Numeric Programs

Guillaume Melquiond

Cours MPRI 2-36-1 “Preuve de Programme”

13/20 février 2012
Computers and Number Representations

- 32-bit signed *integers* in two-complement:

 ▶ $1 + 1 \rightarrow 2,$
 ◀ $2^{31} + 1 \rightarrow -2^{32},$
 ◀ $100000_2 \rightarrow 1410065408,$
 ◀ $-2^{31} \mod -1 \rightarrow \text{boom (floating-point exception?!)}.$

- IEEE-754 binary64 floating-point numbers:
 ▶ $2 \times 2 \times \cdots \times 2 \rightarrow +\infty,$
 ▶ $1 \div 0 \rightarrow +\infty,$
 ▶ $1 \div -0 \rightarrow -\infty,$
 ▶ $0 \div 0 \rightarrow \text{NaN}.$
Computers and Number Representations

- 32-bit signed *integers* in two-complement:
 - $1 + 1 \rightarrow 2$,
 - $2^{31} + 1 \rightarrow -2^{32}$,
 - $2^{31} \rightarrow -1$ (floating-point exception?!).
32-bit signed integers in two-complement:
- $1 + 1 \rightarrow 2$,
- $2147483647 + 1 \rightarrow -2147483648$,

IEEE-754 binary64 floating-point numbers:
- $2 \times 2 \times \ldots \times 2 \rightarrow +\infty$,
- $1 \div 0 \rightarrow +\infty$,
- $1 \div -0 \rightarrow -\infty$,
- $0 \div 0 \rightarrow \text{NaN}$.
Computers and Number Representations

- 32-bit signed *integers* in two-complement:
 - $1 + 1 \rightarrow 2$,
 - $2147483647 + 1 \rightarrow -2147483648$,
 - $100000^2 \rightarrow 1410065408$,
 - $-\underbrace{2147483648}_{\text{mod} -1} \rightarrow \text{boom (floating-point exception?!)}$.

- IEEE-754 binary64 floating-point numbers:
 - $2 \times 2 \times \cdots \times 2 \rightarrow +\infty$,
 - $1 \div 0 \rightarrow +\infty$,
 - $1 \div -0 \rightarrow -\infty$,
 - $0 \div 0 \rightarrow \text{NaN}$.
Computers and Number Representations

- 32-bit signed \textit{integers} in two-complement:
 - $1 + 1 \rightarrow 2$,
 - $2147483647 + 1 \rightarrow -2147483648$,
 - $100000^2 \rightarrow 1410065408$,
 - $-2147483648 \mod -1 \rightarrow \text{boom (floating-point exception?!)}$.

- IEEE-754 binary64 floating-point numbers:
 - $2 \times 2 \times \cdots \times 2 \rightarrow +\infty$,
 - $1 \div 0 \rightarrow +\infty$,
 - $1 \div -0 \rightarrow -\infty$,
 - $0 \div 0 \rightarrow \text{NaN}$.

Computers and Number Representations

- 32-bit signed *integers* in two-complement:
 - \(1 + 1 \rightarrow 2,\)
 - \(2147483647 + 1 \rightarrow -2147483648,\)
 - \(100000^2 \rightarrow 1410065408,\)
 - \(-2147483648 \mod -1 \rightarrow \text{boom (floating-point exception?!)}.

- IEEE-754 binary64 *floating-point numbers*:
Computers and Number Representations

- 32-bit signed *integers* in two-complement:
 - $1 + 1 \rightarrow 2,$
 - $2147483647 + 1 \rightarrow -2147483648,$
 - $100000^2 \rightarrow 1410065408,$
 - $-2147483648 \mod -1 \rightarrow \text{boom (floating-point exception?!)}.$

- IEEE-754 binary64 *floating-point numbers*:
 - $2 \times 2 \times \cdots \times 2 \rightarrow +\infty,$
Computers and Number Representations

- 32-bit signed *integers* in two-complement:
 - \(1 + 1 \rightarrow 2,\)
 - \(2^{15} + 1 \rightarrow -2^{15},\)
 - \(100000^2 \rightarrow 1410065408,\)
 - \(-2^{15} \mod -1 \rightarrow \text{boom} \left(\text{floating-point exception?}\right)\).

