Final exam, March 3rd, 2016

- Duration: 3 hours. There are 3 independent exercises.
- Allowed documents: lecture notes, personal notes, **but no electronic devices.**
- Mobile phones must be switched off.
- Answers may be written in English or French.
- All variables must be bound or quantified explicitly.

Reminder Exercises 2 and 3 involve mutable lists. Recall that mutable lists are implemented using cells with a head and a tail field, and that the empty list is represented using the null pointer.

```ocaml
type 'a cell = { mutable hd : 'a; mutable tl : 'a cell } (* or null *)
```

Recall that a mutable linked list is described by the heap predicate

```latex
p \leadsto \text{Mlist} L
```

where

```latex
p
```

denotes the location of the first cell (or null), and where

```latex
L
```

describes the values stored in the head fields of the cells.

```latex
p \leadsto \text{MlistSeg null } L
p \leadsto \text{MlistSeg } q L
```

1 Binomial Coefficients

Definition The binomial coefficients $C(n,p)$, for $0 \leq p \leq n$, are defined recursively as follows.

```
C(n,0) = 1 (0 \leq n)
C(n,n) = 1 (0 \leq n)
C(n,p) = C(n-1,p-1) + C(n-1,p) (0 < p < n)
```

Program A The code below computes the binomial coefficients for arguments up to some value n, storing them into a matrix called M. The matrix M is declared globally, and has dimension N by N, for some fixed constant N.

```
let triangle (n:int) : unit
  requires { 0 \leq n < N }
  writes { M }
  ensures { forall i,j. 0 \leq j \leq i \leq n \rightarrow M[i,j] = C(i,j) }
= for i = 0 to n do
  M[i,0] <- 1;
  M[i,i] <- 1;
  for j = 1 to i-1 do
    M[i,j] <- M[i-1,j] + M[i-1,j-1];
  done
done
```

Question 1.1. Propose loop invariants for the above code, both for the external loop and the internal loop. Explain why your invariants are sufficient to prove the code correct (max 10 lines).

Program B The code below is a variant of the previous program that computes the rows iteratively, in-place inside a single array of length $n+1$. As suggested by the keyword **downto**, the internal loop iterates downwards, meaning that j takes the values $i-1, i-2, \ldots, 1$.

```
let binomial (n:int) : int
  requires { 0 \leq n }
  ensures { forall i. 0 \leq i \leq n, result[i] = C(n,i) }
= let a = Array.make (n+1) 0 in (* a fresh array of length n+1, initialized with 0 *)
  for i = 0 to n do
    a[i] <- 1;
    for j = i-1 downto 1 do
```
Question 1.2. The general form of a “for .. downto” loop is:

\[t = \text{for } i = v_1 \text{ downto } v_2 \text{ do invariant } \{ I \} e \text{ done} \]

Propose a formula for the weakest precondition WP(t, Q), where the term t denotes such a loop and where Q denotes a postcondition. Justify every parts of the formula that you propose (max 10 lines).

Question 1.3. Propose loop invariants for program B, both for the external loop and the internal loop. Explain why your invariants are sufficient to prove the code correct (max 10 lines).

Program C

Consider the program B with the body of the function modified as follows.

```plaintext
let a = Array.make (n+1) 1 in (* a fresh array of length n+1, initialized with 1 *)
for i = 1 to n do
    for j = i-1 downto 1 do
        a[j] ← a[j] + a[j-1];
    done
done;
a
```

Question 1.4. Is the code of program C provable with the same loop invariants as those of program B? If yes, explain why. If no, propose alternative invariants for program C, and explain why these new invariants suffice (max 10 lines).

2 Exceptions in Separation Logic

Representation of exceptions We consider an extension of Separation Logic to support exceptions. For simplicity, we here assume that an exception always carries an integer value. The result of the evaluation of a term is described by the inductive data type Res, defined as follows.

\[\text{Inductive } \text{Res : Type } \rightarrow \text{ Type } := | \text{Val : A } \rightarrow \text{Res A } | \text{Exn : int } \rightarrow \text{Res A } \]

In this context, a triple is written \(\{ H \} t \{ Q \} \), where the pre-condition \(H \) has type Hprop (i.e. Heap \(\rightarrow \) Prop) and the post-condition Q has type Res A \(\rightarrow \) Hprop, where A corresponds to the type of t. We define the following entailment relations:

\[
\begin{align*}
H & \Rightarrow H' \quad \forall(h : \text{Heap}). \\
Q & \Rightarrow Q' \quad \forall(A : \text{Type})(r : \text{Res A}). Q r \Rightarrow Q' r \\
Q & \Rightarrow_{\text{val}} Q' \quad \forall(A : \text{Type})(v : A). Q (\text{Val } v) \Rightarrow Q' (\text{Val } v) \\
Q & \Rightarrow_{\text{exn}} Q' \quad \forall(n : \text{int}). Q (\text{Exn } n) \Rightarrow Q' (\text{Exn } n).
\end{align*}
\]

In the presence of exceptions, the reasoning rule for values can be stated as follows.

\[
\frac{H \Rightarrow Q (\text{Val } v)}{\{ H \} v \{ Q \}}_{\text{VAL}}
\]

Question 2.1. A term of the form “raise n” is used to throw an exception carrying the integer value n. State a rule for exceptions with a conclusion of the form \(\{ H \} \{ \text{raise } n \} \{ Q \} \).

