].

5. Stability wrt random effects. Many optimization algorithms, even the so-called de-

terministic ones, involve random aspects (e.g. in the initialization step; when breaking ties).

The dependency of the result wrt such random effects, and the probability of a catastrophic

7On the one hand few works in the literature deal with continuous action selection [vHW07]; on the other
hand these most often focus on linear optimization.
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failure, is a major aspect of algorithmic robustness. Population-based algorithm are clearly

more robust in this respect than single-point methods (e.g. simulated annealing); still, the

design of the initialization routine is acknowledged to be a major factor of efficiency in

Evolutionary algorithms [KS97].

Interestingly, all above acceptions of the polysemic “Robustness” criterion are relevant

in the SDP framework, to diverse extents.

Stability is fully relevant to cope with the imperfections in the learning step. In the Fast-

obstacle-avoidance problem for instance, the robot has to avoid obstacles and the strict

fitness optimization might lead to trajectories that are very close to the obstacle; when

taking into account the inaccuracies of the learning step (in estimating the robot position),

“very close” might just be “too close”.

Avoidance of local minima is relevant as SDP indifferently considers convex and non-

convex optimization problems (e.g. robotics most usually involves non-convex problems).

Further, even when the true value function is convex (the law of increasing marginal costs

implies the convexity of many stock management problems), its approximation is not nec-

essarily convex.

Resistance to fitness and gradient noise is also relevant. On the one hand, the underlying

fitness function is noisy as it is learned from (a few) examples. On the other hand, there is

no guarantees whatsoever on the fitness gradient, even if it can be computed (the fact that

|| f̂ − f || is small or bounded does not imply any bound on ||∇ f̂ −∇ f ||).
Resistance to unsmooth fitness landscape is mandatory: on the one hand, strong discon-

tinuities exist in continuous problems (e.g. as penalties are used to handle obstacle hitting);

on the other hand, SDP often meets mixed continuous/integer optimization problems (stock

management problems involve integer numbers of production units).

Finally, we consider Resistance to random effects and catastrophic events to be the

most essential criterion within the SDP framework. Indeed, SDP handles many thousand

(similar) optimization problems in a single run; therefore, if catastrophic events can occur,

they will. More precisely, an SDP-compliant optimization algorithm should be able to

address all problems in an optimization problem family, and provide results up to 95%

precision − as opposed to, address 95% problems in the family with an arbitrarily good

precision.



100 CHAPTER 3. ROBUST DYNAMIC PROGRAMMING

3.3.3 Algorithms used in the comparison

Let us make it clear that none of the algorithms below was devised to address a specific

benchmark problem of the OpenDP suite. Rather, our goal is to propose a neutral and

comprehensive assessment, considering diversified problems (section 3.2.2) and diverse

algorithms, including standard tools from mathematical programming, Evolutionary algo-

rithms and discretization-based approaches.

Evolutionary algorithms address binary and continuous optimization problems

[BHS91, BRS93, Bey01] and can also handle mixed continuous-integer optimization prob-

lems (e.g. [BS95]). However, as not many algorithms can handle mixed optimization prob-

lems, and for the sake of a meaningful comparison with other methods, the experiments

only consider continuous optimization problems.

Besides Evolutionary algorithms, derivative-free optimization methods [CST97] and

limited-BFGS with finite differences [ZBPN94, BLNZ95] are considered. Naive ap-

proaches, random and quasi-random methods are also considered as they are enable frugal

any-time optimization. They include discretization techniques, evaluating a predefined set

of actions, and selecting the best one. As detailed below, dispersion-based and discrepancy-

based samplings will be used to construct the predefined set of actions.

Let us detail the optimization algorithms involved in the comparative experiments. All

but the baseline algorithms are existing codes which have been integrated to the OpenDP

toolbox.

• Random search: randomly draw N instances in the search space, compute their fitness

and return the best one.

• Quasi-random search-1: idem, where low discrepancy sequences [Nie92, Owe03]

replace uniform sampling. Low discrepancy sequences have been primarily inves-

tigated for numerical integration and later applied to learning [CM04], optimization

[Nie92, AJT05], and path planning [Tuf96], with significant improvements compared

to Monte-Carlo methods. A hot research topic concerns low discrepancy sequences

in highly dimensional spaces [SW98, WW97], (with particular successes when the

”true” dimensionality of the underlying distribution or domain is smaller than the

apparent one [Hic98]) and the use of scrambling-techniques [LL02].
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• Quasi-random search-2: idem, using low-dispersion sequences [Nie92, LL03,

LBL04]. While low-dispersion is related to low-discrepancy, the former criterion is

easier to optimize; noting d the Euclidean distance, the dispersion of a set of points

P reads:

Dispersion(P) = sup
x∈D

inf
p∈P

d(x, p) (3.2)

A relaxed criterion (to be maximized) will be considered in the section, defined as:

Dispersion2(P) = inf
(x1,x2)∈D2

d(x1,x2) (3.3)

Criterion (3.3) is optimized greedily and iteratively; instance xi is optimized in order

to maximize the dispersion of (x1, . . .xi) conditionally to (x1, . . . ,xi−1). This proce-

dure is fast and any-time (it does not require the number of instances to be known

beforehand), although it only provides a local optimum wrt equations (3.3) or (3.2).

• Criterion (3.3) is biased toward instances that are the frontier of the search space,

contrasting with (3.2); low-dispersion sequences biased against the frontier of the

search space are constructed, replacing eq. (3.3) with:

Dispersion3(P) = inf
(x1,x2)∈D2

d(x1,{x2}∪∂D) with ∂D the frontier of D (3.4)

Likewise, criterion (3.4) is optimized in a greedy and iterative way.

• Covariance Matrix Approximation-based Evolution Strategies (CMA-ES) [HO96,

KMRS01, Gag05] are Evolutionary algorithms dedicated to continuous optimiza-

tion; the implementations considered are those of the EO 8 and OpenBeagle libraries
9;

• The Hooke & Jeeves (HJ) algorithm [HJ61, Jr.63, Wri] is a geometric local optimiza-

tion method; the implementation considered is M.G. Johnson’s 10;

8http://eodev.sourceforge.net/
9http://freshmeat.net/projects/openbeagle/

10http://www.ici.ro/camo/unconstr/hooke.htm
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• Limited-BFGS with finite differences uses an approximated Hessian in order to ap-

proximate Newton-steps without the huge computational and memory cost associated

to the use of a full Hessian; the implementation used is that of the LBFGSB library

[ZBPN94, BLNZ95].

• Finally, we also used a home-made Evolutionary algorithms11 with standard opera-

tors, detailed in [TG07] and in Appendix B.1. Two versions have been considered,

with and without memory (noted EA and EANoMem), where the former returns the

best instance ever constructed, and the latter one, the best instance in the last popu-

lation.

The initialization of point-based algorithm takes the domain center point as initial in-

stance; population-based algorithms consider a uniformly selected population. All restarts

(e.g. when the progress falls below the machine precision) consider a new starting point

uniformly drawn.

When relevant, the step size is set to half the domain width (on each axis).

The parameters of every algorithm have been tuned on a same time budget, considering

an independent benchmark problem ([SHL+05]), in order to avoid overfitting a particular

problem, and to study the “out of the shelf” performance of the algorithms, taking into

account the fact that some parameters are more difficult to tune than other ones.

Finally, the DFO-algorithm [CST97] 12 has been discarded due to its huge computa-

tional cost; the CMA-ES from Beagle [HO96, Gag05] has been discarded as it is similar to

CMA-ES from EO [KMRS01].

Overall, four types of algorithms have been considered:

• 2 gradient-based algorithms (LBFGS and LBFGS with restart);

• 3 evolutionary algorithms (EO-CMA, EA, EANoMem);

• 4 sampling-based algorithms (Random, Quasi-random, Low-Dispersion, Low-

Dispersion ”far from frontiers” (LD-fff) );

• 2 pattern-search algorithms (Hooke&Jeeves, Hooke&Jeeves with restart).
11http://opendp.sourceforge.net
12http://www.coin-or.org/
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3.3.4 Experiments

After describing the experimental setting, we summarize the general lessons learned from

the experiments and finally discuss the strengths and weaknesses of the various algorithms

in relation with the specificities of the benchmark problems.

Experimental settings

All problems of the benchmark suite (section 3.2.2) have been considered: in their baseline

dimension d (Table 3.2.2); in dimension 2×d; in dimension 3×d; and in dimension 4×d

(increasing both the state and action space dimension).

All optimization algorithms are combined with the same learning algorithm, set to

SVMTorch with Laplacian kernel and tuned hyper-parameters [CB01], learning from 300

examples sampled after quasi-random methods in each time step.

Each optimization algorithm is allowed i) a fixed number of points for sampling-based

algorithms; ii) 100 function or gradient evaluations for other algorithms. Every result is the

average performance out of 66 independent runs.

Summary of the results

As could have been expected, there is no killer algorithm dominating all the other ones.

The best algorithm depends on the benchmark problem. A first outcome of this extensive

study thus is to show that definite conclusions offered in the literature about the superiority

of such or such algorithm “in general”, are not reliable. For each particular benchmark,

the best algorithm (with 5% significance over all other algorithms, in bold, or with 5%

significant over all algorithms except the second best, in italic), is given in Table 3.2. These

results must be taken with care; despite the diversity of the benchmark problems, we are

still far from being able to tell which algorithm is the best one for a new SDP problem.

This being said, some relatively stable observations are made:

• For sampling-based approaches:

– Quasi-random methods dominates random search (they are significantly better

in 17 out of 20 experiments, and obtain similar performances on the remaining
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3 problems);

– Low-dispersion (LD) methods, biased toward the domain frontier, are the best

ones in “bang-bang” problems, such as the ”away” or ”arm” problems where

optimal actions are often close to the boundary of the action space. LD domi-

nate random search on 10 out of 20 problems only; in other words, their perfor-

mance is problem dependent;

– LD-fff methods, with a lesser bias toward the domain frontier, outperform ran-

dom search on 14 out of 20 problems (but are far less impressive than LD ones

on bang-bang-problems).

• For order-2 methods, including gradient-based mathods and CMA-ES13:

– LBFGSB (respectively Restart-LBFGSB) outperforms quasi-random methods

on 9 (resp. 10) out of 20 problems only, which is blamed on three factors: i) the

limited number of examples; ii) the non-convex nature of the landscape; iii) the

cost of estimating a gradient by finite-differences;

– CMA-ES is sometimes very efficient; in particular it is the best algorithm for

stock-management problems in medium or large dimensions (≥ 8), where the

optimization accuracy matters. The main weakness is its computational cost

per iteration, generally much higher than for other methods, explained by the

estimation of the covariance matrix (similar in spirit to the Hessian); on the

other hand, it does not involve any gradient computation and therefore does not

suffer from afferent limitations (e.g. unsmoothness);

• Pattern-search methods (the Hooke&Jeeves algorithm with Restart) outperform

quasi-random methods on 10 problems out of 20;

• For Evolutionary algorithms:

– CMA-EO (very) significantly outperforms quasi-random methods on 5 out of

20 problems, namely on stock-management problems in high-dimension;

13As CMA uses a covariance matrix which is strongly related to the Hessian.
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– EA outperforms quasi-random (respectively, random) methods on 14 (resp. 17)

out of 20 problems, significantly in most cases. EANoMem outperforms quasi-

random (respectively, random) methods on 14 (resp. 15) out of 20 problems.

Evolutionary algorithms appear to be the algorithms with most stable perfor-

mances in the range of experiments.

Detailed results for each optimization algorithm and each problem will be found
on Appendix B.2.

3.3.5 Discussion

The experimental study presented in this section is meant to be as neutral and objective

as possible. The tuning of the hyper-parameters of each algorithm was allowed the same

time budget, although some algorithms might require more tuning efforts to reach better

performances14. Based on these experiments in the domain of Approximate Dynamic Pro-

gramming, three claims are made:

• High-dimensional stock-management. On medium and high-dimensional prob-

lems, for landscapes “moderately unsmooth”, our recommendation is to use CMA-

ES. Although it is less robust than Evolutionary algorithms in the general case, its

performances are excellent in problems such as stock resource management. CMA-

ES, a most celebrated variant of EA, was found to be a very good candidate for

non-linear optimization in high-dimensional search spaces provided that the land-

scape is smooth enough to enable the covariance matrix adaptation. In the range of

experiments (d varies in [4,16]), its performances are significantly better than others;

in particular, LBFGS is not satisfactory, which was blamed on the fact that convexity

or differentiability cannot be reliably assumed in ADP (section 3.3.2).

The main weakness of CMA-ES is a huge computational cost. The comparison

framework allows each algorithm the same number of calls to the fitness func-

tion, which makes sense if the computational effort mainly comes from the fitness-

evaluations. Otherwise, CMA-ES might be prohibitively expensive.

14The reader will find the open source OpenDP Toolbox, including all algorithms and benchmark prob-
lems, and will be able to experiment with other parametrization/conditions.
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Problem Dim. Best QR beats EA beats LBFGSBrestart LD beats
algo. random random ; QR beats random;QR random;QR

Stock 4 LDfff y y;n y ; n y ; n
and 8 EoCMA y n;n n ; n n ; n

Demand 12 EoCMA y n;n n ; n n ; n
16 EoCMA n n;n n ; n n ; n

Stock and 4 LD y y;y y; y y; y
Demand2 8 EoCMA n y;y n ; y y ; y

Fast Obst. Avoid. 1 HJ y y;n n ; n y; y
Many Obst. Avoid.** 1 EA y y;y y ; y y ; y

Many bots** 4 EA n y;y n ;n n ; n
8 EANoMem y y;y n ;n n ; n
12 LDfff y y;y n ;n n ; n
16 EANoMem y y;y n ;n y ; n

Arm* 3 LD y y;y y ; y y; y
6 HJ y y;y y ; y y; y
9 LD y y;n y ; y y; y
12 LD y y;y y ; y y; y

Away* 2 LD y y;y y ; n y; y
4 LD y y;y y ; y y; y
6 LD y y;y y ; y y; y
8 LD y y;y y ; y y; y

Total 17/20 17/20 ; 11/20 ; 14/20 ;
14/20 10/20 12/20

Table 3.2: Summary table of experimental results. *-problems corresponds to problems
with nearly bang-bang solutions (best action near the frontier of the action space). **-
problems are those with high (unsmooth) penalties. For the ”best algorithm” column, bold
indicates 5% significance for the comparison with all other algorithms and italic indicates
5% significance for the comparison with all but one other algorithms. y holds for 10%-
significance. LD is significantly better than random and QR in all but one case and appears
as a natural efficient tool for generating nearly bang-bang solutions. In **-problems, EA
and EANoMem are often the two best tools, with strong statistical significance. Stock
management problems (the two first problems) are very efficiently solved by CMA-ES,
which is a good compromise between robustness and high-dimensional-efficiency, as soon
as dimensionality increases.

• Robustness requirement in highly unsmooth problems.. Evolutionary algorithms

are the only algorithms consistently outperforming quasi-random methods on un-

smooth fitness landscapes, e.g. involving penalties (problems with legend ** in Ta-

ble 3.2). While Evolutionary algorithms are not always the best, they almost always
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outperform random methods; the celebrated robustness of Evolutionary algorithms

makes them quite appropriate to ADP, specifically with regards to the Stability in

front of random effects (section 3.3.2).

• Bang-bang problems. A particular case is that of problems where the optimal action

is most often located on the frontier of the action space, referred to as bang-bang con-

trol problems. Unsurprisingly, LD methods are the best ones for such problems, dues

to their bias toward the domain frontier. A relevant any-time strategy for finding ef-

ficient bang-bang controllers thus appears the LD method; depending on the allowed

number of function-evaluations, LD samples the center, the corners, the border and

thereafter the whole action space. Note also that LD is among the worst strategies for

non bang-bang problems; some prior knowledge is thus required to decide whether

LD is a good candidate.

3.4 Learning for Stochastic Dynamic Programming

This section focuses on the thorough evaluation of learning methods, used to estimate the

Bellman value functions in the Stochastic Dynamic Programming framework. We first

briefly discuss the state of the art, and list the learning algorithms integrated in the OpenDP

framework. These algorithms are comparatively assessed on the benchmark suite (section

3.2.2).

As in section 3.3, the main contribution of this section lies in the extensive empiri-

cal assessment of learning algorithms in the SDP framework. As pointed out in [KR95],

learning-based dynamic optimization is not yet widely used for industrial applications; one

reason why learning-based DP remains confined in research labs seems to be the lack of

clear expertise about which algorithms should be used and when. Many authors imple-

ment one algorithm and compare its results to the state of the art on a single problem,

often considering different parametrization, different loss functions, different time sched-

ules, and different action spaces (as many algorithms cannot deal with continuous and/or

multi-dimensional action spaces). More generally, the lack of a standard representation

for continuous state problems with no priors on the transition function, makes it difficult
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to rigorously compare algorithms; actually, the only common ground for SDP transition

functions seems to be Turing-computability15, making standard comparison more difficult

than in e.g. supervised learning.

This lack of principled assessment framework was one of the motivations behind the

development of the OpenDP Toolbox, allowing the reader to replicate, modify and extend

the presented experiments (see section 3.2).

3.4.1 Introduction

In many applications, dynamic optimization without learning would be intractable. Ac-

cordingly, many SDP papers report the use of neural networks [Cou, Cou02], adaptive

discretization [MM99a], CMAC [Sut96b],[DS97], EM-learning of a sum of gaussians

[YIS99], or various forms of local units [And93, KA97, RP04].

The learning algorithms integrated in OpenDP, listed in next subsection, will be com-

pared in the SDP framework as fairly as possible: on the same problems (section 3.2.2),

in combination with the same optimization algorithm, and with same time budget for pa-

rameter tuning. What makes this comparison different from standard regression-oriented

Machine Learning comparison is the fact that learning errors and inaccuracies have very

specific impacts and far-fetched consequences in the SDP framework, as discussed in sec-

tion 3.3.2:

• Learning robustness matters in the sense that worst errors (over several learning prob-

lems) are more relevant than average errors;

• Along the same lines, the appropriate loss function (L2 norm, Lp norm, among oth-

ers) that should be used during learning is yet to be determined even from a theo-

retical perspective (the interested reader is referred to [Mun05] for a comprehensive

discussion of these points);

• The existence of (false) local minima in the learned function values will mislead the

optimization algorithms;

15Note that some authors only consider simulation logs.
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• The decay of contrasts through time is an important issue, as the function value in-

volves the value expectation in further time steps. Accordingly, the value estimate

should preserve the ranking of the states/actions, as well as their associated values;

otherwise, small errors in every learning problem, will cause huge deviations in the

overall control strategy.

3.4.2 Algorithms used in the comparison

The regression algorithms integrated in OpenDP involve the regression algorithms from

Weka [WF05] (using the default parameters), the Torch library [CB01] and some open-

source algorithms available on the Web. Every regression dataset E = {(xi,yi),xi ∈Rd,yi ∈
R, i = 1 . . .n} is normalized (mean = 0, σ = 1) before learning. The methods implemented

in Weka are named with a dot ”.” (e.g. ”rules.ConjunctiveRule”, ”rules” being the name of

the package).

• lazy.IBk : k-nearest neighbors algorithm, with k = 5. The K∗ ([CT95]) algorithm

uses the same underlying assumption of instance-based classifiers: similar instances

will have similar classes. K∗ has been used in preliminary experiments, but results are

not reported here as it is always equal or worse than IBk algorithm, but prohibitively

slow.

• functions.RBFNetwork : implements a normalized Gaussian radial basis function

network. It uses the k-means clustering algorithm to provide the basis functions

and learns a linear regression (numeric class problems) on top of that. Symmetric

multivariate Gaussians are fit to the data from each cluster. It standardizes all numeric

attributes to zero mean and unit variance.

• rules.ConjunctiveRule : this class implements a single conjunctive rule learner. A

rule consists of a conjunction of antecedents and the consequent (class value) for the

regression. In this case, the consequent is the distribution of the available classes (or

numeric value) in the dataset. If the test instance is not covered by this rule, then it is

predicted using the default class distributions/value of the data not covered by the rule

in the training data. This learner selects an antecedent by computing the Information
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Gain of each antecedent and prunes the generated rule using Reduced Error Pruning

(REP). For regression, the Information is the weighted average of the mean-squared

errors of both the data covered and not covered by the rule. In pruning, the weighted

average of the mean-squared errors of the pruning data is used for regression.

• rules.DecisionTable : building and using a simple decision table majority classifier.

For more information see [Koh95].

• trees.DecisionStump : decision stump algorithm, i.e. one-node decision trees (with

one-variable-comparison-to-real in the node).

• meta.AdditiveRegression (AR): Meta classifier that enhances the performance of

a regression base classifier. Each iteration fits a model to the residuals left by the

classifier on the previous iteration. The final predictor is the sum of the classifiers;

smoothing proceeds by varying the learning rate parameter. The base classifier is a

decision stump.

• trees.REPTree : fast decision tree learner. Builds a regression tree using variance

reduction and prunes it using reduced-error pruning (with backfitting). Only sorts

values for numeric attributes once.

• MLP MultilayerPerceptron (implementation of Torch library), using 10 hidden neu-

rons, 0.001 as stopping criterion, 0.01 learning rate and 0.001 learning rate decay.

As for the SVM hyper-parameters for ”SVMGauss” and ”SVMLap” this setting has

been determined from independent regression problems.

• SVMGauss Support Vector Machine with Gaussian kernel (implementation of Torch

library [CB01]), where the hyperparameters are fixed after heuristic rules determined

on independent regression problems16;

• SVMLap Support Vector Machine with Laplacian kernel (implementation of Torch

library) and same parametrization as above;

16Letting n be the number of examples and d the dimension of the instance space, regularization parameter
C is set to 2

√
(n), kernel parameter γ = 1

10 n
1
d , and insensitivity of the loss function ε = 0.1.
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• SVMGaussHP Support Vector Machine with Gaussian kernel as in SVMGauss,

where hyperparameters have been optimized after 5-fold cross validation17.

• functions.LeastMedSq : implements a least median squared linear regression using

the robust regression and outlier regression ([RL87]).

• functions.LinearRegression : linear regression based on the Akaike criterion

[Aka70] for model selection.

• trees.lmt.LogisticBase : LogitBoost algorithm (see [OS05]).

• functions.SimpleLinearRegression (SLR) : a simple linear regression model.

• LRK Kernelized linear regression, involving polynomial or Gaussian kernels to re-

describe every example18 (x,y), and computing the MSE linear regressor in the ker-

nelized space;

3.4.3 Results

As already said, the problems in the benchmark suite are not trivial; for most problems,

rewards are delayed until reaching the goal (e.g. for robotics problem); and all problems

defeat greedy optimization (e.g., in the stock management problems, the greedy policy is

worse than a random one, uniformly selecting a decision − which is also the case in many

real-world stock management problems).

The experimental setting is as follows:

• Each learning algorithm is provided 300 examples at each time step (complementary

experiments with 500 examples give similar results). The limited number of ex-

amples is meant to assess the algorithm performances in a realistic bounded resource

context (e.g. when the transition function is computed using a computationally heavy

simulator);
17The optimization algorithm is the home-made Evolutionary Algorithm ”EA” described in Appendix B.1,

named EA, using the 5-CV error as fitness function, with 50 fitness computations allowed. Empirically,
this optimization of the SVM hyper-parameters was found to be significantly more efficient than standard
grid-based search.

18Letting k(·, ·) denote the kernel defined from X×X to R, kernelization associates to each instance x in X
the n-dimensional real valued vector defined as ((k(x1,x), . . . ,k(xn,x)).
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• Examples are sampled using quasi random methods (QR, section 3.5), except for

Stock Management problems where examples are sampled using Greedy Low Dis-

persion methods (GLD, section 3.5) because without GLD no learner achieve a better

performance than the random controller;

• The optimization algorithm used together with every learning algorithm is an EA

(section 3.3) with 70 fitness evaluations.

Table 3.3 summarizes the results of the experiments; detailed results for every problem and

every algorithm will be found in Appendix B.3, including the computational cost19.

All the detailed results on each problem for each learner can be found on Appendix
B.3. The table 3.3 summaries and synthesizes the results of learning methods in all

problems, for the ”300 learning points” experiments. The experiments using 500 give

essentially the same results.

We only report the results for the seven best methods and for the best among ”greedy”

and ”stupid”. ”All bad” denotes when no learning algorithm beats both the ”greedy” and

”stupid” algorithms. All local optimizations have been performed by the naive genetic

algorithm provided in the source code, allowed to use 70 function evaluations.

Support Vector Machine algorithms gave the best results over a large number of prob-

lems and got by far the most stable results, which is consistent with their general good

behavior in supervised learning. The computational cost was very limited in the range of

the experiments, due to the few examples available. Still, the overall computational com-

plexity should scale up quadratically (i.e. poorly) with the number of examples. Firstly,

the SVM complexity is quadratic in the number of training examples. More importantly,

the model learned has linear complexity wrt the number of support vectors, and in practice

for regression problems, linear complexity with the number of training examples too. Let-

ting respectively m,N,n and T denote the allowed number of function evaluations in the

optimizer, the number of transitions used to compute the value expectation in the Bellman

equation, the number of sampled states and the horizon, it comes that the whole dynamic

programming procedure requires m×N×n×T calls to the learned model; denoting αn the

19While simulation costs are negligible in the benchmark problems for obvious reasons, in real-world
problems the learning cost can be a small fraction of the overall computational cost.
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Problem Dim. Best SVM SVMGaussHP
algo. Gauss/Lap worse than

in best group SVMGauss
Stock 4 SVM y y
and 8 IBk n y

Demand 12 All bad N/A N/A
16 All bad N/A N/A

Stock and 2 SVM y n
Demand V2 4 SimpleLinearR n n

Fast Obst. Avoid. 1 IBk n y
Many Obst. Avoid.** 1 LRK(poly) n y

Many bots** 4 SVM y n
8 SVM y y

12 SVM y y
16 SVM y y

Arm* 3 SVM y n
6 SVM y n
9 LeastMedSq y n

12 LeastMedSq y n
Away* 2 IBk y y

4 SVM y n
6 SVM y n
8 SVM y n

Total 14/18 8/18

Table 3.3: Comparative results of the learning algorithms in the SDP framework. Column
3 indicates the best algorithm, which is SVM on 11 out of 18 problems (SVM include both
SVMGauss and SVMLap, as their performances are never statistically different). Column
4 reads y if SVM algorithms are not significantly different from the best algorithm, which
is the case on 14 out of 18 problems; in all cases, they are never far from the best one
(and significantly the best in 11/18). Column 5 indicates whether SVM-HP is significantly
worse than SVM, which is the case for 8 out of 18 problems (see text for comments).

number of support vectors, with α < 1, the procedure complexity is thus quadratic in the

number of training examples.

