Advanced Modeling, Specification Languages, Case of Array Programs

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

16 janvier 2012
Reminder of the last lecture

- Typed logic language
- Built-in types: boolean and reals
 - *Immutable* local variables in expressions and formulas
 - *Immutable* variables in statements
 - *Mutable* variables in statements
- Procedures and procedure calls
 - Parameters are *immutable*
 - *Contract*
 - *Modular proof*: proof of a call assumes the contract
 - *Old* label in postcondition
 - Recursive procedures, termination with a *variant*
Exercice: McCarthy’s 91 function

\[f_{91}(n) = \begin{cases} \text{if } n \leq 100 \text{ then } f_{91}(f_{91}(n + 11)) & \text{else } n - 10 \end{cases} \]

Exercise: Find adequate specifications

```plaintext
val res : ref int

procedure f91(n:int) :
    requires ?
    variant ?
    writes ?
    ensures ?
body:
    if n \leq 100 then f91(n + 11); f91(!res)
    else res := n - 10
```
Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product types

Sum Types

Inductive predicates
About specification languages

- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL
- ...

Case of Why3, ACSL, Dafny: compromise between
- expressivity of specifications
- support by automated provers
Why3 logic language

- First-order logic, with type polymorphism à la ML
- Built-in arithmetic (integers and reals)
- Definitions à la ML
 - Functions, predicates
 - Structured types, pattern-matching
- Axiomatizations
- Inductive predicates
Defined logic symbols

Functions defined under the form

\[
\text{function } f(x_1 : \tau, \ldots, x_n : \tau_n) : \tau = e
\]

Predicate defined under the form

\[
\text{predicate } p(x_1 : \tau, \ldots, x_n : \tau_n) = e
\]

where \(\tau_i, \tau \) are not reference types.

- No recursion allowed
- No side effects
- Define total functions and predicates
Defined logic symbols: examples

function sqr\((x:\text{int}) = x \times x \)

predicate prime\((x:\text{int}) = \)
\[x \geq 2 \land \forall\ y\ z:\text{int}. \ y \geq 0 \land z \geq 0 \land x = y \times z \rightarrow y=1 \lor z=1 \]
Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product types

Sum Types

Inductive predicates
Axiomatic definitions

Declarations of the form

function \(f(\tau, \ldots, \tau_n) : \tau \)

predicate \(p(\tau, \ldots, \tau_n) \)

together with **axioms**

axiom \(id : \text{formula} \)

Specifies that \(f \), resp. \(p \), is any symbol satisfying the axioms

Example: division

```
function div(real,real):real
axiom mul_div: forall x,y. y\neq 0 \rightarrow \text{div}(x,y)\cdot y = x
```
Axiomatic Definitions

Example: factorial

<table>
<thead>
<tr>
<th>function</th>
<th>fact(int):int</th>
</tr>
</thead>
<tbody>
<tr>
<td>axiom</td>
<td>fact0: fact(0) = 1</td>
</tr>
<tr>
<td>axiom</td>
<td>factn: forall n:int. n ≥ 1 → fact(n) = n * fact(n-1)</td>
</tr>
</tbody>
</table>

- Functions/predicates are typically *underspecified*
- Allows to model a partial function in a logic of total functions
- About soundness:

 caution: axioms may introduce inconsistencies
Exercise: Find appropriate precondition, postcondition, loop invariant and variant for this program:

```ml
val res : ref int

procedure fact_imp (x:int) :
  requires ?
  writes ?
  ensures ?

body:
  let y = ref 0 in
  res := 1;
  while y < x do y := !y + 1; res := !res * !y done
```

See file `fact.mlw`
Axiomatic type definitions

Declarations of the form

\[
\text{type } \tau
\]

Example: colors

```plaintext
type color
function blue : color
function red : color
axiom distinct: red \neq blue
```

