Basics of Deductive Program Verification

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

3 décembre 2017
Very first question

Lectures in English or in French?
Very first question

Lectures in English or in French?

- Schedule on the Web page
 http://www.lri.fr/~marche/MPRI-2-36-1/
- Lectures 1,2,3,4: Claude Marché
- Lectures 5,6,7,8: Jean-Marie Madiot
- January 28th: lecture replaced by practical lab, support for project. Project due on February 7th.

Evaluation:
- project
- final exam: Monday, March 11th, 2018, 16:15, same room as the lecture.
- final mark = \[\frac{2E + P + \max(E, P)}{4}\]

internships (stages)
Very first question

Lectures in English or in French?

- Schedule on the Web page

 http://www.lri.fr/~marche/MPRI-2-36-1/

- Lectures 1,2,3,4: Claude Marché

- Lectures 5,6,7,8: Jean-Marie Madiot

- January 28th: lecture replaced by practical lab, support for project. Project due on February 7th.

- Evaluation:
 - project P using the Why3 tool (http://why3.lri.fr)
 - final exam E: Monday, March 11th, 2018, 16:15, same room as the lecture.
 - final mark $= \frac{2E + P + \max(E, P)}{4}$

- internships (stages)
Outline

Introduction, Short History

Preliminary on Automated Deduction
 Classical Propositional Logic
 First-order logic
 Logic Theories
 Limitations of Automatic Provers

Introduction to Deductive Verification
 Formal contracts
 Hoare Logic
 Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
 A ML-like Programming Language
 Blocking Operational Semantics
 Weakest Preconditions Revisited
General Objectives

Ultimate Goal

Verify that software is free of bugs

Famous software failures:
http://www.cs.tau.ac.il/~nachumd/horror.html

This lecture

Computer-assisted approaches for verifying that a software conforms to a specification
Some general approaches to Verification

Static analysis, Algorithmic Verification
- *model checking* (automata-based models)
- *abstract interpretation* (domain-specific model, e.g. numerical)

Deductive verification
- formal models using expressive logics
- verification = computer-assisted mathematical proof
Some general approaches to Verification

Refinement

- Formal models
- Code derived from model, correct by construction
A long time before success

Computer-assisted verification is an old idea
▶ Turing, 1948
▶ Floyd-Hoare logic, 1969

Success in practice: only from the mid-1990s
▶ Importance of the increase of performance of computers

A first success story:
▶ Paris metro line 14, using Atelier B (1998, refinement approach)
Other Famous Success Stories

http://www.astree.ens.fr/

▶ Microsoft’s hypervisor: using Microsoft’s *VCC* and the *Z3* automated prover (2008, deductive verification)
More recently: verification of PikeOS

▶ Certified C compiler, developed using the *Coq* proof assistant (2009, correct-by-construction code generated by a proof assistant)
http://compcert.inria.fr/

▶ L4.verified micro-kernel, using tools on top of *Isabelle/HOL* proof assistant (2010, Haskell prototype, C code, proof assistant)
Other Success Stories at Industry

- Frama-C
 - EDF: abstract interpretation
 - Airbus: deductive verification
- Spark/Ada: Verification of Ada programs
 https://www.adacore.com/industries

Remark
The two above use Why3 internally
Outline

Introduction, Short History

Preliminary on Automated Deduction
 Classical Propositional Logic
 First-order logic
 Logic Theories
 Limitations of Automatic Provers

Introduction to Deductive Verification
 Formal contracts
 Hoare Logic
 Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
 A ML-like Programming Language
 Blocking Operational Semantics
 Weakest Preconditions Revisited
Proposition logic in a nutshell

▶ Syntax:

\[\varphi ::= \bot \mid \top \mid A, B \quad \text{(atoms)} \]
\[\mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \]
\[\mid \varphi \rightarrow \varphi \mid \varphi \leftrightarrow \varphi \]

▶ Semantics, models: truth tables

\(\phi \) is satisfiable if it has a model
\(\phi \) is valid if true in all models
(equivalently \(\neg \phi \) is not satisfiable)