Interestingly, SVM-HP (where the SVM hyper-parameters are optimized using 5fold

CV) is dominated by standard SVM (where hyper-parameters are set using simple heuristic

rules). Not only is SVM-HP more computationally expensive; also, its overall performance

in the ADP framework is often significantly worse. While it might seem counter-intuitive
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(tuning the hyper-parameters by CV is considered to be the best practice wrt the standard

minimization of the mean square error in a supervised learning context), this result is con-

sistent with the analysis presented in section 3.3.2, discussing the robustness requirements

in the dynamic programming context. Indeed, the worst learning error over several learning

problems matters more than the average learning error. The use of the heuristic rules thus

appears to be more conservative and more capable to prevent catastrophic failures than a

more sophisticated tuning procedure. Accordingly, further research might consider to use

a more conservative criterion for the optimization of hyper-parameters, e.g. based on the

maximum error over all folds as opposed to the average error.

The popular Multilayer Perceptron algorithm is often the second best one, with perfor-

mances just below that of SVMs. It is also very fast, with linear learning complexity in

the number of examples (the number of hidden neurons is fixed); and the complexity of

the model learned is constant. This suggests that MLP might catch up SVM, at least from

a computational viewpoint, when dealing with larger numbers of examples (and if the DP

procedure does spend much time in learning and calling the model learned). The MLP

performances might be improved by tuning its hyper-parameters20; on the other hand, the

MLP performances seem to be adversely affected by the problem dimension in the range

of experiments (Appendix B.3).

In conclusion, these experiments suggest that SVM and MLP learning algorithms are

well suited to the SDP framework, although much remains to be done in order to be able to

recommend a given learning algorithm for a given RL problem.

3.5 Sampling in SDP

This section is devoted to the sampling task involved in the estimation of the Bellman

value function. As already mentioned (section 3.1.3), the ability of the learner to select

examples and modify its environment in order to get better examples, referred to as active

learning, is one of the key sources of efficiency for learning systems [CGJ95b]. Two main

types of active learning are distinguished: blind approaches only consider the instance

20Still, it was found more difficult to tune or provide heuristic setting for the MLP hyperparameters than
for the SVM ones, in terms of manual labor.
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distribution [CM04]; non-blind approaches also exploit the label of instances previously

selected, mediated through (an ensemble of) hypotheses learned from the labelled instances

[LG94, SOS92, SC00, CGJ95a].

After discussing the state of the art, this section investigates two main issues. The first

one regards the comparative performances of blind and non-blind approaches for active

regression learning. Experimental results are provided as well as a theoretical analysis

of randomized sampling. The second issue regards blind approaches and the appropriate

“degree of randomness” to be involved in blind samplers. A random-light blind sampler is

described; theoretical results establishing its universal consistency, together with improved

convergence rate in the case of “sufficiently smooth” learning problems, are given.

3.5.1 State of the art

Despite the fact that non-blind approaches are provided with more information, their supe-

riority on blind approaches is unclear in most cases, due to the excellent robustness of blind

approaches. Actually, avoiding the domain regions which can be considered as uninforma-

tive on the basis of the current hypotheses, might lead to miss relevant regions. From a

theoretical perspective, [Vid97b] establishes negative results about active learning (worst-

case analysis). From an experimental standpoint, the successes of active learning seem to

concern limited hypothesis spaces (e.g. decision trees more than neural networks or SVM)

and limited target models (classification more than regression problems). Along these lines,

the success of viability21 approaches [CD06] in Reinforcement Learning might be due to

the fact that it actually tackles a classification problem (entailing some loss of generality).

The greater difficulty of active regression, compared to classification or learning regression

trees, can be viewed as it defeats simple heuristics such as selecting instances close to the

domain boundary.

A second issue concerns randomized versus deterministic sampling approaches. As

already mentioned, the traditional application of quasi-random sampling is numerical in-

tegration. In this context, deterministic blind samples significantly improve on random

21A viability problem considers only the ”survival” of the agent rather than a precise performance, e.g.
wether the agent reaches the goal or not rather the actual time to reach the goal.



116 CHAPTER 3. ROBUST DYNAMIC PROGRAMMING

samples (wrt to various performance criteria) in small dimension; but when the dimen-

sion increases, strictly deterministic approaches [SW98] show strong limitations (see also

[KMN99, Rus97] for some interesting properties of random sampling in the specific case

of control problems). Current trends in the domain advocate the use of randomized quasi-

random sequences, in particular in medium and large dimensions [LL02].

Lastly, active learning presents some specificities in the RL context. On the one hand,

RL intrinsically is an Exploration vs Exploitation problem, where exploitation (learning)

is tightly intertwined with exploration (gathering information); on the other hand, RL

raises active regression problems whereas the literature mostly considers active classifi-

cation problems. Finally, many works related to active sampling in RL proceed by actively

driving the environment simulator; see e.g. the pioneering work [BBS93] and many follow-

ers. While these approaches have strong advantages, the simulator can also miss interesting

regions in the state space due to poor initial policies. For this reason, the presented study

will focus on the efficient sampling of the whole domain; early works along this line are

[MM99b] (active discretization of the domain) and [CD06] (active SVM learning in a via-

bility framework, casting the regression task as a classification task).

The rest of the section will present our contributions, with the goal of achieving some

efficient tradeoff from both theoretical and algorithmic viewpoints, between i) blind and

non-blind approaches, able to take advantage of prior knowledge about the sampling; ii)

randomized and deterministic samplings.

3.5.2 Derandomized sampling and Learning

After introducing formal background in derandomized sequences, we shall study the ro-

bustness properties of a random-light sampler.

In the following, E∗ denote the set of finite sequences in set E.

Definition 3.5.1 Let domain D = [0,1]d . A learner A on D is a computable mapping from

(D×R)∗ to RD. Let A the set of learners. A sampler (respectively, a blind sampler) S

on D is a computable mapping from (D×R)∗×A (resp, from (D)∗) to D. An active-
learner S + A on D, made of sampler S and learner A, is an algorithm parametrized from

a real-valued target function f on D, with pseudo-code:
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1. For n = 0; ;n++

2. sample xn in D, xn = S((x0,y0) . . . ,(xn−1,yn−1),A);

3. call yn = f (xn);

4. learn fn = A((x0,y0), . . . ,(xn,yn))

5. endfor

At each iteration, S +A outputs current hypothesis fn.

Sampler S is said to be almost-deterministic (AD) if there exists a bounded function k

such that S only uses k(n) random bits to select x1, . . . ,xn. Learner A is said to be almost-
deterministic (AD) if for each run it only uses a finite number of random bits that only

depends on the length of its inputs. Active learner A + S on D is said to be universally
consistent (UC) if, for any measurable f with values in [0,1], the L2 norm of the difference

|| f − fn||2 goes to 0 almost surely as n→ ∞. Sampler S on D is said to be universally
consistent if there exists at least one almost-deterministic learner A, such that S + A is

universally consistent.

The definition of UC samplers refers to almost deterministic learners, in order to make a

clear distinction between AD and randomized samplers (otherwise, the learner stochasticity

could be used in order to create some stochasticity in the sample points).

Theorem 3.5.2 Random sampling is universally consistent.

Proof: Follows from the universal consistency of learning algorithms in the statistical

learning literature (see e.g. [DGKL94]).

Theorem 3.5.3 (UC samplers are stochastic) Let S be an AD-sampler. Then, for any AD-

learner A, S +A is not UC. Therefore, S is not UC.

Proof: Let S and A respectively denote an AD-sampler and an AD-learner. Then, consider

x0, . . . ,xn, . . . the (possibly stochastic) sequence of points provided by S if f is the target

function identically equal to 1.
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By definition of AD, xi ranges in a enumerable domain V . Let gp, for 0 ≤ p ≤ 1, denote

the function equal to 1 on V , and to p elsewhere. Assuming S +A is UC, then its output fn

should a.s. converge toward f in norm L2 as n goes to infinity; however, fn only depends

on the sequence x0, . . . ,xn, · · · ∈ V ; therefore fn should also converge toward gp whatever

the value of p is, which shows the contradiction.

Theorems 3.5.2 and 3.5.3 establishes that random sampling is universally consistent

while almost deterministic sampling cannot be universally consistent. The question thus is

the amount of randomness required to enforce UC. A moderately randomized sampler with

UC property is introduced below. This sampler is based on random shift of quasi-random

sequences, the good convergence rate (toward smooth target function) of which has been

proved by [CM04].

Let us first establish a Lemma about uniform low-dispersion sequences.

Definition 3.5.4 Let P = {x1, . . . ,xn, . . .} be a sequence of points in D = [0,1]d . For each

point x in D, let NNP
n (x) denote the nearest neighbor of x (ties are broken randomly) in the

nth first points of sequence P: x1, . . .xn. The dispersion Disn(P) is the maximum over x in

D, of the L∞ distance between x and NNP
n (x).

Disn(P) = sup
x∈D

inf
i=1...n

||x− xi||∞

Let E denote a subset of D; P̂n(E) denotes the fraction of xi, i≤ n that belong to E.

P̂n(E) =
|{i s.t. xi ∈ E, i≤ n}|

n

Let x a point in D, let R(x) denote the axis-parallel hyperectangle in D with (0, . . . ,0) and

x as vertices, and denote P̂n(R(x)) the fraction of points xi, i≤ n that belong to R(x). Let µ

the Lebesgue-measure.

The discrepancy of P is the maximum over x in D, of the difference between P̂n(R(x))

and µ(R(x)).

Lemma 3.5.5 (Properties of well-distributed shifted sequences) Let P = x1, . . . ,xn, . . .

be a sequence in D with dispersion decreasing like O(n−1/d) and discrepancy decreasing
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to 0 as n goes to infinity:

Disn(P) = O(n−1/d) (3.5)

lim
n→∞

sup
x∈D
|P̂n(R(x))−µ(R(x))|= 0 (3.6)

Let s be a random variable uniformly distributed in D. Let sequence Q = x′0, . . .x
′
n, . . .

be defined from P with x′i = xi + s modulo 1 (i.e. x′i is such that xi−x′i + s ∈ Zd and x′i ∈D).

Let B(i)
n denote the set of points x with NNQ

n (x) = x′i. Then:

(i) For some ζ(n) = O(1/n) as n→ ∞,

∀n ∈ N,∀i≤ n,µ(B(i)
n )≤ ζ(n) (3.7)

and for any measurable E,

almost surely in s, Q̂n(E)→ µ(E) (3.8)

(ii)

∀δ > 0, ∃N(δ), ∀n≥ N(δ), sup
x∈[0,1]d

inf
i≤n
||x− x′i|| ≤ δ (3.9)

Proof: Equations 3.5 and 3.6 hold for sequence Q as they are invariant under translation

(modulo 1):

Disn(Q) = sup
x∈D

inf
i=1...n

||x− x′i||∞ = O(n−1/d) (3.10)

lim
n→∞

sup
x∈D
|Q̂n(R(x))−µ(R(x))|= 0 (3.11)

Eq. 3.7 and 3.9 follows from eq. 3.10.

Lastly, eq. 3.8 is obtained as follows. On the one hand, a well-known result in the

discrepancy literature is that eq. 3.11 entails that Q̂n(E) goes to µ(E) for every axis-parallel

rectangle E.

Let E now denote a Lebesgue-measurable set. For any ε > 0, there exists two finite sets of
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axis-parallel hyperectangles denoted Ri, i ∈ I and R′j, j ∈ J such that

D\
[

i∈I

Ri ⊂ E ⊂ D\
[

j∈J

R′j (3.12)

µ

(
D\

[

j∈J

R′j \ (D\
[

i∈I

Ri)

)
≤ ε (3.13)

The above equations ensure that |Q̂n(E)−µ(E)| is less than 2ε for n sufficiently large.

Theorem 3.5.6 (UC with random shift) Let sampler S be defined as follows:

1. Randomly uniformly draw s ∈ D = [0,1]d .

2. Let P = x0, . . . ,xn, . . . be a deterministic sequence in D with dispersion Disn(P) =

O(n−1/d) and bounded discrepancy

sup
x∈D
|P̂n(R(x))−µ(R(x)) = o(1)︸︷︷︸

n→∞

3. Let S output the sequence Q defined as x′n = xn + s modulo 1 (i.e. x′n is such that

xn− x′n + s ∈ Zd and x′n ∈ [0,1[d).

Then, S is UC.

Interpretation: While theorems 3.5.3 and 3.5.6 show that randomness is required for

the UC property, the above theorem shows that randomly shifting a deterministic sequence

is enough to get a UC sampler, with same improved convergence rates as in [CM04] for

smooth target functions.

Proof: Let A be the 1-nearest neighbor classifier for the L∞ distance; we shall show that

S +A is UC, thus establishing that S is UC. Let Tn(h) denote the function x 7→ h(NNQ
n (x)),

i.e. Tn is the active learner S +A using n examples.

After Lemma 3.5.5 and with same notations, for any δ > 0 there exists N(δ) such that

for all n≥ N(δ)

supx∈[0,1]d ||NNQ
n (x)− x|| ≤ δ (3.14)
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and also that for some ζ(n) = O(1/n),

∀n ∈ N, sup
i=1...n

µ(B(i)
n )≤ ζ(n) (3.15)

and for any measurable E, almost surely in s,

Q̂n(E)→ µ(E) (3.16)

• After the theorem of Lusin, for any f measurable from [0,1]d to [0,1], there exists

a sequence fn of continuous functions from [0,1]d to [0,1] that is equal to f expect

on a measureable set of measure decreasing to 0. Hence, for each ε > 0, there exists

n(ε) such that

n≥ n(ε)⇒ || fn− f ||1 ≤ ε

• Every fn, being a continuous function defined on compact [0,1]d , is uniformly con-

tinuous. Let δε,n be such that

||x− y||∞ ≤ δε,n ⇒ | fn(x)− fn(y)| ≤ ε

• For n≥ n(ε) and n′ ≥ N(δε,n), it follows from eq. 3.14:

|| fn− f ||1 ≤ ε (3.17)

||Tn′( fn)− fn||1 ≤ ||Tn′( fn)− fn||∞ ≤ ε (3.18)

• Combining equations 3.17 and 3.18 above, it comes:

|| f −Tn′( fn)||1 ≤ 2ε (3.19)

• Let EA denote {x; | f (x)− fn(x)| ≥ A}; after eq. 3.17,

Aµ(EA)≤
Z

EA

| fn(x)− f (x)| ≤
Z
| fn(x)− f (x)| ≤ ε

µ(EA)≤ ε/A (3.20)



122 CHAPTER 3. ROBUST DYNAMIC PROGRAMMING

• Applying eq. (3.16) with E = EA, with eq. (3.20), leads to:

Q̂n′(EA)≤ µ(EA)+o(1)≤ ε
A

+ o(1)︸︷︷︸
n′→∞

(3.21)

almost surely in s.

• The two functions Tn′( f ) and f are equal on the set {x′1, . . .x′n′}; therefore, with E1 =

{i ∈ 1..n′; |Tn′( f )(x′i)− fn(x′i)| ≥ A}, equation 3.21 yields to

1
n′

#E1 ≤ ε/A+ o(1)︸︷︷︸
n′→∞

(3.22)

• eqs (3.22) and (3.15), with E2 = {x ∈ D; |Tn′( f )(x)−Tn′( fn)(x)| ≥ A}, lead to

µ(E2)≤ (ε/A+o(1))n′ζ(n′)︸ ︷︷ ︸
O(1)

which in the case A =
√

ε leads to

||Tn′( f )−Tn′( fn)||1 ≤ O


2
√

ε+ o(1)︸︷︷︸
n′→∞


 (3.23)

• Eqs 3.19 and 3.23 lead to

||Tn′( f )− f ||1 ≤ O(ε)+O(
√

ε)+ o(1)︸︷︷︸
n′→∞

= O(
√

ε)

almost surely in s, for any fixed ε. In particular, this is true almost surely for all

ε = 1/2i for i ∈ N (as this set is countable), entailing the almost sure convergence of

Tn′( f ) to f for the L1 norm and therefore for the Lp norm for any p≥ 1.

Remark: This theoretical analysis only requires the discrepancy to decrease to 0

(while so-called low-discrepancy sequences assume the discrepancy to decrease like

O(log(n)d/n). Its scope might appear to be limited as in practice all algorithms are almost
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deterministic ones (the number of random bits being used is limited). However, beyond the

theoretical interest, it shows that the best of both worlds (UC, fast convergence properties in

small dimensions) can be reached by a moderate stochasticity (random shift) on the top of

a deterministic sequence. Likewise, current approaches in low-discrepancy sequences sim-

ilarly combines some randomness (for robustness in high dimensions) with deterministic

sequences (for the fast convergence properties).

3.5.3 Sampling methods (SM) and applications

This subsection discusses the role of the sampler in the SDP framework and describes the

scope of the experimental study.

The role of the sampler is to reduce the computational cost − a main issue of stochastic

dynamic programming − while preserving its accuracy.

Specific samplers have been developed for dynamic problems. [BBS93] showed the

importance of ”reducing” the domain, when possible, by using simulations to focus the

search in the a priori relevant regions of the full state space. The drawback is that some

prior knowledge, e.g. some approximate solution, is needed to apply simulations; while

simulations are needed to further focus the search and apply dynamic programming. The

robustness of the approach thus strongly depends on the quality of the priors. The main

advantage is its scalability, as it can deal with much higher dimension domains than the

approach sampling the whole search space. [Thr92] studied how to avoid visiting many

times the same area (leading to better convergence rates in some theoretical framework),

and thus reducing the curse of dimensionality.

In the following, only general-purpose samplers will be considered, as our goal is to assess

the “out-of-shelf” performance of algorithms without assuming expert knowledge. These

samplers are described in next two subsections.

3.5.4 Blind Samplers

Let us describe blind samplers based on low-dispersion and low-discrepancy sequences,

referring the interested reader to [Tuf96, Owe03, LL02] for a general introduction to ”well

chosen” sets of points.
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Consider P = {x1, . . .xn} a sequence in D = [0,1]d .

Low discrepancy. Discrepancy is most usually defined as the maximum over x ∈ D, of

the difference |P̂n(R(x))− µ(R(x))|. For iid uniformly distributed P, discrepancy roughly

decreases as O(1/
√

n). Well chosen deterministic or (non-naive) randomized points

achieve O(log(n)d/n). Exponent d thus severely affects the discrepancy in high dimen-

sions (d > 5). Many solutions have been proposed for dealing with high dimension do-

mains, based on some prior knowledge about the structure of the search space (with strong

dependencies among the coordinates [Hic98], or assuming some clustering on the search

space [Owe03]). In the general case on D = [0,1]d , we are only aware of the following two

results (see [WW97, SW98] and references therein):

• the existence of deterministic sequences with discrepancy decreasing O(1/(n)α) with

α < 1
2 , i.e. the sequence is worst than a uniform iid sequence, with a constructive

proof.

• the existence of deterministic sequences with discrepancy decreasing O(1/(n)α)

with α > 1
2 , i.e. the sequence is better than random and better than standard low-

discrepancy sequences in high dimensions. Unfortunately, the proof is not construc-

tive; we are not able to construct such a sequence.

Other definitions (see [Nie92, Tuf96, Owe03]) involve the use of general polygons instead

of axis-parallel rectangles, or use a Lp norm to measure the loss |P̂n(R(x))−µ(R(x))|.
Direct optimization of the discrepancy has been attempted [Auz04] and found to be

very difficult due to the multi-modality of the landscape. Mainstream approaches are based

on algebraic procedures. In the following, we shall use standard Niedereiter sequences

[Nie92], referred to as ”low-discrepancy sequence” (quasi-random, QR).

Low dispersion. As mentioned in section 3.3.3, the low dispersion criterion is less widely

used than low-discrepancy, although it has some advantages (see e.g. discussions in [LL03,

LBL04]). The most usual criterion (to be minimized) is, with d the Euclidean distance:

Dispersion(P) = sup
x∈D

inf
p∈P

d(x, p) (3.24)
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It is related to the following one, to be maximized, which defines an easier optimization

problem (except when n becomes large):

Dispersion2(P) = inf
(x1,x2)∈P2

d(x1,x2) (3.25)

However, the above criterion is biased toward the points on the frontier ∂D of the domain;

to avoid this bias, criterion Dispersion3 is defined as:

Dispersion3(P) = inf
(x1,x2)∈P2

d(x1,{x2}∪∂D) (3.26)

In the following, low-dispersion point set (LD) is referred to as a finite sequence optimiz-

ing eq. 3.25.

A greedy-low-dispersion point set (GLD) is a point set constructed after the greedy it-

erative optimization algorithm22, defining starting point x1 = (0.5, ...,0.5) as the center

of D = [0,1]d , and xn such that it optimizes Dispersion2({x1, . . .xn}) conditionally to

{x1, . . . ,xn−1}. See Fig. 3.1 for an illustration.

A greedy-low-dispersion point set far-from-frontier (GLDfff) is based on the same

greedy optimization and initialization, optimizing eq. 3.26. The use of other Lp distances

instead of the Euclidean one did not lead anywhere.

3.5.5 Non-blind Sampler

While many approaches have been developed for active learning (see Chapter 1), they

are not appropriate to SDP as most of them address classification problems [Ton01] and

existing active regression algorithms are moderately efficient.

Therefore a specific approach, based on Evolutionary algorithms and inspired from

[LW01], has been designed and implemented in OpenDP. To our knowledge, this is a new

approach for active learning in SDP, with three main advantages: i) its baseline is random

sampling (the initial population); ii) it is anytime (working under bounded resources); iii)

it allows one to explore for free many criteria.

22The implementation is based on Kd-trees; the extension to Bkd-trees (allowing for fast online adding of
new points, [PAAV02]) is possible.
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Figure 3.1: A GLD-sample in dimension 2. Ties are broken at random, resulting in a
better distribution of the points on average. Dark points are those that are selected first; the
selection among the grey points is random.

As introduced in section 3.3, Evolutionary algorithms are population-based optimiza-

tion algorithms, targeted at non-differentiable and non-convex fitness functions; the inter-

ested reader is referred to [Bäc95, ES03] for a comprehensive introduction. Evolutionary

algorithms-based samplers proceed as follows: 1. generate an initial population uniformly

on the domain; 2. evolve the population until the allowed number of fitness evaluations; 3.

use as active sample the union of all populations in all generations. Note that the sampler

does not embed any learning algorithm.

We used the home-made Evolutionary algorithms mentioned in section 3.3.3 and Ap-

pendix23 B.1. Population size is n = Nα, where α ∈]0,1] is a parameter of the approach

and N is the number of sampled points. The fitness function is the cost function, to be

minimized. The resources are bounded from the maximal number of fitness evaluations.

Actually, the non-blind sampler proposed is biased toward sampling the small value

region of the target function V (or rather, from its current approximation Vn), based on the

fact that the small value region is the most interesting one. (the target function V , sum

of the instantaneous cost and the expected cost-to-go, must be minimized). If the optimal

trajectories are close the small value regions, this bias is very efficient, while it may lead to

poor results on some other problems such as stock management.

23We used the default parameters σ = 0.08,λ1 = 1/10,λ2 = 2/10,λ3 = 3/10,λ4 = 4/10.
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3.5.6 Experiments

This section reports on the experiments done to assess various samplers in the SDP frame-

work. All experiments are reproducible from the OpenDP Toolbox.

Experimental setting

Each sampler produces 500 points and is assessed in combination with the same learning

algorithm, selected after section 3.4, that is SVM with Gaussian kernel (using the SVM-

Torch implementation [CB01], integrated within OpenDP), with rule-based setting of the

hyper-parameters (section 3.4).

Each sampler produces a 500-points sample in each learning step. The performance of

the sampler is the cost of the best strategy (to be minimized), averaged on 44 independent

runs with same parameters. The benchmark problems (section 3.2.2) are integrated in the

OpenDP Toolbox.

The search space S×M involves the continuous state space S = [0,1]d and the finite

space M = {m1, . . . ,mk} describing the exogenous Markov process (sections 1.1.4 and

3.2.2). All assessed samplers are integrated in the OpenDP Toolbox:

1. Sampling modules (SM) GLD, QR, LD, GLDfff are the blind samplers defined in

section 3.5.4. Each module first extracts a N sample s1 . . . ,sN on S, and returns the N× k

sample defined as (si,m j), for i = 1 . . .N, j = 1 . . .k.

2. Random samplers include SM RandomForAll (uniform iid on S×M), SM Ran-

domOnlyForContinuousStates (ROFCS) ((si,mi) is defined as si is uniform iid on S and

each element in M occurs an equal number of times). SM DeterministicForDim1 only dif-

fers from ROFCS as the first coordinate in si is drawn on the same regular grid for each m j

(other coordinates being iid on [0,1]; it thus returns a deterministic if S is one-dimensional

(d = 1).

