Basics of deductive program verification

Claude Marché

Cours MPRI 2-36-1 "Preuve de Programme"

10 décembre 2015

Preliminaries

- Very first question: lectures in English or in French?
- Lectures 1,2,3,4: Claude Marché
- Lectures 5,6,7,8: Arthur Charguéraud
- one week in February: lecture replaced by practical lab, support for project
- Evaluation:
 return date: Monday, February 15th, 2016
 - final exam E: Thursday, March 3rd or 10th, 2016, 08:45, same room as the lecture.
 - final mark = \((2E + P + \max(E,P))/4\)
- internships (stages)
- Slides, lectures notes on web page

Outline

- Introduction, Short History
- Classical Hoare Logic
 - A Simple Programming Language
 - Hoare Logic
 - Dijkstra’s Weakest Preconditions
- Exercises
- “Modern” Approach, Blocking Semantics
 - A ML-like Programming Language
 - Blocking Operational Semantics
 - Weakest Preconditions Revisited

General Objectives

- Ultimate Goal
 - Verify that software is free of bugs
- Famous software failures:
- This lecture
 - Computer-assisted approaches for verifying that a software conforms to a specification
Some general approaches to Verification

Static analysis, Algorithmic Verification
- **model checking** (automata-based models)
- **abstract interpretation** (domain-specific model, e.g. numerical)
- verification: fully automatic dedicated algorithms

Deductive verification
- formal models using expressive logics
- verification = computer-assisted mathematical proof

A long time before success

Computer-assisted verification is an old idea
- **Turing**, 1948
- **Floyd-Hoare logic**, 1969

Success in practice: only from the mid-1990s
- Importance of the *increase of performance of computers*

A first success story:
- **Paris metro line 14**, using **Atelier B** (1998, refinement approach)

Other Famous Success Stories

- **Flight control software of A380**: **Astree** verifies absence of run-time errors (2005, abstract interpretation)

- **Microsoft's hypervisor**: using Microsoft's **VCC** and the **Z3** automated prover (2008, deductive verification)

- More recently: verification of PikeOS
 - **Certified C compiler**, developed using the **Coq** proof assistant (2009, correct-by-construction code generated by a proof assistant)
 http://compcert.inria.fr/

- **L4.verified micro-kernel**, using tools on top of **Isabelle/HOL** proof assistant (2010, Haskell prototype, C code, proof assistant)
Outline

Introduction, Short History

Classical Hoare Logic

A Simple Programming Language

Hoare Logic

Dijkstra's Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics

A ML-like Programming Language

Blocking Operational Semantics

Weakest Preconditions Revisited

Syntax: expressions

\[
\begin{align*}
 e & ::= n \\
 & \mid x \\
 & \mid e \ op \ e \\
 op & ::= + \mid - \mid \ast \\
 & \mid = \mid \neq \mid < \mid > \mid \leq \mid \geq \\
 & \mid and \mid or
\end{align*}
\]

- Only one data type: unbounded integers
- Comparisons return an integer: 0 for “false”, −1 for “true
- There is no division

Consequences:
- Expressions are always well-typed
- Expressions always evaluate without error
- Expressions do not have any side effect

Syntax: statements

\[
\begin{align*}
 s & ::= \text{skip} \quad \text{(no effect)} \\
 & \mid x := e \quad \text{(assignment)} \\
 & \mid s; s \quad \text{(sequence)} \\
 & \mid \text{if } e \text{ then } s \text{ else } s \quad \text{(conditional)} \\
 & \mid \text{while } e \text{ do } s \quad \text{(loop)}
\end{align*}
\]

- Condition in if and while: 0 is “false”, non-zero is “true
- if without else: syntactic sugar for else skip.

Consequences:
- Statements have side effects
- All programs are well-typed
- There is no possible runtime error: all programs execute until their end or infinitely

Running Example

Three global variables \(n \), count, and sum

\[
\begin{align*}
 \text{count := 0; sum := 1;} \\
 \text{while sum \leq n do} \\
 \quad \text{count := count + 1; sum := sum + 2 * count + 1}
\end{align*}
\]

What does this program compute?