- IEEE-754 binary64 *floating-point numbers*:
 - \(2 \times 2 \times \cdots \times 2 \rightarrow +\infty,\)
 - \(1 \div 0 \rightarrow +\infty,\)
Computers and Number Representations

- **32-bit signed integers** in two-complement:
 - $1 + 1 \rightarrow 2$,
 - $2147483647 + 1 \rightarrow -2147483648$,
 - $100000^2 \rightarrow 1410065408$,
 - $-2147483648 \mod -1 \rightarrow \text{boom} \ (\text{floating-point exception}?!)$.

- **IEEE-754 binary64 floating-point numbers**:
 - $2 \times 2 \times \cdots \times 2 \rightarrow +\infty$,
 - $1 \div 0 \rightarrow +\infty$,
 - $1 \div -0 \rightarrow -\infty$,
Computers and Number Representations

► 32-bit signed *integers* in two-complement:
 ► $1 + 1 \rightarrow 2$,
 ► $2147483647 + 1 \rightarrow -2147483648$,
 ► $100000^2 \rightarrow 1410065408$,
 ► $-2147483648 \mod -1 \rightarrow \text{boom (floating-point exception?!)}$.

► IEEE-754 binary64 *floating-point numbers*:
 ► $2 \times 2 \times \cdots \times 2 \rightarrow +\infty$,
 ► $1 \div 0 \rightarrow +\infty$,
 ► $1 \div -0 \rightarrow -\infty$,
 ► $0 \div 0 \rightarrow \text{NaN}$.
Some Other Numerical Failures

- 1983, truncation in computing an index of Vancouver Stock Exchange makes it to drop to half its value.
Some Other Numerical Failures

- 1983, truncation in computing an index of Vancouver Stock Exchange makes it to drop to half its value.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by £100M for 21 months.
Some Other Numerical Failures

- 1983, truncation in computing an index of Vancouver Stock Exchange makes it to drop to half its value.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by £100M for 21 months.
- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
- 2007, Excel displays 77.1 \times 850 as 100000.
Some Other Numerical Failures

- 1983, truncation in computing an index of Vancouver Stock Exchange makes it drop to half its value.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by £100M for 21 months.
- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
Some Other Numerical Failures

- 1983, truncation in computing an index of Vancouver Stock Exchange makes it to drop to half its value.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by £100M for 21 months.
- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
Some Other Numerical Failures

- 1983, truncation in computing an index of Vancouver Stock Exchange makes it to drop to half its value.
- 1987, the inflation in UK is computed with a rounding error: pensions are off by £100M for 21 months.
- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
- 2007, Excel displays 77.1 × 850 as 100000.
1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.
Time is tracked by fixed-point arith.: \(0.1 \approx 209715 \cdot 2^{-24}\).
Cumulated skew after 24h: \(-0.08\)s, distance: 160m.
System was supposed to be rebooted periodically.
Verifying Numerical Algorithms

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

 Internal clock ticks every 0.1 second.
 Time is tracked by fixed-point arith.: \(0.1 \approx 209715 \cdot 2^{-24}\).
 Cumulated skew after 24h: \(-0.08\)s, distance: 160m.
 System was supposed to be rebooted periodically.

- 2007, Excel displays \(77.1 \times 850\) as \(100000\).

 Bug in binary/decimal conversion.
 Failing inputs: 12 FP numbers.
 Probability to uncover them by random testing: \(10^{-18}\).
Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms
Target Type: int32

- 32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31} - 1$.

- If the *mathematical* result of an operation fits in that range, that is the *computed* result.

- Otherwise, an *overflow* occurs.
 Behavior depends on language and environment: modulo arith, saturated arith, abrupt termination, etc.
32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31} - 1$.

If the *mathematical* result of an operation fits in that range, that is the *computed* result.

Otherwise, an *overflow* occurs. Behavior depends on language and environment: modulo arith, saturated arith, abrupt termination, etc.

A program is *safe* if no overflow occurs.

Issues are similar for other arithmetic issues, e.g. division by 0.
Safety Checking with Hoare Logic

Idea: replace all arithmetic operations by abstract functions with preconditions. $x - y$ becomes \texttt{int32_sub}(x, y).

\begin{verbatim}
function int32_sub(x: int, y: int): int
 requires $-2^{31} \leq x - y < 2^{31}$
 ensures result = x - y
\end{verbatim}
Idea: replace type \textit{int} with an abstract type coercible to it, all operations by abstract functions with preconditions, and add an axiom about the range of \textit{int32}.