Question 2.2. State a reasoning rule for let-bindings, following the template given below.

\[
\frac{\text{\{\ldots\} } t_1 \text{\{\ldots\} } (\forall x. \text{\{\ldots\} } t_2 \text{\{\ldots\} }) \text{ \{\ldots\} } }{\{ H \} (\text{let } x = t_1 \text{ in } t_2) \{ Q \} }_{\text{LET}}
\]

Question 2.3. The try-catch construct, written “try t_1 with x \Rightarrow t_2”, evaluates as follows. If \(t_1 \) returns a value v, then the construct returns v. Otherwise, if \(t_1 \) throws an exception carrying n, then the term \(t_2 \) is executed, with x bound to n. State a reasoning rule for the try-catch construct.

Remark: the next two questions are independent from the previous ones.
Question 2.4. Give a (most-general) specification for the function \(\text{nth} \), which returns the \(i \)-th element of a pure list, and whose code is shown below. Hint: state the post-condition in the form "\(\lambda r : \text{match} \ r \ 	ext{with} \ ... \)”, and decompose \(l \) as \(l_1 \uplus x :: l_2 \) in case of normal termination.

\[
\begin{align*}
\text{let rec nth} & \ (i : \text{int}) \ (l : \text{\'a list}) \ : \ \text{\'a} = \\
& \quad \text{if } i < 0 \ \text{|| } l = [] \ \text{then} \ \text{raise 3} \\
& \quad \text{else if } i = 0 \ \text{then} \ \text{head} \ l \\
& \quad \text{else} \ \text{nth} \ (i - 1) \ (\text{tail} \ l)
\end{align*}
\]

Question 2.5. Give a (most-general) specification for the function \(\text{mnth_cell} \), which returns the address of \(i \)-th cell of a mutable list (and not the contents of this cell), and whose code is shown below. Hint: the post-condition must, in all cases, return the ownership of all the cells of the list.

\[
\begin{align*}
\text{let rec mnth_cell} & \ (i : \text{int}) \ (p : \text{\'a cell}) \ : \ \text{\'a cell} = \\
& \quad \text{if } i < 0 \ \text{|| } p == \text{null} \ \text{then} \ \text{raise 3} \\
& \quad \text{else if } i = 0 \ \text{then} \ p \\
& \quad \text{else} \ mnth_cell \ (i - 1) \ p.\text{tl}
\end{align*}
\]

3 Hashsets

We assume the existence of a polymorphic hash function \(h \), which, when applied to an argument \(x \), returns a non-negative integer called the hash value of \(x \), written \(h(x) \).

\[
\text{val h} \ : \ \text{\'a} \rightarrow \text{int}
\]

A hashset is a data structure that represents a set of elements using an array of buckets. If the array has length \(n \) (for some \(n > 0 \)), then an element \(x \) from the set is stored in the bucket at index “\(h(x) \mod n \)”.

Representation 1

First, we assume that each bucket is represented as a pure list, as shown below.

\[
\text{type } \text{\'a hashset1} = (\text{\'a list}) \text{ array}
\]

Such a data structure is described by a heap predicate of the form \(p \rightsquigarrow \text{Array } L \). Here, the list \(L \) has type \(\text{list } p \text{ list } a \), where \(a \) denotes the type of the elements. Thus, \(L[i] \) denotes the contents of the bucket at index \(i \) in the main array. Thereafter, we write \(|L| \) for the length of the list \(L \), thus we have: \(n = |L| \).

Question 3.1. To describe such a hashset, we define the following heap predicate:

\[
p \rightsquigarrow \text{HashSet1 } E \ = \ \exists L. \ p \rightsquigarrow \text{ Array } L \ * \ [\text{Repr1 } L \ E].
\]

Give the definition of \(\text{Repr1} \) (of type \(\text{list } a \rightarrow \text{set } a \rightarrow \text{Prop} \)), which should assert that the elements of \(E \) are stored in the appropriate buckets, and that the buckets contain only elements from the set \(E \).