(assuming input is \(n \) and output is count)

Informal specification:
- at the end of execution of this program, count contains the square root of n, rounded downward
- e.g. for \(n=42 \), the final value of count is 6.
Propositions about programs

- To formally express properties of programs, we need a formal specification language
- We use standard first-order logic
- Syntax of formulas:
 \[p ::= e \mid p \land p \mid p \lor p \mid \neg p \mid p \Rightarrow p \mid \forall v, p \mid \exists v, p \]
 \[v : \text{logical variable} \]
 \[e : \text{program expressions, augmented with logical variables} \]

Hoare triples

- **Hoare triple**: notation \{P\} s \{Q\}
- P : formula called the **precondition**
- Q : formula called the **postcondition**

Intended meaning

\{P\} s \{Q\} is true if and only if:
when the program s is executed in any state satisfying P, then
(if execution terminates) its resulting state satisfies Q

This is a **Partial Correctness**: we say nothing if s does not terminates

Examples

Examples of valid triples for partial correctness:
- \{x = 1\} x := x + 2 \{x = 3\}
- \{x = y\} x := x + y \{x = 2 + y\}
- \{\exists v, x = 4 + v\} x := x + 42 \{\exists w, x = 2 + w\}
- \{true\} while 1 do skip \{false\}

Our running example:

\{?n \geq 0\} ISQRT {?count*count \leq n \land n < (count+1)*count+1}\}

Running Example: Demo

See file **imp_isqrt.mlw**

(This is the tool to use for the project, version 0.86.2)
Hoare logic as an Axiomatic Semantics

Original Hoare logic \[\sim 1970\]
Axiomatic Semantics of programs

Set of inference rules producing triples

\[
\{P\} \text{skip}\{P\} \\
\{P[x \leftarrow e]\} x := e(P) \\
\{P\} s_1\{Q\} \quad \{Q\} s_2\{R\} \\
\{P\} s_1; s_2\{R\}
\]

- Notation \(P[x \leftarrow e]\) : replace all occurrences of program variable \(x\) by \(e\) in \(P\).

Hoare Logic, continued

Frame rule:

\[
\frac{\{P\} s\{Q\}}{\{P \land R\} s\{Q \land R\}}
\]

with \(R\) a formula where no variables assigned in \(s\) occur

Consequence rule:

\[
\frac{\{P\}' s\{Q\}'} {\models P \Rightarrow P'} \quad \models Q' \Rightarrow Q
\]

- Example: proof of

\[
\{x = 1\} x := x + 2\{x = 3\}
\]

Example: isqrt(42)

Exercise: prove of the triple

\[
\{n \geq 0\} \text{ISQRT} \{\text{count} \times \text{count} \leq n \land n < (\text{count} + 1) \times (\text{count} + 1)\}
\]

Could we do that by hand?

Back to demo: file \texttt{imp_isqrt.mlw}

Warning
Finding an adequate loop invariant is a major difficulty
Beyond Axiomatic Semantics

- Operational Semantics
- Semantic Validity of Hoare Triples
- Hoare logic as correct deduction rules

Operational semantics

[Plotkin 1981, *structural operational semantics (SOS)*]

- we use a standard **small-step semantics**
- **program state**: describes content of global variables at a given time. It is a finite map Σ associating to each variable x its current value denoted $\Sigma(x)$.
- Value of an expression e in some state Σ:
 - denoted $[e]_\Sigma$
 - always defined, by the following recursive equations:
 \[
 [n]_\Sigma = n \\
 [x]_\Sigma = \Sigma(x) \\
 [e_1 \text{ op } e_2]_\Sigma = [e_1]_\Sigma [\text{ op }] [e_2]_\Sigma
 \]
 - $[\text{ op }]$ natural semantic of operator op on integers (with relational operators returning 0 for false and -1 for true).

Semantics of statements

Semantics of statements: defined by judgment

$$\Sigma, s \rightsquigarrow \Sigma', s'$$

meaning: in state Σ, executing one step of statement s leads to the state Σ' and the remaining statement to execute is s'.

The semantics is defined by the following rules.

$$\Sigma, x := e \rightsquigarrow \Sigma\{x \leftarrow [e]_\Sigma\}, \text{skip}$$

$$\Sigma, s_1 \rightsquigarrow \Sigma', s'_1$$

$$\Sigma, (s_1; s_2) \rightsquigarrow \Sigma', (s'_1; s_2)$$

$$\Sigma, (\text{skip}; s) \rightsquigarrow \Sigma, s$$

Semantics of statements, continued

$$\Sigma, \text{ if } e \text{ then } s_1 \text{ else } s_2 \rightsquigarrow \Sigma, s_1$$

$$\Sigma, \text{ if } e \text{ then } s_1 \text{ else } s_2 \rightsquigarrow \Sigma, s_2$$

$$\Sigma, \text{ while } e \text{ do } s \rightsquigarrow \Sigma, (s; \text{while } e \text{ do } s)$$

$$\Sigma, \text{ while } e \text{ do } s \rightsquigarrow \Sigma, \text{skip}$$
Execution of programs

