
MPRI - Lecture 2-36-1 “Proof of Programs” Project 2019-2020

City of Lights

In this project, we are interested in specifying and proving correct two programs that solve one of the
programming problems of the ICPC SWERC 2018 semi-finals (Southwestern Europe Regional Contest
for on-site programming for students, https://swerc.eu/2018). The problem, called “City of Lights”, is
described in details in Section 1 of this document.

This project is to be carried out using the Why3 tool (version 1.2.1), in combination with automated
provers (Alt-Ergo 2.3.0, CVC4 1.7 and Z3 4.8.6). You can use other automatic provers or versions if you
want, if they are freely available and recognized by Why3. You may use Coq for discharging particular
proof obligations, although the project can be completed without it. The installation procedure may be
found on the web page of the course at URL https://www.lri.fr/~marche/MPRI-2-36-1/install.html.

The project must be done individually—team work is not allowed. In order to obtain a grade for the
project, you must send an e-mail to Claude.Marche@inria.fr and Jean-Marie.Madiot@inria.fr, no later
than Friday, February 7th, 2020 at 22:00 UTC+1. This e-mail should be entitled “MPRI project 2-36-1”,
be signed with your name, and have as attachment an archive (zip or tar.gz) storing the following items:

• The source file lights.mlw.

• The content of the sub-directory lights generated by Why3. In particular, this directory should
contain session files why3session.xml and why3shapes.gz, and Coq proof scripts, if any.

• A PDF document named report.pdf in which you report on your work. The contents of this report
counts for at least half of your grade for the project.

The report must be written in French or English, and should typically consist of 3 to 6 pages. The
structure should follow the sections and the questions of the present document. For each question, detail
your approach, focusing in particular on the design choices that you made regarding the implementations
and specifications. In particular, loop invariants and assertions that you add should be explained in your
report: what they mean and how they help to complete the proof.

A typical answer to a question or step would be: “For this function, I propose the following implemen-
tation: [give pseudo-code]. The contract of this function is [give a copy-paste of the contract]. It captures
the fact that [rephrase the contract in natural language]. To prove this code correct, I need to add extra an-
notations [give the loop invariants, etc.] capturing that [rephrase the annotations in english]. This invariant
is initially true because [explain]. It is preserved at each iteration because [explain]. The post-condition
then follows because [explain].”

The reader of your report should be convinced at each step that the contracts are the right ones, and
should be able to understand why your program is correct, e.g. why a loop invariant is initially true, why it
is preserved, and why it suffices to establish the post-condition. It is legitimate to copy-paste parts of your
Why3 code in the report, yet you should only copy the most relevant parts, not all of your code. In case you
are not able to fully complete a definition or a proof, you should carefully describe which parts are missing
and explain the problems that you faced.

In addition, your report should contain a conclusion, providing general feedback about your work: how
easy or how hard was it, what were the major difficulties, was there any unexpected result, and any other
information that you think is important to consider for the evaluation of the work you did.

1 The “City of Lights” Problem

We give here the exact transcript of the problem statement, extracted from the document https://swerc.
eu/2018/theme/problems/swerc.pdf.

1

https://swerc.eu/2018
https://www.lri.fr/~marche/MPRI-2-36-1/install.html
https://swerc.eu/2018/theme/problems/swerc.pdf
https://swerc.eu/2018/theme/problems/swerc.pdf


Paris has been called “ville lumière” (city of lights) since the 17th century. It earned this nickname in
part because of the many city lights illuminating famous sites such as monuments, statues, churches, or
fountains.

Those public lights in Paris are numbered from 1 to N and are all on by default. A group of hackers has
gained the capability to toggle groups of lights. Every time the hackers use their program, they cause
a number i (that they cannot control) to be sent to the system controlling the city lights. The lights
numbered i, 2i, 3i, and so on (up to N ) then change state instantly: lights that were on go off, and lights
that were off go on.

During the night, the hackers use their programs k times. What is the greatest number of lights that are
simultaneously off at the same time?

Input

The input comprises several lines, each consisting of a single integer:

• The first line contains the number N of lights.

• The second line contains the number k of uses hackers’s program.

• The next k lines contain a number i sent to the system controlling the lights.

Limits

• 1 ≤ N ≤ 1000000;

• 1 ≤ k ≤ 100;

• 1 ≤ i ≤ N .