3. EAS-α is the non-blind sampler described in section 3.5.5, with parameter α (α
control both the population size and the number of generations).
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Experimental Results of Blind samplers

The detailed performances of all blind samplers are reported in Tables 3.5 and 3.6, and

summarized in table 3.4:

Overall, the best sampler in the range of experiments is the Greedy Low Dispersion (GLD)

one; it significantly outperforms baseline random samplers (ROFCS and Random) on 6

out of 8 problems. When relevant (k > 1), the exhaustive exploration (derandomized dis-

crete sampler) of the discrete M space is critical to the overall performances. With poor

discrete samplers (Random and RandomForAll), the results are poor; a exhaustive discrete

sampler combined with basic continuous sampler (ROFCS) catches up more sophisticated

mixed samplers (Quasi-Random and GLDfff). More precisely, Quasi-Random and GLDfff

significantly outperform ROFCS on only, respectively 4 and 3 problems out of 8. Finally,

ROFCS is the best sampler on 2 out of 8 problems, the ManyBots (dimension 8) and the

Arm (dimension 3) problems.

Column 1 indicates the discrete and continuous dimensions k and d of the problem.

Column 2 indicates whether GLD significantly outperforms all other samplers (legend y)

or all samplers except the second best (y(= second best)). Columns QR and GLDfff respec-

tively indicate whether QR (resp. GLDfff) significantly outperforms ROFCS (legend y).

More detailed results are provided in tables 3.5 and 3.6.

Experimental Results of Non-blind samplers.

Along the same experimental setting (500 points in each sample, average results on 44

runs), the Evolutionary algorithms-based sampler was experimented and compared with

randomized and derandomized blind samplers on all benchmark problems. Overall, EA-

sampler appears to be poorly competitive with other algorithms in small and medium di-

mension (d < 8). In higher dimensions, GLD outperforms EA-sampler on Fast- and Many-

obstacle avoidance (dim 8) while EA-sampler outperforms GLD on Arm (dim 12) and

Many-bots (dim 8), whatever the α value is. For Away (dim 8), EA-sampler outperforms

GLD significantly for α < .95.

Overall, EA-sampler seems to be competent in higher dimensions. For some problems,

it significantly outperforms all other algorithms, which is interpreted as EA-sampler rapidly
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Problem GLD 1st QR GLD GLDfff
(dim: continuous+discrete) ranked

Stock (4+1) y n y n
Fast Obst. Avoid. (2+0) y (=GLDfff) y y y

Fast Obst. Avoid. X4 (8+0) y y y y
Many Obst. Avoid. (2+0) y y y n

Many Obst. Avoid. X4 (8+0) y y y n
Many bots. (8+0) n n n y

Arm (3+2) n n n n
Away (2+2) y (=QR) n y n

Total 6/8 4/8 6/8 3/8

Table 3.4: Summary of the results: Derandomized vs Randomized blind samplers. Column
1 indicates the problems with dimensions of the continuous state space and the (discrete)
exogenous random process space. Column 2 indicates whether GLD significantly out-
performs all other samplers; Column 3 (resp. 4) indicates whether QR (resp. GLDfff)
significantly outperforms the randomized sampler. Overall, the best choice in the range of
experiments seems to combine the exhaustive exploration of the discrete search space, with
derandomized sampler GLD on the continuous search space.

focuses the search on ”good regions” (where the expected cost-to-go is small) while the

search space includes large bad regions, which can be safely avoided due to the existence

of reasonable good paths. The lesser performance of blind randomized and derandomized

samplers is explained as these must explore the large bad regions. Meanwhile, EA-sampler

shows performances similar to that of randomized approaches in ”Arm” and ”Away” prob-

lems.

3.5.7 Discussion

The scope of the study is restricted to active learning problems in the dynamic program-

ming context. The main differences compared to mainstream active learning [CGJ95a]

concern the learning target (regression instead of classification) and the learning criteria

(robustness and L∞ error instead of misclassification rate). Both differences might explain

why blind samplers consistently dominate non-blind samplers at least in small and medium

dimensions.

Specifically, our theoretical study firstly establishes that some randomness is required
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Fast Obstacle Avoidance
Sampler Score Std time (s)

GLD 550 ±1.e-16 11.1735
GLDfff 550 ±1.e-16 14.8453

QR 913.131 ±15.77 11.4533
DFDim1 975.758 ±8.59 13.9477

LD 975.758 ±9.90 16.5256
Random 976.263 ±9.34 11.1441
ROFCS 992.424 ±4.99 12.9234

Fast Obstacle Avoidance X4
Sampler Score Std time (s)

GLD 550 ±1.e-16 230.85
GLDfff 553.409 ±1.92 238.737

QR 553.409 ±1.92 234.005
Random 556.818 ±3.08 217.76
DFDim1 559.091 ±3.36 217.753
ROFCS 563.636 ±5.23 217.473

Many Obstacle Avoidance
Sampler Score Std time (s)

GLD 60 ±1.e-16 8.2013
QR 73.3838 ±1.06 8.4808
LD 76.6667 ±1.22 11.6583

ROFCS 78.1818 ±1.34 8.28459
DFDim1 78.3333 ±1.23 8.34835
Random 79.2424 ±1.34 8.33714
GLDfff 100 ±1.e-16 8.30003

Many Obstacle Avoidance X4
Sampler Score Std time (s)

GLD 64.5455 ±0.21 176.867
QR 83.2955 ±2.57 180.293

ROFCS 84.3182 ±2.53 172.537
DFDim1 88.8636 ±2.41 172.924
Random 90.9091 ±2.17 172.471
GLDfff 100 ±1.e-16 177.52

Table 3.5: Derandomized and Randomized Samplers on the ”Fast Obstacle Avoidance”
and ”Many-Obstacle Avoidance” problems with baseline dimension d (Left) and dimen-
sion 4×d (Right; LD sampler omitted due to its computational cost). GLD dominates all
other algorithms and reaches the optimal solution in 3 out of 4 problems. The comparison
between GLD and GLDfff illustrates the importance of sampling the domain frontiers: the
frontiers are relevant for problems such as the fast-obstacle-avoidance problem and GLDfff
catches up GLD (although all algorithms catch up for dimension×4). But the domain fron-
tiers are less relevant for the many-obstacle-avoidance problem, and GLDfff gets the worst
results. Finally, randomized and derandomized samplers have similar computational costs,
strongly advocating the use of derandomized samplers for better performances with no
extra-cost.

for a sampler to reach universal consistency (which is missed by deterministic or almost

deterministic samplers in worst case analysis, thm 3.5.3)24. Secondly, the use of moderate

randomization (e.g. random shifting) on the top of a derandomized sequence is sufficient

to get the best of both worlds (thm 3.5.6), namely UC [DGKL94] and good convergence

rates for smooth target functions [CM04]. This result is experimentally supported by the

good performances of the GLD blind sampler (Table 3.4).

Besides the theoretical and experimental aspects, one main contribution of this chapter

thus is the new GLD blind sampler, anytime extension of regular grid-sampling in Rd (see

24This result supports the claim that randomness provides robustness [Rus97]. A related result is that
quasi-randomized sequences have to be randomized to enforce the absence of domain-specific biases [LL02].
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Stock Management
Sampler Score Std time (s)

GLD 1940.03 ±2.03 24.9649
ROFCS 3002.01 ±7.58 18.6261
Random 3015.05 ±5.23 16.7896
DFDim1 3028.23 ±3.02 16.9017

LD 3030.73 ±1.74 25.6151
QR 3031.08 ±1.64 16.3847

GLDfff 3031.96 ±1.56 17.2446

Many bots
Sampler Score Std time (s)
GLDfff 200.505 ±2.01 13.9471
ROFCS 246.667 ±2.70 14.6795
Random 248.081 ±2.89 14.6508

LD 249.293 ±2.35 18.1841
DFDim1 251.717 ±2.91 14.6166

QR 252.525 ±3.24 14.6855
GLD 340.101 ±4.25 14.3905

Arm
Sampler Score Std time (s)
ROFCS 10.898 ±0.17 25.1159
Random 10.8981 ±0.18 25.2459

QR 13.1177 ±0.19 20.3092
GLDfff 13.2963 ±0.18 19.0619

LD 13.6147 ±0.18 36.1059
DFDim1 13.71 ±0.19 21.364

GLD 13.8206 ±0.17 20.3117

Away
Sampler Score Std time (s)

GLD 1.90404 ±0.17 20.4491
ROFCS 2.05556 ±0.18 19.6853

QR 2.18687 ±0.22 20.1727
DFDim1 2.20707 ±0.21 19.6218

LD 2.26263 ±0.24 26.0271
GLDfff 2.40909 ±0.26 18.8487
Random 3.31818 ±0.34 22.4312

Table 3.6: Derandomized and Randomized Samplers on the ” Stock-Management”, “Many-
Bots”, “Arm” and “Away” problems, with baseline dimension. One out of GLD and GLDfff
samplers significantly dominates the others on “Stock-Management”, “Many-Bots” and
“Away”problems; In the case of Stock Management and Away, GLD is the best sampler
whilst GLDff is the worst one; otherwise (Many-bots), GLD is the worst one while GLDff
is the best one. On the Arm problem, randomized samplers are far better than derandomized
ones.

figure 3.1 for small number of points, and [LL03, LBL04]). The GLD sampler dominates

other blind samplers (low-dispersion approaches LD, GLDfff, RandomForAll, QR) on most

problems, with stable performances overall; it is most appropriate when frontier is relevant

(e.g. stock management problems) as it is biased toward the frontier of the search space.

When the frontier of the search space is known to be irrelevant, GLDfff must be preferred

to GLD25. Moreover, it is worth noting that GLD can be extended to accommodate any

prior knowledge, e.g. to tailor the selection criterion (eq. 3.25; see Fig. 3.1). Further

research will consider criteria suited to particular types of benchmark problems.

A second contribution focuses on non-blind active regression, specifically in high di-

mensions (d ≥ 8). A specific EA-sampler has been devised, enforcing the following prop-

erties: i) EA-sampler achieves a tunable tradeoff between random sampling and greedy

25When the frontier is irrelevant, GLD is penalized as it sets 2d points out of the first 2d + 1 points in the
corners of D = [0,1]d .
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sampling depending on parameter α; ii) it works in high dimensions, whereas most active

samplers do not scale up; iii) while it has been experimented with a specific fitness function

(cost minimization), the fitness function can be tailored to accommodate prior knowledge

(e.g. about penalties and constraint-based optimization).

Empirically, EA-sampler performances are unstable, sometimes excellent (Many-bots)

and sometimes among the worst ones. Although such a lack of generality is disappointing,

it is conjectured that non-blind methods require more parameter-tuning, than done in this

section.

Overall, widely different performances are obtained depending on the sampler and on

the problem. While we are still far from being able to recommend a given sampler for a

given problem, the GLD blind sampler and the EA-sampler in high dimensions appear to

be worth trying when tackling a new problem.

More generally, these results support the fact that active learning, and specifically, the

use of sophisticated blind or non-blind samplers, is a key bottleneck for reinforcement

learning and SDP, and deserves more extensive investigations.

Indeed, this study is meant to be complementary to the design of specific SDP sam-

plers, e.g. focusing the search using prior knowledge-based policy [BBS93] or relying on

dimensionality reduction techniques.

3.6 Summary

The three core tasks in Stochastic Dynamic Programming, namely optimization, learning

and sampling, have been studied in a theoretical and empirical perspective.

The first contribution of the chapter is an extensive empirical study, which can be repli-

cated and extended within the OpenDP ToolBox, with two goals in mind: enforcing fair

comparisons (same benchmark problems, same assessment criteria, same time budget for

hyperparameter tuning); measuring the “out-of-shelf” performance, with no use of prior

knowledge or pre-processing (e.g. dimensionality reduction, problem decomposition) tech-

niques. The dimension of the benchmark problems is small to moderate (d ≤ 12).

Partial conclusions, detailed in the sections respectively devoted to Optimization,
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Many Obst. Avoid. dim.x4 = 8
Sampler Average score Std
EAS-0.2 80.90 ±2.34
EAS-0.3 81.93 ±2.25
EAS-0.4 87.95 ±2.19
EAS-0.5 90.79 ±1.97
EAS-0.6 89.77 ±2.07
EAS-0.7 93.75 ±1.68
EAS-0.75 91.02 ±2.00
EAS-0.8 88.86 ±2.18
EAS-0.85 87.04 ±2.42
EAS-0.9 87.15 ±2.15
EAS-0.95 80.22 ±2.27

GLD 65 ±1.50e-16
Arm dim.x4 = 12

Sampler Average score Std
EAS-0.2 10.34 ±0.21
EAS-0.3 10.17 ±0.20
EAS-0.4 10.46 ±0.23
EAS-0.5 10.62 ±0.21
EAS-0.6 10.49 ±0.20
EAS-0.7 10.54 ±0.23
EAS-0.75 10.53 ±0.22
EAS-0.8 10.37 ±0.20
EAS-0.85 10.17 ±0.20
EAS-0.9 10.44 ±0.20
EAS-0.95 10.38 ±0.21

GLD 12.52 ±0.25

Fast Obst. Avoid. dim.x4 = 8
Sampler Average score Std
EAS-0.2 620.45 ±17.53
EAS-0.3 726.13 ±28.41
EAS-0.4 742.04 ±28.75
EAS-0.5 822.72 ±29.55
EAS-0.6 795.45 ±29.87
EAS-0.7 812.5 ±29.53
EAS-0.75 809.09 ±28.86
EAS-0.8 815.90 ±29.07
EAS-0.85 689.77 ±25.05
EAS-0.9 729.54 ±28.82
EAS-0.95 596.59 ±11.87

GLD 550 ±1.50e-16

Away dim.x4 = 8
Sampler Average score Std
EAS-0.2 0.38 ±0.10
EAS-0.3 0.60 ±0.15
EAS-0.4 0.42 ±0.12
EAS-0.5 0.54 ±0.15
EAS-0.6 0.47 ±0.13
EAS-0.7 0.61 ±0.19
EAS-0.75 0.57 ±0.14
EAS-0.8 0.46 ±0.11
EAS-0.85 0.55 ±0.15
EAS-0.9 0.59 ±0.17
EAS-0.95 0.69 ±0.17

GLD 0.64 ±0.17

Many bots dim.x4 = 8
Sampler Average score Std
EAS-0.2 2295.23 ±16.08
EAS-0.3 2311.59 ±13.46
EAS-0.4 2179.09 ±15.62
EAS-0.5 2175.45 ±16.11
EAS-0.6 2156.59 ±15.66
EAS-0.7 2137.5 ±13.41

EAS-0.75 2167.95 ±14.26
EAS-0.8 2195 ±16.62

EAS-0.85 2184.09 ±13.91
EAS-0.9 2170.23 ±14.22

EAS-0.95 2245.91 ±12.39
best-blind

= GLD 2326.59 ±16.17

Table 3.7: Non-Blind and Blind Samplers in high dimensions. EA-sampler good perfor-
mances are observed for problems involving large bad regions (e.g. for the Many-bots
problem); such regions can be skipped by non-blind samplers and must be visited by blind
samplers. In some other problems, EA-sampler performances match those of random blind
samplers (ROFCS) on the ”Arm” and ”Away” problems.
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Learning and Sampling, suggest that some algorithms are more generally effective than

others, although no algorithm was found to always dominate all others. The key factor

of efficiency is the robustness of the algorithm, e.g. its ability to avoid dramatic failures

over the few thousand problems handled along a RL run. Along these lines, Evolution-

ary algorithms for optimization, SVM for learning, and low dispersion sequences (GLD)

for sampling, are the overall best algorithms in the range of the experiments. The main

limitation of SVM is its computational cost with quadratic complexity in the number of

examples. A limitation of GLD is its bias toward the domain frontiers (GLDfff should be

preferred to GLD if the frontier domain is known to be irrelevant). EA-sampler might be

considered as an alternative to GLD in higher dimensions (d > 7).

The second contribution of the chapter concerns the theoretical analysis of the sampling

algorithms, more specifically their robustness (universal consistency) and their convergence

rate. It has been shown that the UC property requires some randomness; but a limited

amount of randomness, injected in derandomized sequences, is enough to warrant UC and

good convergence rate for smooth target functions.



Chapter 4

High dimension discrete case: Computer
Go

This chapter focuses on control in large discrete domains, exemplified by the Computer-

Go domain. While the main challenges for continuous control are related to optimization,

learning and sampling (SDP, Chapter 3), the challenge of discrete control is to manage an

exploration vs exploitation dilemma, where i) not all actions can be tried; ii) not all states

can be given a value.

The general problem of game playing, formalized as a discrete control problem, is

briefly described in section 4.2, relying on two main functionalities: i) exploring a tree-

structured search space; ii) learning the value function through repeated games (section

4.3).

In this perspective, our contribution, as demonstrated by the MoGo program1, is

twofold. The first contribution is to replace the global model of the value function adapted

after every game, with an on-line stochastic value approximation process, adapted after

every move (section 4.4). Surprisingly, a good quality strategy can be found with a rela-

tively noisy value process− further, improving the policy strength in the prediction process

process does not necessarily result in strategy improvements (section 4.4.2). Mathematical

insights into this counter-intuitive result are presented in section 4.4.3.

1MoGo was the best computer-Go program at the time of writing. See Appendix C for the MoGo bibli-
ography.
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The second contribution presented in this chapter is related to the exploration of tree-

structured search space, and inspired from the multi-armed bandit framework [ACBF02],

specifically the UCT algorithm [KS06] (section 4.5). The basic idea is to take advantage

of the domain structure, to generalize the value function to non visited state/action pairs.

The Rapid Action Value Estimation (RAVE) algorithm is inspired from the ”All Moves

as first” heuristic in computer Go and adapted to UCT (section 4.5.6). The relevance of

RAVE is significantly demonstrated as it increases the performance of the MoGo program,

specifically in higher dimensions.

4.1 Reinforcement Learning and Games

Games traditionally are a source of applications for discrete optimal control and Reinforce-

ment Learning. Some RL algorithms (e.g. T D(λ) and variants, Chapter 1) perform at a

master level the game of Checkers [SHJ01a], Othello [Bur99], and Chess [BTW98]. Two

games remain unmastered: Go and Poker (see below).

Many RL-based approaches involve: i) a tree-structured exploration of the search space;

ii) a value function, assessing the value of leaves and nodes in the tree. In many frame-

works, each position is described as a valued vector, and the value function is characterized

as a set of weights on the vector coordinates. After each game, the weights are updated;

the policy proceeds by optimizing the value function. The knowledge learned (the set of

weights) applies across the on-policy distribution of states.

The game of Go, an ancient Asian game enjoying a great popularity all over the world2

induces two challenges, respectively regarding the tree-structured search, and the value

function. On the one hand, while the rules of Go are simple (Fig. 4.1), the state space is

large (the goboard ranges from 9×9 to 19×19) and the number of moves (branching factor

of the Go tree search) is circa 300. In contrast, the rules of Chess are more complex, but

the chess board is 8×8 and the branching factor is circa 40. On the other hand, no really

efficient framework has been developed to model and learn the value function (see section

4.2). As a consequence, the alpha-beta search heuristics, meant to efficiently pruning the

2The interested reader is referred to http://www.gobase.org for a comprehensive introduction.
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Game Year of first program Status against human Date of domination
and/or

Name of the program (Author) Name of the program
Chess 1962 Kotok-McCarthy C > H 1997 Deeper Blue
Backgammon 1979 SKG 9.8 (Berliner) C > H 1998 TD-Gammon
Checkers 1952 (Strachey, Samuel) C >> H (solved) 1994 Chinook
Otello 1982 IAGO (Rosenbloom) C >> H 1997 LOGISTELLO
Scrabble 1977 (Shapiro and Smith) C > H 1998 MAVEN
Bridge 1963 (Berlekamp) C ≈ H GIB
Poker 1977 (Findler) C << H POKI
Go 1970 (Zobrist) C << H MoGo

Table 4.1: Status of some popular games in between the best human players and the best
programs. First column is the name of the games. Second column is the year of the first
”interesting” program playing this game, with sometimes the name of this program and the
name of the author. Third column gives this current status between the best program (C)
and the world champion (H). If the program is better than the best human, then the last
column gives the year and the name of the program which beat the world champion the first
time. If not, the last column gives the name of the current best program.

branches that are dominated in a minimax sense3 does not perform well; this also contrasts

with Chess, e,g, the DeepBlue algorithm heavily relies on alpha-beta search [New96]).

Both reasons explain why Go is now considered one of the most difficult challenges for

Artificial Intelligence, replacing Chess in this role [BC01]. Table 4.1 depicts the status of

programs vs Master human players in quite a few games. Presently, the best Computer-Go

programs are at the level of average amateurs;

Both challenges of tree-exploration and value estimation will be tackled in MoGo, com-

bining two advances respectively based on Monte-Carlo Go evaluation [Bru93a], and on

tree-structured multi-armed bandits [KS06].

For the sake of completeness, these two advances will be presented respectively in

sections 4.4 and 4.5.

3The minimax, or min-max, value of a position p, is the value of the final position of the game reached
from p by two players playing ”optimally”, i.e. assuming that in each position one player will play the worst
case for his opponent.
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Figure 4.1: (Left) An example position from a game of 9× 9 Go. Black and White take
turns to place down stones. Stones can never move, but may be captured if completely
surrounded. The player to surround most territory wins the game. (Right) Shapes are an
important part of Go strategy. The figure shows (clockwise from top-left) 1×1, 2×1, 2×2
and 3×3 local shape features which occur in the example position.

4.2 A short computer-Go overview

We present in this section some classical methods used to build a program playing Go. The

interested reader can find further details in the survey by Bouzy and Cazenave [BC01], or

the survey by Müller [Mül02]. We present in the subsequent section, previous works more

closely related to our approach, as Monte-Carlo evaluation method and Monte-Carlo tree

search techniques.

While the first Go program was written by D. Lefkovitz [Lef60], the first Go program

to beat a human player (an absolute beginner) was the program of Zobrist [Zob69, Zob70].

The work of Zobrist is also well know for his hashing function [Zob60] from a position to

a number.

The first Go programs were only based on an influence function. Each stone on the

board radiates influence to the surrounding intersections and so on, the radiation decreasing

with the distance. These functions are still used in most Go programs as GoIntellect, Many

Faces of Go or GnuGo.

The game of Go also has important properties which makes possible the cut of one

position into (smaller) sub-problems. This leaded to the next generation of Go programs,

e.g. Bruce Wilcox’s one [Wil78] who divided board into zones.
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The next age of computer go saw the use of patterns to recognize situations and sug-

gest moves (e.g Goliat [Boo90]). Now many strong programs, which are called ”classical

programs” use these techniques. On top of these, they use a tree search for tactical search,

often only local but very fast, and for some also use slower global search.

More on more recent techniques as Monte-Carlo Go can be found in next section.

Life and Death problems

The life and death problems (Tsume-Go) are positions where the player has to state the

status of strings. The status of a string can be alive (can’t be captured) or dead (can be

captured). These problems play a major role in the game of Go. Some works addressed

specifically this, without trying to build a complete Go player. The most successful was

Thomas Wolf’s Gotools [Wol94, Wol00]. The achieved level is very strong. Gotools can

solve 5-dan amateur problems, one of the top amateur level, close to professional level!

This level is very far from the level of computer players playing real games. That shows

that even if life and death problems are important part of the game, it is not sufficient to

achieve strong playing level, especially because Gotools is limited on enclosed position

with few empty intersections.

Mathematical morphology

Looking at a Go board and a Go position, using image processing techniques sound ap-

pealing. Mathematical morphology [Ser82] has been applied successfully to the game of

Go [Bou95b, Bou95a, Gnu99].

Let us give a very short introduction to mathematical morphology. A black/white image

is defined e.g. by the set of black points. We call ”elements” these black points.

Let A a set of elements. Mathematical morphology is based on some basic operators:

• Dilation D(A) is composed of A plus the neighboring elements of A;

• Erosion E(A) is composed of A minus the neighboring elements of the complement

of A;

• External boundary ExtBound(A) = D(A)−A;
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• Internal boundary IntBound(A) = A−E(A);

• Closing Closing(A) = E(D(A));

• Opening Opening(A) = D(E(A)).

Opening and closing operators are the most useful operators. This can be applied to Go

by assigning values to each intersection, starting from stones with positive value for black

and negative for white, and applying these operators [Bou95b].

Combinatorial game theory

Classical game theory [JVN44] has not been as successful in Go as it has been in Chess,

Checkers or Othello. Combinatorial game theory [Con76] tries to cut the global problem

in simpler sub-problems.

[EB94] achieved great success in the late endgame positions (Yose). Using an math-

ematical abstractions of positions, their program ended games as the level of high ranked

professional, sometimes even better. Everyone before thought that professional was play-

ing the end game optimally.

4.3 Scope of the problem and Previous Related Works

4.3.1 Scope of the problem

Most game engines are made of a tree-structured search operator, and an evaluation func-

tion.

The evaluation function investigated in the following is a stochastic evaluation proce-

dure (section 4.4); in each run the board to be evaluated undergoes a sequence of random

moves, until arriving at a final position, and reporting the associated score (e.g. whether

it is a winning position). The score averaged on some independent runs defines the value

associated to the board, together with its confidence interval.

The above value procedure is used to guide the exploration of the tree-structured search

space. Ideally, the exploration would follow a minimax tree search, pruning the dominated
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branches. However, the available value function does hardly enable efficient pruning; as the

number of runs is low for the sake of computational efficiency, the confidence intervals are

large. Another framework for discrete decision based on uncertain information is therefore

considered, namely the multi-armed bandit framework (section 4.3.4).

The global picture of the algorithm is displayed in Fig. 4.4.

Remark 1 Although the search operator is commonly referred to as tree-structured, the

search space is more an oriented graph (i.e. two different move sequences can lead to a

same position). Following an early discussion about the Graph History Interaction Prob-

lem (GHI) [KM04], the distinction will be discarded in the remainder.