- \(\leadsto \): a binary relation over pairs (state, statement)
- transitive closure: \(\leadsto^+ \)
- reflexive-transitive closure: \(\leadsto^* \)

In other words:

\[\Sigma, s \leadsto^* \Sigma', s' \]

means that statement \(s \), in state \(\Sigma \), reaches state \(\Sigma' \) with remaining statement \(s' \) after executing some finite number of steps.

Running example:

\[\{ n = 42, count = ?, sum = ? \}, \text{ISQR}T \leadsto^* \{ n = 42, count = 6, sum = 49 \}, \text{skip} \]

Execution and termination

- any statement except \(\text{skip} \) can execute in any state
- the statement \(\text{skip} \) alone represents the final step of execution of a program
- there is no possible runtime error.

Definition

Execution of statement \(s \) in state \(\Sigma \) terminates if there is a state \(\Sigma' \) such that

\[\Sigma, s \leadsto^* \Sigma', \text{skip} \]

since there are no possible runtime errors, \(s \) does not terminate means that \(s \) diverges (i.e. executes infinitely).

Semantics of formulas

- \(\mathcal{P} \) : semantics of formula \(p \) in program state \(\Sigma \)
- is a logic formula where no program variables appear anymore
- defined recursively as follows.

\[
\begin{align*}
[p]_{\Sigma} & = [e]_{\Sigma} \neq 0 \\
[p_1 \wedge p_2]_{\Sigma} & = [p_1]_{\Sigma} \wedge [p_2]_{\Sigma} \\
& \quad \ldots \\
[v]_{\Sigma} & = v \\
[x]_{\Sigma} & = \Sigma(x)
\end{align*}
\]

where semantics of expressions is augmented with

- \(\Sigma \models p \) : the formula \([p]_{\Sigma} \) is valid
- \(\models p \) : formula \([p]_{\Sigma} \) holds in all states \(\Sigma \).

Soundness

Definition (Partial correctness)

Hoare triple \(\{ P \} s \{ Q \} \) is said valid if:

for any states \(\Sigma, \Sigma' \), if

- \(\Sigma, s \leadsto^* \Sigma', \text{skip} \) and
- \(\Sigma \models P \)

then \(\Sigma' \models Q \)

Theorem (Soundness of Hoare logic)

The set of rules is correct: any derivable triple is valid.

This is proved by induction on the derivation tree of the considered triple.

For each rule: assuming that the triples in premises are valid, we show that the triple in conclusion is valid too.
Completeness
Two major difficulties for proving a program
▶ *guess the appropriate intermediate formulas* (for
sequence, for the loop invariant)
▶ *prove the logical premises of consequence rule*

Theoretical question: completeness. Are all valid triples
derivable from the rules?

Theorem (Relative Completeness of Hoare logic)
The set of rules of Hoare logic is *relatively* complete: if the logic
language is expressive enough, then any valid triple \{P\} \ s \ {Q}\n
\[\text{can be derived using the rules.}\]

[Cook, 1978]

“Expressive enough” is for example Peano arithmetic
(non-linear integer arithmetic)
Gives only hints on how to effectively determine suitable loop
invariants (see the theory of abstract interpretation [Cousot,
1990])

Annotated Programs

Goal
Add automation to the Hoare logic approach

We augment our simple language with *explicit loop invariants*

\[
\begin{align*}
\text{ } & \ s \ ::= \skip \quad \text{(no effect)} \\
| & \ x := e \quad \text{(assignment)} \\
| & \ s; s \quad \text{(sequence)} \\
| & \ \text{if } e \text{ then } s \text{ else } s \quad \text{(conditional)} \\
| & \ \text{while } e \text{ invariant } l \text{ do } s \quad \text{(annotated loop)}
\end{align*}
\]

▶ The operational semantics is unchanged.

