Exceptions, Functions

Guillaume Melquiond

Cours MPRI 2-36-1 “Preuve de Programme”

9 janvier 2012
Reminder of the Last 2 Lectures

- Simple IMP programs:

- Hoare logic:
 - deduction rules for triples $\{\text{Pre}\} e \{\text{Post}\}$
 - notions of validity and safety (progress)

- Weakest precondition computation:
 - $\{\text{Pre}\} e \{\text{Post}\}$ valid if $\text{Pre} \Rightarrow \text{WP}(e, \text{Post})$
 - notion of preservation by reduction.

- Extension: labels.
Reminder of the Last 2 Lectures

- Simple IMP programs:
 - basic datatypes (e.g., bool, int),

- Hoare logic:
 - deduction rules for triples \{Pre\} e \{Post\},
 - notions of validity and safety (progress).

- Weakest precondition computation:
 - \{Pre\} e \{Post\} valid if \(Pre \Rightarrow WP(e, Post) \),
 - notion of preservation by reduction.

- Extension: labels.
Reminder of the Last 2 Lectures

- Simple IMP programs:
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
Reminder of the Last 2 Lectures

- Simple IMP programs:
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
 - program = single expression with side effects.
Reminder of the Last 2 Lectures

- Simple IMP programs:
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
 - program = single expression with side effects.

- Hoare logic:
Reminder of the Last 2 Lectures

- **Simple IMP programs:**
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
 - program = single expression with side effects.

- **Hoare logic:**
 - deduction rules for triples $\{Pre\} e \{Post\}$,
Reminder of the Last 2 Lectures

- Simple IMP programs:
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
 - program = single expression with side effects.

- Hoare logic:
 - deduction rules for triples $\{\text{Pre}\} e \{\text{Post}\}$,
 - notions of validity and safety (progress).
Reminder of the Last 2 Lectures

- Simple IMP programs:
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
 - program = single expression with side effects.

- Hoare logic:
 - deduction rules for triples $\{Pre\} e \{Post\}$,
 - notions of validity and safety (progress).

- Weakest precondition computation:
Reminder of the Last 2 Lectures

- Simple IMP programs:
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
 - program = single expression with side effects.

- Hoare logic:
 - deduction rules for triples $\{Pre\} e \{Post\}$,
 - notions of validity and safety (progress).

- Weakest precondition computation:
 - $\{Pre\} e \{Post\}$ valid if $Pre \Rightarrow WP(e, Post)$,
Reminder of the Last 2 Lectures

- **Simple IMP programs:**
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
 - program = single expression with side effects.

- **Hoare logic:**
 - deduction rules for triples $\{Pre\}e\{Post\}$,
 - notions of validity and safety (progress).

- **Weakest precondition computation:**
 - $\{Pre\}e\{Post\}$ valid if $Pre \Rightarrow WP(e, Post)$,
 - notion of preservation by reduction.
Reminder of the Last 2 Lectures

- Simple IMP programs:
 - basic datatypes (e.g., bool, int),
 - global variables and let-in bindings,
 - program = single expression with side effects.

- Hoare logic:
 - deduction rules for triples $\{Pre\}e\{Post\}$,
 - notions of validity and safety (progress).

- Weakest precondition computation:
 - $\{Pre\}e\{Post\}$ valid if $Pre \Rightarrow WP(e, Post)$,
 - notion of preservation by reduction.