4.3.2 Monte-Carlo Go

Monte-Carlo Go, designed by Bruegmann [Bru93a], increasingly attracts attention since

its inception in 1993, in the Gobble program. It has been first turned into an evaluation

procedure by Bouzy and Helmstetter [BH03], and it has been found surprisingly efficient,

especially on 9× 9 board. The best known Monte-Carlo Go based program, CrazyStone

designed by Rémi Coulom [Cou06], won over many other Go programs endowed with

domain knowledge4, although CrazyStone itself has very little knowledge (e.g. it ignores

the specific patterns used by e.g. GnuGo to evaluate a position).

A illustration and explanation of how Monte-Carlo evaluation function works in Go is

given in Figure 4.2.

4.3.3 Monte-Carlo Tree Search

A Monte-Carlo Tree Search algorithm [CSB+06, Cou06, KS06], is a best-first search al-

gorithm, using Monte-Carlo as the evaluation function. The goal is to learn a tabular eval-

uation function specialized in one state (or position), function represented by a tree of

subsequent states. The algorithm consists in a four-step loop, detailed below (see figure 4.3

from [CWB+07] for an illustration). Notably, this is an any-time algorithm; the number of

loops depends on the allotted resources.
4CrazyStone won the gold medal for the 9× 9 Go game during the 11th Computer Olympiad at Turin

2006, beating several strong programs including GnuGo, Aya and GoIntellect.
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Figure 4.2: Illustration of Monte-Carlo evaluation function in Go. Given the position to be
evaluated (left picture), and one simulation policy π (e.g. π playing uniformly randomly
among legal moves except eyes), each run makes π play against itself until the end of the
game (right picture). Every end position can be associated a score, computed exactly from
the rules of the game; the score can also be a boolean (wins or loses). Overall, this proce-
dure defines the value associated to the initial position as a random variable, e.g. a Bernoulli
variable. One possibility is to run many times the Monte-Carlo evaluation to narrow the es-
timation after the Central Limit Theorem, and use (almost) deterministic decision policies.
Another possibility is to handle the decision problem based on the available evidence and
its confidence, along the multi-armed bandit framework (see section 4.5).

1. Start from the root and descend the tree until reaching a state which is not yet in the

tree (Selection in Fig 4.3).

2. Depending on the expansion procedure, add the state as a new tree leaf (Expansion

in Fig 4.3).

3. Run the simulation policy (e.g. play a random game) until arriving at some final

position (Simulation in Fig 4.3) and compute the associated score.
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4. According to this score value, update the value of all states on the tree path between

the root node and the new leaf (Backpropagation in Fig 4.3)

4.3.4 Bandit Problem

As already mentioned, one specificity of the value procedure is to provide estimates of

random variables. The decision problem is thus viewed as similar to the multi-armed bandit

framework, defined as follows.

The core exploration-exploitation dilemma has been considered in many areas besides

Reinforcement Learning, such as Game Theory. Specifically, this dilemma has been ad-

dressed in the so-called multi-armed bandit [ACBFS95], inspired from the traditional slot

machines and defined as follows.

A multi-armed bandit involves n arms, where the i-th arm is characterized by its reward

probability pi. In each time step t, the gambler or the algorithm selects some arm j; with

probability p j it gets reward rt = 1, otherwise rt = 0. The loss after N time steps, or

regret, is defined as N p∗−E(∑N
t=1 rt), where p∗ is the maximal reward probability among

p1, . . . , pn.

The objective of the gambler is to maximize the collected rewards or minimize the

regret through iterative plays5. It is classically assumed that the gambler has no initial

knowledge about the arms, but through repeated trials, he can focus on the most rewarding

arms.

Two indicators are maintained for each i-th arm: the number of times it has been played

up to time t, noted ni,t and the average corresponding reward noted p̂i,t . Subscript t is

omitted when clear from the context.

The questions that arise in bandit problems are related to the problem of balancing

reward maximization based on the knowledge already acquired and attempting new actions

to further increase knowledge, which is known as the exploitation-exploration dilemma

in reinforcement learning. Precisely, exploitation in bandit problems refers to select the

5We will use ”play an arm” when referring to general multi-armed problems, and ”play a move” when
referring to Go. In Go application, the ”play” will not refer to a complete game but only one move.
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current best arm according to the collected knowledge, while exploration refers to select

the sub-optimal arms in order to gain more knowledge about them.

The independence of the different arms, as well as the independence of rewards for a

given arm, are traditionally assumed.

In Auer et Al. [ACBF02], a simple algorithm UCB1 is given, which ensures the optimal

machine is played exponentially more often than any other machine uniformly when the

rewards are in [0,1].

Algorithm 1 Deterministic policy: UCB1

• Initialization: Play each machine once.

• Loop: At time step t, play machine j that maximizes p̂ j,t +
√

2lognt
n j,t

, where nt = ∑ j n j,t

is the overall number of plays done so far.

Another formula with better experimental results is suggested in [ACBF02]. Let

V j,t = p̂ j,t− p̂2
j,t +

√
2lognt

n j,t

be an estimated upper bound on the variance6 of machine j, then we have a new value to

maximize:

p̂ j,t +

√
lognt

n j,t
min{1/4,V j,t} . (4.1)

According to Auer et al., the policy maximizing (4.1) named UCB1-TUNED, considering

also the variance of the empirical value of each arms, performs substantially better than

UCB1 in all experiments.

4.3.5 UCT

The UCT algorithm [KS06] is another value-based reinforcement learning algorithm. How-

ever, unlike other such algorithms it focuses its learning exclusively on the start state and

the tree of subsequent states.

6The considered rewards are here 0 or 1 so p̂ j,t is also the average sum of squared rewards
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The action value function QUCT (s,a) is approximated by a partial tabular representation

T ⊆ S×A , containing a subset of all (state, action) pairs. This can be thought of as a search

tree of visited states, with the start state at the root. A distinct value is estimated for each

state and action in the tree by Monte-Carlo simulation.

The policy used by UCT is designed to balance exploration with exploitation, based on

the multi-armed bandit algorithm UCB [ACBF02].

If all actions from the current state s are represented in the tree, ∀a ∈ A(s),(s,a) ∈ T ,

then UCT selects the action that maximises an upper confidence bound on the action value,

Q⊕UCT (s,a) = QUCT (s,a)+ c

√
logn(s)
n(s,a)

πUCT (s) = argmaxaQ⊕UCT (s,a)

where n(s,a) counts the number of times that action a has been selected from state s,

and n(s) counts the total number of visits to a state, n(s) = ∑a n(s,a).

If no action from the current state s is represented in the tree, ∃a ∈ A(s),(s,a) 6∈ T ,

then the uniform random policy πrandom is used to select an action from all unrepresented

actions, Ã(s) = {a|(s,a) /∈ T }.
At the end of episode s1,a1,s2,a2, ...,sT , each state action pair in the search tree,

(st ,at) ∈ T , is updated using the score from that episode,

n(st ,at) ← n(st ,at)+1 (4.2)

QUCT (st ,at) ← QUCT (st ,at) (4.3)

+
1

n(st ,at)
[Rt−QUCT (st ,at)]

New states and actions from that episode, (st ,at) 6∈ T , are then added to the tree, with

initial value Q(st ,at) = Rt and n(st ,at) = 1. In some cases, it is more memory efficient to

only add the first visited state and action such that (st ,at) /∈ T [Cou06, GWMT06]. This

procedure builds up a search tree containing n nodes after n episodes of experience.
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The UCT policy can be thought of as a two-step policy. In the early stages of the

episode, it visits the tree and selects actions on the basis of the knowledge associated to

each node. After the last tree leaf is reached, no more knowledge is available, and the ac-

tion selection proceeds randomly, until arriving at a final position and getting the associated

value. Propagating this value up the tree, the value associated to each tree node becomes

more precise, resulting in a better policy and focusing further the next Monte-Carlo simu-

lations.

If a model is available, then UCT can be used as a sample-based search algorithm.

Episodes are sampled from the model, starting from the actual state ŝ. A new representa-

tion T (ŝ) is constructed at every actual time-step, using simulated experience. Typically,

thousands of episodes can be simulated at each step, so that the value function contains a

detailed search tree for the current state ŝ.

In a two-player game, the opponent can be modelled using the agent’s own policy, and

episodes simulated by self-play. UCT is used to maximise the upper confidence bound on

the agent’s value and to minimise the lower confidence bound on the opponent’s. Under

certain assumptions about non-stationarity, UCT converges on the minimax value [KS06].

However, unlike other minimax search algorithms such as alpha-beta search, UCT requires

no prior domain knowledge to evaluate states or order moves. Furthermore, the UCT search

tree is non-uniform and favours the most promising lines. These properties make UCT

ideally suited to the game of Go, which has a large state space and branching factor, and

for which no strong evaluation functions are known.

Pseudo-codes

For the sake of self-containedness, the UCT algorithm is described in Table 4.27. Each

simulation runs the playOneSequence routine (line 1 to line 8). The arm (or child node)

selection is done after UCB1 (line 9 to line 21). Each arm must be selected at least once

first (line 15). Line 16 computes the Upper Confidence Bound (UCB1) for each arm. After

each sequence, all arms from the leaf to the root node are considered and their value is

updated8 iteratively using formula UCB1, described in function updateValue from line 22

7For clarity purpose, the code optimizations are not discussed here.
8Here we use the original formula in Algorithm 1.
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to line 29. Here the code deals with the minimax case.

1: function playOneSequence(rootNode);
2: node[0] := rootNode; i = 0;
3: while(node[i] is not leaf) do
4: node[i+1] := descendByUCB1(node[i]);
5: i := i + 1;
6: end while ;

node[i].value=endScore;
7: updateValue(node, -node[i].value);
8: end function;

9: function descendByUCB1(node)
10: nb := 0;
11: for i := 0 to node.childNode.size() - 1 do
12: nb := nb + node.childNode[i].nb;
13: end for;
14: for i := 0 to node.childNode.size() - 1 do
15: if node.childNode[i].nb = 0

v[i] := ∞;
16: else v[i] := -node.childNode[i].value

/node.childNode[i].nb
+sqrt(2*log(nb)/(node.childNode[i].nb))

17: end if;
18: end for;
19: index := argmax(v[j]);
20: return node.childNode[index];
21: end function;

22: function updateValue(node,value)
23: for i := node.size()-2 to 0 do
24: node[i].value := node[i].value + value;
25: node[i].nb := node[i].nb + 1;
26: value := 1-value;
27: end for;
28: end function;

Table 4.2: Pseudocode of UCT for minimax tree. The ”endScore” is the value of the
position for a leaf of the tree, which is here a final position.
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4.3.6 Linear value function approximation

Instead of estimating the value of a position online (as in MC), one can learn offline a value

function.

For a complex domain, such as Go, it is impractical to evaluate the value function of all

states. Instead, various methods of function approximation have been tried [SDS94, Enz03,

Sut96a]. [SSM07] has considered a simple approach that requires minimal prior domain

knowledge, and which has proven successful in many other domains [BTW98, SHJ01a,

Bur99].

We wish to estimate a simple reward function: r = 1 if the agent wins the game and

r = 0 otherwise. The value function is approximated by a linear combination of binary

features φ with weights θ,

QRLGO(s,a) = σ
(
φ(s,a)T θ

)

where the sigmoid squashing function σ maps the value function to an estimated probability

of winning the game. After each time-step, weights are updated using the T D(0) algorithm

[Sut88]. Because the value function is a probability, the loss function is modified so as to

minimise the cross entropy between the current value and the subsequent value,

δ = rt+1 +QRLGO(st+1,at+1)−QRLGO(st ,at)

∆θi =
α

|φ(st ,at)|δφi

where δ is the TD-error and α is a step-size parameter.

In the game of Go, the notion of shape has strategic importance. For this reason

[SSM07] use binary features φ(s,a) that recognise local patterns of stones . Each local

shape feature matches a specific configuration of stones and empty intersections within

a particular rectangle on the board (Figure 4.1). Local shape features are created for all

configurations, at all positions on the board, from 1× 1 up to 3× 3. Two sets of weights

are used: in the first set, weights are shared between all local shape features that are rota-

tionally or reflectionally symmetric. In the second set, weights are also shared between all
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local shape features that are translations of the same pattern.

During training, two versions of the same agent play against each other, both using

an ε-greedy policy. Each game is started from the empty board and played through to

completion, so that the loss is minimised for the on-policy distribution of states. Thus, the

value function approximation learns the relative contribution of each local shape feature to

winning, across the full distribution of positions encountered during self-play.

4.4 Simulation Policy in Monte-Carlo

This section describes our first contribution to Monte-Carlo Go, based on a refined simu-

lation policy hybridizing random policy and fast expert constraints. A second result, stem-

ming from experimental studies, is that increasing the quality of the simulation policy does

not necessarily result in a better quality of the control policy. A theoretical analysis for this

unexpected finding, is proposed.

4.4.1 Sequence-like simulations

The baseline random simulation is based on the uniform selection of the moves among

the legal ones, subject to a few rules preventing the program from filling its own eyes and

favoring the moves capturing some stones.

A more educated random simulation is motivated to produce relevant sequences; basi-

cally, a set of patterns of interest inspired by Indigo [Bou05] (similar patterns can also be

found in [RWB05]) is used to guide the selection of the new random move. While [BC06]

and [Cou07] proposed methods to automatically learn interesting patterns, only 3x3 manu-

ally defined patterns will be used in the following; more sophisticated patterns, e.g. as used

in GnuGo, were not considered. A further constraint, referred to as locality, is introduced;

it enforces the selection of a move contiguous (as long as it is possible) to the previous

moves, resulting in much more realistic episodes.

The locality constraint was found to be very efficient empirically; it significantly im-

proves on the only use of patterns to select the interesting moves. This surprising result

will be further discussed in section 4.4.2.
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Formally, a pattern is a 3×3 position, where the central intersection referred to as p is

empty; the pattern is labelled as interesting or uninteresting (e.g. patterns detect the stan-

dard “cut move”, “Hane move”). Any candidate position is matched against all available

patterns (up to symmetry and rotations); its score is computed after the label of the patterns

it matches.

Specifically, the educated random policy proceeds as follows. It first checks whether the

last played move is an Atari9; if this is the case, and if the stones under Atari can be saved

(in the sense that it can be saved by capturing stones or increasing liberties), it chooses one

saving move randomly; otherwise it looks for interesting moves in the 8 positions around

the last played move and plays one randomly if there is any. Finally, if still no move is

found, it plays one move randomly on the Go board. The main frame is given here.

Figure 4.6 shows the first 30 moves of two games respectively played using the ran-

dom and educated random policies. The latter one clearly results in a more realistic and

meaningly position.

Formally, each pattern P is a 3× 3 generalized position, represented as an element

of {Full,Empty,Don′t care}9. A 3× 3 position x is an element of {Full,Empty}9; it

strictly matches the pattern if xi < Pi for i = 1 . . .9, with Full < Don′t care and Empty <

Don′t care; it matches the pattern if there exists a rotation or symmetry σ on x such that σx

strictly matches P.

Candidate intersections define candidate positions (centered on the candidate intersec-

tions), which are tested against patterns if they are neither illegal nor self-Atari moves.

As already mentioned, we only used hand-coded patterns in MoGo, leaving the auto-

matic learning of relevant patterns, possibly based on Bayesian learning [BC05], for further

work. These patterns are shown in Fig. 4.7, 4.8, 4.9 and 4.10, where the position with a

square is the candidate intersection. In addition to those patterns, the Atari moves are

considered.

Remark 2 We believe that it is not always better to have more ’good’ patterns in the

random modes, meanwhile what is more important is whether the random simulation can

have some meaningful sequences often. This is developed in the following of this section.

9Atari denotes the fact that a string has only one liberty left, so can be captured during the next move if
nothing is done. This is an important notion of the game of Go.
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The Table 4.3 shows clearly how patterns improve the overall performance. This simulation

policy is called πMoGo in the following.

Random mode Win. Rate Win. rate Total
for B. Games for W. Games Win. Rate

Uniform 46% (250) 36% (250) 41.2% ± 2.2%
Sequence-like 77% (400) 82% (400) 80% ± 1.4%

Table 4.3: Different modes with 70000 random simulations/move in 9x9.

4.4.2 Simulation player learned by T D(λ)

Previous part describes the introduction of prior knowledge to build an efficient simulation

policy.

However, in many domains it is difficult to construct a good default policy. Even when

expert knowledge is available, it may be difficult to interpret and encode. Furthermore,

there is a practical requirement that policies must be fast to evaluate, otherwise the depth

of the search tree will be limited by the time required to simulate episodes.

A linear combination of binary features provides one way to overcome these hurdles.

[SSM07] learn a value function QRLGO offline, without prior domain knowledge (see Sec-

tion 4.3.6). Furthermore, this representation is sufficiently fast for use in UCT search (see

Table 4.10).

Monte-Carlo simulation works best when there is some random variation between

episodes. We consider three different approaches for randomising the policy. First, we

consider an ε-greedy policy,

πε(s,a) =

{
1− ε+ ε

|A(s)| if a = argmaxa′QRLGO(s,a′)
ε
|A(s)| otherwise

Second, we consider a greedy policy over a noisy value function, corrupted by Gaussian

noise η∼ N(0,σ2),

πσ(s,a) =

{
1 if a = argmaxa′QRLGO(s,a′)+η

0 otherwise
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Third, we select moves using a softmax distribution with temperature parameter τ,

πτ(s,a) =
eQRLGO(s,a)/τ

∑a′ eQRLGO(s,a′)/τ

We first compare the performance of each class of default policy πrandom, πMoGo, πε, πσ,

and πτ. Figure 4.11 assesses the relative strength of each default policy (as a Go player),

in a round-robin tournament of 6000 games between each pair of policies. With little or no

randomisation, the policies based on QRLGO outperform both the random policy πrandom and

previously presented πMoGo (see previous section) by a margin of over 90%. As the level

of randomisation increases, the policies degenerate towards the random policy πrandom.

Next, we compare the accuracy of each default policy π for Monte-Carlo simulation,

on a test suite of 200 hand-labelled positions. 1000 episodes of self-play were played from

each test position using each policy π. We measured the MSE between the average return

(i.e. the Monte-Carlo estimate) and the hand-labelled value (see Figure 4.12). In general,

a good policy for UCT (π) must be able to evaluate accurately in Monte-Carlo simulation.

In our experiments with MoGo, the MSE appears to have a close relationship with playing

strength.

The MSE improves from uniform random simulations when a stronger and appropri-

ately randomised default policy is used. If the default policy is too deterministic, then

Monte-Carlo simulation fails to provide any benefits and the performance of π drops dra-

matically. If the default policy is too random, then it becomes equivalent to the random

policy πrandom.

Intuitively, one might expect that a stronger, appropriately randomised policy would

outperform a weaker policy during Monte-Carlo simulation. However, the accuracy of πε,

πσ and πτ never come close to the accuracy of the policy πMoGo, despite the large improve-

ment in playing strengths for these default policies. To verify that the default policies based

on QRLGO are indeed stronger in our particular suite of test positions, we reran the round-

robin tournament, starting from each of these positions in turn, and found that the relative

strengths of the default policies remain similar. We also compared the performance of the

complete UCT algorithm, using the best default policy based on QRLGO and the parameter

minimising MSE (see Table 4.4). This experiment confirms that the MSE results apply in
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Algorithm Wins .v. GnuGo
UCT (πrandom) 8.88 ± 0.42 % (3420)
UCT (πσ) 9.38 ±1.9% (224)
UCT (πMoGo) 48.62 ±1.1% (2520)

Table 4.4: Winning rate of the UCT algorithm against GnuGo 3.7.10 (level 0), given 5000
simulations per move, using different default policies. The numbers after the± correspond
to the standard error. The total number of complete games is shown in parentheses. πσ is
used with σ = 0.15

actual play.

It is surprising that an objectively stronger default policy does not lead to better perfor-

mance in UCT. Furthermore, because this result only requires Monte-Carlo simulation, it

has implications for other sample-based search algorithms. It appears that the nature of the

simulation policy may be as or more important than its objective performance. Each pol-

icy has its own bias, leading it to a particular distribution of episodes during Monte-Carlo

simulation. If the distribution is skewed towards an objectively unlikely outcome, then the

predictive accuracy of the search algorithm may be impaired.

This suprising result is investigated analytically, relating the strength of the simulation

policy and the accuracy of the Monte-Carlo estimate in next section.

4.4.3 Mathematical insights: strength VS accuracy

This section investigates the relationship between the strength of a simulation policy used

in Monte-Carlo and the accuracy of the estimation. We first prove that the policy quality

reflects the estimation accuracy when the policy only has access to the current position,

whereas it does not hold when some limited memory of the game is available to the policy.

These results are consistent with the fact that the locality constraint implemented in

πMoGo (only considering candidate intersections near to previous moves) which can be

viewed as a limited memory about the game, significantly improves the overall results.
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Notations

Assume a game with two players. Let S the finite set of states. Let A the finite set of

moves. Let p(s′|s,a) the transition probability function. In a deterministic game as the

game of Go, for all s,s′ ∈ S there exists at most one action a where p(s′|s,a) > 0 (and in

this case p(s′|s,a) = 1).

We note Ω(A) the set of random variables on A (set of functions from the probability

space Ω to A). Let π a policy π : S → Ω(A). π can be stochastic, so π(s) is a random

variable. For π a policy, and s ∈ S , let Im(π(s)) = {a ∈ A ,P(π(s) = a) > 0}. So Im(π(s))

is the set of action which can be chosen by π on the state s.

For a real value v and a real ε > 0, we note v± ε = [v− ε,v+ ε]

Let c : S →{1,2} the application giving the player to play in a given state. We assume

that the players alternate in the game, i.e. ∀(s,s′)∈ S 2,∀a∈A ,c(s) = c(s′) =⇒ p(s′|s,a) =

0. We assume that there is no infinite games, which is equivalent to assume that it is

impossible to reach twice a position in a game. Then, the directed graph (S ,E) with

E = {(s,s′) ∈ S 2,∃a ∈ A , p(s′|s,a) 6= 0} is acyclic. We note T the set of terminal states,

i.e. T = {s ∈ S ,∀s′ ∈ S ,∀a ∈A , p(s′|s,a) = 0}. Taking the topological order in this graph,

we can number all the states, starting for the terminal states. We note si the ith state in this

topological order. Let score : T ×{1,2}→R the function giving the score of the game for

terminal positions for each player. This score function can be arbitrary in games which give

only a winner and a looser (e.g. 1 for a winning game, 0 for a loosing game).For s ∈ T , the

first player wins iff score(s,1) > score(s,2).

Given two players π1 and π2, and a position s ∈ S we note Ps(π1→ π2) the probability

of winning for π1 against π2 in the position s (π1 plays first in s). If ∀s,Ps(π1 → π2) =

Ps(π1→ π1) = Ps(π2→ π2), then we will say that π1 and π2 has the same strength.

The Monte-Carlo method takes a simulation policy π and approximate Ps(π→ π) by

P̂s(π→ π) the empirical average of results given a finite number of roll out games from

s using π as a player. Then the value of the position is P̂s(π→ π). By the law of large

numbers, P̂s(π→ π)−→ Ps(π→ π) with the number of playouts. We also have that P̂s(π→
π) is an unbiased estimator of Ps(π→ π), i.e. E P̂s(π→ π) = Ps(π→ π).

For a player Π, It is natural to consider that Ps(Π→Π) is the value of the position s for
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Π as it is the probability of winning of Π against itself. Indeed, Π expect an opponent of its

strength, then its probability of winning on a position is exactly Ps(Π→ Π). The fact that

”Π expect an opponent of its strength” is true for most of the search algorithms in games,

where the max and min levels are modeled by the same algorithm and same evaluation

function.

Theorems

Theorem 4.4.1 (Accurate simulation player without memory is strong) Let Π : S →
Ω(A) a reference player and π : S →Ω(A) a simulation player.

If

∀s ∈ S ,Ps(Π→Π) = Ps(π→ π)

then

∀s ∈ S ,Ps(Π→ π) = Ps(π→Π) = Ps(Π→Π)

.

Interpretation: We are here in the case where the simulation player π use only the

position to choose its moves (possibly stochastic), because π depends only on the state.

Then the theorem says that if the estimated value (by Monte-Carlo) of each position

(Ps(π→ π) which is the limit of the Monte-Carlo estimator by the law of large numbers,

and also the expectation of this estimator) is exactly the value of the position for Π, then

the simulation policy π has the same strength as Π.

That also means that you can’t make a simulation policy which is accurate for Π if you

don’t make it as strong as Π.

Corollary 1 (Simulation players with same accuracy are equally strong) If you now

consider π and Π as two simulation players, the previous theorem says that if their es-

timation of all positions are equal, then they have the same strength.

Proof Let us show by induction on the topological order of positions that for each

position s, Ps(Π→ π) = Ps(π→Π) = Ps(Π→Π).
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For s ∈ T , the statement is obviously true, as the game is finished and the score does

not depend on the player. Let n > |T | and assume the property true for all si ∈ S with i < n.

We have:

Psn(π→ π) = 1−Eπ(sn)Pπ(sn)(π→ π) (4.4)

Psn(Π→Π) = 1−EΠ(sn)PΠ(sn)(Π→Π) (4.5)

Psn(π→Π) = 1−Eπ(sn)Pπ(sn)(Π→ π) (4.6)

Psn(Π→ π) = 1−EΠ(sn)PΠ(sn)(π→Π) (4.7)

From the topological order of positions, we can apply the induction property to the

s ∈ Im(π(sn)) and the s ∈ Im(Π(sn)). Then, from formulas 4.4 and 4.6, Psn(π→ π) =

Psn(π→Π). From formulas 4.5 and 4.7, Psn(Π→Π) = Psn(Π→ π). As from hypothesis,

we have Psn(π→ π) = Psn(Π→Π), the property is shown for sn. The induction concludes

the proof.