Weakest liberal precondition

[Diakstra 1975]

Function \(\text{WLP}(s, Q)\):

▶ \(s\) is a statement
▶ \(Q\) is a formula
▶ returns a formula

It should return the *minimal precondition* \(P\) that validates the
triple \{P\} \ s \ {Q}\n
Definition of \(\text{WLP}(s, Q)\)

Recursive definition:

\[
\begin{align*}
\text{WLP}(\skip, Q) & = Q \\
\text{WLP}(x := e, Q) & = Q[x \leftarrow e] \\
\text{WLP}(s_1; s_2, Q) & = \text{WLP}(s_1, \text{WLP}(s_2, Q)) \\
\text{WLP}(\text{if } e \text{ then } s_1 \text{ else } s_2, Q) & = \\
& (e \neq 0 \Rightarrow \text{WLP}(s_1, Q)) \land (e = 0 \Rightarrow \text{WLP}(s_2, Q))
\end{align*}
\]
Definition of \(WLP(s, Q) \), continued

\[
WLP(\text{while } e \text{ invariant } I \text{ do } s, Q) = \\
y \mapsto I \land (\text{invariant true initially}) \\
\land \forall v_1, \ldots, v_k, \\
((e \neq 0 \land I) \Rightarrow WLP(I)) \land ((e = 0 \land I) \Rightarrow Q)[w_i \leftarrow v_i] \quad \text{(invariant preserved)} \\
\land ((\forall v \exists (v > 0 \land even(v)) \Rightarrow even(v - 2)) \land ((\forall v \exists (v \leq 0 \land even(v)) \Rightarrow even(v))) \quad \text{(invariant implies post)}
\]

where \(w_1, \ldots, w_k \) is the set of assigned variables in statement \(s \) and \(v_1, \ldots, v_k \) are fresh logic variables

Examples

\[
WLP(x := x + y, x = 2y) \equiv x + y = 2y
\]

\[
WLP(\text{while } y > 0 \text{ invariant } even(y) \text{ do } y := y - 2, even(y)) \equiv even(y) \land \\
\forall v, ((v > 0 \land even(v)) \Rightarrow even(v - 2)) \land ((v \leq 0 \land even(v)) \Rightarrow even(v))
\]

Soundness

Theorem (Soundness)

For all statement \(s \) and formula \(Q \), \(\{WLP(s, Q)\} s \{Q\} \) is valid.

Proof by induction on the structure of statement \(s \).

Consequence

For proving that a triple \(\{P\} s \{Q\} \) is valid, it suffices to prove the formula \(P \Rightarrow WLP(s, Q) \).

This is basically what Why3 does

Outline

- Introduction, Short History
- Classical Hoare Logic
 - A Simple Programming Language
 - Hoare Logic
 - Dijkstra’s Weakest Preconditions
- “Modern” Approach, Blocking Semantics
 - A ML-like Programming Language
 - Blocking Operational Semantics
 - Weakest Preconditions Revisited
- Exercises
Exercise 1

Consider the following (inefficient) program for computing the sum $a + b$.

```plaintext
x := a; y := b;
while y > 0 do
  x := x + 1; y := y - 1
```

(Why3 file to fill in: imp_sum.mlw)

- Propose a post-condition stating that the final value of x is the sum of the values of a and b
- Find an appropriate loop invariant
- Prove the program.

Exercise 2

The following program is one of the original examples of Floyd.

```plaintext
q := 0; r := x;
while r ≥ y do
  r := r - y; q := q + 1
```

(Why3 file to fill in: imp_euclide.mlw)

- Propose a formal precondition to express that x is assumed non-negative, y is assumed positive, and a formal post-condition expressing that q and r are respectively the quotient and the remainder of the Euclidean division of x by y.
- Find appropriate loop invariant and prove the correctness of the program.

Exercise 3

Let's assume given in the underlying logic the functions div2(x) and mod2(x) which respectively return the division of x by 2 and its remainder. The following program is supposed to compute, in variable r, the power x^n.

```plaintext
r := 1; p := x; e := n;
while e > 0 do
  if mod2(e) ≠ 0 then r := r * p;
  p := p * p;
  e := div2(e);
```

(Why3 file to fill in: power_int.mlw)

- Assuming that the power function exists in the logic, specify appropriate pre- and post-conditions for this program.
- Find an appropriate loop invariant, and prove the program.

Exercise 4

The Fibonacci sequence is defined recursively by $fib(0) = 0$, $fib(1) = 1$ and $fib(n + 2) = fib(n + 1) + fib(n)$. The following program is supposed to compute fib in linear time, the result being stored in y.

```plaintext
y := 0; x := 1; i := 0;
while i < n do
  aux := y; y := x; x := x + aux; i := i + 1
```

- Assuming fib exists in the logic, specify appropriate pre- and post-conditions.
- Prove the program.
Exercise (Exam 2011-2012)
In this exercise, we consider the simple language of the first lecture of this course, where expressions do not have any side effect.