SAT is *decidable* \(\leadsto \) SAT solvers

Demo with Why3

propositional.mlw

Notice that Why3 indeed queries solvers for satisfiability of \(\neg \phi \)
First-order logic in a nutshell

- **Syntax:**

 \[\phi ::= \cdots \]

 \[P(t, \ldots, t) \quad \text{(predicates)} \]

 \[\forall x. \phi \ | \ \exists x. \phi \]

 \[t ::= x \quad \text{variables} \]

 \[f(t, \ldots, t) \quad \text{(function symbols)} \]

- **Semantics:** models must interpret variables. C

- **Satisfiability** *undecidable*, but still *semi-decidable*: there exists complete systems of deduction rules (sequent calculus, natural deduction, superposition calculus)

- **Examples of solvers:** E, Spass, Vampire

 Implement *refutationally complete* procedure:

 if they answer 'unsat' then formula is unsatisfiable

Demo with Why3

`first-order.mlw`

Notice that Why3 logic is *typed*, and application is curryied
Logic Theories

- **Theory** = set of formulas (called *theorems*) closed by logical consequence
- **Axiomatic Theory** = set of formulas generated by axioms (or axiom schemas)
- **Consistent Theory**
 - for no \(P, \neg P \) and \(P \) are both theorems
 - equivalently: ’false’ is not a theorem
 - equivalently: the theory has models
- **Consistent Axiomatization**
 - ’false’ is not derivable
Example: theory of equality

\[\forall x. \ x = x \]
\[\forall x, y. \ x = y \rightarrow y = x \]
\[\forall x, y, z. \ x = y \land y = z \rightarrow x = z \]

(congruence) for all function symbols \(f \) of arity \(k \):

\[\forall x_1, y_1 \ldots, x_k, y_k. \ x_1 = y_1 \land \cdots \land x_k = y_k \rightarrow f(x_1, \ldots, x_k) = f(y_1, \ldots, y_k) \]

and for all predicates \(p \) of arity \(k \):

\[\forall x_1, y_1 \ldots, x_k, y_k. \ x_1 = y_1 \land \cdots \land x_k = y_k \rightarrow p(x_1, \ldots, x_k) \rightarrow p(y_1, \ldots, y_k) \]

- General first-order deduction bad in such a case \(\rightsquigarrow \) dedicated methods
 - paramodulation
 - congruence closure (for quantifier-free fragment)
- SMT solvers (Alt-Ergo, CVC4, Z3) implement dedicated (semi-)decision procedures
Logic Theories

Theory of a given model
= formulas true in this model

- Central example: theory of linear integer arithmetic, i.e.
 formulas using $+$ and \leq
 - First-order theory is known to be decidable (Presburger)
 - SMT solvers typically implement a procedure for the
 existential fragment

- Also: theory of (non-linear) real arithmetic is decidable
 (Tarski)
Non-linear Integer Arithmetic

(a.k.a. Peano Arithmetic)

First-Order Integer Arithmetic

All valid first-order formulas on integers with $+$, \times and \leq

- This theory is not even semi-decidable
- SMT solvers implement incomplete satisfiability checks: if solver answers 'unsat' then it is unsatisfiable

Demo with Why3

arith.mlw
Digression about Non-linear Integer Arithmetic

Representation Theorem (Gödel)

Every recursive function f is representable by a predicate ϕ_f such that

$$\phi_f(x_1, \ldots, x_k, y)$$

is true if and only if

$$y = f(x_1, \ldots, x_k)$$

First incompleteness Theorem (Gödel)

That theory is not recursively axiomatizable
Summary of prover limitations

- Superposition solvers (E, Spass,)
 - do not support well theories except equality
 - do quite well with quantifiers
- SMT solvers (Alt-Ergo, CVC4, Z3)
 - several theories are built-in
 - weaker with quantifiers
- None support reasoning by induction
Outline

Introduction, Short History

Preliminary on Automated Deduction
 Classical Propositional Logic
 First-order logic
 Logic Theories
 Limitations of Automatic Provers