Theorem 4.4.2 (Almost accurate simulation player without memory is almost strong)
Let Π : S → A a reference player and π : S → A a simulation player. Let ε > 0.

If

∀s ∈ S ,Ps(Π→Π) = Ps(π→ π)± ε

then

∀si ∈ S ,Psi(Π→ π) = Psi(Π→Π)± iε

,

Psi(π→Π) = Psi(Π→Π)± iε

,

Psi(Π→ π) = Psi(π→ π)± iε

and

Psi(π→Π) = Psi(π→ π)± iε

.

Interpretation: As in the previous theorem, if the simulation player, having access only



4.4. SIMULATION POLICY IN MONTE-CARLO 157

to the states, accurately estimates each position, then it is strong. However the error ε in the

estimates can accumulate and this accumulation grows linearly in the distance to the end

positions.

Remark 1: this is a worst case.

Remark 2: this result can be refined. The i in the iε bound, instead of begin the number

of the position in the topological order, can be the maximum number of moves to reach an

end position using the given policies. This can be much better, as for a starting position, i

is here the number of total possible position in the game, though it could simply approx-

imately be the number of moves of the game. However the proof would be very similar,

with only technical complications.

Proof The proof follows closely the previous theorem proof. Let us show by induction

on the topological order of positions that for each position si, (Π→ π) = Psi(Π→Π)± iε
and Psi(π→Π) = Psi(Π→Π)± iε.

For s ∈ T , the statement is obviously true, as the game is finished and the score does

not depend on the player. Let n > |T | and assume the property true for all si ∈ S with i < n.

The formulas 4.4, 4.6, 4.5 and 4.7 still hold.

From the topological order of positions, we can apply the induction property to the

s ∈ Im(π(sn)) and the s ∈ Im(Π(sn)). Then, from formulas 4.4 and 4.6, Psn(π→ π) =

Psn(π→Π)± (n−1)ε.

From formulas 4.5 and 4.7, Psn(Π→Π) = Psn(Π→ π)± (n−1)ε.

As from hypothesis, we have Psn(π→ π) = Psn(Π→Π)± ε,

Psi(Π→ π) = Psi(Π→Π)± iε, Psi(π→Π) = Psi(Π→Π)± iε, Psi(Π→ π) = Psi(π→
π)± iε and Psi(π→Π) = Psi(π→ π)± iε.

the property is shown for sn. The induction concludes the proof.

The previous results seems to argue that if you want to improve the evaluation function

by Monte-Carlo, then you have to make the simulation policy stronger. That seems quite

obvious. This is however in contradiction with the experimental results. We will now see

that this result does not hold anymore if you give some (even very limited) memory to the

simulation policy.
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Memory allows the simulation player to be weak

Let us consider the following game. There are two players, who alternate, and one counter

variable V which starts with value 0. There is a fixed number of turns n∈N, with n even.At

his turn, the player gives a value v ∈ [−1,1] and the counter V becomes V ←V + v. After

n moves (n is part of the definition of the game), the game stops, and if V > 0 then the first

player wins, else (V ≤ 0) the second player wins.

Formally, let n ∈ N, then S = [0,n]×R, and A = [−1,1]. The probability transition is

defined as: let s = [i,v] ∈ S , s′ = [i′,v′] ∈ S and a ∈ A , then p(s′|s,a) = 1 if and only if

i′ ≥ 1, i′ = i−1 and v′ = v+a. Here T = {(0,v)|v ∈ [−n,n]}.
Of course an optimal strategy for this game is obvious: the first player has to play

always 1 and the second −1. As we assume n even, the game between two optimal players

is a draw.

This game can be seen as an idealised version of number of games, where the counter

variable V is the current score of the position, and at the end of the game, the player with

the highest score wins the game. One can also model why the Monte-Carlo evaluation

function works in the game of Go with this game, seeing V as the current expected score,

and the simulation player making a random walk, adding or subtracting by his (good or

bad) moves some points to the score.

To simplify the analysis, we take a deterministic player (with a stochastic player we

will have the same result, but the technical discussion would be more complicated), let us

say the optimal player. So Π is such as

Π((i,v)) =




−1 if i is odd,

1 if i is even.

We saw in previous theorems that if we want to make a simulation policy π able to

estimate each position accurately according to Π, π would have to be as good as Π, so here

optimal. We will now construct a π which will have access to some very limited memory,

much weaker than Π, but which will be a perfect estimator by Monte-Carlo.

The memory will be called m ∈ {0,1}, initialised to 0. Then π (depending on the state

(i,v) and m) is defined as (with ε > 0):
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π((i,v),m) =





−ε if i is odd and m = 1,

ε if i is even and m = 1,

−1 if i is odd and m = 0. In this case m← 1.

With ε < 1, then π is obviously much weaker than Π, but in each state, the evaluation

by Monte-Carlo using π as the simulation policy is exactly the same as the value of the

state (relative to Π).

Discussion on these results

These mathematical results are not totally satisfactory for several reasons. The first the-

orems, assess results between the strength of a policy and the accuracy of the estimate,

but these results only hold when some equality or almost equality in all positions exist. It

would be better to have inequality relationships between the strength and accuracy. For

example, if Π2 is stronger than Π1, and π1 estimates accurately the value for Π1, then π2

would have to be stronger than π1 to estimate accurately Π2.

Also, the example showing that we can build a weak simulation player which estimates

accurately positions if it has access to some memory does not tell how to build a good

simulation policy in real cases.

However these results are still interesting because they try to formalise the surprising

experimental results. With this simple formalisation, we can hope finding ways to build

very accurate simulation policy without having to make them strong. This a great hope,

because building a strong simulation policy is as difficult as building a strong player.

4.5 Tree search and improvements in UCT algorithm

This section describes the use of the UCT algorithm for discrete control in the Go frame-

work, discussing its pros and cons comparatively to alpha-beta search. The extensions of

UCT, tailored to control, are thereafter presented and constitute the second contribution of

this chapter. Incidentally, MoGo was the first Go program to involve the UCT algorithm
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Figure 4.3: Illustration of the two parts of the algorithm, namely the tree search part and
the Monte-Carlo part. The root represents the analysed position. Each node represents a
position of the game, each branch leading from a position to another playing exactly one
move. The tree search part is done using the UCT algorithm. The Monte-Carlo evaluation
function consists in starting from the position and playing with a simulation policy until the
end of the game. Then the game is scored exactly simply using the rules.
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Figure 4.4: Illustration of a Monte-Carlo Tree search algorithm, figure from [CWB+07].

Figure 4.5: UCT search. The shape of the tree enlarges asymmetrically. Only updated
values (node[i].value) are shown for each visited nodes.
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Figure 4.6: Comparing the random (Left) and educated random (Right) policies (first 30
moves). All 30 moves in the left position and the first 5 moves of the right position have
been played randomly; moves 6 to 30 have been played using the educated random policy
in the right position.

Figure 4.7: Patterns for Hane. True is returned if any pattern is matched. In the right one, a
square on a black stone means true is returned if and only if the eight positions around are
matched and it is black to play.
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Figure 4.8: Patterns for Cut1. The Cut1 Move Pattern consists of three patterns. True is
returned when the first pattern is matched and the next two are not matched.

Figure 4.9: Pattern for Cut2. True is returned when the 6 upper positions are matched and
the 3 bottom positions are not white.

Figure 4.10: Patterns for moves on the Go board side. True is returned if any pattern is
matched. In the three right ones, a square on a black (resp. white) stone means true is
returned if and only if the positions around are matched and it is black (resp. white) to
play.
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Figure 4.11: The relative strengths of each class of default policy, against the random policy
πrandom (left) and against the policy πMoGo (right).

Figure 4.12: The MSE of each policy π when Monte Carlo simulation is used to evaluate a
test suite of 200 hand-labelled positions.
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whereas most of the strongest Go programs are now using UCT10.

Let us first note that UCT is naturally closely related to Monte-Carlo; when UCT en-

counters a state that is not represented in its search tree, it proceeds randomly and thus calls

a default random policy. A natural extension to the UCT algorithm is to use a default policy

that incorporates general domain knowledge, such as policy πMoGo defined in section 4.4.1.

In the following, the original UCT algorithm is denoted UCT (πrandom); UCT with default

policy π is denoted UCT (π).

4.5.1 UCT in the game of Go

As already mentioned (Figure 4.13), the complete algorithm is made of a tree search op-

erator and a random simulation procedure. Each node of the tree represents a Go board

situation, with child-nodes representing next situations after corresponding move.

The use of UCT for move selection relies on the equivalence between a Go position and

a bandit problem, where each legal move corresponds to an arm, the associated reward of

which is a random variable with unknown distribution. Let us consider in the following the

case where every arm either is a winning one (reward 1) or a loosing one (reward 0). Cases

of draw, almost nonexistent in Go, are ignored.

In the tree search part, a parsimonious version of UCT is used, based on a dynamic tree

structure inspired from the 2006 version of CrazyStone [Cou06]. The tree is then created

incrementally by adding one node after each simulation (see below). While this procedure

is different from the one presented in [KS06], it is more efficient as less nodes are created

during simulations. In other words, only nodes visited more than twice are saved, which

economizes largely the memory and accelerates the simulations. The pseudocode is given

in Table 4.5.

During each simulation, MoGo starts from the root of the tree that it saves in the mem-

ory. At each node, MoGo selects one move according to the UCB1 formula 4.1. MoGo

then descends to the selected child node and selects a new move (still according to UCB1)

until such a node has not yet been created in the tree. This part corresponds to the code

10Very recently [Cou07] combined offline learned knowledge into UCT. Combining these improvements
with the improved UCT presented in this section is a perspective for further research.
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1: function playOneSequenceInMoGo(rootNode)
2: node[0] := rootNode; i := 0;
3: do
4: node[i+1] := descendByUCB1(node[i]); i := i + 1;
5: while node[i] is not first visited;
6: createNode(node[i]);
7: node[i].value := getValueByMC(node[i]);
8: updateValue(node,-node[i].value);
9: end function;

Table 4.5: Pseudocode of parsimonious UCT for MoGo

from line 1 to line 5. The tree search part ends by creating this new node (in fact one leaf)

in the tree. This is finished by createNode. Then MoGo calls the random simulation part,

the corresponding function getValueByMC at line 7, to give a score of the Go board at this

leaf.

In the random simulation part, one random game is played from the corresponding Go

board till the end, where score is calculated quickly and precisely according to the rules.

The nodes visited during this random simulation are not saved. The random simulation

done, the score received, MoGo updates the value at each node passed by the sequence of

moves of this simulation11.

Remark 3 In the update of the score, we use the 0/1 score instead of the territory score,

since the former is much more robust. Then the real minimax value of each node should be

either 0 or 1. In practice, however, UCT approximates each node by a weighted average

value in [0,1]. This value is usually considered as the probability of winning.

4.5.2 Advantages of UCT compared to alpha-beta in this application

In the problems of minimax tree search, what we are looking for is often the optimal branch

at the root node. It is sometimes acceptable if one branch with a score near to the optimal

one is found, especially when the depth of the tree is very large and the branching factor is

11It is possible to arrive at one end game situation during the tree search part. In this case, one score could
be calculated immediately and there is no need to create the node nor to call the random simulation part.
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Figure 4.13: MoGo contains the tree search part using UCT and the random simula-
tion part giving scores. The numbers on the bottom correspond to the final score of
the game (win/loss). The numbers in the nodes are the updated values of the nodes
(node[i].value/node[i].nb)
.

big, like in Go, as it is often too difficult to find the optimal branch within short time.

In this sense, UCT outperforms alpha-beta search. Indeed we can outlight three major

advantages. First, it works in an anytime manner. We can stop at any moment the algorithm,

and its performance can be somehow good. This is not the case of alpha-beta search. Figure

4.14 shows if we stop alpha-beta algorithm prematurely, some moves at first level has even

not been explored. So the chosen move may be far from optimal. Of course iterative

deepening can be used, and solve partially this problem. Still, the anytime property is

stronger for UCT and it is easier to finely control time in UCT algorithm.

Second, UCT is robust as it automatically handles uncertainty in a smooth way. At each

node, the computed value is the mean of the value for each child weighted by the frequency

of visits. Then the value is a smoothed estimation of max, as the frequency of visits depends

on the difference between the estimated values and the confidence of this estimates. Then,

if one child-node has a much higher value than the others, and the estimate is good, this

child-node will be explored much more often than the others, and then UCT selects most

of the time the ’max’ child node. However, if two child-nodes have a similar value, or a
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low confidence, then the value will be closer to an average.

Third, the tree grows in an asymmetric manner. It explores more deeply the good moves

in an adaptive manner. Figure 4.5 page 161 gives an example.

Figure 4.5 and Figure 4.14 compares the explored tree of two algorithms within limited

time. However, the theoretical analysis of UCT is in progress [KSW06]. We just give some

remarks on this aspect at the end of this section. It is obvious that the random variables

involved in UCT are not identically distributed nor independent. This complicates the

analysis of convergence.

Figure 4.14: Alpha-beta search with limited time. The nodes with ’?’ are not explored yet.
This happens often during the large-sized tree search where entire search is impossible.
Iterative deepening solves partially this problem.

4.5.3 Exploration-exploitation influence

We parametrize the UCT implemented in our program a parameter, namely p. We add

one coefficient p to formula UCB1-TUNED (4.1), which by default is 1. This leads to the
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following formula: choose j that maximizes:

X̄ j + p

√
logn
Tj(n)

min{1/4,V j(n j)}

p decides the balance between exploration and exploitation. To be precise, the smaller the

p is, the deeper the tree is explored. According to our experiment shown in Table 4.6,

UCB1-TUNED is almost optimal in this sense.

p Winning Rate Winning rate Total
for Black Games for White Games Winning Rate

0.05 2% ± 2% (50) 4% ± 2.5% (50) 3% ± 1.7%
0.55 30% ± 6.5% (50) 36% ± 6.5% (50) 33% ± 4.7%
0.80 33% ± 4.5% (100) 39% ± 5% (100) 36% ± 3.3%

1.0 40% ± 4% (150) 38% ± 4% (150) 39% ± 2.8%
1.1 39% ± 4% (150) 41% ± 4% (150) 40% ± 2.8%
1.2 40% ± 4% (150) 44% ± 4% (150) 42% ± 2.9%
1.5 30% ± 6.5% (50) 26% ± 6% (50) 28% ± 4.5%
3.0 36% ± 6.5% (50) 24% ± 6% (50) 30% ± 4.5%
6.0 22% ± 5.5% (50) 18% ± 5% (50) 20% ± 4%

Table 4.6: Coefficient p decides the balance between exploration and exploitation (using
πrandom). All the tests are made by letting MoGo play against GnuGo 3.6 with default
mode. Komi are set to 7.5 points. The winning rates when MoGo plays black and white are
given with the number of games played in each color (in parentheses). The number given
after the ± is the standard error.

4.5.4 UCT with pruning

In this section we give heuristics to reduce the huge tree size especially in large Go board.

The goal is to get a deeper local search in the tree by losing the global view of UCT.

Obviously pruning heuristics may lead to a sub-optimal solution. First we define group by

Go knowledge to reduce the branching factor in tree search. Then zone division is derived

from group, which helps to have a more precise score. We use group and zone mode for

13×13 and 19×19 Go board. Figure 4.15 will give one example.
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Remark 4 As we are not very experienced for Go-knowledge-based programming and it

is not the purpose of this work, we believe other programs like GnuGo and AyaGo, or

Monte-Carlo programs have more clever pruning techniques. Some other techniques are

mentioned in [Caz00][CH05]. However, our experimental results of combining UCT with

pruning techniques are already encouraging.

First we define one group as a set of strings and free intersections on a Go board accord-

ing to certain Go knowledge, which gathers for example one big living group and its close

enemies. We have implemented Common Fate Graph (CFG) [GGKH01] in our program

to help the calculation of groups. The method starts from one string and recursively adds

close empty intersections and strings close to these empty intersections until no more close

strings are found within a distance controlled by a parameter.

In group mode, in the tree search part we search only the moves in the group instead of

all over the Go board. In random simulation part there is no more such restriction. Using

groups, we reduce the branching factor to less than 50 at the opening period. Then, depth

of MoGo’s tree could be around 7-8 on large Go board. Table 4.7 shows MoGo becomes

competitive on 13× 13 Go board by using group pruning technique. However, sophisti-

cated pruning techniques are undoubtedly necessary to improve the level of Computer-Go

programs.

Opponents Win. Rate Win. rate Total
for B. Games for W. Games Win. Rate

No group vs GG 0 53.2%(216) 51.8% (216) 52% ± 2.4%
No group vs GG 8 24.2%(300) 30% (300) 27% ± 1.8%

group vs GG 0 67.5% (80) 61.2% (80) 64.3% ± 3.7%
group vs GG 8 51.9% (160) 60% (160) 56% ± 2.7%

Table 4.7: MoGo with 70000 simulations per move, on 13×13 Go board, using or not the
group mode heuristic against GnuGo 3.6 level 0 (GG 0) or 8 (GG 8).

As explained above, group mode limits the selection of moves in the tree search part.

It has however no restriction on the random simulation. As the accuracy of the simulations

becomes lower as the game length increases, we tried to generate the random moves only in

a certain zone instead of on the whole Go board. The zones were defined using the groups
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presented above. However the success were limited especially after the opening, when the

zones are very difficult to define precisely. Interesting future research directions could be

to define properly zones to limit the simulations lengths.

Figure 4.15: The opening of one game between MoGo and Indigo in the 18th KGS Com-
puter Go Tournament. MoGo (Black) was in advantage at the beginning of the game,
however it lost the game at the end.
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4.5.5 First-play urgency

UCT works very well when the node is frequently visited as the trade-off between ex-

ploration and exploitation is well handled by UCB1 formula. However, for the nodes far

from the root, whose number of simulations is very small, UCT tends to be too much ex-

ploratory. This is due to the fact that all the possible moves in one position are supposed to

be explored before using the UCB1 formula. Thus, the values associated to moves in deep

nodes are not meaningful, since the child-nodes of these nodes are not all explored yet and,

sometimes even worse, the visited ones are selected in fixed order. This can lead to bad

predicted sequences.

UCB1 algorithm begins by exploring each arm once, before using the formula (4.1).

This can sometimes be inefficient especially if the number of trials is not large comparing

to the number of arms. This is the case for numerous nodes in the tree (number of visits is

small comparing to the number of moves). For example if an arm keeps returning 1 (win),

there is no good reason to explore other arms. We have set a fixed constant named first-

play urgency (FPU) in the algorithm. For each move, we name its urgency by the value

of formula (4.1). The urgency value is set to the value of FPU (FPU is +∞ by default) for

each legal move before first visit (see line 15 in Table 4.2). Any node, after being visited

at least once, has its urgency updated according to UCB1 formula. We play the move with

the highest urgency. Thus, FPU = +∞ ensures the exploration of each move once before

further exploitation of any previously visited move. On the other way, smaller FPU ensures

earlier exploitations if the first simulations lead to an urgency larger than FPU (in this case

the other unvisited nodes are not selected). This improved the level of MoGo according to

our experiment as shown in Table 4.8.

4.5.6 Rapid Action Value Estimation

The UCT algorithm must sample every action from a state s ∈ T before it has a basis on

which to compare values. Furthermore, to produce a low-variance estimate of the value,

each action in state s must be sampled multiple times. When the action space is large, this

can cause slow learning. To solve this problem, we introduce a new algorithm UCTRAV E ,

which forms a rapid action value estimate for action a in state s, and combines this online
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FPU Winning Rate Winning rate Total
for Black Games for White Games Winning Rate

1.4 37% ± 4.5% (100) 38% ± 5% (100) 37.5% ± 3.5%
1.2 46% ± 5% (100) 36% ± 5% (100) 41% ± 3.5%
1.1 45% ± 3% (250) 41% ± 3% (250) 43.4% ± 2.2%
1.0 49% ± 3% (300) 42% ± 3% (300) 45% ± 2%
0.9 47% ± 4% (150) 32% ± 4% (150) 40% ± 2.8%
0.8 40% ± 7% (50) 32% ± 6.5% (50) 36% ± 4.8%

Table 4.8: Influence of FPU (70000 simulations/move) (using πrandom). All the tests are
made by letting MoGo play against GnuGo 3.6 with default mode. Komi are set to 7.5
points. The winning rates when MoGo plays black and white are given with the number of
games played in each color (in parentheses). The number given after the ± is the standard
error.

knowledge into UCT.

Normally, Monte-Carlo methods estimate the value by averaging the return of all

episodes in which a is selected immediately. Instead, we average the returns of all episodes

in which a is selected at any subsequent time. In the domain of Computer Go, this idea is

known as the all-moves-as-first heuristic [Bru93b]. However, the same idea can be applied

in any domain where action sequences can be transposed.

Let QRAV E(s,a) be the rapid value estimate for action a in state s. After each episode

s1,a1,s2,a2, ...,sT , the action values are updated for every state st1 ∈ T and every subse-

quent action at2 such that at2 ∈ A(st1), t1 ≤ t2 and ∀t < t2,at 6= at2 ,

m(st1,at2) ← m(st1 ,at2)+1

QRAV E(st1,at2) ← QRAV E(st1 ,at2)

+1/m(st1,at2)[Rt1−QRAV E(st1,at2)]

where m(s,a) counts the number of times that action a has been selected at any time fol-

lowing state s.

The rapid action value estimate can quickly learn a low-variance value for each action.

However, it may introduce some bias, as the value of an action usually depends on the exact



174 CHAPTER 4. HIGH DIMENSION DISCRETE CASE: COMPUTER GO

state in which it is selected. Hence we would like to use the rapid estimate initially, but use

the original UCT estimate in the limit. To achieve this, we use a linear combination of the

two estimates, with a decaying weight β,

Q⊕RAV E(s,a) = QRAV E(s,a)+ c

√
logm(s)
m(s,a)

β(s,a) =

√
k

3n(s)+ k

Q⊕UR(s,a) = β(s,a)Q⊕RAV E(s,a)

+ (1−β(s,a))Q⊕UCT (s,a)

πUR(s) = argmaxaQ⊕UR(s,a)

where m(s) = ∑a m(s,a). The equivalence parameter k controls the number of episodes of

experience when both estimates are given equal weight.

We tested the new algorithm UCTRAV E(πMoGo), using the default policy πMoGo, for dif-

ferent settings of the equivalence parameter k. For each setting, we played a 2300 game

match against GnuGo 3.7.10 (level 10). The results are shown in Figure 4.16, and com-

pared to the UCT (πMoGo) algorithm with 3000 simulations per move. The winning rate

using UCTRAV E varies between 50% and 60%, compared to 24% without rapid estimation.

Maximum performance is achieved with an equivalence parameter of 1000 or more. This

indicates that the rapid action value estimate is worth about the same as several thousand

episodes of UCT simulation.

4.5.7 UCT with prior knowledge

The UCT algorithm estimates the value of each state by Monte-Carlo simulation. However,

in many cases we have prior knowledge about the likely value of a state. We introduce

a simple method to utilise offline knowledge, which increases the learning rate of UCT

without biasing its asymptotic value estimates.

We modify UCT to incorporate an existing value function Qprior(s,a). When a new

state and action (s,a) is added to the UCT representation T , we initialise its value according
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Figure 4.16: Winning rate of UCTRAV E(πMoGo) with 3000 simulations per move against
GnuGo 3.7.10 (level 10), for different settings of the equivalence parameter k. The bars in-
dicate twice the standard deviation. Each point of the plot is an average over 2300 complete
games.

to our prior knowledge,

n(s,a) ← nprior(st ,at)

QUCT (st ,at) ← Qprior(st ,at)

The initial value nprior estimates the equivalent experience contained in the prior value

function. This indicates the number of episodes that UCT would require to achieve an

estimate of similar accuracy. After initialisation, the value function is updated using the

normal UCT update (see equations 4.2 and 4.3). We denote the new UCT algorithm using

default policy π by UCT (π,Qprior).
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Algorithm Wins .v. GnuGo
UCT (πrandom) 1.84 ± 0.22 % (3420)
UCT (πMoGo) 23.88 ±0.85% (2520)
UCTRAV E(πMoGo) 60.47 ± 0.79 % (3840)
UCTRAV E(πMoGo,QRLGO) 69 ± 0.91 % (2600)

Table 4.9: Winning rate of the different UCT algorithms against GnuGo 3.7.10 (level 10),
given 3000 simulations per move. The numbers after the ± correspond to the standard
error. The total number of complete games is given in parentheses.

A similar modification can be made to the UCTRAV E algorithm, by initialising the rapid

estimates according to prior knowledge,

m(s,a) ← mprior(st ,at)

QRAV E(st ,at) ← Qprior(st ,at)

We compare several methods for generating prior knowledge in 9× 9 Go. First, we

use an even-game heuristic, Qeven(s,a) = 0.5, to indicate that most positions encountered

on-policy are likely to be close. Second, we use a grandfather heuristic, Qgrand(st ,a) =

QUCT (st−2,a), to indicate that the value with player P to play is usually similar to the value

of the last state with P to play. Third, we use a handcrafted heuristic QMoGo(s,a). This

heuristic was designed such that greedy action selection would produce the best known

default policy πMoGo(s,a). Finally, we use the linear combination of binary features,

QRLGO(s,a), learned offline by T D(λ) (see section 4.3.6).

For each source of prior knowledge, we assign an equivalent experience mprior(s,a) =

Meq, for various constant values of Meq. We played 2300 games between

UCTRAV E(πMoGo,Qprior) and GnuGo 3.7.10 (level 10), alternating colours between each

game. The UCT algorithms sampled 3000 episodes of experience at each move (see Figure

4.17), rather than a fixed time per move. In fact the algorithms have comparable execution

time (Table 4.10).