Question 3.2. Consider the remove function shown below. Give a specification for this function in terms of \(\text{HashSet1} \). Make sure to properly quantify all variables.

\[
\begin{align*}
\text{let remove1} & \ (p : \text{\'a hashset1}) \ (a : \text{\'a}) \ : \ \text{unit} = \\
& \quad \text{let } k = h(a) \mod (\text{Array}.\text{length} \ p) \ \text{in} \\
& \quad p.(k) \leftarrow \text{List.filter} \ (\text{fun } x \rightarrow x \neq a) \ a \ p.(k)
\end{align*}
\]

Question 3.3. Give another specification for the function \(\text{List.filter} \), which filters elements from a pure list \(l \), in order to describe the simple case where the filter function is applied to a function \(f \) that does not perform any side effects. You may assume the existence of a logical filter function called \(\text{Filter} \), of type \(\forall a. (a \rightarrow \text{Prop})
ightarrow \text{list } a
ightarrow \text{list } a \).

Question 3.4. Give another specification for the function \(\text{List.filter} \), this time to describe the case where the filter function is applied to a function \(f \) that might perform side effects on the global state. Hint: introduce an invariant \(J \) of type \(\text{list } a
ightarrow \text{list } a
ightarrow \text{Hprop} \).

Representation 2

We now consider buckets represented using disjoint mutable lists.

\[
\text{type } \text{\'a hashset2} = (\text{\'a cell}) \text{ array}
\]

Question 3.5. The recursive function \(\text{mremove} \) shown below removes all occurrences of an element from a mutable list. Give a specification for this function in terms of the heap predicate \(\text{Mlist} \). Here again, you may assume the existence of a logical filter function called \(\text{Filter} \), of type \(\forall a. (a \rightarrow \text{Prop})
ightarrow \text{list } a
ightarrow \text{list } a \).
let rec mremove (a:'a) (s:'a cell) : 'a cell =
 if s == null then s else begin
 let t = mremove a s.tl in
 if s.hd = a then t else begin
 s.tl <- t;
 s
 end
 end

Question 3.6. Prove that the code of mremove is correct with respect to the specification proposed in question 3.5. Your proof should clearly distinguish the various cases. Make sure to mention the names of the structural rules of the logic being used. (Expected answer: 15 lines.)

Question 3.7. Consider the function remove2 shown below.

let remove2 (p:'a hashset2) (a:'a) : unit =
 let k = h(a) mod (Array.length p) in
 p.(k) <- mremove a p.(k)

State a specification for this function where the precondition is: \(p \Rightarrow \text{Arrayof Mlist} \ L \), and where the post-condition takes the form: \(p \Rightarrow \text{Arrayof Mlist} \ L' \).

Question 3.8. Prove the correctness of the specification proposed at the previous question for remove2, by exploiting the specification of mremove from question 3.5. (Expected answer: 12 lines.) You may assume the following equality to be already established:

\[
p \Rightarrow \text{Arrayof} \ R \ L \Rightarrow p \Rightarrow \text{Arrayof} \ R \ L' |
\]

where: \(p \Rightarrow \text{Arrayof} \ R \ i \ V \Rightarrow \exists v. (p[i] \Rightarrow v) \Rightarrow (v \Rightarrow R \ V) \).

Question 3.9. Assume a strict order relation on elements, written \(x \prec y \). We write “sorted (\(<\)\) \(L \)” the assertion stating that a logical list \(L \) is sorted with respect to \((\prec) \). Consider the function minsert shown below, which inserts an element in a sorted mutable list. This element is assumed to not already be in the list.

let minsert (a:'a) (s:'a cell) : 'a cell =
 if s == null || a < s.hd then { hd = a; tl = s } else begin
 let r = ref s in
 while true do
 let p = !r in
 let q = p.tl in
 if q == null || a < q.hd then begin
 p.tl <- { hd = a; tl = q };
 break;
 end;
 r := q;
 done;
 s
 end

Assume the initial state to be described by \(s \Rightarrow \text{Mlist} \ L \). For the code above: (1) State an invariant that is true at the beginning of every iteration of the loop (but not necessarily after the break). (2) Describe the state just before the beginning of the loop, and explain how it entails the loop invariant. (3) Describe the state that you obtain just before the break instruction, and explain how it allows deriving \(s \Rightarrow \text{Mlist} \ L' \), for some list \(L' \) that is sorted and that stores the elements of \(L \) plus the element \(a \). (4) Briefly justify why the invariant is preserved in case the loop steps to the next iteration (i.e. does not break), focusing only on the justification of the purely logical facts from the invariants. (5) Justify termination of the loop. (Expected answer: 25 lines. Make sure to be very precise about all the details in the formulae that you write. If you have an invariant but know that it is not strong enough, indicate it explicitly.)

Question 3.10. The representation predicate of type hashset2 is defined as shown below:

\[
p \Rightarrow \text{HashSet2} \ E = \exists L. p \Rightarrow \text{Arrayof Mlist} \ L \Rightarrow \text{Repr1} \ L \ E.
\]

Recall the specification of remove1 from question 3.2. The function remove2 admits the same specification, except with the representation predicate HashSet2 instead of HashSet1. Prove the correctness of remove with respect to this specification, by exploiting the specification already established for the function remove2 in question 3.7. (Expected answer: 15 lines.)