1. **Prove that the triple**

 \[
 \{P\} x := e \{\exists v, \; e[x \leftarrow v] = x \wedge P[x \leftarrow v]\}
 \]

 is valid with respect to the operational semantics.

2. **Show that the triple above can be proved using the rules of Hoare logic.**

 Let us assume that we replace the standard Hoare rule for assignment by the rule

 \[
 \{P\} x := e \{\exists v, \; e[x \leftarrow v] = x \wedge P[x \leftarrow v]\}
 \]

3. **Show that the triple** \(\{P[x \leftarrow e]\} x := e\{P\}\) **can be proved with the new set of rules.**

Outline

- Introduction, Short History
- Classical Hoare Logic
 - A Simple Programming Language
 - Hoare Logic
 - Dijkstra’s Weakest Preconditions
- Exercises
 - “Modern” Approach, Blocking Semantics
 - A ML-like Programming Language
 - Blocking Operational Semantics
 - Weakest Preconditions Revisited

Summary of Previous Section

- Very simple programming language
 - program = sequence of statements
 - only global variables
 - only the integer data type, always well typed
- Formal operational semantics
 - small steps
 - no run-time errors
- Hoare logic:
 - Deduction rules for triples \(\{Pre\} s\{Post\}\)
 - Weakest Liberal Precondition (WLP):
 - if \(Pre \Rightarrow WLP(s, Post)\) then \(\{Pre\} s\{Post\}\) valid
 - In lecture notes: extensions for termination
 - Total correctness of triples
 - Weakest (Strict) Precondition

Next step

- Extend the language
 - more data types
 - *logic variables*: local and immutable
 - *labels* in specifications
- Handle termination issues:
 - prove properties on non-terminating programs
 - prove termination when wanted
- Prepare for adding later:
 - run-time errors (how to prove their absence)
 - local *mutable* variables, functions
 - complex data types
Extended Syntax: Generalities

- We want a few basic data types: int, bool, real, unit
- Former pure expressions are now called **terms**
- No difference between expressions and statements anymore

<table>
<thead>
<tr>
<th>previous section</th>
<th>now</th>
</tr>
</thead>
<tbody>
<tr>
<td>expression</td>
<td>term</td>
</tr>
<tr>
<td>formula</td>
<td>formula</td>
</tr>
<tr>
<td>statement</td>
<td>expression</td>
</tr>
</tbody>
</table>

Basically we consider

- A purely functional language (ML-like)
- with **global mutable variables**

 very restricted notion of modification of program states

Base Data Types, Operators, Terms

- **unit type**: type `unit`, only one constant `()`
- **Booleans**: type `bool`, constants `True, False`, operators `and, or, not`
- **integers**: type `int`, operators `+,-,*, (no division)`
- **reals**: type `real`, operators `+,-,*, (no division)`
- Comparisons of integers or reals, returning a boolean
- **“if-expression”**: written `if b then t1 else t2`

\[
t ::= \text{val} \quad \text{(values, i.e. constants)}
\]
\[
| \quad \text{v} \quad \text{(logic variables)}
\]
\[
| \quad \text{x} \quad \text{(program variables)}
\]
\[
| \quad t \text{ op } t \quad \text{(binary operations)}
\]
\[
| \quad \text{if } t \text{ then } t_1 \text{ else } t_2 \quad \text{(if-expression)}
\]

Local logic variables

We extend the syntax of terms by

\[
t ::= \text{let } \text{v} = t \text{ in } t
\]

Example: approximated cosine

```plaintext
let cos_x =
let y = x*x in
1.0 - 0.5 * y + 0.04166666 * y * y
in
...
```

Practical Notes

- Theorem provers (Alt-Ergo, CVC3, Z3) typically support these types
- may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas when needed (e.g. transformation of if-expressions and/or let-expressions into equivalent formulas)
Syntax: Formulas

Unchanged w.r.t to previous syntax, but also addition of local binding:

\[p ::= t \mid p \land p \mid p \lor p \mid \neg p \mid p \Rightarrow p \mid \forall v : \tau, \ p \mid \exists v : \tau, \ p \mid \text{let } v = t \text{ in } p \]