The value function learned offline, QRLGO, outperforms all the other heuristics and

increases the winning rate of the UCTRAV E algorithm from 60% to 69%. Maximum perfor-

mance is achieved using an equivalent experience of Meq = 50, which indicates that QRLGO
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Algorithm Speed
UCT (πrandom) 6000 g/s
UCT (πMoGo) 4300 g/s
UCT (πε), UCT (πσ), UCT (πτ) 150 g/s
UCTRAV E(πMoGo) 4300 g/s
UCTRAV E(πMoGo,QMoGo) 4200 g/s
UCTRAV E(πMoGo,QRLGO) 3600 g/s

Table 4.10: Number of simulations per second for each algorithm on a P4 3.4Ghz, at the
start of the game. UCT (πrandom) is faster but much weaker, even with the same time per
move. Apart from UCT (πRLGO), all the other algorithms have a comparable execution
speed

is worth about as much as 50 episodes of UCTRAV E simulation. It seems likely that these

results could be further improved by varying the equivalent experience according to the

variance of the prior value estimate.

4.5.8 Parallelization of UCT

The performance of UCT depends on the given time (equally the number of simulations)

for each move. Tables 4.11 and 4.12 show its level improves as this number increases.

Seconds Winning Rate Winning rate Total
per move for Black Games for White Games Winning Rate

5 26% ± 6% (50) 26% ± 6% (50) 26% ± 4.3%
20 41% ± 3% (250) 42% ± 3% (250) 41.8% ± 2.2%
60 53% ± 3.5% (200) 50% ± 3.5% (200) 51.5% ± 2.5%

Table 4.11: Uniform random mode and vanilla UCT with different times against GnuGo
level 10.

We then modify UCT to make it work on a multi-processors machine with shared mem-

ory. The modifications to the algorithm are quite straightforward. All the processors share

the same tree, and the access to the tree is locked by mutexes. As UCT is deterministic,

all the threads could take exactly the same path in the tree, except for the leaf. The behav-

ior of the multithreaded UCT as presented here is then different from the monothreaded

UCT. Two experiments has then to be done. First, we can compare the level of MoGo
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Figure 4.17: Winning rate of UCTRAV E(πMoGo) with 3000 simulations per move against
GnuGo 3.7.10 (level 10), using different prior knowledge as initialisation. The bars indicate
twice the standard deviation. Each point of the plot is an average over 2300 complete
games.

using the monothreaded or the multithreaded algorithms while allowing the same number

of simulations per move. All such experiments showed non significant differences in the

play level12. Second, we can compare the level using the same time per move (the multi-

threaded version will then make more simulations per move). As UCT benefits from the

computational power increase, the multithreaded UCT is efficient (+150 ELO on CGOS

with 4 processors).

12we had only access to a 4 processors computer, the behavior can be very different with many more
processors.
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Simulations Wins .v. GnuGo CGOS rating
3000 69% 1960
10000 82% 2110
70000 92% 2320∗

Table 4.12: Winning rate of UCTRAV E(πMoGo,QMoGo) against GnuGo 3.7.10 (level 10)
when the number of simulations per move is increased. The asterisked version used on
CGOS modifies the simulations/move according to the available time, from 300000 games
in the opening to 20000. More complete results against other opponents and other board
sizes can be found in Appendix C.

4.6 Conclusion and Perspectives

While most existing RL approaches in games are based on accurately learning the value

function and using it in an alpha-beta search, this chapter has demonstrated the merits

of combining a stochastic, robust, value function approximation, with the exploration vs

exploitation strategy embedded in UCT [KS06].

The RL perspective is shifted, from accurately learning a good model (the exploitation

of which is straightforward), to learning a model under bounded resources restrictions and

using it as smartly as possible.

Along these lines, two contributions have been made. The first one is to show exper-

imentally and explain theoretically that the qualities of the model and that of the strategy

are not necessarily monotonically related. A second contribution relies on the exploitation

of the domain knowledge, to improve the value function “deductively”.

While the presented approach has achieved excellent results in the Game of Go (see

Appendix C for more details), it is believed that it might address other application domains

as well, specifically when the state space is large (frugal any-time algorithms are required)

and the existing representation of the state space does not yet enable accurate value function

learning.

Several research perspectives are opened by the presented work. Indeed, the approach

can be parallelized. Early results show that a straightforward parallelization brings some

performance gain and a cluster-compliant implementation of UCT would be a great step

forward (incidentally, a good part of current Go programs now are based on UCT).
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Secondly, it remains to draw the full consequences of the difference between value

learning and policy optimization.

Thirdly, it is believed that both components of UCT and stochastic value process, are

amenable to prior knowledge (e.g. using default policy outside of the current search tree,

incorporating sophisticated patterns in the simulator, especially for end games, initializing

the value function).



Chapter 5

Conclusions

Conclusion

This thesis presented some contributions in the field of Reinforcement Learning, or closely

related fields.

Model learning

The first part (Chapter 2) presents a widely used model, namely Bayesian Networks (BNs).

This graphical model framework can take advantage of the problem structure, e.g. repre-

senting Factored MDPs using Dynamic Bayesian Networks, giving opportunities to treat

larger problems (scalability issue). The contributions concerning the BNs follow.

First, it is argued that the learning can be done through some L2 loss function rather

than the classical maximum likelihood. The first advantage is that the expectation approx-

imation error using a model is directly linked to this L2 measure of learning error. Second,

optimization of this criterion with a wrong structure will lead to optimal parameters (given

this structure), whereas frequentist approach will not. Third, this criterion naturally deals

with hidden variables. However, this measure is not adapted to risk estimation (dealing

with very small event probabilities) and is computationally much more expensive to com-

pute. For the later point, we propose algorithms to compute this criterion efficiently and

show that it is tractable.
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Second, in this framework, learning error is theoretically bounded using covering num-

bers, a classical learning theory tool. From these theoretical bounds, we propose a new

structural score, useful for structural learning in Bayesian Networks. In addition to the

number of parameters, appearing in classical BN scores, our score measures also the en-

tropy of the parameters distribution over the network. We empirically show its relevance.

Third, using the chosen criterion and the theoretical results, we propose learning

algorithms with theoretical guarantees. A parameter learning algorithm, is shown to be

Universal Consistent, and a structural learning algorithm guarantees the convergence to a

parsimonious structure.

Future work may extend these theoretical results to other classes of models, including

indirect graph models such as Markov Random Fields, because direct and indirect graph

models do not encode the same conditional dependencies. In the partially observable case

(hidden variables), our error bounds are loose and it would be useful to improve those

bounds in this particular case. On the application side, the biggest issue is the computa-

tional cost of the learning, coming for the sum of squared probabilities over all possible as-

signments of variables (S term, see section 2.8). One of the most promising line of research

is to adapt some of the very efficient Bayesian Networks inference algorithms to compute

this sum in the learning criterion. Indeed, inference algorithms are designed to compute ef-

ficiently (taking advantage of the network structure) sum of probabilities (marginalization),

while this term is a sum of squared probabilities. Those issues are known under the factor

graphs and sum-product terminologies [AM97, KFL01].

Robust Stochastic Dynamic Programmings

The second part of this thesis work (Chapter 3) deals with Stochastic Dynamic Program-

ming (SDP) in a continuous state space and action space. The continuous case brings issues

which do not exist in the (small) discrete case, namely function approximation (regression),

combined with sampling, and the optimization step in SDP, i.e. computation of the argmax

over the actions at one time step.

We propose an empirical study effect of non linear optimization algorithms, regression
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learning and sampling on the SDP framework1. On the non linear optimization issue, it

is shown that robustness (in the sense of avoiding local minima, dealing with unsmooth

functions, dealing with noise, . . . ), is the most valuable property. Evolutionary algorithms,

based on a population of points instead of only one point for algorithms like BFGS, give

the best results.

In the regression problem, other robustness issues arise, the most important being the

probability of appearance of ”false” optima in the learned value function, i.e. a minimum

which does not correspond to a minimum in the true value function. On our benchmarks,

the SVM algorithm gives the most stable result, beating many other classical regression

algorithms for the control tasks.

The third contribution concerns sampling, which is of main importance in SDP, as a

good sampling can reduce the number of examples used to learn the function, and each

example represents a high computational cost. The chapter presents some theoretical

insights about sampling, showing that a minimum amount of randomness is necessary

to guarantee consistency, while the amount of randomness can be very small, allowing

derandomization to make efficient sampling. A new sampling method in SDP is proposed,

based on an evolutionary algorithm, and can be used with other improved sampling

methods in Dynamic Programming. Empirical evidences show that derandomized blind

sampling works best for the benchmarked control tasks, while performances of non blind

samplings greatly vary depending on the task.

An immediate perspective of those studies would be to tackle a real world control prob-

lem which needs advanced regression/optimization techniques due to the scale of the prob-

lem. For example the domain of energy production would be a good real scale testbed,

with great both economic and ecological impacts, where heuristics are used to reduce the

problem to smaller dimensions. Our OpenDP framework needs further developments to

reach a mature level, notably on the ease of use. The empirical analysis could be extended

with the integration of other classical extension of SDP to get the best of state of the art

performance, in order to get a real world application.
1Those studies have been performed in our framework, OpenDP, which can be used by the community as

a tool to compare algorithms in different benchmark problems. This framework is made Open Source so that
every researcher or student can used part of the code, and contribute by his algorithm or new tools.
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Computer-Go

The third part (Chapter 4) deals with a high dimensional control problem, the game of Go.

This problem is a great challenge for the Machine Learning field, with many difficult re-

quirements. We believe that the methods presented in this chapter can also be applied in

other challenging discrete control problems, making the game of Go a testbed for devel-

oping those techniques. The contributions of this chapter lie around the UCT algorithm,

from its application to computer go, to improvements in both the tree search and in the

Monte-Carlo simulation. Those contributions have been applied in our program MoGo2.

The role of the simulation policy is to estimate the value of a state (a position). The

first contribution concerns the introduction of ”sequence-like simulations”, where forced

sequences emerge from the use of local patterns around the previous move. The improve-

ment of the UCT algorithm using this simulation policy is very significant along with the

own strength of the simulation policy. However, we propose empirical evidences showing

that the strength of the UCT algorithm is not monotonous in the strength of the simulation

policy. We also propose some theoretical insights on this surprising result.

The second set of contributions concern more specifically the tree search part of the

algorithm. The most significant improvement uses a simple yet efficient generalization

of actions (moves) values over the tree. This generalization improves the play level in

small boards, but more interestingly enables scalability of the algorithm on bigger boards

(corresponding to larger state and action spaces).

Future work

We have presented both a model learning and a decision-making module (using a UCT-like

algorithm) in this thesis. A natural extension would be to combine both of these modules

together in a real world application. Another challenging testbed problem is the game of

poker, where, contrary to the game of Go, a model of the opponent is necessary. The un-

certainty on the opponent represents the uncertainty on the transition function of the under-

lying MDP (the rules of the game are obviously known). One on-going work in our group

2MoGo won several international tournaments in all board sizes, along with some results against strong
humans in smaller board sizes, and is the world strongest Go program at the time of writing
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combines the learning criterion presented in Chapter 2 with a Monte-Carlo tree search al-

gorithm in Texas Hold’em, limit, two players. The opponent model can be represented as a

Bayesian Network, as a tool to approximate the probability of each action given observable

and hidden variables. The criterion we proposed (in Chapter 2) is appropriate here, as the

profit expectation is what matters in poker, and a simple online extension of the proposed

algorithm would be suitable. This opponent model can then be used in place of a self-play

simulation policy for a UCT based algorithm along the lines of Chapter 4.

As real world problems have some underlying structure, one of the most promising

lines of research for UCT-based tree search algorithms is to generalize between nodes in

the tree. Currently UCT is a tabular algorithm, treating each position as a totally new prob-

lem. Our RAVE algorithm puts some generalization into the algorithm by sharing action

values between the nodes. It achieves a very significant improvement, while remaining

very simple. Further generalization, i.e. taking advantage of the problem structure, can be

brought using a (simple and fast) function approximation, like the one used in the game

of Go by [SS07]. The idea is to efficiently learn online an approximation of the state val-

ues but specialized on the state distribution induced by UCT. Hence, the approximation is

made on a (tiny) subset of all possible states, making a better use of the approximation

capabilities of the function approximator than trying to approximate the whole state space.

This is also related to cost sensitive learning where each learning error does not have the

same cost: it is pointless (no associated cost) to approximate the value of a state which is

hardly reached, and it would be better to keep the approximation capabilities for frequently

reached states (where the cost of an error is large).

Another line of research is to tackle the algorithmic issues of UCT in a massive

parallel framework. Current evolution of hardware emphasizes multicore processors, and

clusters of machines. While straightforward implementations of UCT in shared memory

machines have been successful, theoretical studies on the behavior of UCT on a cluster

of machines (facing heavy3 communication costs) would benefit large scale applications.

The generalization between different states would also be beneficial in a massive parallel

framework, enabling a more structured clustering of the computations to be spread over

3Heavy costs compared to the cost of a memory access, and also compared to the computation of one
evaluation of a state.
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the network, and allowing a more efficient (lighter) information sharing.

This thesis has emphasized the interactions of Reinforcement Learning with other re-

search goals, such as supervised learning, unsupervised learning, discrete and real value

optimization, numerical integration and learning theory. We have also emphasized the im-

portance of real world applications and explored how simple algorithms can be scaled up to

large problems. We believe that all of these elements can be integrated together seamlessly,

and that the performance of such a system would be greater than the sum of its parts.
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Some OpenDP screenshots
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Figure A.1: Screenshot of the ”analyser” module of OpenDP, enabling the visual compari-
son of the algorithm performances after a set of experiments.

Figure A.2: The Bellman value function for the stock management problem (enabling
rescaling, zoom, rotations).
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Figure A.3: Veall Test [MR90] based on the asymptotic confidence interval for the first
order statistics computed by De Haan [dH81]. For each sampled point, is plotted the con-
fidence for the optimization step to be close to the optimum.
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Figure A.4: OpenDP on windows XP: Main interface (top left), the Bellman value function
(top right), and SDP online indicators, including correlation (bottom left) and confidence
optimization (bottom right).



Appendix B

Experimental Results of Chapter 3

B.1 Description of algorithm ”EA”

This algorithm involves a Gaussian isotropic mutation with standard deviation σ
d√n

with n

the population size d the search space dimension. The crossover between two individuals

x and y gives birth to two individuals 1
3x + 2

3y and 2
3x + 1

3y. Let λ1,λ2,λ3,λ4 be such that

λ1 + λ2 + λ3 + λ4 = 1 ; we define S1 the set of the λ1.n best individuals, S2 the λ2.n best

individuals among the others. At each generation, the new offspring is (i) a copy of S1

(ii) nλ2 cross-overs between individuals from S1 and individuals from S2 (iii) nλ3 mutated

copies of individuals from S1 (iv) nλ4 individuals randomly drawn uniformly in the domain.

• we copy the nλ1 best individuals (set S1).

• we combine the nλ2 following best individuals with the individuals of S1 (rotating

among S1 if λ1 < λ2).

• we mutate nλ3 individuals among S1 (again rotating among S1 if λ1 < λ3).

• we randomly generate n×λ4 other individuals, uniformly on the domain.

The parameters are σ = 0.08,λ1 = 1/10,λ2 = 2/10,λ3 = 3/10,λ4 = 4/10; the population

size is the square-root of the number of fitness-evaluations allowed. These parameters are

standard ones from the library.
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B.2 Non Linear Optimization results

See tables A.1 to A.6.

Stock Management
Baseline Dimension x1→ 4

Optimizer score Std time (s)
LowDispersionfff 2815.99 ±4.91 41.68

EoCMA 2927.43 ±6.64 55.96
QuasiRandom 3005 ±9.38 38.98

RestartLBFGSB 3014.25 ±8.12 76.87
LowDispersion 3015.21 ±7.67 41.24

EA 3016.29 ±7.42 41.88
Random 3016.75 ±7.87 36.77
LBFGSB 3019.34 ±6.60 27.30

RestartHooke 3019.99 ±6.02 40.55
EANoMem 3023.89 ±6.08 41.92

Hooke 3024.45 ±4.66 40.20

Stock Management
Baseline Dimension x2→ 8

Optimizer score Std time (s)
EoCMA 2638.18 ±6.43 43.90

LowDispersionfff 2700.61 ±1.61 36.56
QuasiRandom 3016.49 ±1.80 34.65

Random 3022.1 ±1.80 32.00
EA 3031.63 ±1.78 37.83

EANoMem 3031.63 ±1.78 38.49
Hooke 3031.63 ±1.78 37.52

LBFGSB 3031.63 ±1.78 7.21
LowDispersion 3031.63 ±1.78 37.17
RestartHooke 3031.63 ±1.78 37.76

RestartLBFGSB 3031.63 ±1.78 36.28
Stock Management

Baseline Dimension x3→ 12
Optimizer score Std time (s)
EoCMA 2627.31 ±9.47 48.83

LowDispersionfff 2631.58 ±1.60 40.32
QuasiRandom 3018.07 ±1.79 37.63

Random 3031.37 ±1.78 35.30
EA 3031.63 ±1.78 40.70

EANoMem 3031.63 ±1.78 41.85
Hooke 3031.63 ±1.78 42.58

LBFGSB 3031.63 ±1.78 8.94
LowDispersion 3031.63 ±1.78 40.11
RestartHooke 3031.63 ±1.78 42.75

RestartLBFGSB 3031.63 ±1.78 41.87

Stock Management
Baseline Dimension x4→ 16

Optimizer score Std time (s)
EoCMA 2678.46 ±9.00 60.89

LowDispersionfff 2741.09 ±1.60 48.51
Random 3015.42 ±1.79 41.75

QuasiRandom 3025.71 ±1.78 46.30
EA 3031.63 ±1.78 50.65

EANoMem 3031.63 ±1.78 53.35
Hooke 3031.63 ±1.78 58.74

LBFGSB 3031.63 ±1.78 11.20
LowDispersion 3031.63 ±1.78 49.46
RestartHooke 3031.63 ±1.78 57.16

RestartLBFGSB 3031.63 ±1.78 45.02

Table B.1: Results on the Stock Management problem (see section 3.2.2 for details). Each
table is with a different dimension (×1,×2,×3 or×4 which give dimension 4, 8, 12 or 16).
It represents the dimension of the action space. The dimension of the state space increases
accordingly. The absolute value of the score (cost) can’t be compared between the different
dimensions as increasing the dimension can make the optimal solution more or less costly.
Only relative values are relevant. CMA algorithm and LowDispersionfff are the two best
ranked optimizers, beating by far the others. CMA is best on 3 over 4 dimension sizes.
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Stock Management V2
Baseline Dimension x1→ 4

Optimizer score Std time (s)
LowDispersion 354.92 ±7.26 22.21

EANoMem 402.30 ±7.25 22.37
RestartLBFGSB 435.93 ±8.17 49.98

EA 449.39 ±6.18 22.06
QuasiRandom 452.07 ±6.29 20.90

LowDispersionfff 464.93 ±5.55 22.18
Random 524.1 ±6.74 19.48
EoCMA 657.78 ±12.38 32.96
Hooke 933.12 ±12.17 19.59

RestartHooke 939.14 ±12.54 27.03
LBFGSB 994.37 ±16.02 11.46

Stock Management V2
Baseline Dimension x2→ 8

Optimizer score Std time (s)
EoCMA 255.32 ±8.32 36.13

RestartHooke 270.12 ±9.59 25.04
LBFGSB 270.65 ±6.45 13.42

EA 273.82 ±11.12 25.89
LowDispersion 274.98 ±9.05 26.34

Random 275.18 ±9.26 23.16
RestartLBFGSB 278.96 ±7.75 46.96

Hooke 279.06 ±7.11 24.99
EANoMem 280.91 ±9.23 26.74

LowDispersionfff 280.93 ±8.58 26.39
QuasiRandom 296.58 ±6.40 25.10

Table B.2: Results on the Stock Management problem, second version (see section 3.2.2
for details). Each table is with a different dimension (×1 or ×2 which give dimension 4
or 8). It represents the dimension of the action space. The dimension of the state space
increases accordingly. The absolute value of the score (cost) can’t be compared between
the different dimensions as increasing the dimension can make the optimal solution more
or less costly. Only relative values are relevant. With low dimension (left), LowDispersion
optimizer gives the best result, with a very significant difference. In larger dimension
(right), algorithms are closer, while CMA becomes the best (as in the first version of the
Stock and Demand problem).

B.3 Learning results

See tables A.7 to A.18.
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Arm
Baseline Dimension x1→ 3

Optimizer score Std time (s)
LowDispersion 11.15 ±0.23 56.61
RestartLBFGSB 11.43 ±0.27 118.04

RestartHooke 11.48 ±0.28 55.57
LBFGSB 11.53 ±0.29 20.53

Hooke 11.66 ±0.30 55.24
EANoMem 11.82 ±0.26 57.51

EA 12.04 ±0.26 57.04
QuasiRandom 12.47 ±0.26 54.49

Random 12.90 ±0.24 52.78
LowDispersionfff 13.92 ±0.22 56.52

EoCMA 17.73 ±0.12 63.96

Arm
Baseline Dimension x2→ 6

Optimizer score Std time (s)
Hooke 10.43 ±0.26 61.16

RestartHooke 10.53 ±0.28 61.29
RestartLBFGSB 10.58 ±0.26 115.20

LBFGSB 11.04 ±0.27 46.53
LowDispersion 11.08 ±0.25 60.96

EANoMem 11.14 ±0.22 62.20
EA 12.24 ±0.22 61.07

QuasiRandom 12.44 ±0.22 59.14
Random 12.98 ±0.21 56.36

LowDispersionfff 15.12 ±0.19 60.58
EoCMA 18.89 ±0.08 65.24

Arm
Baseline Dimension x3→ 9

Optimizer score Std time (s)
LowDispersion 11.03 ±0.21 65.78

Hooke 11.05 ±0.21 66.65
RestartHooke 11.17 ±0.21 66.85

RestartLBFGSB 11.47 ±0.22 138.16
LBFGSB 11.86 ±0.20 107.83

EANoMem 12.27 ±0.20 67.65
QuasiRandom 12.84 ±0.19 63.22

EA 12.88 ±0.21 66.03
Random 13.29 ±0.21 60.30

LowDispersionfff 15.06 ±0.17 65.17
EoCMA 18.70 ±0.08 74.10

Arm
Baseline Dimension x4→ 12

Optimizer score Std time (s)
LowDispersion 10.64 ±0.19 69.96

Hooke 11.13 ±0.22 77.65
RestartLBFGSB 11.38 ±0.22 208.61

RestartHooke 11.39 ±0.20 77.96
EA 11.81 ±0.19 70.75

LBFGSB 11.85 ±0.19 196.40
QuasiRandom 12.28 ±0.18 67.91

EANoMem 12.30 ±0.19 72.27
EA 12.39 ±0.17 64.67

LowDispersionfff 15.49 ±0.16 69.49
EoCMA 18.60 ±0.08 80.51

Table B.3: Results on the ”Arm” problem (see section 3.2.2 for details). Each table is with
a different dimension (×1,×2,×3 or×4 which give dimension 3, 6, 9 or 12). The absolute
value of the score (cost) can’t be compared between the different dimensions as increasing
the dimension can make the optimal solution more or less costly. Only relative values are
relevant. LowDispersion and Hooke optimizers are the best while LowDispersionfff and
CMA are the worst by far. This problem is typically a ”bang-bang” problem, where the
optimal action is on the frontier of the action space. LowDispersionfff and CMA which
evolve far from the frontiers are very bad.
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Fast Obstacle Avoidance
Baseline Dimension x1→ 1

Optimizer score Std time (s)
RestartHooke 584.84 ±8.70 30.78

LowDispersion 617.42 ±11.39 22.56
QuasiRandom 626.51 ±16.34 21.26

EA 638.63 ±15.56 22.68
EANoMem 643.18 ±16.58 22.94

LowDispersionfff 643.18 ±15.52 22.6
Random 649.24 ±16.28 20.11

RestartLBFGSB 702.27 ±16.13 116.58
EoCMA 821.21 ±18.88 40.77
Hooke 968.18 ±12.89 12.81

LBFGSB 1003.79 ±1.96 12.87

Many-obstacles avoidance
Baseline Dimension x1→ 1

Optimizer score Std time (s)
EA 72.95 ±1.37 21.57

LowDispersion 72.95 ±1.44 21.52
RestartLBFGSB 73.03 ±1.37 74.57

EANoMem 73.33 ±1.31 21.88
LowDispersionfff 73.48 ±1.36 21.44

QuasiRandom 74.01 ±1.45 20.18
Random 74.62 ±1.36 19.00

RestartHooke 77.42 ±1.60 29.60
EoCMA 85.45 ±1.57 37.74
Hooke 100 ±1.e-16 12.35

LBFGSB 100 ±1.e-16 12.75

Table B.4: Results on the ”fast obstacle avoidance” problem (left) and the ”many-obstacles
avoidance” problem (right) (see section 3.2.2 for details). These two problems has a very
low dimension (1). Hooke and LBFGSB, which are local optimizers perform badly (in the
second problem they lead to the worst possible cost). Making them global optimizers using
a restart (start again from a new random point, each time a local convergence happens), is
very efficient, RestartHooke even becomes the best on the avoidanceproblem. On the two
problem, the differences between the top optimizers are small.
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Many bots
Baseline Dimension x1→ 4