Output

The output should consist of a single line, whose content is an integer, the greatest number of lights that
are simultaneously off at the same time

Sample Input

10

4

6

2

1

3

Sample Output

6

Sample Explanation

We start with a group of 10 lights which are all on.

1 2 3 4 5 6 7 8 9 10 ← 0 light is off

The hackers send the number 6: light 6 is toggled.

1 2 3 4 5 6 7 8 9 10 ← 1 light is off

They then send the number 2: lights 2, 4, 6, 8, and 10 are toggled.

1 2 3 4 5 6 7 8 9 10 ← 4 lights are off

The number 1 is then sent: all lights are toggled.
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1 2 3 4 5 6 7 8 9 10 ← 6 lights are off

They end up sending the number 3: lights 3, 6, and 9 are toggled.

1 2 3 4 5 6 7 8 9 10 ← 3 lights are off

The maximum number of lights off at the same time was 6

2 Specification of the Problem

We propose to model the problem by some first-order specifications which start by defining a data type
describing the full history of the sequence of turning lights off and on:

type lighting_configuration = {

number_of_lights : int;

number_of_use_of_hackers_program : int;

chosen_light_index : int → int;

light_on : int → int → bool;

}

The fields number_of_lights and number_of_use_of_hackers_program respectively represent the con-
stants N and k of the problem. The pure function chosen_light_index represents the sequence of light
numbers sent by the hackers’ program to the system controlling the lights, that is for each j, 1 ≤ j ≤ k,
(chosen_light_index j) denotes the light index i, 1 ≤ i ≤ N , sent to the system. These first three fields
thus denote abstractly the input values that are expected from the standard input on the original problem
statement. The fourth field light_on aims at representing the state (on or off) of the lights at each step of
the execution of the hackers’ program: (light_on j l) is true if light l is on at turn j, for each j, l such that
0 ≤ j ≤ k and 1 ≤ l ≤ N . The turn 0 corresponds to the initial state where all lights are on.

An object of type lighting_configuration does not necessarily represent a valid configuration, so we
specify valid configurations via the following three predicates:

predicate valid_lighting_at_initial_turn (n:int) (on:int → int → bool)

(** specifies that all lights are on initially, that is at turn 0 *)

predicate valid_lighting_sequence (n j:int) (li:int → int) (on:int → int → bool)

(** for each i between 1 and j, specifies which lights are on at turn ‘i‘ in

function of the lights on at turn ‘i-1‘ *)

predicate valid_lighting_configuration (c : lighting_configuration)

(** specifies that ‘c‘ is a fully valid configuration of lighting: the three

first fields respect the domain of values given in the problem, and the

lighting sequence it contains is valid *)

1. In file lights.mlw, complete the definitions of the three predicates above. You may use the modulus
function imported from the library int.EuclideanDivision: (mod x y) denotes x modulo y.

2. The constant sample given in file lights.mlw contains the configuration for the example given in the
problem. Check that the goal sample_is_valid is provable by some automatic prover.

The next step is to specify the expected answer to the problem, that is, to specify that the result of the
code that we are going to write is the maximum number of lights off along all the steps. We start by defining
a logic function that denotes the number of lights off in an abstract sequence:
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function number_of_lights_off (light:int→bool) (i j:int) : int

(** number of ‘l‘, ‘i ≤ l < j‘ such that ‘light l‘ is ‘false‘ *)

Notice that the first index i is counted but not the last index j. A canevas of its definition is given in the file
lights.mlw under the form of a ghost recursive function.

3. Complete the definition of number_of_lights_off

4. The lemma no_lights_off aims at proving that the predicate number_of_lights_off returns 0 when
it is given a function light that always returns true. That proof must be made by induction, so we
propose to use the mechanism of lemma functions. Complete the definition of no_lights_off so as
to be able to prove it with automatic provers.

The final step for formally specifying the City of Lights problem is to define a predicate

predicate city_of_lights_specification (c: lighting_configuration) (answer:int)

which expresses that answer is the expected answer for the input values given in configuration c. We
propose to define it in term of an auxiliary predicate

predicate city_of_lights_specification_aux (n j:int) (light_on:int→int→bool) (answer:int)

(** ‘answer‘ is the expected answer for ‘n‘ lights and ‘j‘ uses of the hackers’ program giving

then sequence of lighting described by ‘light_on‘ *)

5. Complete the definition of city_of_light_specification_aux

6. Prove the goal sample_specification which expresses that the expected answer for the sample input
is 6.

3 A Naive Implementation

This section proposes to prove a naive implementation of the problem, which iteratively computes the
successive configurations of lights in an array of Boolean values, computes the number of lights off in that
array and updates the known maximum stored in a mutable variable.