Types:

\[\tau ::= \text{int} \mid \text{real} \mid \text{bool} \mid \text{unit} \]

Typing judgment:

\[\Gamma \vdash t : \tau \]

where \(\Gamma \) maps identifiers to types:

- either \(v : \tau \) (logic variable, immutable)
- either \(x : \text{ref } \tau \) (program variable, mutable)

Important

- a reference is not a value
- there is no “reference on a reference”
- no aliasing

Typing rules

Constants:

\[\Gamma \vdash n : \text{int} \quad \Gamma \vdash r : \text{real} \]

\[\Gamma \vdash \text{True} : \text{bool} \quad \Gamma \vdash \text{False} : \text{bool} \]

Variables:

\[\begin{align*}
\Gamma, v : \tau & \vdash v : \tau \\
\Gamma, x : \text{ref } \tau & \vdash x : \tau
\end{align*} \]

Let binding:

\[\begin{align*}
\Gamma \vdash t_1 : \tau_1 & \quad \Gamma \vdash t_2 : \tau_2 \\
\Gamma, \{ v : \tau_1 \} & \vdash t_2 : \tau_2 \\
\Gamma & \vdash \text{let } v = t_1 \text{ in } t_2 : \tau_2
\end{align*} \]

Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local (immutable) variables

\(\Sigma \): maps program variables to values (a map)

\(\Pi \): maps logic variables to values (a stack)

\[\begin{align*}
\llbracket \text{val} \rrbracket_{\Sigma, n} & = \text{val} \\
\llbracket X \rrbracket_{\Sigma, n} & = \Sigma(x) \quad \text{if } X : \text{ref } \tau \\
\llbracket V \rrbracket_{\Sigma, n} & = \Pi(v) \quad \text{if } V : \tau \\
\llbracket t_1 \mathrel{\text{op}} t_2 \rrbracket_{\Sigma, n} & = \llbracket t_1 \rrbracket_{\Sigma, n} \llbracket \text{op} \rrbracket \llbracket t_2 \rrbracket_{\Sigma, n} \\
\llbracket \text{let } v = t_1 \text{ in } t_2 \rrbracket_{\Sigma, n} & = \llbracket t_2 \rrbracket_{\Sigma, ((v = t_1)_{\Sigma, n} \cdot \Pi)}
\end{align*} \]

Warning

Semantics is now a partial function
Type Soundness Property

Our logic language satisfies the following standard property of purely functional language

Theorem (Type soundness)

Every well-typed terms and well-typed formulas have a semantics

Proof: induction on the derivation tree of well-typing

Expressions: generalities

- Former statements are now expressions of type unit
- Expressions may have Side Effects
- Statement skip is identified with ()
- The sequence is replaced by a local binding
- From now on, the condition of the if then else and the while do in programs is a Boolean expression

Syntax

\[
\begin{align*}
e & ::= t \quad \text{(pure term)} \\
& \quad | e \ op \ e \quad \text{(binary operation)} \\
& \quad | x := e \quad \text{(assignment)} \\
& \quad | \text{let } v = e \ in \ e \quad \text{(local binding)} \\
& \quad | \text{if } e \ \text{then } e \ \text{else } e \quad \text{(conditional)} \\
& \quad | \text{while } e \ \text{do } e \quad \text{(loop)}
\end{align*}
\]

- sequence \(e_1; e_2 \) : syntactic sugar for

\[
\begin{align*}
\text{let } v = e_1 \ \text{in } e_2
\end{align*}
\]

when \(e_1 \) has type unit and \(v \) not used in \(e_2 \)

Toy Examples

\[
\begin{align*}
z & := \text{if } x \geq y \ \text{then } x \ \text{else } y \\
\text{let } v = r \ \text{in } (r := v + 42; \ v)
\end{align*}
\]

\[
\begin{align*}
\text{while } (x := x - 1; \ x > 0) \ \text{do } ()
\end{align*}
\]

\[
\begin{align*}
\text{while } (\text{let } v = x \ \text{in } x := x - 1; \ v > 0) \ \text{do } ()
\end{align*}
\]
Typing Rules for Expressions

Assignment:

\[
\frac{x : \text{ref } \tau \in \Gamma \quad \Gamma \vdash e : \tau}{\Gamma \vdash x := e : \text{unit}}
\]

Let binding:

\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \{v : \tau_1\} : \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{let } v = e_1 \text{ in } e_2 : \tau_2}
\]