Introduction to Deductive Verification
 Formal contracts
 Hoare Logic
 Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
 A ML-like Programming Language
 Blocking Operational Semantics
 Weakest Preconditions Revisited
IMP language

A very basic imperative programming language

- only global variables
- only integer values for expressions
- basic statements:
 - assignment $x \leftarrow e$
 - sequence $s_1; s_2$
 - conditionals if e then s_1 else s_2
 - loops while e do s
 - no-op skip
Formal Contracts

General form of a program:

Contract
- **precondition**: expresses what is assumed before running the program
- **post-condition**: expresses what is supposed to hold when program exits

Demo with Why3

contracts.mlw
Hoare triples

- **Hoare triple**: notation \{P\}s\{Q\}
- **P**: formula called the *precondition*
- **Q**: formula called the *postcondition*

Intended meaning

\{P\}s\{Q\} is true if and only if:
when the program \(s\) is executed in any state satisfying \(P\), then
(if execution terminates) its resulting state satisfies \(Q\)

This is a *Partial Correctness*: we say nothing if \(s\) does not terminate
Examples of valid triples for partial correctness:

- $\{x = 1\} x \leftarrow x + 2 \{x = 3\}$
- $\{x = y\} x \leftarrow x + y \{x = 2 \times y\}$
- $\{\exists v. \ x = 4 \times v\} x \leftarrow x + 42 \{\exists w. \ x = 2 \times w\}$
- $\{true\} \text{while 1 do skip}\{false\}$
Running Example

Three global variables \(n \), \(\text{count} \), and \(\text{sum} \)

\[
\text{count} \leftarrow 0; \ \text{sum} \leftarrow 1;
\]

\textbf{while} \text{sum} \leq n \textbf{ do}

\[
\text{count} \leftarrow \text{count} + 1; \ \text{sum} \leftarrow \text{sum} + 2 \times \text{count} + 1
\]

What does this program compute?

(assuming input is \(n \) and output is \(\text{count} \))

Informal specification:

▶ at the end of execution of this program, \(\text{count} \) contains the square root of \(n \), rounded downward

▶ e.g. for \(n=42 \), the final value of \(\text{count} \) is 6.

See file \text{imp_isqrt.mlw}
Running Example

Three global variables \(n \), \(\text{count} \), and \(\text{sum} \)

\[
\text{count} \leftarrow 0; \; \text{sum} \leftarrow 1;
\]

\textbf{while} \; \text{sum} \leq \text{n} \; \textbf{do}

\[
\text{count} \leftarrow \text{count} + 1; \; \text{sum} \leftarrow \text{sum} + 2 \times \text{count} + 1
\]

What does this program compute?

(assuming input is \(n \) and output is \(\text{count} \))
Running Example

Three global variables \(n \), \(\text{count} \), and \(\text{sum} \)

\[
\text{count} \leftarrow 0; \, \text{sum} \leftarrow 1;
\text{while} \, \text{sum} \leq n \, \text{do}
\quad \text{count} \leftarrow \text{count} + 1; \, \text{sum} \leftarrow \text{sum} + 2 \times \text{count} + 1
\]

What does this program compute?
(assuming input is \(n \) and output is \(\text{count} \))

Informal specification:
- at the end of execution of this program, \(\text{count} \) contains the square root of \(n \), rounded downward
- e.g. for \(n=42 \), the final value of \(\text{count} \) is 6.

See file imp_isqrt.mlw
Hoare logic as an Axiomatic Semantics

Original Hoare logic [\(\sim 1970\)]

Axiomatic Semantics of programs

Set of *inference rules* producing triples

\[
\begin{align*}
\{P\} \text{skip} \{P\} \\
\{P[x \leftarrow e]\} x \leftarrow e \{P\} \\
\{P\} s_1 \{Q\} \quad \{Q\} s_2 \{R\} \\
\{P\} s_1 ; s_2 \{R\}
\end{align*}
\]

▶ Notation \(P[x \leftarrow e]\) : replace all occurrences of program variable \(x\) by \(e\) in \(P\).
Hoare Logic, continued