Optimizer score Std time (s)
EA 218.93 ±2.07 46.94

EANoMem 225.15 ±2.24 47.34
Random 241.36 ±2.68 44.68

QuasiRandom 242.27 ±2.40 46.29
LowDispersion 250.60 ±2.72 47.97

EoCMA 277.57 ±4.02 82.79
LowDispersionfff 314.69 ±8.23 47.85

RestartHooke 331.66 ±12.76 46.29
Hooke 341.06 ±12.23 46.16

LBFGSB 447.57 ±5.70 69.33
RestartLBFGSB 600 ±1.e-16 109.64

Many bots
Baseline Dimension x2→ 8

Optimizer score Std time (s)
EANoMem 836.21 ±7.32 58.82

EA 856.06 ±8.39 57.78
LowDispersionfff 915.15 ±11.05 61.70

QuasiRandom 936.51 ±6.46 56.05
Random 940.30 ±6.67 54.07

LowDispersion 962.12 ±12.37 59.38
EoCMA 1023.03 ±12.64 98.08
Hooke 1025.91 ±28.59 60.84

RestartHooke 1049.09 ±25.94 61.20
LBFGSB 1175.3 ±9.24 202.43

RestartLBFGSB 1395.15 ±3.73 237.60
Many bots

Baseline Dimension x3→ 12
Optimizer score Std time (s)

LowDispersionfff 1505.61 ±16.15 76.10
EANoMem 1564.24 ±11.24 77.20

EA 1624.55 ±11.47 69.12
QuasiRandom 1673.48 ±9.11 75.09

Random 1711.21 ±11.08 63.95
RestartHooke 1776.67 ±30.60 107.04

Hooke 1780.3 ±31.30 80.26
EoCMA 1823.79 ±13.20 123.48

LowDispersion 1844.09 ±13.40 102.82
LBFGSB 1925.15 ±12.52 430.21

RestartLBFGSB 2200 ±1.e-16 478.96

Many bots
Baseline Dimension x4→ 16

Optimizer score Std time (s)
EANoMem 2361.36 ±9.52 86.95

EA 2382.73 ±12.04 85.80
LowDispersionfff 2435.3 ±21.04 84.27

QuasiRandom 2441.06 ±10.52 83.00
LowDispersion 2466.97 ±16.48 82.66

Random 2476.97 ±11.06 96.19
EoCMA 2539.85 ±21.71 144.84

RestartHooke 2591.06 ±34.71 97.47
Hooke 2650.15 ±34.37 96.25

LBFGSB 2697.27 ±13.04 736.73
RestartLBFGSB 3001.21 ±0.55 869.19

Table B.5: Results on the ”Many bots” problem (see section 3.2.2 for details). Each table is
with a different dimension (×1, ×2, ×3 and ×4 which give dimension 4, 8, 12 or 16). The
absolute value of the score (cost) can’t be compared between the different dimensions as
increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. Gradient based algorithms as LBFGSB and its ”restart” version perfom
very badly, being the worst in all dimensions. The simple evolutionary algorithm called
”EA” perform well, which reveals the very unsmooth properties of the optimization.
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Away
Baseline Dimension x1→ 2

Optimizer score Std time (s)
LowDispersion 1.55 ±0.22 55.90

Hooke 1.59 ±0.20 45.81
LBFGSB 1.67 ±0.20 15.42

RestartHooke 1.70 ±0.21 72.57
EA 1.73 ±0.20 55.82

EANoMem 1.74 ±0.23 58.55
QuasiRandom 1.80 ±0.22 52.91

RestartLBFGSB 1.84 ±0.24 159.39
Random 2.03 ±0.25 53.16

LowDispersionfff 2.19 ±0.29 56.06
EoCMA 3.03 ±0.38 71.09

Away
Baseline Dimension x2→ 4

Optimizer score Std time (s)
LowDispersion 1.05 ±0.17 74.55

LBFGSB 1.22 ±0.19 29.44
RestartLBFGSB 1.25 ±0.18 170.67

Hooke 1.26 ±0.19 72.48
EA 1.32 ±0.20 75.63

RestartHooke 1.34 ±0.22 72.78
EANoMem 1.41 ±0.28 76.53

QuasiRandom 1.62 ±0.27 72.44
Random 1.78 ±0.29 70.16

LowDispersionfff 2.86 ±0.48 76.25
EoCMA 7.51 ±0.77 81.89

Away
Baseline Dimension x3→ 6

Optimizer score Std time (s)
LowDispersion 0.74 ±0.15 86.36

EANoMem 0.75 ±0.14 88.58
LBFGSB 0.85 ±0.19 51.41

RestartLBFGSB 0.87 ±0.17 165.76
Hooke 0.93 ±0.19 87.19

RestartHooke 0.94 ±0.19 87.46
EA 0.97 ±0.19 87.76

QuasiRandom 1.23 ±0.23 84.25
Random 1.27 ±0.25 82.01

LowDispersionfff 3.12 ±0.47 90.03
EoCMA 6.71 ±0.70 90.92

Away
Baseline Dimension x4→ 8

Optimizer score Std time (s)
LowDispersion 0.31 ±0.07 90.41

Hooke 0.62 ±0.16 95.02
EANoMem 0.65 ±0.14 95.38

RestartHooke 0.66 ±0.15 96.38
LBFGSB 0.70 ±0.15 75.54

RestartLBFGSB 0.70 ±0.15 162.18
EA 0.76 ±0.19 93.77

QuasiRandom 0.76 ±0.15 89.55
Random 0.85 ±0.18 85.35

LowDispersionfff 2.98 ±0.44 98.72
EoCMA 5.28 ±0.63 96.92

Table B.6: Results on the ”Away” problem (see section 3.2.2 for details). Each table is with
a different dimension (×1, ×2, ×3, ×4 which give dimension 2, 4, 6 or 8). The absolute
value of the score (cost) can’t be compared between the different dimensions as increasing
the dimension can make the optimal solution more or less costly. Only relative values are
relevant. Blind optimizer as LowDispersion optimizer is best for each dimension, while the
difference is not significant compared to the first bests optimizers. Results are similar from
results for the ”Arm” problem (see Table B.3). This problem is typically a ”bang-bang”
problem, where the optimal action is on the frontier of the action space. LowDispersionfff
and CMA which evolve far from the frontiers are very bad.
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Stock Management (300 points)
Baseline Dimension x1→ 4

Optimizer score Std time (s)
SVMLap 1866.87 ± 1.67 36.20

SVMGauss 1867.52 ± 1.68 35.93
SVMGaussHP 2147.91 ± 24.96 119.50

IBk 2411.20 ± 3.82 207.78
LinearR 2455.74 ± 1.79 36.62

SimpleLinearR 2457.70 ± 1.76 32.48
LRK(linear) 2741.17 ± 5.83 71.49

DecTable 2802.88 ± 2.61 43.54
LRK(gaus) 2931.81 ± 5.13 128.56

AR 2935.64 ± 5.96 32.75
LRK(poly) 2944.80 ± 7.31 120.93

RBFNetwork 3029.99 ± 1.78 54.72
DecisionStump 3030.78 ± 1.73 31.89

MLP 3031.19 ± 0 48.70
LogisticBase 3031.24 ± 1.72 254.97
LeastMedSq 3031.27 ± 0 408.20

REPTree 3031.81 ± 0 33.23

Stock Management (300 points)
Baseline Dimension x2→ 8

Optimizer score Std time (s)
IBk 2872.95 ± 3.49 304.80

SVMGaussHP 2989.18 ± 6.11 90.19
SVMGauss 2995.96 ± 1.55 39.71
SVMLap 2996.22 ± 1.55 40.03
REPTree 3017.43 ± 2.14 39.05
LinearR 3026.21 ± 1.69 43.01

AR 3028.39 ± 1.80 39.03
RBFNetwork 3029.12 ± 1.72 62.60

DecTable 3030.53 ± 1.74 50.59
DecisionStump 3031.27 ± 0 37.66

LeastMedSq 3031.27 ± 0 313.49
LogisticBase 3031.27 ± 0 203.39
LRK(gaus) 3031.27 ± 0 164.37
LRK(linear) 3031.27 ± 0 79.97
LRK(poly) 3031.27 ± 0 109.38

MLP 3031.27 ± 0 40.04
SimpleLinearR 3031.27 ± 0 37.01

Stock Management (300 points)
Baseline Dimension x3→ 12

Optimizer score Std time (s)
AR 3031.27 ± 0 40.30

DecisionStump 3031.27 ± 0 39.91
DecTable 3031.27 ± 0 52.47

IBk 3031.27 ± 0 427.59
LeastMedSq 3031.27 ± 0 296.13

LinearR 3031.27 ± 0 45.93
LogisticBase 3031.27 ± 0 169.31
LRK(gaus) 3031.27 ± 0 175.45
LRK(linear) 3031.27 ± 0 89.09
LRK(poly) 3031.27 ± 0 108.20

MLP 3031.27 ± 0 37.01
RBFNetwork 3031.27 ± 0 70.58

REPTree 3031.27 ± 0 42.40
SimpleLinearR 3031.27 ± 0 39.28

SVMLap 3031.27 ± 0 33.00
SVMGauss 3031.27 ± 0 32.76

SVMGaussHP 3031.27 ± 0 42.84

Stock Management (300 points)
Baseline Dimension x4→ 16

Optimizer score Std time (s)
AR 3031.27 ± 0 41.72

DecisionStump 3031.27 ± 0 42.30
DecTable 3031.27 ± 0 55.37

IBk 3031.27 ± 0 531.85
LeastMedSq 3031.27 ± 0 307.50

LinearR 3031.27 ± 0 48.41
LogisticBase 3031.27 ± 0 159.23
LRK(gaus) 3031.27 ± 0 189.14
LRK(linear) 3031.27 ± 0 101.80
LRK(poly) 3031.27 ± 0 121.47

MLP 3031.27 ± 0 47.74
RBFNetwork 3031.27 ± 0 83.14

REPTree 3031.27 ± 0 49.15
SimpleLinearR 3031.27 ± 0 43.00

SVMLap 3031.27 ± 0 38.10
SVMGauss 3031.27 ± 0 36.07

SVMGaussHP 3031.27 ± 0 52.04

Table B.7: Results on the ”Stock Management” problem (see section 3.2.2 for details).
Each table is with a different dimension (×1, ×2, ×3 and ×4 which give dimension 4, 8,
12 or 16). The absolute value of the score (cost) can’t be compared between the different
dimensions as increasing the dimension can make the optimal solution more or less costly.
Only relative values are relevant. See table 3.3 for a summary.
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Stock Management V2 (300 points)
Baseline Dimension x1→ 2

Optimizer score Std time (s)
SVMGaussHP 366.45 ± 7.20 96.31

SVMLap 409.54 ± 7.33 18.03
SVMGauss 418.11 ± 7.32 17.97

IBk 535.29 ± 8.42 106.03
LinearR 696.87 ± 4.28 21.40
REPTree 1127.76 ± 16.30 20.15

SimpleLinearR 1226.58 ± 2.39 19.68
AR 1288.96 ± 10.45 19.32

DecTable 1304.35 ± 26.28 24.24
LRK(gaus) 1442.61 ± 17.93 71.73
LRK(linear) 1456.01 ± 11.73 38.30

DecisionStump 1593.02 ± 6.99 19.34
LeastMedSq 1649.76 ± 2.04 189.40
LogisticBase 1656.80 ± 1.56 93.94

MLP 1657.01 ± 1.54 19.00
RBFNetwork 1664.85 ± 2.02 31.00
LRK(poly) 1676.11 ± 4.42 70.01

Stock Management V2 (300 points)
Baseline Dimension x2→ 4

Optimizer score Std time (s)
SimpleLinearR 251.91 ± 3.87 20.66

LinearR 273.08 ± 6.00 22.84
LeastMedSq 277.36 ± 4.93 179.97
SVMGauss 278.19 ± 10.28 20.54

SVMGaussHP 281.54 ± 6.69 64.48
SVMLap 282.26 ± 7.83 20.80

LRK(linear) 291.22 ± 4.60 42.24
IBk 292.79 ± 5.29 146.75

MLP 299.13 ± 3.44 19.64
LogisticBase 299.47 ± 3.20 117.21

AR 300.90 ± 3.40 20.13
LRK(poly) 304.13 ± 4.40 64.92
REPTree 306.59 ± 3.11 22.06

LRK(gaus) 306.78 ± 3.55 90.67
DecisionStump 307.64 ± 2.89 20.33
RBFNetwork 309.37 ± 3.80 34.17

DecTable 314.74 ± 2.68 26.40

Table B.8: Results on the ”Stock Management V2” problem (see section 3.2.2 for details).
Each table is with a different dimension (×1, ×2 which give dimension 2 and 4). The
absolute value of the score (cost) can’t be compared between the different dimensions as
increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. See table 3.3 for a summary.
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Fast Obstacle Avoidance (300 points)
Baseline Dimension x1→ 2

Optimizer score Std time (s)
IBk 550.00 ± 0.00 56.60

SVMLap 626.43 ± 13.26 18.21
SVMGauss 627.86 ± 14.01 18.13
DecTable 685.71 ± 6.99 20.64
REPTree 737.86 ± 15.84 16.07

MLP 758.57 ± 24.46 17.87
SVMGaussHP 927.86 ± 15.18 53.94
LRK(linear) 993.57 ± 6.43 48.16

AR 997.14 ± 2.01 15.85
DecisionStump 1000.00 ± 0.00 15.43

LeastMedSq 1000.00 ± 0.00 204.43
LinearR 1000.00 ± 0.00 17.56

LogisticBase 1000.00 ± 0.00 48.45
LRK(gaus) 1000.00 ± 0.00 58.62

RBFNetwork 1000.00 ± 0.00 26.06
SimpleLinearR 1000.00 ± 0.00 15.60

LRK(poly) 1016.43 ± 7.17 36.53

Many-obstacle avoidance (300 points)
Baseline Dimension x1→ 2

Optimizer score Std time (s)
LRK(poly) 60.36 ± 0.16 36.73

MLP 60.79 ± 0.22 18.13
IBk 64.79 ± 0.39 57.24

SVMLap 71.29 ± 1.19 17.53
SVMGauss 73.57 ± 1.40 17.48

SVMGaussHP 79.64 ± 2.33 118.87
REPTree 92.50 ± 1.07 16.77

AR 93.36 ± 0.92 17.01
LeastMedSq 96.79 ± 1.20 200.73

DecisionStump 99.29 ± 0.31 16.35
SimpleLinearR 99.36 ± 0.38 16.42

DecTable 99.64 ± 0.29 20.79
LRK(linear) 99.64 ± 0.29 48.58

LinearR 100.00 ± 0.00 18.16
LogisticBase 100.00 ± 0.00 39.73
LRK(gaus) 100.00 ± 0.00 58.32

RBFNetwork 100.00 ± 0.00 25.73

Table B.9: Results on the ”Fast obstacle avoidance” (left) and ”Many-obstacle avoidance”
(right) problems (see section 3.2.2 for details). These are in dimension 2. See table 3.3 for
a summary.
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Many bots (300 points)
Baseline Dimension x1→ 8

Optimizer score Std time (s)
SVMLap 228.57 ± 1.87 37.69

SVMGauss 232.43 ± 2.06 37.56
SVMGaussHP 243.43 ± 4.66 64.98

IBk 336.29 ± 8.20 175.71
MLP 379.29 ± 6.24 26.32

LinearR 445.71 ± 7.14 21.90
LRK(poly) 454.57 ± 11.10 44.36

LeastMedSq 503.43 ± 10.32 241.07
AR 511.57 ± 9.00 20.64

REPTree 521.29 ± 9.75 20.51
DecTable 548.14 ± 8.94 25.51

DecisionStump 555.00 ± 7.92 19.65
LogisticBase 558.43 ± 9.25 57.96
LRK(linear) 566.14 ± 7.61 58.22
LRK(gaus) 570.43 ± 6.79 237.51

SimpleLinearR 575.43 ± 5.87 19.53
RBFNetwork 583.43 ± 4.46 33.49

Many bots (300 points)
Baseline Dimension x2→ 16

Optimizer score Std time (s)
SVMLap 844.29 ± 5.67 46.25

SVMGauss 858.71 ± 7.54 46.11
SVMGaussHP 892.00 ± 13.28 69.31

MLP 1118.71 ± 8.89 48.45
LeastMedSq 1122.86 ± 7.90 200.55

IBk 1142.00 ± 11.82 195.88
LinearR 1145.71 ± 10.08 27.19

AR 1218.71 ± 12.62 24.77
DecTable 1228.29 ± 15.03 32.71

DecisionStump 1281.14 ± 13.34 23.89
LRK(poly) 1294.57 ± 16.03 122.58
REPTree 1303.29 ± 10.48 25.65

SimpleLinearR 1318.14 ± 13.82 24.21
LogisticBase 1333.00 ± 11.39 66.76
LRK(linear) 1333.43 ± 12.08 77.47
LRK(gaus) 1335.71 ± 12.17 268.08

RBFNetwork 1345.57 ± 11.98 44.10
Many bots (300 points)

Baseline Dimension x3→ 24
Optimizer score Std time (s)

SVMGauss 1578.29 ± 9.59 54.96
SVMLap 1586.43 ± 7.49 55.17

SVMGaussHP 1697.29 ± 20.56 79.53
MLP 1845.86 ± 13.57 54.39

LeastMedSq 1878.71 ± 12.45 211.79
LinearR 1880.86 ± 12.42 31.85

IBk 1950.86 ± 17.09 334.90
AR 1966.14 ± 13.63 30.42

DecTable 1976.14 ± 18.50 38.11
DecisionStump 2037.57 ± 15.21 28.24
SimpleLinearR 2064.86 ± 17.80 27.82

REPTree 2074.86 ± 14.18 29.76
LogisticBase 2092.14 ± 15.05 73.60
LRK(poly) 2098.71 ± 12.36 165.87

LRK(linear) 2112.43 ± 11.96 90.22
LRK(gaus) 2120.00 ± 11.14 290.61

RBFNetwork 2128.29 ± 13.31 51.15

Many bots (300 points)
Baseline Dimension x4→ 32

Optimizer score Std time (s)
SVMLap 2339.57 ± 12.14 66.94

SVMGauss 2344.14 ± 9.79 65.80
SVMGaussHP 2443.86 ± 20.38 90.55
LeastMedSq 2647.14 ± 16.22 224.39

LinearR 2654.86 ± 15.54 37.49
MLP 2656.86 ± 13.54 58.27
AR 2706.29 ± 17.31 38.48
IBk 2713.43 ± 17.29 363.77

DecTable 2749.14 ± 21.27 43.80
DecisionStump 2801.00 ± 21.69 33.95

REPTree 2841.14 ± 17.30 35.77
LRK(poly) 2848.43 ± 18.08 183.06
LRK(gaus) 2861.00 ± 17.59 310.99

SimpleLinearR 2862.00 ± 17.79 33.24
LRK(linear) 2867.29 ± 18.74 103.55
LogisticBase 2868.00 ± 16.73 82.26
RBFNetwork 2901.71 ± 16.82 58.45

Table B.10: Results on the ”Many bots” problem (see section 3.2.2 for details). Each table
is with a different dimension (×1, ×2, ×3 and ×4 which give dimension 8, 16, 24 or 32).
The absolute value of the score (cost) can’t be compared between the different dimensions
as increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. See table 3.3 for a summary.



202 APPENDIX B. EXPERIMENTAL RESULTS OF CHAPTER 3

Arm (300 points)
Baseline Dimension x1→ 3

Optimizer score Std time (s)
SVMLap 11.89 ± 0.25 45.74

SVMGauss 11.99 ± 0.26 45.61
SVMGaussHP 12.22 ± 0.20 106.23
LeastMedSq 14.08 ± 0.18 442.33

LinearR 14.13 ± 0.20 41.15
MLP 14.44 ± 0.21 38.41
IBk 14.80 ± 0.19 150.19

RBFNetwork 15.23 ± 0.18 56.56
LRK(gaus) 15.31 ± 0.18 104.71

SimpleLinearR 15.31 ± 0.19 37.68
REPTree 15.48 ± 0.18 39.07
DecTable 15.49 ± 0.19 47.80

LogisticBase 15.54 ± 0.18 149.86
DecisionStump 15.55 ± 0.18 36.84

AR 15.58 ± 0.19 37.22
LRK(poly) 16.74 ± 0.17 74.45
LRK(linear) 16.95 ± 0.16 57.67

Arm (300 points)
Baseline Dimension x2→ 6

Optimizer score Std time (s)
SVMGauss 11.96 ± 0.24 49.50
SVMLap 11.98 ± 0.23 49.78

SVMGaussHP 12.08 ± 0.20 104.34
LeastMedSq 12.85 ± 0.22 429.69

IBk 13.12 ± 0.20 263.33
LinearR 13.18 ± 0.22 43.89

RBFNetwork 13.34 ± 0.23 61.61
SimpleLinearR 13.42 ± 0.22 39.45

MLP 13.47 ± 0.21 43.10
DecTable 13.55 ± 0.21 51.08

LogisticBase 13.56 ± 0.22 186.98
DecisionStump 13.62 ± 0.23 38.93

REPTree 13.64 ± 0.20 41.32
LRK(gaus) 13.70 ± 0.21 112.58

AR 13.73 ± 0.22 39.75
LRK(poly) 14.48 ± 0.20 77.84
LRK(linear) 14.82 ± 0.19 63.65

Arm (300 points)
Baseline Dimension x3→ 9

Optimizer score Std time (s)
LeastMedSq 12.40 ± 0.20 408.14

IBk 12.49 ± 0.20 237.23
LinearR 12.60 ± 0.22 45.86

SVMGaussHP 12.62 ± 0.19 109.07
SVMGauss 12.66 ± 0.21 52.60

DecisionStump 12.67 ± 0.21 42.00
SVMLap 12.67 ± 0.21 52.81

SimpleLinearR 12.68 ± 0.19 42.17
LRK(linear) 12.69 ± 0.21 76.49

DecTable 12.71 ± 0.18 54.49
LogisticBase 12.71 ± 0.20 190.06
LRK(gaus) 12.74 ± 0.19 132.16

RBFNetwork 12.77 ± 0.20 66.54
AR 12.79 ± 0.20 43.68

REPTree 12.80 ± 0.20 43.62
LRK(poly) 12.86 ± 0.18 112.07

MLP 13.28 ± 0.19 48.35

Arm (300 points)
Baseline Dimension x4→ 12

Optimizer score Std time (s)
LeastMedSq 11.87 ± 0.18 399.03
SVMGauss 11.95 ± 0.19 57.06
SVMLap 11.99 ± 0.18 57.51

RBFNetwork 12.11 ± 0.20 72.01
LRK(linear) 12.12 ± 0.18 87.95

DecisionStump 12.17 ± 0.18 45.03
LRK(poly) 12.17 ± 0.18 149.59

SVMGaussHP 12.18 ± 0.19 114.93
LRK(gaus) 12.20 ± 0.18 167.58

LogisticBase 12.21 ± 0.18 198.82
AR 12.22 ± 0.18 47.17

SimpleLinearR 12.22 ± 0.19 44.67
DecTable 12.23 ± 0.18 57.93
REPTree 12.24 ± 0.18 46.62

IBk 12.27 ± 0.18 435.12
LinearR 12.55 ± 0.19 48.85

MLP 12.89 ± 0.18 52.46

Table B.11: Results on the ”Arm” problem (see section 3.2.2 for details). Each table is
with a different dimension (×1, ×2, ×3 and ×4 which give dimension 3, 6, 9 or 12). The
absolute value of the score (cost) can’t be compared between the different dimensions as
increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. See table 3.3 for a summary.
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Away (300 points)
Baseline Dimension x1→ 2

Optimizer score Std time (s)
IBk 1.80 ± 0.23 163.50

SVMLap 1.89 ± 0.23 44.83
SVMGauss 1.96 ± 0.25 44.58

MLP 3.01 ± 0.42 40.05
SVMGaussHP 3.38 ± 0.51 127.13

LRK(gaus) 3.71 ± 0.63 116.37
AR 5.02 ± 0.66 36.93

REPTree 5.49 ± 0.64 38.31
DecTable 6.28 ± 0.75 50.43

DecisionStump 6.40 ± 0.77 35.70
LogisticBase 7.02 ± 0.81 133.87

LinearR 7.09 ± 0.67 42.14
RBFNetwork 7.10 ± 0.78 62.02

SimpleLinearR 7.11 ± 0.67 37.16
LRK(poly) 7.54 ± 0.56 95.09

LeastMedSq 7.86 ± 0.81 507.22
LRK(linear) 9.10 ± 0.66 68.23

Away (300 points)
Baseline Dimension x2→ 4

Optimizer score Std time (s)
SVMLap 1.33 ± 0.22 59.95

SVMGauss 1.36 ± 0.21 59.74
SVMGaussHP 1.44 ± 0.23 132.84

MLP 2.10 ± 0.34 48.13
IBk 2.46 ± 0.39 215.29

LRK(poly) 3.37 ± 0.41 110.49
LRK(gaus) 3.44 ± 0.59 122.93

AR 4.05 ± 0.61 38.11
DecTable 4.39 ± 0.59 54.15

SimpleLinearR 4.54 ± 0.49 38.72
REPTree 4.59 ± 0.63 39.48

DecisionStump 4.68 ± 0.64 37.56
LinearR 4.92 ± 0.62 43.67

LogisticBase 5.01 ± 0.65 126.44
RBFNetwork 5.13 ± 0.61 67.88
LeastMedSq 5.93 ± 0.62 519.33
LRK(linear) 6.43 ± 0.42 75.27

Away (300 points)
Baseline Dimension x3→ 6

Optimizer score Std time (s)
SVMGauss 0.91 ± 0.18 70.72
SVMLap 0.93 ± 0.18 70.98

SVMGaussHP 1.37 ± 0.23 142.87
LRK(poly) 1.64 ± 0.23 125.17

MLP 1.68 ± 0.32 57.47
IBk 1.81 ± 0.26 248.93
AR 2.86 ± 0.45 41.36

LRK(gaus) 3.01 ± 0.43 142.57
DecisionStump 3.12 ± 0.48 39.64

DecTable 3.24 ± 0.47 55.52
REPTree 3.28 ± 0.47 41.20

SimpleLinearR 3.35 ± 0.46 39.87
LogisticBase 3.45 ± 0.50 119.45
LeastMedSq 3.86 ± 0.51 473.13
RBFNetwork 3.86 ± 0.48 69.21