- Extension: labels.
Next Extensions

- Mutable local variables.
- Exceptions.
- Functions (call by value).
Outline

Local Variables

Exceptions

Functions
Mutable Local Variables

We extend the syntax of expressions with

\[e ::= \text{let ref } id = e \text{ in } e \]

Example: isqrt revisited

```plaintext
val x, res : ref int

isqrt:
    res := 0;
    let ref sum = 1 in
    while sum ≤ x do
        res := res + 1; sum := sum + 2 * res + 1
    done
```
Operational Semantics

\[\Sigma, \Pi, e \sim \Sigma', \Pi', e' \]

\(\Pi \) no longer contains just immutable variables.

\[\Sigma, \Pi, e_1 \sim \Sigma', \Pi', e'_1 \]

\(\Sigma, \Pi, \text{let ref } x = e_1 \text{ in } e_2 \sim \text{let ref } x = e'_1 \text{ in } e_2 \)

\[\Sigma, \Pi, \text{let ref } x = v \text{ in } e \sim \Sigma, \Pi\{(x, \text{Here}) \mapsto v\}, e \]
Operational Semantics

\[\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e' \]

\(\Pi \) no longer contains just immutable variables.

\[\Sigma, \Pi, e_1 \rightsquigarrow \Sigma', \Pi', e'_1 \]

\[\Sigma, \Pi, \text{let ref } x = e_1 \text{ in } e_2 \rightsquigarrow \text{let ref } x = e'_1 \text{ in } e_2 \]

\[\Sigma, \Pi, \text{let ref } x = v \text{ in } e \rightsquigarrow \Sigma, \Pi\{(x, \text{Here}) \mapsto v\}, e \]

\(x \) local variable

\[\Sigma, \Pi, x := v \rightsquigarrow \Sigma, \Pi\{(x, \text{Here}) \mapsto v\}, e \]

And labels too.
Mutable Local Variables: WP rules

Exercise: propose rules for \(\text{WP(} \text{let ref } x = e_1 \text{ in } e_2, Q) \), \(\text{WP(} x := e, Q) \), and \(\text{WP(} L : e, Q) \).
Mutable Local Variables: WP rules

\[
\text{WP}(\text{let ref } x = e_1 \text{ in } e_2, Q) = \text{WP}(e_1, \text{WP}(e_2, Q)[x \leftarrow \text{result}])
\]

\[
\text{WP}(x := e, Q) = \text{WP}(e, Q[x \leftarrow \text{result}])
\]

\[
\text{WP}(L : e, Q) = \text{WP}(e, Q)[x@L \leftarrow x, \text{for all } x@L]
\]
Outline

Local Variables

Exceptions

Functions
Exceptions

We extend the syntax of expressions with

\[e ::= \text{raise } exn \]
\[\mid \text{try } e \text{ with } exn \Rightarrow e \]

with \(exn \) a set of exception identifiers.
Operational Semantics

Propagation of thrown exceptions:

\[\Sigma, \Pi, (\text{let } x = \text{raise } \text{exn in } e) \leadsto \Sigma, \Pi, \text{raise } \text{exn} \]
Operational Semantics

Propagation of thrown exceptions:

$$\Sigma, \Pi, (\text{let } x = \text{raise } exn \text{ in } e) \leadsto \Sigma, \Pi, \text{raise } exn$$

Reduction of try-with:

$$\Sigma, \Pi, e \leadsto \Sigma', \Pi', e'$$

$$\Sigma, \Pi, (\text{try } e \text{ with } exn \Rightarrow e'') \leadsto \Sigma', \Pi', (\text{try } e' \text{ with } exn \Rightarrow e'')$$
Operational Semantics

Propagation of thrown exceptions:

$$\Sigma, \Pi, (\text{let } x = \text{raise exn in } e) \rightsquigarrow \Sigma, \Pi, \text{raise exn}$$

Reduction of try-with:

$$\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'$$

$$\Sigma, \Pi, (\text{try } e \text{ with } \text{exn } \Rightarrow e'') \rightsquigarrow \Sigma', \Pi', (\text{try } e' \text{ with } \text{exn } \Rightarrow e'')$$

Normal execution:

$$\Sigma, \Pi, (\text{try } v \text{ with } \text{exn } \Rightarrow e') \rightsquigarrow \Sigma, \Pi, v$$
Operational Semantics

Propagation of thrown exceptions:

$$\Sigma, \Pi, (\text{let } x = \text{raise } exn \text{ in } e) \rightsquigarrow \Sigma, \Pi, \text{raise } exn$$