Frame rule:

\[
\frac{\{P\} s\{Q\}}{\{P \land R\} s\{Q \land R\}}
\]

with \(R\) a formula where no variables assigned in \(s\) occur

Consequence rule:

\[
\frac{\{P'\} s\{Q'\}}{\models P \rightarrow P' \quad \models Q' \rightarrow Q}
\]

\[
\frac{}{\{P\} s\{Q\}}
\]

Example: proof of

\[
\{x = 1\} x < x + 2 \{x = 3\}
\]
Hoare Logic, continued

Rules for if and while:

\[
\begin{align*}
\{P \land e\} s_1 \{Q\} & \quad \{P \land \neg e\} s_2 \{Q\} \\
\{P\} \text{if } e \text{ then } s_1 \text{ else } s_2 \{Q\}
\end{align*}
\]

\[
\begin{align*}
\{I \land e\} s \{I\} \\
\{I\} \text{while } e \text{ do } s \{I \land \neg e\}
\end{align*}
\]

I is called a loop invariant.
Example: isqrt(42)

Exercise: prove of the triple

\[
\{ n \geq 0 \} \ ISQRT \ \{ count^2 \leq n \land n < (count + 1)^2 \} \]
Example: isqrt(42)

Exercise: prove of the triple

\[\{ n \geq 0 \} \text{isqrt} \{ count^2 \leq n \land n < (count + 1)^2 \} \]

Could we do that by hand?
Example: isqrt(42)

Exercise: prove of the triple

\[\{ n \geq 0 \} \ ISQRT \ \{ count^2 \leq n \land n < (count + 1)^2 \} \]

Could we do that by hand?

Back to demo: file imp_isqrt.mlw
Example: $\text{isqrt}(42)$

Exercise: prove of the triple

$$\{ n \geq 0 \} \text{ISQRT} \{ count^2 \leq n \land n < (count + 1)^2 \}$$

Could we do that by hand?

Back to demo: file imp_isqrt.mlw

Warning

Finding an adequate loop invariant is a major difficulty
Beyond Axiomatic Semantics

- Operational Semantics
Beyond Axiomatic Semantics

- Operational Semantics
- Semantic Validity of Hoare Triples
Beyond Axiomatic Semantics

- Operational Semantics
- Semantic Validity of Hoare Triples
- Hoare logic as correct deduction rules
Operational semantics

[Plotkin 1981, structural operational semantics (SOS)]

- we use a standard small-step semantics
- **program state**: describes content of global variables at a given time. It is a finite map Σ associating to each variable x its current value denoted $\Sigma(x)$.
- Value of an expression e in some state Σ:
 - denoted $[e]_{\Sigma}$
 - always defined, by the following recursive equations:

\[
\begin{align*}
[n]_{\Sigma} & = n \\
[x]_{\Sigma} & = \Sigma(x) \\
[e_1 \ op \ e_2]_{\Sigma} & = [e_1]_{\Sigma} \ [op] \ [e_2]_{\Sigma}
\end{align*}
\]

- $[op]$ natural semantic of operator op on integers (with relational operators returning 0 for false and -1 for true).
Semantics of statements

Semantics of statements: defined by judgment

\[\Sigma, s \rightsquigarrow \Sigma', s' \]

meaning: in state \(\Sigma \), executing one step of statement \(s \) leads to the state \(\Sigma' \) and the remaining statement to execute is \(s' \). The semantics is defined by the following rules.

\[
\Sigma, x \leftarrow e \rightsquigarrow \Sigma\{x \leftarrow \llbracket e \rrbracket_{\Sigma}\}, \text{skip}
\]

\[
\Sigma, s_1 \rightsquigarrow \Sigma', s'_1
\]

\[
\Sigma, (s_1; s_2) \rightsquigarrow \Sigma', (s'_1; s_2)
\]

\[
\Sigma, (\text{skip}; s) \rightsquigarrow \Sigma, s
\]
Semantics of statements, continued

$$\begin{align*}
[e]_\Sigma &\neq 0 \\
\Sigma, \text{if } e \text{ then } s_1 \text{ else } s_2 &\trianglerighteq \Sigma, s_1 \\
[e]_\Sigma &\neq 0 \\
\Sigma, \text{while } e \text{ do } s &\trianglerighteq \Sigma, (s; \text{while } e \text{ do } s) \\
[e]_\Sigma &\neq 0 \\
\Sigma, \text{while } e \text{ do } s &\trianglerighteq \Sigma, \text{skip}
\end{align*}$$
Execution of programs