Conditional:

\[
\frac{\Gamma \vdash c : \text{bool} \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } c \text{ then } e_1 \text{ else } e_2 : \tau}
\]

Loop:

\[
\frac{\Gamma \vdash c : \text{bool} \quad \Gamma \vdash e : \text{unit}}{\Gamma \vdash \text{while } c \text{ do } e : \text{unit}}
\]

Operational Semantics

Novelties

- Need for context rules
- Precise the order of evaluation: left to right

- One-step execution has the form

\[
\Sigma, \Pi, e \sim \Sigma', \Pi', e'
\]

- Values do not reduce

Operational Semantics, Continued

- Assignment

\[
\frac{\Sigma, \Pi, e \sim \Sigma', \Pi', e'}{\Sigma, \Pi, x := e \sim \Sigma', \Pi', x := e'}
\]

\[
\Sigma, \Pi, x := \text{val} \sim \Sigma[x := \text{val}], \Pi, ()
\]

- Let binding

\[
\frac{\Sigma, \Pi, e_1 \sim \Sigma', \Pi', e_1'}{\Sigma, \Pi, \text{let } v = e_1 \text{ in } e_2 \sim \Sigma', \Pi', \text{let } v = e_1' \text{ in } e_2}
\]

\[
\Sigma, \Pi, \text{let } v = \text{val} \text{ in } e \sim \Sigma, \{v = \text{val}\} \cdot \Pi, e
\]

- Binary operations

\[
\frac{\Sigma, \Pi, e_1 \sim \Sigma', \Pi', e_1'}{\Sigma, \Pi, e_1 + e_2 \sim \Sigma', \Pi', e_1' + e_2}
\]

\[
\frac{\Sigma, \Pi, e_2 \sim \Sigma', \Pi', e_2'}{\Sigma, \Pi, \text{val}_1 + e_2 \sim \Sigma', \Pi', \text{val}_1' + e_2}
\]

\[
\text{val} = \text{val}_1 + \text{val}_2
\]

\[
\Sigma, \Pi, \text{val}_1 + \text{val}_2 \sim \Sigma, \Pi, \text{val}
\]
Operational Semantics, Continued

- **Conditional**

 \[\Sigma, \Pi, c \leadsto \Sigma', \Pi', c' \]

 \[\Sigma, \Pi, \text{if } c \text{ then } e_1 \text{ else } e_2 \leadsto \Sigma', \Pi', \text{if } c' \text{ then } e_1 \text{ else } e_2 \]

 \[\Sigma, \Pi, \text{if } \text{True} \text{ then } e_1 \text{ else } e_2 \leadsto \Sigma, \Pi, e_1 \]

 \[\Sigma, \Pi, \text{if } \text{False} \text{ then } e_1 \text{ else } e_2 \leadsto \Sigma, \Pi, e_2 \]

- **Loop**

 \[\Sigma, \Pi, \text{while } c \text{ do } e \leadsto \Sigma, \Pi, \text{if } c \text{ then } (e; \text{while } c \text{ do } e) \text{ else } () \]

Context Rules versus Let Binding

Remark: most of the context rules can be avoided

- An equivalent operational semantics can be defined using let \(v = \ldots \text{ in } \ldots \) instead, e.g.:

 \[\Sigma, \Pi, e_1 + e_2 \leadsto \Sigma, \Pi, \text{let } \nu_1 = e_1 \text{ in let } \nu_2 = e_2 \text{ in } \nu_1 + \nu_2 \]

 \[\nu_1, \nu_2 \text{ fresh} \]

 \[\Sigma, \Pi, e_1 + e_2 \leadsto \Sigma, \Pi, \text{let } \nu_1 = e_1 \text{ in let } \nu_2 = e_2 \text{ in } \nu_1 + \nu_2 \]

 Thus, only the context rule for let is needed

Type Soundness

Theorem

Every well-typed expression evaluate to a value or execute infinitely

Classical proof:

- type is preserved by reduction
- execution of well-typed expressions that are not values can progress

Blocking Semantics: General Ideas

- add *assertions* in expressions
- failed assertions = "run-time errors"