Polymorphic types: declarations of the form

\[
\text{type } \tau \ \alpha_1 \cdots \alpha_k
\]

where \(\alpha_1 \cdots \alpha_k \) are *type parameters*
Example: sets

<table>
<thead>
<tr>
<th>Type</th>
<th>Set α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Empty : Set α</td>
</tr>
<tr>
<td>Function</td>
<td>Single(α): Set α</td>
</tr>
<tr>
<td>Function</td>
<td>Union(Set α, Set α): Set α</td>
</tr>
<tr>
<td>Axiom</td>
<td>Union assoc:</td>
</tr>
<tr>
<td></td>
<td>$\forall x, y, z : \text{Set } \alpha. \text{union}(\text{union}(x,y),z) = \text{union}(x,\text{union}(y,z))$</td>
</tr>
<tr>
<td>Axiom</td>
<td>Union comm:</td>
</tr>
<tr>
<td></td>
<td>$\forall x, y : \text{Set } \alpha. \text{union}(x,y) = \text{union}(y,x)$</td>
</tr>
<tr>
<td>Predicate</td>
<td>Mem(α, Set α)</td>
</tr>
<tr>
<td>Axiom</td>
<td>Mem empty:</td>
</tr>
<tr>
<td></td>
<td>$\forall x : \alpha. \neg \text{mem}(x,\text{empty})$</td>
</tr>
<tr>
<td>Axiom</td>
<td>Mem single:</td>
</tr>
<tr>
<td></td>
<td>$\forall x, y : \alpha. \text{mem}(x,\text{single}(y)) \iff x = y$</td>
</tr>
<tr>
<td>Axiom</td>
<td>Mem union:</td>
</tr>
<tr>
<td></td>
<td>$\forall x : \alpha \land y, z : \text{Set } \alpha. \text{mem}(x,\text{union}(y,z)) \iff \text{mem}(x,y) \lor \text{mem}(x,z)$</td>
</tr>
</tbody>
</table>
Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product types

Sum Types

Inductive predicates
Arrays as references on pure maps

Axiomatization of maps from int to some type α:

```plaintext
type map α
function select(map α,int) : α
function store (map α,int,α) : map α
axiom select_store_eq:
  forall a:map α, i:int, v:α. select(store(a,i,v),i) = v
axiom select_store_neq:
  forall a:map α, i j:int, v:α.
  i ≠ j → select(store(a,i,v),j) = select(a,j)
```

- Indexes unbounded
- select(a,i) models the usual notation a[i]
- store denotes the functional update of a map
Arrays as reference on maps

- Array variable: variable of type `ref` (map α)
- In a program, the standard assignment operation of the form

$$a[i] := e$$

is interpreted as

$$a := store(a,i,e).$$
Simple Example

val a: ref (map int)

procedure test() :
 writes a
 ensures select(a,0) = 13
body:
 a := store(a,0,13); (* a[0] := 13 *)
 a := store(a,1,42) (* a[1] := 42 *)

Exercise: prove this program
Example: swap

Permuts the contents of cells i and j in an array a:

val a: ref (map int)

procedure swap(i:int,j:int) :
 writes a
 ensures select(a,i) = select(a@Old,j) ∧
 select(a,j) = select(a@Old,i) ∧
 forall k:int. k ≠ i ∧ k ≠ j →
 select(a,k) = select(a@Old,k)

body:
 let tmp = select(a,i) in (* tmp := a[i] *)
 a := store(a,i,select(a,j)); (* a[i] := a[j] *)
 a := store(a,j,tmp) (* a[j] := tmp *)
Exercises on Arrays

- Prove Swap using WP
- Prove the procedure

```plaintext
procedure test () :
  requires
  select(a,0) = 13 ∨ select(a,1) = 42 ∨ select(a,2) = 64
  ensures
  select(a,0) = 64 ∨ select(a,1) = 42 ∨ select(a,2) = 13
  body swap(0,2)

See file swap.mlw
```

- Specify, implement and prove a procedure which increments by 1 all cells, between given indexes i and j, of an array of reals
 See file incr_array.mlw
Exercise: Search Algorithms

val a: ref(map real)
val idx : ref int

procedure search (n:int, v:real):
 requires 0 ≤ n
 writes idx
 ensures ?
 body ?