\textbf{type} int32
\textbf{function} of\textunderscore int32(x: int32): int
\textbf{axiom} bounded_int32: \textit{forall} x: int32. \(-2^{31} \leq \text{of_int32}(x) < 2^{31}\)

\textbf{function} int32_sub(x: int32, y: int32): int32
\textbf{requires} \(-2^{31} \leq \text{of_int32}(x) + \text{of_int32}(y) < 2^{31}\)
\textbf{ensures} \text{of_int32}(\textbf{result}) = \text{of_int32}(x) − \text{of_int32}(y)
Exercises

1. How to handle int32 *constants* in programs?
Exercises

1. How to handle int32 \textit{constants} in programs?

2. How to specify \textit{saturating} arithmetic?
Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms
Floating-Point Arithmetic

- Limited range \Rightarrow *exceptional* behaviors.
- Limited *precision* \Rightarrow *inaccurate* results.
IEEE-754 Binary Floating-Point Arithmetic

$1 + w_e + w_m = 32$, or 64, or 128.

A floating-point datum

<table>
<thead>
<tr>
<th>sign s</th>
<th>biased exponent e' (w_e bits)</th>
<th>mantissa m (w_m bits)</th>
</tr>
</thead>
</table>

represents

- if $0 < e' < 2^{w_e} - 1$, the real $(-1)^s \cdot \overline{1.m'} \cdot 2^{e' - \text{bias}}$, normal
- if $e' = 0$,
 - ± 0 if $m' = 0$, zeros
 - the real $(-1)^s \cdot \overline{0.m'} \cdot 2^{-\text{bias} + 1}$ otherwise, subnormal
- if $e' = 2^{w_e} - 1$,
 - $(-1)^s \cdot \infty$ if $m' = 0$, infinity
 - Not-a-Number otherwise. NaN

Bias: $2^{w_e - 1} - 1$. Precision: $p = w_m + 1$.
Semantics for the Finite Case

A floating-point operator shall behave as if it was first computing the infinitely-precise value and then rounding it so that it fits in the destination floating-point format.
Semantics for the Finite Case

A floating-point operator shall behave as if it was first computing the infinitely-precise value and then rounding it so that it fits in the destination floating-point format.

Rounding of a real number x:

Overflows are not considered when defining rounding: exponents are supposed to have no upper bound!
Partial Specification

Same as with integers, we specify FP operations so that no overflow occurs.

```plaintext
type bin32
function of_bin32(x: bin32): real
axiom finite_bin32: forall x: bin32. ???

function rnd...(x: real): real
axiom about_rnd...: ???

function bin32_sub(x: bin32, y: bin32): bin32
  requires abs(rnd...(of_bin32(x) - of_bin32(y))) \leq ... 
  ensures of_bin32(result) = rnd(of_bin32(x) - of_bin32(y))
```
Usual Properties

- **idempotency**: $\forall x \in \mathbb{R}, \text{rnd}(\text{rnd}(x)) = \text{rnd}(x)$
Usual Properties

- **idempotency**: $\forall x \in \mathbb{R}, \text{rnd}(\text{rnd}(x)) = \text{rnd}(x)$

- **monotonicity**: $\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \text{rnd}(x) \leq \text{rnd}(y)$
Usual Properties

- **idempotency**: \(\forall x \in \mathbb{R}, \ \text{rnd}(\text{rnd}(x)) = \text{rnd}(x) \)

- **monotonicity**: \(\forall x, y \in \mathbb{R}, \ x \leq y \Rightarrow \text{rnd}(x) \leq \text{rnd}(y) \)

- **successor**: if \(m \cdot 2^e \) is a canonical representation, then \((m + 1) \cdot 2^e \) is representable as FP; there is no representable number between \(m \cdot 2^e \) and \((m + 1) \cdot 2^e \), when \(m \geq 0 \)
Usual Properties

- **idempotency**: \(\forall x \in \mathbb{R}, \ \text{rnd}(\text{rnd}(x)) = \text{rnd}(x) \)

- **monotonicity**: \(\forall x, y \in \mathbb{R}, \ x \leq y \Rightarrow \text{rnd}(x) \leq \text{rnd}(y) \)

- **successor**: if \(m \cdot 2^e \) is a canonical representation, then \((m + 1) \cdot 2^e\) is representable as FP; there is no representable number between \(m \cdot 2^e \) and \((m + 1) \cdot 2^e\), when \(m \geq 0 \)

- **round-off error**: \(\forall x \in \mathbb{R}, \ \text{rnd}(x) = x \cdot (1 + \varepsilon) + \delta \) with \(|\varepsilon| \leq 2^{-p} \) and \(|\delta| \leq 2^{-\text{bias} - p + 1} \) when rounding to nearest
Usual Properties