Reduction of try-with:

$$\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'$$

$$\Sigma, \Pi, (\text{try } e \text{ with } exn \Rightarrow e'') \rightsquigarrow \Sigma', \Pi', (\text{try } e' \text{ with } exn \Rightarrow e'''')$$

Normal execution:

$$\Sigma, \Pi, (\text{try } v \text{ with } exn \Rightarrow e') \rightsquigarrow \Sigma, \Pi, v$$

Exception handling:

$$\Sigma, \Pi, (\text{try raise } exn \text{ with } exn \Rightarrow e) \rightsquigarrow \Sigma, \Pi, e$$

$$exn \neq exn'$$

$$\Sigma, \Pi, (\text{try raise } exn \text{ with } exn' \Rightarrow e) \rightsquigarrow \Sigma, \Pi, \text{raise } exn$$
Hoare Triples

Hoare triple modified to allow **exceptional post-conditions**:

\[
\{ P \} e \{ Q \ | \ exn_i \Rightarrow R_i \}
\]
Hoare Triples

Hoare triple modified to allow exceptional post-conditions:

$$\{P\} e \{Q \mid \text{exn}_i \Rightarrow R_i\}$$

Validity: if e is executed in a state where P holds, it does not block and

- if it terminates normally with value v in state Σ, then $Q[\text{result} \leftarrow v]$ holds in Σ;
Hoare Triples

Hoare triple modified to allow exceptional post-conditions:

\[\{ P \} e \{ Q \mid exn_i \Rightarrow R_i \} \]

Validity: if \(e \) is executed in a state where \(P \) holds, it does not block and

- if it terminates normally with value \(v \) in state \(\Sigma \), then \(Q[\text{result} \leftarrow v] \) holds in \(\Sigma \);
- if it terminates with exception \(exn \) in state \(\Sigma \), then there exists \(i \) such that \(exn = exn_i \) and \(R_i \) holds in \(\Sigma \).
Hoare Triples

Hoare triple modified to allow exceptional post-conditions:

\[
\{ P \} e \{ Q \mid \text{exn}_i \Rightarrow R_i \}
\]

Validity: if \(e \) is executed in a state where \(P \) holds, it does not block and

- if it terminates normally with value \(v \) in state \(\Sigma \), then \(Q[\text{result} \leftarrow v] \) holds in \(\Sigma \);
- if it terminates with exception \(\text{exn} \) in state \(\Sigma \), then there exists \(i \) such that \(\text{exn} = \text{exn}_i \) and \(R_i \) holds in \(\Sigma \).

Note: if \(e \) terminates with an exception not in the set \(\{ \text{exn}_i \} \), the triple is not valid.
Function WP modified to allow exceptional post-conditions too:

$$WP(e, Q, exn_i \Rightarrow R_i)$$

Implicitly, $R_k = False$ for any $exn_k \not\in \{exn_i\}$.
WP Rules

Function WP modified to allow exceptional post-conditions too:

$$\text{WP}(e, Q, \text{exn}_i \Rightarrow R_i)$$

Implicitly, $$R_k = False$$ for any $$\text{exn}_k \not\in \{\text{exn}_i\}$$.

Extension of WP for simple expressions:

$$\text{WP}(x := t, Q, \text{exn}_i \Rightarrow R_i) = Q[\text{result} \leftarrow (), x \leftarrow t]$$

$$\text{WP}(\text{assert } R, Q, \text{exn}_i \Rightarrow R_i) = R \land Q$$
WP Rules