1. Formalize postcondition: if v occurs in a, between 0 and n – 1 then idx is an index where v occurs, otherwise idx set to –1

2. Implement and prove linear search:
 for each i from 0 to n – 1: if a[i] = v then idx := i; exit
Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product types

Sum Types

Inductive predicates
Product types

- Tuples types are built-in

 \[
 \text{type pair} = (\text{int}, \text{int})
 \]

- Record types can be defined:

 \[
 \text{type point} = \{ \text{x:real; y:real} \}
 \]

- Fields are immutable

- We allow let with pattern, e.g.

 \[
 \text{let } (a,b) = \text{some pair in } \ldots \\
 \text{let } \{ x = a; y = b \} = \text{some point in}
 \]

- dot notation for records fields, e.g.

 \[
 \text{point.x + point.y}
 \]
A possible approach to formalize *bounded* arrays is

\[
\text{type array } \alpha = \{ \text{length: int; contents: map } \alpha \} \]

Drawback of this approach: needs to specify that length does not change all along computations
Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product types

Sum Types

Inductive predicates
Sum Types

- Sum types à la ML

  ```
  type t =
  | C_1 \tau_{1,1} \cdots \tau_{1,n_1}
  | \cdots
  | C_k \tau_{k,1} \cdots \tau_{k,n_k}
  ```

- Pattern-matching with `match ... with ... end`

Recursive Sum Types

- Sum types can be recursive
- Recursive definitions of functions or predicates allowed if recursive calls are on *structurally smaller* arguments
Sum Types: Example of Lists

```plaintext
type list α = Nil ⊕ Cons α (list α)

function append(l1:list α,l2:list α) : list α =
  match l1 with
  | Nil → l2
  | Cons(x,l) → Cons(x,append(l,l2))
end

function length(l:list α) : int =
  match l with
  | Nil → 0
  | Cons(x,r) → 1 + length r
end

function rev(l:list α) : list α =
  match l with
  | Nil → Nil
  | Cons(x,r) → append(rev(r),Cons(x,Nil))
end
```
“In-place” List reversal

Exercise: fill the ? below

```ml
val l : ref (list int)

procedure rev_append(r : list int)
  variant ?
  writes l
  ensures ?
  body match r with
    | Nil → skip
    | Cons(x, r) → l := Cons(x, l); rev_append(r)

procedure rev(r : list int)
  writes l
  ensures l = rev r
  body ?
```

See file `rev.mlw`
Binary trees

\[
\text{type} \quad \text{tree } \alpha = \text{Leaf} \mid \text{Node} \ (\text{tree } \alpha) \ \alpha \ (\text{tree } \alpha)
\]

Exercise: specify, implement and prove a procedure returning the maximum of a tree of integers.

Outline

Advanced Modeling of Programs

Axiomatic Definitions

Programs on Arrays

Product types

Sum Types

Inductive predicates
Inductive predicates

- Definition à la Prolog, also in Coq, PVS, etc.
- An *inductive definition* of a predicate has the form

 \[
 \text{inductive } p(\tau_1, \ldots, \tau_n):
 \]

 \[
 | \quad id_1 : clause_1
 \]

 \[
 \vdots
 \]

 \[
 | \quad id_k : clause_k
 \]

 where clause has the form

 \[
 \forall \vec{x}. hyp \Rightarrow p(e_1, \ldots, e_n)
 \]

 and \(p \) occurs only positively in \(hyp \) (Horn clause)

- Always one smallest fix-point: predicate satisfying the clauses that is true the less often.
Inductive predicates: example

Classical example: transitive closure

predicate \(r(x:t,y:t) = ... \)

inductive \(r_\text{star}(t,t) = \)
- **empty**: \(\text{forall } x:t. \ r_\text{star}(x,x) \)
- **single**: \(\text{forall } x \ y:t. \ r(x,y) \to r_\text{star}(x,y) \)
- **trans**: \(\text{forall } x \ y \ z:t. \ r_\text{star}(x,y) \land r_\text{star}(y,z) \to r_\text{star}(x,z) \)
Exercise: Selection Sort

\begin{verbatim}
val a: ref(map real)

procedure sort(n:int):
 requires 0 ≤ n
 writes a
 ensures ?
 body ?
\end{verbatim}

1. Formalize Postconditions:
 - array in increasing order between 0 and \(n - 1 \)
 - array at exit is a permutation of the array at entrance

2. Implement and prove selection sort algorithm:
 for each \(i \) from 0 to \(n - 1 \):
 finds index \(idx \) of the min element between \(i \) and \(n - 1 \)
 swap elements at indexes \(i \) and \(idx \)
Binary Search:
low = 0; high = n-1;
while low <= high: let m be the middle of low and high
if a[m] = v then idx := m; exit
if a[m] < v then continue search between m and high
if a[m] > v then continue search between low and m

Insertion Sort:
for each i from 1 to n – 1:
 insert element at index i at the right place between indexes 0 and i – 1