- **idempotency**: \(\forall x \in \mathbb{R}, \ \text{rnd}(\text{rnd}(x)) = \text{rnd}(x) \)

- **monotonicity**: \(\forall x, y \in \mathbb{R}, \ x \leq y \Rightarrow \text{rnd}(x) \leq \text{rnd}(y) \)

- **successor**: if \(m \cdot 2^e \) is a canonical representation, then \((m + 1) \cdot 2^e \) is representable as FP; there is no representable number between \(m \cdot 2^e \) and \((m + 1) \cdot 2^e \), when \(m \geq 0 \)

- **round-off error**: \(\forall x \in \mathbb{R}, \ \text{rnd}(x) = x \cdot (1 + \varepsilon) + \delta \) with \(|\varepsilon| \leq 2^{-p} \) and \(|\delta| \leq 2^{-\text{bias} - p + 1} \) when rounding to nearest

- **round-off error for addition**: \(\delta = 0 \)
Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms
Given two real numbers u and v,

- **absolute error**: $u - v$, $|u - v|
- **relative error**: $u/v - 1$, ...
Numerical Errors

Given two real numbers u and v,

- **absolute error**: $u - v$, $|u - v|$
- **relative error**: $u/v - 1$, …

Combining errors:

- $u - w = (u - v) + (v - w)$
- $|u - w| \leq |u - v| + |v - w|$
- $u/w - 1 = (u/v - 1) + (v/w - 1) + (u/v - 1) \cdot (v/w - 1)$
Numerical Errors

Given two real numbers \(u \) and \(v \),

- **absolute error**: \(u - v, |u - v| \)
- **relative error**: \(\frac{u}{v} - 1, \ldots \)

Combining errors:

- \(u - w = (u - v) + (v - w) \)
- \(|u - w| \leq |u - v| + |v - w| \)
- \(\frac{u}{w} - 1 = (\frac{u}{v} - 1) + (\frac{v}{w} - 1) + (\frac{u}{v} - 1) \cdot (\frac{v}{w} - 1) \)

Remark: \(\text{rnd}(u) - v = (\text{rnd}(u) - u) + (u - v) \)
Numerical Analysis

Notations:
- a mathematical function $f(x)$,
- a floating-point program $\tilde{f}(x)$,
- the infinitely-precise evaluation $\hat{f}(x)$ of $\tilde{f}(x)$.

Definitions:
- forward error: $\tilde{f}(x) - f(x)$,
- round-off error: $\tilde{f}(x) - \hat{f}(x)$,
- method error: $\hat{f}(x) - f(x)$.

Remark: $\tilde{f}(x) - f(x) \approx (\tilde{x} - x) \times \frac{\partial f}{\partial x}$.

In other words: forward error \approx backward error \times condition number.
Numerical Analysis

Notations:
- a mathematical function $f(x)$,
- a floating-point program $\tilde{f}(x)$,
- the infinitely-precise evaluation $\hat{f}(x)$ of $\tilde{f}(x)$.

Definitions:
- forward error: $\tilde{f}(x) - f(x)$,
 - round-off error: $\tilde{f}(x) - \hat{f}(x)$
 - method error: $\hat{f}(x) - f(x)$

Remark:
$\tilde{f}(x) - f(x) \approx (\tilde{x} - x) \times \frac{\partial f}{\partial x}$.

In other words:
forward error \approx backward error \times condition number.
Numerical Analysis

Notations:

- a mathematical function $f(x)$,
- a floating-point program $\tilde{f}(x)$,
- the infinitely-precise evaluation $\hat{f}(x)$ of $\tilde{f}(x)$.

Definitions:

- **forward error**: $\tilde{f}(x) - f(x)$,
 - round-off error: $\tilde{f}(x) - \hat{f}(x)$
 - method error: $\hat{f}(x) - f(x)$

- **backward error**: $\tilde{x} - x$
 with \tilde{x} closest from x such that $f(\tilde{x}) = \tilde{f}(x)$

Remark:
\[
\tilde{f}(x) - f(x) \approx (\tilde{x} - x) \times \frac{\partial f}{\partial x}.
\]
In other words:
forward err \approx backward err \times condition num.
Numerical Analysis

Notations:
- a mathematical function \(f(x) \),
- a floating-point program \(\tilde{f}(x) \),
- the infinitely-precise evaluation \(\hat{f}(x) \) of \(\tilde{f}(x) \).