Extension of WP for composite expressions:

\[
WP(\text{let } x = e_1 \text{ in } e_2, Q, \text{exn}_i \Rightarrow R_i) = \\
WP(e_1, WP(e_2, Q, \text{exn}_i \Rightarrow R_i)[\text{result } \leftarrow x], \text{exn}_i \Rightarrow R_i)
\]

\[
WP(\text{if } t \text{ then } e_1 \text{ else } e_2, Q, \text{exn}_i \Rightarrow R_i) = \\
\text{if } t \text{ then } WP(e_1, Q, \text{exn}_i \Rightarrow R_i) \\
\text{else } WP(e_2, Q, \text{exn}_i \Rightarrow R_i)
\]

\[
WP\left(\text{while } c \text{ invariant } l \text{ variant } v, \prec \text{ do } e, Q, \text{exn}_i \Rightarrow R_i\right) = l \land \forall x_1, \ldots, x_k, \\
(l \land \text{if } c \text{ then } WP(L: e, l \land v \prec v@L, \text{exn}_i \Rightarrow R_i) \\
\text{else } Q)[w_i \leftarrow x_i]
\]

where \(w_1, \ldots, w_k\) is the set of assigned variables in expressions and \(x_1, \ldots, x_k\) are fresh logic variables.
Exercise: propose rules for \(\text{WP}(\text{raise } \text{exn}, Q, \text{exn}_i \Rightarrow R_i) \) and \(\text{WP}(\text{try } e_1 \text{ with } \text{exn} \Rightarrow e_2, Q, \text{exn}_i \Rightarrow R_i) \).
WP Rules

\[WP(\text{raise } \text{exn}_k, Q, \text{exn}_i \Rightarrow R_i) = R_k \]

\[WP(\text{try } e_1 \text{ with } \text{exn} \Rightarrow e_2), Q, \text{exn}_i \Rightarrow R_i) = \]

\[WP\left(e_1, Q, \left\{ \begin{array}{l}
\text{exn} \Rightarrow WP(e_2, Q, \text{exn}_i \Rightarrow R_i) \\
\text{exn}_i \backslash \text{exn} \Rightarrow R_i
\end{array} \right\} \right) \]
Outline

Local Variables

Exceptions

Functions
Functions

Program structure:

\[
\begin{align*}
\text{prog} & ::= \text{decl}* \\
\text{decl} & ::= \text{vardecl} \mid \text{fundecl} \\
\text{vardecl} & ::= \text{val id : ref basetype}
\end{align*}
\]
Functions

Program structure:

\[
\begin{align*}
prog & ::= \ decl^* \\
\ decl & ::= \ vardecl \mid \ fundecl \\
\ vardecl & ::= \ val \ id : \ ref \ basetype \\
\ fundecl & ::= \ function \ id((param,)^*) : \ basetype \\
& \hspace{1cm} \ contract \ body \ e \\
\ param & ::= \ id : \ basetype \\
\ contract & ::= \ requires \ t \ writes \ (id,)^* \ ensures \ t
\end{align*}
\]
Functions

Program structure:

\[
\begin{align*}
prog & ::= \ decl^* \\
\decl & ::= \ vardecl \mid \ fundecl \\
\vardecl & ::= \ val \ id : \ ref \ \text{basetype} \\
\fundecl & ::= \ \text{function} \ id((\text{param,})^*) : \text{basetype} \\
& \quad \text{contract body e} \\
\param & ::= \ id : \ \text{basetype} \\
\contract & ::= \ \text{requires} \ t \ \text{writes} \ (id,)^* \ \text{ensures} \ t
\end{align*}
\]

Function definition:

- Contract:
 - pre-condition,
 - post-condition (label \textit{Old} available),
 - assigned variables: clause \textit{writes}.
- Body: expression.
Example: isqrt

function isqrt(x:int): int
 requires x \geq 0
 ensures result \geq 0 \land
 sqr(result) \leq x < sqr(result + 1)

body
 let ref res = 0 in
 let ref sum = 1 in
 while sum \leq x do
 res := res + 1;
 sum := sum + 2 * res + 1
 done;
 res
Example using *Old* label

```flexible
val res: ref int

procedure incr(x:int)
    requires true
    writes res
    ensures res = res@Old + x

body
res := res + x
```
Typing

Definition d of function f:

function $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau$
 requires Pre
 writes \vec{w}
 ensures $Post$
 body $Body$
Typing