The first step is to define an auxiliary function compute_lights_off which, given an array of Boolean
values, computes the number of occurrences of False in it. Notice that since the lights are numbered from
1 in the problem, we do not consider the first cell of that array.

7. Fill the missing parts of the specification of compute_lights_off to express its intended behavior.

8. Add an appropriate loop invariant so as to prove that function correct.

The second step is the prove the function run_lights that solves the City of Lights problem, whose
code calls the previous function. It has the profile

run_lights (n:int) (k:int) (light_index:int → int) :

(max_lights_off:int, ghost c:lighting_configuration)

where n is the number of lights, k the number of use of hackers’ program, and light_index provides the
successives indexes of light. It returns a pair of the regular result max_lights_off and a ghost result c
reporting the lighting configuration that resulted from the computation. The ghost result c is used to give an
appropriate specification to run_lights, as already given in the canvas file. We suggest first to concentrate
on the proof of the post-condition expressing that the returned ghost lighting configuration is valid.

9. Add the necessary loop invariants to prove the post-condition on validity of the lighting configuration
c. In order to clearly separate that part of the proof with the next question, it is highly recommended
that you write your report at the same time your prove your code. Do not hesitate to report also the
issues you meet, why it is difficult, and how you decided to solve it.
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Finally let’s concentrate on the post-condition expressing that the regular result is correct.

10. Add the necessary loop invariants for proving the final post-condition expressing that
max_lights_off is the appropriate answer. Hint: you may need to insert an extra assertion before
the loop, to make explicit that the lighting configuration is valid on turn 0.

To play with the code, we now propose to extract that code to OCaml, and run a few tests. The command
for extracting the Why3 code to OCaml is as follows:

why3 extract -D ocaml64 -o lights.ml lights.mlw

There is a file test_lights.ml that can be used to test your code. Indeed the extraction and the OCaml
compilation can be run using simply

make tests

This will extract your code, compile the OCaml code to an executable and then run it. The code is run first
on the example given above, and then on a large sample with pseudo-random values.

11. Report the results obtain with your extracted code. Report the time taken on your computer to com-
pute the results, and comment.

4 A More Efficient Implementation

We propose now a better implementation, given by the pseudo-code below. The idea is that instead of
computing the number of lights off at each iteration of the outer loop, we maintain this number in an extra
mutable variable. Moreover, for the inner loop, instead of iterating on each cell of the array, we update only
the light indexes that are a multiple of the index chosen by the hackers’ program.

let max be 0

let current be 0

let a be an array of size n+1 with all cells initialized to true

for j from 1 to k do

let step be the j-th light index

let l be step

while l is less or equal n do

if a[l] is true then

set a[l] to false

increment current

else

set a[l] to true

decrement current

end if

set l to l + step

done;

if max < current then set max to current

done

return max

12. Implement this pseudo-code in Why3, by filling the canvas given for function run_lights_fast. Test
your implementation using make tests as described in previous section. Report the results and times
of computation on your computer, and comment.

13. Prove that your code is terminating and free of run-time errors. Explain any annotation that you
needed to add in your code.
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The next step is to prove the post-condition expressing that the returned ghost lighting configuration is
valid. For that purpose, you need to add ghost code in your program, similarly as in the code for the naive
implementation.

14. Prove the post-condition expressing that the returned ghost lighting configuration is valid. Explain
the ghost code and the extra annotations you needed to add. Hint: you may need to help provers by
stating (and proving it of course) some general lemmas about modulo, such as

∀x, y, z. x mod y = 0 ∧ x < z < x+ y → z mod y 6= 0

The last step is to prove the post-condition expressing that the computed result is correct.

15. Prove the last post-condition expressing that the computed result is correct. Explain the extra anno-
tations you needed to add. Hint: you may need to state (and prove) an additional lemma about the
framing of the number_of_lights_off, that is to express that the result of (number_of_lights_off
f i j) does not change when the function f is changed outside the range [i, j[. You may also invent
similar lemmas when f is changed inside the range [i, j[.

16. As a conclusion of your report, comment on the difficulties of proving the two different programs
solving the City of Lights problem.
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