First step: modify expression syntax with

- new expression: assertion
- adding loop invariant in loops

\[e ::= \text{assert } p \quad \text{(assertion)} \]
\[\text{while } e \text{ invariant } I \text{ do } e \quad \text{(annotated loop)} \]
Toy Examples

\[
\begin{align*}
z & := \text{if } x \geq y \text{ then } x \text{ else } y ; \\
& \text{assert } z \geq x \land z \geq y
\end{align*}
\]

\[
\begin{align*}
\text{while } (x := x - 1; x > 0) \\
& \text{invariant } x \geq 0 \text{ do } () ; \\
& \text{assert } (x = 0)
\end{align*}
\]

\[
\begin{align*}
\text{while } (\text{let } v = x \text{ in } x := x - 1; v > 0) \\
& \text{invariant } x \geq -1 \text{ do } () ; \\
& \text{assert } (x < 0)
\end{align*}
\]

Result value in post-conditions

New addition in the specification language:
- keyword `result` in post-conditions
- denotes the value of the expression executed

Example:

\[
\begin{align*}
& \{ \text{true } \} \\
& \text{if } x \geq y \text{ then } x \text{ else } y \\
& \{ \text{result } \geq x \land \text{result } \geq y \}
\end{align*}
\]

Blocking Semantics: Modified Rules

\[
\begin{align*}
& [P]_{\Sigma, \Pi} \text{ holds} \\
& \Sigma, \Pi, \text{assert } P \Rightarrow \Sigma, \Pi, ()
\end{align*}
\]

\[
\begin{align*}
& []_{\Sigma, \Pi} \text{ holds} \\
& \Sigma, \Pi, \text{while } C \text{ invariant } l \text{ do } e \Rightarrow \\
& \Sigma, \Pi, \text{if } C \text{ then } (e; \text{while } C \text{ invariant } l \text{ do } e) \text{ else } ()
\end{align*}
\]

Important

Execution blocks as soon as an invalid annotation is met

Soundness of a program

Definition

Execution of an expression in a given state is safe if it does not block: either terminates on a value or runs infinitely.

Definition

A triple \{P \} e(Q) is valid if for any state \Sigma, \Pi satisfying \ P, e executes safely in \Sigma, \Pi, and if it terminates, the final state satisfies \ Q.
Weakest Preconditions Revisited

Goal:
- construct a new calculus $\text{WP}(e, Q)$
- expected property: in any state satisfying $\text{WP}(e, Q)$, e is guaranteed to execute safely

Remark:
- Stating this for $Q = \text{true}$ is enough to ensure safety
- But need to state this for any Q to prove soundness (by induction)

New Weakest Precondition Calculus

- Pure terms:
 $$\text{WP}(t, Q) = Q[\text{result} \leftarrow t]$$

- Let binding:
 $$\text{WP(} \text{let} \ x = e_1 \ \text{in} \ e_2, Q) = \text{WP}(e_1, \text{WP}(e_2, Q)[x \leftarrow \text{result}])$$

Weakest Preconditions, continued

- Assignment:
 $$\text{WP}(x := e, Q) = \text{WP}(e, Q[\text{result} \leftarrow (); x \leftarrow \text{result}])$$

- Alternative:
 $$\text{WP}(x := e, Q) = \text{WP(} \text{let} \ v = e \ \text{in} \ x := v, Q)$$
 $$\text{WP}(x := t, Q) = Q[\text{result} \leftarrow (); x \leftarrow t]$$

WP: Exercise

$$\text{WP(} \text{let} \ v = x \ \text{in} \ (x := x + 1; v), x > \text{result}) = ?$$
Weakest Preconditions, continued

- Conditional
 \[
 \text{WP}(\text{if } e_1 \text{ then } e_2 \text{ else } e_3, Q) = \\
 \text{WP}(e_1, \text{if result then } \text{WP}(e_2, Q) \text{ else } \text{WP}(e_3, Q))
 \]

- Alternative with let: (exercise!)

Soundness of WP

Lemma (Preservation by Reduction)
If \(\Sigma, \Pi \models \text{WP}(e, Q) \) and \(\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e' \) then
\(\Sigma', \Pi' \models \text{WP}(e', Q) \)

Proof: predicate induction of \(\rightsquigarrow \).

Lemma (Progress)
If \(\Sigma, \Pi \models \text{WP}(e, Q) \) and \(e \) is not a value then there exists
\(\Sigma', \Pi, e' \) such that \(\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e' \)

Proof: structural induction of \(e \).

Corollary (Soundness)
If \(\Sigma, \Pi \models \text{WP}(e, Q) \) then \(e \) executes safely in \(\Sigma, \Pi \).

Bibliography

Bibliography