Definition d of function f:

function $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau$
 requires Pre
 writes \vec{w}
 ensures $Post$
body $Body$

Well-formed definitions:

\[
\Gamma' = \{ x_i : \tau_i \mid 1 \leq i \leq n \} \cdot \Gamma
\]
\[
\Gamma' \vdash Pre, Post : \text{formula}
\]
\[
\vec{w}_g \subseteq \vec{w} \text{ for each call } g
\]
\[
y \in \vec{w} \text{ for each assign } y
\]
\[
\Gamma \vdash d : \text{wf}
\]

where Γ contains the global declarations.
Typing

Definition d of function f:

function $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau$
 requires Pre
 writes \vec{w}
 ensures $Post$
 body $Body$

Well-typed function calls:

\[\Gamma \vdash t_i : \tau_i \quad \Gamma \vdash f(t_1, \ldots, t_n) : \tau \]

Note: t_i are immutable expressions.
Operational Semantics

function $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau$
requires Pre
writes \vec{w}
ensures $Post$
body $Body$

$$\Pi' = \{x_i \mapsto \llbracket t_i \rrbracket_{\Sigma, \Pi}\} \quad \Sigma, \Pi' \models Pre$$

$$\Sigma, \Pi, f(t_1, \ldots, t_n) \rightsquigarrow \Sigma, \Pi, (Old : frame \Pi', Body, Post)$$
frame is a dummy operation that keeps track of the local variables of the callee:

\[
\Sigma, \Pi, e \leadsto \Sigma', \Pi', e'
\]

\[
\Sigma, \Pi'', (\text{frame } \Pi, e, P) \leadsto \Sigma', \Pi'', (\text{frame } \Pi', e', P)
\]

It also checks that the post-condition holds at the end:

\[
\Sigma, \Pi' \models P[\text{result } \leftarrow v]
\]

\[
\Sigma, \Pi, (\text{frame } \Pi', v, P) \leadsto \Sigma, \Pi, v
\]
WP Rule of Function Call

function \(f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \)
 requires \(Pre \)
 writes \(\vec{w} \)
 ensures \(Post \)
body \(Body \)

\[
\text{WP}(f(t_1, \ldots, t_n), Q) = Pre[x_i \leftarrow t_i] \wedge \\
\forall \vec{v}, \ (Post[x_i \leftarrow t_i, w_j \leftarrow v_j, w_j@Old \leftarrow w_j] \Rightarrow Q[w_j \leftarrow v_j])
\]
Example: isqrt(42)

Exercise: prove that \{true\}isqrt(42)\{result = 6\} holds.

```
function isqrt(x:int): int
    requires x ≥ 0
    ensures result ≥ 0 ∧
        sqr(result) ≤ x < sqr(result + 1)
body
    let ref res = 0 in
    let ref sum = 1 in
    while sum ≤ x do
        res := res + 1;
        sum := sum + 2 * res + 1
    done;
    res
```
Example: Incrementation

Exercise: Prove that $\{ res = 6 \} incr(36) \{ res = 42 \}$ holds.

```plaintext
val res: ref int

procedure incr(x:int)
    requires true
    writes res
    ensures res = res@Old + x
```
Soundness of WP

Assuming that for each function defined as

function \(f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \)
requires \(Pre \)
writes \(\vec{w} \)
ensures \(Post \)
body \(Body \)

we have

- variables assigned in \(Body \) belong to \(\vec{w} \),
- \(\models Pre \Rightarrow WP(Body, Post)[w_i@Old \leftarrow w_i] \) holds,

then for any formulas \(P \) and \(Q \) and any expression \(e \),
\(\{ P \} e \{ Q \} \) is a valid triple if \(\models P \Rightarrow WP(e, Q) \).
Soundness Proof

To prove soundness of WP rules:

1. If $\Sigma, \Pi \models WP(e, Q)$ and $\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'$, then $\Sigma', \Pi' \models WP(e', Q)$.