Definitions:
- **forward error**: \(\tilde{f}(x) - f(x) \),
 - round-off error: \(\tilde{f}(x) - \hat{f}(x) \)
 - method error: \(\hat{f}(x) - f(x) \)
- **backward error**: \(\tilde{x} - x \)
 with \(\tilde{x} \) closest from \(x \) such that \(f(\tilde{x}) = \tilde{f}(x) \)

Remark: \(\tilde{f}(x) - f(x) \simeq (\tilde{x} - x) \times \frac{\partial f}{\partial x} \).
In other words: \(\text{forward err} \simeq \text{backward err} \times \text{condition num.} \)
Numerical Analysis

Evaluating $\sum_i a_i \cdot x^i$:

function Horner(a:map int binary32, n:int, x:binary32)

body

let y := ref (binary32_cst 0.) in
let i := ref n in
while i \geq 0 do
 y := binary32_add(binary32_mul(y, x), a[i]);
 i := i − 1;
done;
y
Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms
Using Ghost Variables for Model Values

function det(a b c d: binary32, aM bM cM dM: real): (binary32, real)
body
 let t1 := binary32_mul(a, d) in
 let t1M := aM \times dM in
 let t2 := binary32_mul(b, c) in
 let t2M := bM \times cM in
 let t3 := binary32_sub(t1, t2) in
 let t3M := t1M - t2M in
(t3, t3M)

Forward error: property about t3 - t3M or t3 / t3M - 1.
function of_bin32(x: binary32): real
function model_of(x: binary32): real

function binary32_add(x: binary32, y: binary32): binary32
 requires abs(rnd...(of_bin32(x) + of_bin32(y))) ≤ max_binary32
 ensures of_bin32(result) = rnd(of_bin32(x) + of_bin32(y)) ∧
 model_of(result) = model_of(x) + model_of(y)
Abstract Interpretation

Domains for floating-point variables:
 ➤ for the computed value x,
 ➤ for the infinitely-precise value \hat{x},
 ➤ for the absolute error $x - \hat{x}$,
 ➤ ...
Abstract Interpretation

Domains for floating-point variables:

- for the computed value x,
- for the infinitely-precise value \hat{x},
- for the absolute error $x - \hat{x}$,
- ...

Naive domains:

- $[\underline{x}, \overline{x}]$ such that $x \in [\underline{x}, \overline{x}]$, ex: $\text{rnd}(x + y) \in [\text{rnd}(\underline{x} + \underline{y}), \text{rnd}(\overline{x} + \overline{y})]$,
- no domain for \hat{x},
- δ_x such that $|x - \hat{x}| \leq \delta_x$, ex: $\delta_{x+y} = \delta_x + \delta_y + 2^{-p} \max(\overline{x} + \overline{y}, -(\underline{x} + \underline{y}))$
Outline

Handling Machine Integers

Floating-Point Computations

Numerical Analysis

Automation

Numerical Algorithms
Newton’s Iterated Square Root

\textbf{function} \texttt{fp_sqrt_init}(x:binary64) : binary64
\begin{itemize}
 \item \textbf{requires} \(0.5 \leq x \leq 2\);
 \item \textbf{ensures} \(|\text{result} - 1/\sqrt{x}| \leq 2^{-6} \times 1/\sqrt{x} \);
\end{itemize}

\textbf{function} \texttt{fp_sqrt}(x:binary64) : binary64
\begin{itemize}
 \item \textbf{requires} \(0.5 \leq x \leq 2\);
 \item \textbf{ensures} \(|\text{result} - \sqrt{x}| \leq 2^{-43} \times \sqrt{x} \);
\end{itemize}
\begin{itemize}
 \item \textbf{body}
 \begin{itemize}
 \item \texttt{let} \(t := \text{ref} (\texttt{fp_sqrt_init}(x)) \) \texttt{in}
 \item \texttt{let} \(i := \text{ref} 0 \) \texttt{in}
 \item \textbf{while} \(i < 3 \) \textbf{do}
 \begin{itemize}
 \item \(t := 0.5 \times t \times (3 - t \times t \times x) \);
 \item \(i := i + 1 \);
 \end{itemize}
 \item \texttt{done;}
 \end{itemize}
\\
 \texttt{t * x}
Quadratic Convergence

For all u and x:

$$0.5u(3 - u^2x)\sqrt{x} - 1 = -(1.5 + 0.5(u\sqrt{x} - 1)) \times (u\sqrt{x} - 1)^2$$