- \rightsquigarrow: a binary relation over pairs (state, statement)
- transitive closure: \rightsquigarrow^+
- reflexive-transitive closure: \rightsquigarrow^*

In other words:

$$\Sigma, s \rightsquigarrow^* \Sigma', s'$$

means that statement s, in state Σ, reaches state Σ' with remaining statement s' after executing some finite number of steps.

Running example:

$$\{n = 42, count = ?, sum = ?\}, ISQRT \rightsquigarrow^* \{n = 42, count = 6, sum = 49\}, \text{skip}$$
Execution and termination

- any statement except `skip` can execute in any state
- the statement `skip` alone represents the final step of execution of a program
- there is no possible *runtime error*.

Definition

Execution of statement s in state Σ *terminates* if there is a state Σ' such that $\Sigma, s \rightsquigarrow *\Sigma', \text{skip}$

- since there are no possible runtime errors, s does not terminate means that s *diverges* (i.e. executes infinitely).
Semantics of formulas

\([p]_\Sigma :\)

- semantics of formula \(p\) in program state \(\Sigma\)
- is a logic formula where no program variables appear anymore
- defined recursively as follows.

\[
\begin{align*}
\lbrack e \rbrack_\Sigma & = \lbrack e \rbrack_\Sigma \neq 0 \\
\lbrack p_1 \land p_2 \rbrack_\Sigma & = \lbrack p_1 \rbrack_\Sigma \land \lbrack p_2 \rbrack_\Sigma \\
& \vdots
\end{align*}
\]

where semantics of expressions is augmented with

\[
\begin{align*}
\lbrack v \rbrack_\Sigma & = v \\
\lbrack x \rbrack_\Sigma & = \Sigma(x)
\end{align*}
\]

Notations:

- \(\Sigma \models p\) : the formula \([p]_\Sigma\) is valid
- \(\models p\) : formula \([p]_\Sigma\) holds in all states \(\Sigma\).
Semantics of formulas

Other presentation of the semantics: $\llbracket p \rrbracket_\Sigma$:

- inline semantic of first-order formula
- $\llbracket e \rrbracket_\Sigma,\mathcal{V}$ with \mathcal{V} mapping of logic variables to integers.
- defined recursively as follows.

\[
\begin{align*}
\llbracket p_1 \land p_2 \rrbracket_\Sigma,\mathcal{V} &= \begin{cases}
\top & \text{if } \llbracket p_1 \rrbracket_\Sigma,\mathcal{V} = \top \text{ and } \llbracket p_2 \rrbracket_\Sigma,\mathcal{V} = \top \\
\bot & \text{otherwise}
\end{cases} \\
\llbracket \forall x. e \rrbracket &= \top \text{ if for all } v. \llbracket e \rrbracket_\Sigma,\mathcal{V}[x \leftarrow v] = \top \\
\vdots
\end{align*}
\]

where semantics of expressions is augmented with

\[
\begin{align*}
\llbracket v \rrbracket_\Sigma,\mathcal{V} &= \mathcal{V}(v) \\
\llbracket x \rrbracket_\Sigma,\mathcal{V} &= \Sigma(x)
\end{align*}
\]
Soundness

Definition (Partial correctness)
Hoare triple \(\{P\} s\{Q\} \) is said valid if:
for any states \(\Sigma, \Sigma' \), if
\[
\begin{align*}
\Sigma, s & \leadsto^* \Sigma', \text{skip and} \\
\Sigma & \models P
\end{align*}
\]
then \(\Sigma' \models Q \)

Theorem (Soundness of Hoare logic)
The set of rules is correct: any derivable triple is valid.