LinearR 3.94 ± 0.46 45.33
LRK(linear) 4.71 ± 0.44 80.25

Away (300 points)
Baseline Dimension x4→ 8

Optimizer score Std time (s)
SVMLap 0.61 ± 0.13 73.93

SVMGauss 0.70 ± 0.16 73.44
SVMGaussHP 0.87 ± 0.18 135.68

MLP 1.26 ± 0.22 68.00
LRK(poly) 1.29 ± 0.25 155.97

IBk 1.41 ± 0.23 298.60
LogisticBase 2.06 ± 0.33 116.55

REPTree 2.10 ± 0.37 50.18
RBFNetwork 2.11 ± 0.35 73.85

DecTable 2.15 ± 0.35 67.76
LRK(gaus) 2.15 ± 0.40 178.65

DecisionStump 2.19 ± 0.32 42.39
AR 2.20 ± 0.35 43.14

SimpleLinearR 2.29 ± 0.35 46.48
LinearR 2.59 ± 0.33 50.06

LeastMedSq 2.96 ± 0.35 488.00
LRK(linear) 3.14 ± 0.40 95.82

Table B.12: Results on the ”Away” problem (see section 3.2.2 for details). Each table is
with a different dimension (×1, ×2, ×3 and ×4 which give dimension 2, 4, 6 or 8). The
absolute value of the score (cost) can’t be compared between the different dimensions as
increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. See table 3.3 for a summary.
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Stock Management (500 points)
Baseline Dimension x1→ 4 8

Optimizer score Std time (s)
SVMLap 1859.41 ± 1.65 66.61

SVMGauss 1859.48 ± 1.62 66.16
SVMGaussHP 2111.34 ± 25.38 270.42

LinearR 2486.26 ± 1.82 60.85
IBk 2517.44 ± 4.69 574.92

LRK(linear) 2748.23 ± 2.22 177.74
DecTable 2849.66 ± 2.87 72.94

LRK(gaus) 2876.35 ± 9.87 390.70
AR 2903.80 ± 7.26 53.70

REPTree 2997.14 ± 2.73 54.90
LRK(poly) 2998.82 ± 4.26 338.82

RBFNetwork 3031.20 ± 1.72 91.19
LogisticBase 3031.21 ± 0 470.23

DecisionStump 3031.27 ± 0 52.59
LeastMedSq 3031.27 ± 0 483.15

MLP 3031.27 ± 0 68.18
RBFNetwork 3031.27 ± 0 105.35

Stock Management (500 points)
Baseline Dimension x2→ 8 8

Optimizer score Std time (s)
IBk 2941.56 ± 2.89 834.21

SVMGaussHP 2983.52 ± 8.12 202.79
SVMLap 2996.27 ± 1.54 72.45

SVMGauss 2996.40 ± 1.55 71.93
REPTree 3013.33 ± 1.81 63.66

AR 3023.55 ± 1.87 63.43
LinearR 3026.17 ± 1.70 70.78

DecTable 3030.37 ± 1.67 78.74
MLP 3031.17 ± 0 84.28

DecisionStump 3031.27 ± 0 62.80
LeastMedSq 3031.27 ± 0 518.47
LogisticBase 3031.27 ± 0 368.97
LRK(gaus) 3031.27 ± 0 421.91
LRK(linear) 3031.27 ± 0 209.79
LRK(poly) 3031.27 ± 0 288.54

RBFNetwork 3031.27 ± 0 105.35
SimpleLinearR 3031.27 ± 0 61.39

Stock Management (500 points)
Baseline Dimension x3→ 12

Optimizer score Std time (s)
IBk 2934.70 ± 2.79 1121.49

SVMGaussHP 3002.72 ± 4.08 180.71
SVMGauss 3017.09 ± 1.67 77.71
SVMLap 3017.24 ± 1.67 78.17
LinearR 3025.58 ± 1.69 75.95

AR 3030.35 ± 1.76 70.49
DecTable 3030.84 ± 0 89.03

DecisionStump 3031.27 ± 0 69.12
LeastMedSq 3031.27 ± 0 498.46
LogisticBase 3031.27 ± 0 343.47
LRK(gaus) 3031.27 ± 0 466.56
LRK(linear) 3031.27 ± 0 240.74
LRK(poly) 3031.27 ± 0 310.58

MLP 3031.27 ± 0 78.99
RBFNetwork 3031.27 ± 0 118.12

REPTree 3031.27 ± 0 70.57
SimpleLinearR 3031.27 ± 0 66.21

Stock Management (500 points)
Baseline Dimension x4→ 16

Optimizer score Std time (s)
AR 3031.27 ± 0 97.02

DecisionStump 3031.27 ± 0 91.00
DecTable 3031.27 ± 0 99.86

IBk 3031.27 ± 0 1516.11
LeastMedSq 3031.27 ± 0 431.71

LinearR 3031.27 ± 0 97.64
LogisticBase 3031.27 ± 0 285.45
LRK(gaus) 3031.27 ± 0 495.83
LRK(linear) 3031.27 ± 0 252.15
LRK(poly) 3031.27 ± 0 308.57

MLP 3031.27 ± 0 80.65
RBFNetwork 3031.27 ± 0 128.35

REPTree 3031.27 ± 0 91.54
SimpleLinearR 3031.27 ± 0 82.11

SVMLap 3031.27 ± 0 62.83
SVMGauss 3031.27 ± 0 60.24

SVMGaussHP 3031.27 ± 0 78.95

Table B.13: Results on the ”Stock Management” problem (see section 3.2.2 for details).
Each table is with a different dimension (×1, ×2, ×3 and ×4 which give dimension 4, 8,
12 or 16). The absolute value of the score (cost) can’t be compared between the different
dimensions as increasing the dimension can make the optimal solution more or less costly.
Only relative values are relevant. See table 3.3 for a summary.
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Stock Management V2 (500 points)
Baseline Dimension x1→ 2

Optimizer score Std time (s)
SVMGaussHP 339.86 ± 3.31 212.83

SVMLap 361.14 ± 4.95 31.63
SVMGauss 374.69 ± 6.14 31.47

IBk 479.92 ± 6.33 233.34
LinearR 691.03 ± 3.94 35.79

DecTable 864.53 ± 19.24 39.35
REPTree 921.26 ± 13.85 33.72

LRK(linear) 1182.30 ± 11.48 95.04
SimpleLinearR 1226.95 ± 2.17 31.94

AR 1250.32 ± 11.96 31.71
LRK(gaus) 1369.07 ± 26.72 185.17

DecisionStump 1599.44 ± 4.78 32.00
LRK(poly) 1602.45 ± 23.28 177.96

LeastMedSq 1650.96 ± 2.16 276.08
LogisticBase 1655.84 ± 1.49 195.23

MLP 1657.41 ± 1.37 31.75
RBFNetwork 1667.60 ± 2.29 49.21

Stock Management V2 (500 points)
Baseline Dimension x2→ 4

Optimizer score Std time (s)
SimpleLinearR 247.62 ± 4.10 34.12

SVMGauss 263.73 ± 10.04 37.14
LeastMedSq 267.68 ± 5.48 225.96

SVMLap 271.09 ± 9.21 37.60
LinearR 275.82 ± 5.73 37.82

SVMGaussHP 277.99 ± 8.47 141.80
LRK(linear) 293.67 ± 4.41 107.97

IBk 299.37 ± 5.10 452.52
MLP 301.89 ± 3.07 33.00

REPTree 302.46 ± 3.26 36.62
LogisticBase 303.37 ± 3.46 244.50
LRK(gaus) 303.42 ± 3.53 233.82

AR 307.50 ± 2.94 33.44
DecisionStump 308.56 ± 2.97 33.80

DecTable 311.65 ± 3.38 43.82
RBFNetwork 312.77 ± 4.29 57.79
LRK(poly) 314.62 ± 3.67 174.18

Table B.14: Results on the ”Stock Management V2” problem (see section 3.2.2 for details).
Each table is with a different dimension (×1 and ×2 which give dimension 2 and 4). The
absolute value of the score (cost) can’t be compared between the different dimensions as
increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. See table 3.3 for a summary.
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Fast Obstacle Avoidance (500 points)
Baseline Dimension x1→ 2

Optimizer score Std time (s)
IBk 550.00 ± 0.00 130.73

SVMGauss 572.86 ± 4.74 34.88
SVMLap 574.29 ± 7.25 35.02
REPTree 695.00 ± 10.92 27.10
DecTable 700.00 ± 9.65 34.22

SVMGaussHP 866.43 ± 21.96 117.75
MLP 882.14 ± 23.38 28.06

LeastMedSq 995.00 ± 5.00 306.36
LRK(linear) 995.00 ± 5.00 123.92

AR 996.43 ± 3.57 26.29
DecisionStump 1000.00 ± 0.00 25.79

LinearR 1000.00 ± 0.00 28.67
LogisticBase 1000.00 ± 0.00 76.49
RBFNetwork 1000.00 ± 0.00 41.90

SimpleLinearR 1000.00 ± 0.00 26.21
LRK(gaus) 1000.71 ± 0.71 150.70
LRK(poly) 1015.71 ± 4.26 90.88

Many-obstacle avoidance (500 points)
Baseline Dimension x1→ 2

Optimizer score Std time (s)
LRK(poly) 60.43 ± 0.20 91.89

MLP 60.86 ± 0.23 28.09
IBk 63.43 ± 0.33 131.40

SVMGaussHP 75.86 ± 2.19 296.54
SVMGauss 76.14 ± 1.77 31.59
SVMLap 78.50 ± 1.83 31.73
REPTree 87.93 ± 1.24 27.91

AR 91.64 ± 0.95 27.60
LeastMedSq 99.00 ± 0.71 321.15

DecTable 99.50 ± 0.25 35.43
LRK(linear) 99.50 ± 0.31 126.62

DecisionStump 99.79 ± 0.16 26.90
LinearR 100.00 ± 0.00 29.94

LogisticBase 100.00 ± 0.00 65.34
LRK(gaus) 100.00 ± 0.00 152.01

RBFNetwork 100.00 ± 0.00 43.41
SimpleLinearR 100.00 ± 0.00 27.21

Table B.15: Results on the ”Fast obstacle avoidance” (left) and ”Many-obstacle avoidance”
(right) problems (see section 3.2.2 for details). These are in dimension 2. See table 3.3 for
a summary.
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Many bots (500 points)
Baseline Dimension x1→ 8

Optimizer score Std time (s)
SVMGauss 214.14 ± 2.40 80.24
SVMLap 218.86 ± 2.18 80.54

SVMGaussHP 225.57 ± 3.38 143.40
IBk 332.00 ± 8.50 306.97

MLP 345.71 ± 7.87 39.05
LRK(poly) 418.43 ± 9.06 112.23

LinearR 442.43 ± 5.97 37.28
AR 481.71 ± 10.72 34.99

LeastMedSq 500.57 ± 10.62 299.67
REPTree 505.57 ± 10.30 34.09
DecTable 523.57 ± 9.78 44.43

DecisionStump 544.14 ± 8.38 33.39
SimpleLinearR 564.57 ± 8.36 32.92
RBFNetwork 564.86 ± 7.88 55.20
LRK(linear) 565.57 ± 6.81 153.11
LogisticBase 573.00 ± 6.22 85.80
LRK(gaus) 574.00 ± 7.06 660.41

Many bots (500 points)
Baseline Dimension x2→ 16

Optimizer score Std time (s)
SVMLap 804.00 ± 6.16 105.19

SVMGauss 816.43 ± 6.40 104.73
SVMGaussHP 851.43 ± 11.08 158.67

MLP 1081.71 ± 9.30 62.80
IBk 1117.71 ± 13.08 511.99

LeastMedSq 1134.29 ± 8.36 256.42
LinearR 1139.14 ± 8.81 46.51

AR 1196.86 ± 13.79 42.71
DecTable 1210.57 ± 14.00 53.73

DecisionStump 1263.71 ± 13.50 41.11
REPTree 1263.71 ± 13.39 42.87

LRK(poly) 1294.71 ± 13.22 290.92
SimpleLinearR 1295.29 ± 14.91 40.89
LogisticBase 1329.57 ± 10.99 100.83
LRK(gaus) 1338.14 ± 11.18 734.23
LRK(linear) 1338.43 ± 13.53 194.69
RBFNetwork 1339.57 ± 10.86 69.96

Many bots (500 points)
Baseline Dimension x3→ 24

Optimizer score Std time (s)
SVMGauss 1517.57 ± 8.76 125.01
SVMLap 1532.43 ± 8.66 125.12

SVMGaussHP 1593.86 ± 13.37 173.61
MLP 1838.57 ± 13.63 86.01

LeastMedSq 1840.14 ± 13.88 273.57
LinearR 1877.00 ± 12.99 51.90

AR 1898.00 ± 14.51 51.47
IBk 1906.86 ± 18.62 771.83

DecTable 1912.57 ± 17.29 62.01
DecisionStump 2019.43 ± 15.58 47.62

REPTree 2056.00 ± 14.81 50.34
SimpleLinearR 2059.00 ± 17.09 46.63

LRK(gaus) 2067.71 ± 17.31 789.34
LRK(poly) 2070.86 ± 15.53 424.52

LRK(linear) 2079.43 ± 15.39 229.45
LogisticBase 2111.86 ± 13.32 102.29
RBFNetwork 2114.14 ± 13.90 77.49

Many bots (500 points)
Baseline Dimension x4→ 32

Optimizer score Std time (s)
SVMLap 2281.71 ± 10.79 151.32

SVMGauss 2296.71 ± 9.78 150.00
SVMGaussHP 2343.29 ± 16.16 198.40

MLP 2601.57 ± 15.74 102.63
LinearR 2626.86 ± 16.59 64.58

LeastMedSq 2633.86 ± 13.94 321.21
AR 2654.29 ± 17.13 70.37

DecTable 2666.43 ± 21.25 74.47
IBk 2671.43 ± 20.57 1009.40

DecisionStump 2765.43 ± 20.07 67.60
LRK(poly) 2835.71 ± 19.66 491.09
LRK(linear) 2846.29 ± 18.84 266.70

SimpleLinearR 2848.43 ± 18.56 57.00
REPTree 2858.14 ± 17.33 61.75

LRK(gaus) 2861.71 ± 19.12 847.33
LogisticBase 2864.14 ± 15.96 123.93
RBFNetwork 2909.29 ± 15.03 94.80

Table B.16: Results on the ”Many bots” problem (see section 3.2.2 for details). Each table
is with a different dimension (×1, ×2, ×3 and ×4 which give dimension 8, 16, 24 or 32).
The absolute value of the score (cost) can’t be compared between the different dimensions
as increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. See table 3.3 for a summary.
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Arm (500 points)
Baseline Dimension x1→ 3

Optimizer score Std time (s)
SVMLap 11.34 ± 0.23 93.16

SVMGauss 11.42 ± 0.23 92.66
SVMGaussHP 11.61 ± 0.17 253.90

MLP 13.22 ± 0.19 63.08
LinearR 13.85 ± 0.20 68.39

LeastMedSq 14.07 ± 0.19 481.90
IBk 14.53 ± 0.19 372.62

SimpleLinearR 15.06 ± 0.20 62.56
LRK(gaus) 15.12 ± 0.18 253.73
DecTable 15.48 ± 0.18 79.04

LogisticBase 15.51 ± 0.19 276.46
REPTree 15.51 ± 0.18 63.97

RBFNetwork 15.53 ± 0.18 92.71
DecisionStump 15.56 ± 0.18 61.71

AR 15.58 ± 0.19 62.25
LRK(linear) 17.28 ± 0.13 128.44
LRK(poly) 17.30 ± 0.15 175.78

Arm (500 points)
Baseline Dimension x2→ 6

Optimizer score Std time (s)
SVMGauss 10.77 ± 0.24 101.44
SVMLap 10.83 ± 0.24 102.11

SVMGaussHP 11.03 ± 0.19 220.95
LeastMedSq 12.41 ± 0.23 544.58

LinearR 12.69 ± 0.21 73.07
IBk 13.19 ± 0.21 700.59

MLP 13.31 ± 0.22 70.04
SimpleLinearR 13.46 ± 0.21 66.53

LRK(gaus) 13.48 ± 0.21 271.38
RBFNetwork 13.59 ± 0.22 103.78
LogisticBase 13.64 ± 0.21 316.58

DecTable 13.67 ± 0.20 82.54
AR 13.69 ± 0.22 66.04

DecisionStump 13.71 ± 0.21 65.35
REPTree 13.71 ± 0.21 68.83

LRK(poly) 15.03 ± 0.20 188.00
LRK(linear) 15.07 ± 0.18 144.00

Arm (500 points)
Baseline Dimension x3→ 9

Optimizer score Std time (s)
SVMGaussHP 12.01 ± 0.19 232.92

SVMGauss 12.06 ± 0.21 106.93
LeastMedSq 12.07 ± 0.21 541.22

SVMLap 12.08 ± 0.21 107.79
IBk 12.55 ± 0.19 604.22

SimpleLinearR 12.71 ± 0.20 71.48
DecisionStump 12.73 ± 0.19 70.40
RBFNetwork 12.76 ± 0.20 109.35
LogisticBase 12.77 ± 0.19 298.10
LRK(gaus) 12.77 ± 0.20 314.76

AR 12.81 ± 0.20 71.50
DecTable 12.83 ± 0.20 87.72
REPTree 12.84 ± 0.20 74.41

LRK(poly) 12.92 ± 0.18 227.75
MLP 13.22 ± 0.20 76.70

LRK(linear) 13.38 ± 0.19 170.07
LinearR 13.94 ± 0.22 78.65

Arm (500 points)
Baseline Dimension x4→ 12

Optimizer score Std time (s)
LeastMedSq 11.69 ± 0.20 526.61

SVMLap 11.84 ± 0.18 116.62
SVMGaussHP 11.86 ± 0.18 244.94

SVMGauss 11.89 ± 0.19 116.15
LRK(poly) 12.03 ± 0.18 256.57

SimpleLinearR 12.15 ± 0.18 75.76
IBk 12.18 ± 0.18 772.09

LogisticBase 12.18 ± 0.19 315.02
REPTree 12.19 ± 0.19 79.05

DecisionStump 12.22 ± 0.19 76.82
LRK(gaus) 12.22 ± 0.20 349.85

RBFNetwork 12.23 ± 0.19 114.39
DecTable 12.28 ± 0.19 92.61

AR 12.30 ± 0.19 80.19
LRK(linear) 12.55 ± 0.18 185.90

MLP 13.04 ± 0.20 81.64
LinearR 14.07 ± 0.22 84.40

Table B.17: Results on the ”Arm” problem (see section 3.2.2 for details). Each table is
with a different dimension (×1, ×2, ×3 and ×4 which give dimension 3, 6, 9 or 12). The
absolute value of the score (cost) can’t be compared between the different dimensions as
increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. See table 3.3 for a summary.
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Away (500 points)
Baseline Dimension x1→ 2

Optimizer score Std time (s)
IBk 1.67 ± 0.24 398.68

SVMLap 1.68 ± 0.20 84.23
SVMGauss 1.75 ± 0.21 83.70

MLP 2.95 ± 0.41 63.92
SVMGaussHP 3.44 ± 0.52 275.97

LRK(gaus) 3.74 ± 0.63 302.21
AR 4.81 ± 0.59 59.82

REPTree 5.51 ± 0.61 61.52
DecTable 5.69 ± 0.67 82.64

SimpleLinearR 6.46 ± 0.60 60.46
DecisionStump 6.54 ± 0.78 59.05

LRK(poly) 6.66 ± 0.63 227.38
LinearR 6.74 ± 0.65 68.45

LogisticBase 6.80 ± 0.81 212.31
RBFNetwork 7.27 ± 0.75 106.86
LeastMedSq 7.49 ± 0.78 579.93
LRK(linear) 9.15 ± 0.71 167.87

Away (500 points)
Baseline Dimension x2→ 4

Optimizer score Std time (s)
SVMGauss 1.27 ± 0.21 126.13
SVMLap 1.29 ± 0.23 126.87

SVMGaussHP 1.37 ± 0.20 304.96
MLP 1.99 ± 0.33 75.24
IBk 2.19 ± 0.37 521.14

LRK(gaus) 2.50 ± 0.50 311.53
LRK(poly) 2.83 ± 0.37 250.74

AR 3.97 ± 0.58 63.75
DecTable 4.51 ± 0.64 83.51

DecisionStump 4.65 ± 0.65 62.76
REPTree 4.66 ± 0.61 65.57

SimpleLinearR 4.66 ± 0.57 63.96
LogisticBase 4.86 ± 0.63 173.21
RBFNetwork 5.41 ± 0.68 112.86

LinearR 5.60 ± 0.65 72.38
LeastMedSq 6.09 ± 0.65 652.79
LRK(linear) 6.28 ± 0.43 183.81

Away (500 points)
Baseline Dimension x3→ 6

Optimizer score Std time (s)
SVMLap 0.76 ± 0.14 155.13

SVMGauss 0.93 ± 0.17 154.46
SVMGaussHP 1.03 ± 0.17 349.98

MLP 1.19 ± 0.21 89.47
LRK(poly) 1.22 ± 0.19 283.96

IBk 1.86 ± 0.35 634.78
LRK(gaus) 2.81 ± 0.43 344.02
DecTable 3.02 ± 0.44 85.10

AR 3.09 ± 0.45 70.37
DecisionStump 3.45 ± 0.49 66.93

REPTree 3.46 ± 0.52 68.28
SimpleLinearR 3.54 ± 0.46 65.79
RBFNetwork 3.72 ± 0.53 120.06
LogisticBase 3.76 ± 0.50 163.01

LinearR 4.19 ± 0.51 76.61
LeastMedSq 4.58 ± 0.47 613.44
LRK(linear) 4.64 ± 0.46 201.67

Away (500 points)
Baseline Dimension x4→ 8

Optimizer score Std time (s)
SVMGauss 0.46 ± 0.11 162.42
SVMLap 0.47 ± 0.10 163.29

SVMGaussHP 0.68 ± 0.16 310.56
LRK(poly) 0.86 ± 0.15 373.91

MLP 1.01 ± 0.17 98.91
IBk 1.47 ± 0.23 727.20

LRK(gaus) 1.84 ± 0.27 462.50
DecisionStump 2.01 ± 0.32 71.81

AR 2.04 ± 0.34 72.47
DecTable 2.06 ± 0.35 106.99

SimpleLinearR 2.12 ± 0.33 79.51
LogisticBase 2.23 ± 0.35 162.26
RBFNetwork 2.26 ± 0.35 124.88

LinearR 2.41 ± 0.26 81.26
REPTree 2.58 ± 0.43 78.50

LeastMedSq 2.93 ± 0.40 642.78
LRK(linear) 3.16 ± 0.40 241.78

Table B.18: Results on the ”Away” problem (see section 3.2.2 for details). Each table is
with a different dimension (×1, ×2, ×3 and ×4 which give dimension 2, 4, 6 or 8). The
absolute value of the score (cost) can’t be compared between the different dimensions as
increasing the dimension can make the optimal solution more or less costly. Only relative
values are relevant. See table 3.3 for a summary.
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Summary of results of our Go program

Table C.1 summaries the online results of our program MoGo against other programs or

humans at the time of writing (March 2007, updated September 2007)
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Event Result
July 2006, Birth of MoGo, CGOS (9x9) 1650 ELO
July 2006 KGS (9x9) 3th/4
August 2006, KGS (9x9) 4th/10
August 2006, KGS (13x13) 4th/5
Mid of August 2006, CGOS (9x9) 1950 ELO, best rank
End of August 2006, CGOS (9x9) 2050 ELO
September 2006, KGS (19x19) Formal 7th/7
September 2006, KGS (19x19) Open 3th/6
October 2006, KGS (9x9) 1st/8
October 2006, KGS (13x13) 1st/7
November 2006, KGS (9x9) 1st/10
November 2006, KGS (13x13) 1st/5
December 2006, KGS (19x19) Formal 2nd/6
December 2006, KGS (19x19) Open technical problem
December 2006, KGS slow (19x19) 1st/8
December 2006, CGOS (9x9) 2323 ELO
January 2007, KGS (9x9) 3/6 wins (komi 0.5) against
Against humans the 45th european player (6 dan)
January 2007, KGS (9x9) 1st/7
January 2007, KGS (13x13) 1st/10
February 2007, KGS (9x9) 1st/8
February 2007, KGS (13x13) 1st/5
February 2007, KGS (19x19) 4 kyu
Against humans
March 2007, KGS (19x19) Formal 1st/8
March 2007, KGS (19x19) Open 1st/12
March 2007, CGOS (9x9) 2466 ELO
April 2007, KGS (9x9) Formal 1st/7
April 2007, KGS (13x13) Open 2nd/10
May 2007, KGS (13x13) Formal 3rd/7
May 2007, KGS (9x9) Open 1st/10
June 2007, KGS (19x19) Formal 3rd/6
June 2007, KGS (19x19) Open 1st/6
July 2007, Olympiads (19x19) 1st/8
July 2007, Olympiads (9x9) 2nd/10
July 2007, Human (9x9) 1st victory against a professional

human player (5 dan pro).
August 2007, KGS (19x19) 2 kyu
Against humans
August 2007, CGOS (19x19) 2370 ELO

Table C.1: Result of MoGo in different international competitions, against computers and
humans. This table contains all the KGS tournaments since the beginning of MoGo and
some events.
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[Cou06] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo

tree search. In Paolo Ciancarini and H. Jaap van den Herik, editors, 5th

International Conference on Computer and Games, 2006-05-29, Turin, Italy,

2006.
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