Loop iterations:

$$t_{n+1}\sqrt{x} - 1 \approx 0.5t_n(3 - t_n^2x)\sqrt{x} - 1 \approx -1.5(t_n\sqrt{x} - 1)^2$$

Round-off error at step n vanishes at step $n + 1$.
Computing $\sum_i x_i$:

s := x[0];
e := 0.;
for i := 1 to n – 1 do
 y := x[i];
 t := s + y;
 u := t – y;
 r := (s – u) + (y – (t – u));
 s := t;
 e := e + r;
done;
s’ := s + e;
Accurate Summation

Computing $\sum_i x_i$:

\begin{verbatim}
 s := x[0];
e := 0.;
 for i := 1 to n − 1 do
 y := x[i];
 t := s + y;
 u := t − y;
 r := (s − u) + (y − (t − u));
 s := t;
 e := e + r;
 done;
 s' := s + e;
\end{verbatim}

Naive sum
Accurate Summation

Computing $\sum_i x_i$:

\[
s := x[0];
\]
\[
e := 0.;
\]
\[
\text{for } i := 1 \text{ to } n - 1 \text{ do}
\]
\[
y := x[i];
\]
\[
t := s + y;
\]
\[
u := t - y;
\]
\[
r := (s - u) + (y - (t - u));
\]
\[
s := t;
\]
\[
e := e + r;
\]
\[
\text{done};
\]
\[
s' := s + e;
\]

Error-free addition: $t + r = s + y$
Error-Free Transformations

- Sterbenz: $\forall x, y \in F, \ x/2 \leq y \leq 2x \Rightarrow \text{rnd}(x - y) = x - y$
Error-Free Transformations

- **Sterbenz:** \(\forall x, y \in F, \ x/2 \leq y \leq 2x \Rightarrow \text{rnd}(x - y) = x - y \)

- **error of addition:** \(\forall x, y \in F, \ \text{rnd}(x + y) - (x + y) \in F \)
Error-Free Transformations

- **Sterbenz**: $\forall x, y \in F, \ x/2 \leq y \leq 2x \Rightarrow \text{rnd}(x - y) = x - y$
- **error of addition**: $\forall x, y \in F, \ \text{rnd}(x + y) - (x + y) \in F$
- **fast twosum**: $\forall x, y \in F, \ |x| \geq |y| \Rightarrow s + e = x + y$
 with $s = \text{rnd}(x + y)$ and $e = \text{rnd}(y - \text{rnd}(s - x))$
Error-Free Transformations

- **Sterbenz**: \(\forall x, y \in F, \ x/2 \leq y \leq 2x \Rightarrow \text{rnd}(x - y) = x - y \)
- **error of addition**: \(\forall x, y \in F, \ \text{rnd}(x + y) - (x + y) \in F \)
- **fast twosum**: \(\forall x, y \in F, \ |x| \geq |y| \Rightarrow s + e = x + y \)
 with \(s = \text{rnd}(x + y) \) and \(e = \text{rnd}(y - \text{rnd}(s - x)) \)
- **twosum**: \(\forall x, y \in F, \ s + e = x + y \)
 with \(s = \text{rnd}(x + y) \) and \(u = \text{rnd}(s - y) \) and
 \(e = \text{rnd}(\text{rnd}(x - u) + \text{rnd}(y - \text{rnd}(s - u))) \)
Reducing $x \geq 2^{31}$ to $0 \leq y \lesssim \pi/4$ for circular functions:

```plaintext
function reduce(x:binary32): (binary32, int)
  requires $2^{31} \leq x$
  ensures exists l:int. abs((result + k * pi/4) − (x + l * 2*pi)) ≤ $2^{−25}$
body
  let x' := binary64_of_binary32 x in
  let t := x' * 1.273239545... in
  let k := trunc(t) in
  let y := (t − k) * 0.785398163... in
  (binary32_of_binary64(y), k)

Note: computations are performed with binary64.
```
Payne & Hanek’s Argument Reduction

Reducing $x \geq 2^{31}$ to $0 \leq y \lesssim \pi/4$ for circular functions:

```
function reduce(x:binary32): (binary32, int)
  requires $2^{31} \leq x$
  ensures exists l:int. abs((result + k * pi/4) − (x + l * 2*pi)) ≤ $2^{−25}$
  body
    let x’ := binary64_of_binary32 x in
    let t := x’ * 0.02323954474... in
    let k := trunc(t) in
    let y := (t − k) * 0.785398163... in
    (binary32_of_binary64(y), k)
```

Note: computations are performed with binary64.