 By structural induction on e.
Soundness Proof

To prove soundness of WP rules:

1. If $\Sigma, \Pi \models WP(e, Q)$ and $\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'$, then $\Sigma', \Pi' \models WP(e', Q)$.
 By structural induction on e.

2. If $\Sigma, \Pi \models WP(e, Q)$ and e is not a value, then there exists Σ', Π', e' such that $\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'$.
 By predicate induction on \rightsquigarrow.

Monotony lemma:
Given an expression e and its assigned variables \vec{w}, if $\Sigma, \Pi \models \forall \vec{v}, (P \Rightarrow Q)[w_i \leftarrow v_i]$, then $\Sigma, \Pi \models WP(e, P) \Rightarrow WP(e, Q)$.

Soundness Proof

To prove soundness of WP rules:

1. If \(\Sigma, \Pi \models WP(e, Q) \) and \(\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e' \), then \(\Sigma', \Pi' \models WP(e', Q) \).

 By structural induction on \(e \).

2. If \(\Sigma, \Pi \models WP(e, Q) \) and \(e \) is not a value, then there exists \(\Sigma', \Pi', e' \) such that \(\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e' \).

 By predicate induction on \(\rightsquigarrow \).

Monotony lemma:

Given an expression \(e \) and its assigned variables \(\vec{w} \), if \(\Sigma, \Pi \models \forall \vec{w}, (P \Rightarrow Q)[w_i \leftarrow v_i] \), then \(\Sigma, \Pi \models WP(e, P) \Rightarrow WP(e, Q) \).
Functions Raising Exceptions

A generalized contract has the form

function $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau$
 requires Pre
 raises $E_1 \cdots E_k$
 writes \vec{w}
 ensures $Post \mid E_1 \rightarrow Post_1 \mid \cdots \mid E_k \rightarrow Post_k$

In the WP, the implication $Post[\ldots] \Rightarrow Q$ must be replaced by a conjunction of implications:

$$(Post[\ldots] \Rightarrow Q) \land \bigwedge_{i}(Post_i[\ldots] \Rightarrow R_i)$$
Example: Exact Square Root

exception NotSquare

function isqrt(x:int): int
 requires true
 raises NotSquare
 ensures result ≥ 0 ∧ sqr(result) = x
 | NotSquare → forall n:int. sqr(n) ≠ x

body
 if x < 0 then raise NotSquare;
 let ref res = 0 in
 let ref sum = 1 in
 while sum ≤ x do
 res := res + 1;
 sum := sum + 2 * res + 1
 done;
 if res * res ≠ x then raise NotSquare;
 res
Recursive Functions: Termination

If a function is recursive, termination of call can be proved, provided that the function is annotated with a variant.

function \(f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \)
requires \(Pre \)
variant \(var \) for \(\prec \)
writes \(\vec{w} \)
ensures \(Post \)
body \(Body \)

WP for function call:

\[
WP(f(t_1, \ldots, t_n), Q) = Pre[x_i \leftarrow t_i] \land var[x_i \leftarrow t_i] \prec var@Init \land \\
\forall \vec{y}, (Post[x_i \leftarrow t_i][w_j \leftarrow y_j][w_j@Old \leftarrow w_j] \Rightarrow Q[w_j \leftarrow y_j])
\]

with \(Init \) a label assumed to be present at the start of \(Body \).
Example: Division

Exercise: find adequate specifications.

```
function div(x:int,y:int): int
  requires ?
  variant ?
  writes ?
  ensures ?
```
Example: McCarthy’s 91 Function

\[f_{91}(n) = \text{if } n \leq 100 \text{ then } f_{91}(f_{91}(n + 11)) \text{ else } n - 10 \]

Exercise: find adequate specifications.

```function f_{91}(n:\text{int}): \text{int} 
  \text{requires} ?
  \text{variant} ?
  \text{writes} ?
  \text{ensures} ?
\text{body}
  \text{if } n \leq 100 \text{ then } f_{91}(f_{91}(n + 11)) \text{ else } n - 10
```