This is *proved by induction on the derivation tree* of the considered triple.
For each rule: assuming that the triples in premises are valid,
we show that the triple in conclusion is valid too.
Annotated Programs

Goal
Add automation to the Hoare logic approach

We augment IMP with *explicit loop invariants*

```
while e invariant I do s
```
Weakest liberal precondition

[Dijkstra 1975]

Function \(\text{WLP}(s, Q) \):

- \(s \) is a statement
- \(Q \) is a formula
- returns a formula

It should return the \textit{minimal precondition} \(P \) that validates the triple \(\{P\}s\{Q\} \).
Definition of $\text{WLP}(s, Q)$

Recursive definition:

\[
\begin{align*}
\text{WLP}(\text{skip}, Q) &= Q \\
\text{WLP}(x \leftarrow e, Q) &= Q[x \leftarrow e] \\
\text{WLP}(s_1; s_2, Q) &= \text{WLP}(s_1, \text{WLP}(s_2, Q)) \\
\text{WLP}(\text{if } e \text{ then } s_1 \text{ else } s_2, Q) &= \\
& (e \rightarrow \text{WLP}(s_1, Q)) \land (\neg e \rightarrow \text{WLP}(s_2, Q))
\end{align*}
\]
Definition of $\text{WLP}(s, Q)$, continued

$$\text{WLP}(\text{while } e \text{ invariant } l \text{ do } s, Q) =$$

$$l \land$$

$$(\forall v_1, \ldots, v_k. ((e \land l) \rightarrow \text{WLP}(s, l)) \land ((\neg e \land l) \rightarrow Q))[w_i \leftarrow v_i]$$

(invariant true initially)

(invariant preserved)

(invariant implies post)

where w_1, \ldots, w_k is the set of assigned variables in statement s

and v_1, \ldots, v_k are fresh logic variables
Examples

\[
\text{WLP}(x \leftarrow x + y, x = 2y) \equiv x + y = 2y
\]
Examples

\[WLP(x \leftarrow x + y, x = 2y) \equiv x + y = 2y \]

\[WLP(\text{while } y > 0 \text{ invariant } \text{even}(y) \text{ do } y \leftarrow y - 2, \text{even}(y)) \equiv \]
Examples

\[WLP(x \leftarrow x + y, x = 2y) \equiv x + y = 2y \]

\[WLP(\text{while } y > 0 \text{ invariant } even(y) \text{ do } y \leftarrow y - 2, even(y)) \equiv \]
\[even(y) \land \forall v, ((v > 0 \land even(v)) \rightarrow even(v - 2)) \land ((v \leq 0 \land even(v)) \rightarrow even(v)) \]
Soundness

Theorem (Soundness)

For all statement s and formula Q, $\{WLP(s, Q)\} s\{Q\}$ is valid.

Proof by induction on the structure of statement s.

Consequence

For proving that a triple $\{P\} s\{Q\}$ is valid, it suffices to prove the formula $P \rightarrow WLP(s, Q)$.

This is basically the goal that Why3 produces.
Digression: Completeness of Hoare Logic

Two major difficulties for proving a program

- *guess the appropriate intermediate formulas* (for sequence, for the loop invariant)
- *prove the logical premises of consequence rule*
Digression: Completeness of Hoare Logic

Two major difficulties for proving a program

- *guess the appropriate intermediate formulas* (for sequence, for the loop invariant)
- *prove the logical premises of consequence rule*

Theoretical question: completeness. Are all valid triples derivable from the rules?

Theorem (Relative Completeness of Hoare logic)

The set of rules of Hoare logic is relatively complete: if the logic language is expressive enough, then any valid triple \(\{P\} s \{Q\} \) can be derived using the rules.
Digression: Completeness of Hoare Logic

Two major difficulties for proving a program

▶ *guess the appropriate intermediate formulas* (for sequence, for the loop invariant)

▶ *prove the logical premises of consequence rule*

Theoretical question: completeness. Are all valid triples derivable from the rules?

Theorem (Relative Completeness of Hoare logic)

The set of rules of Hoare logic is relatively complete: if the logic language is expressive enough, then any valid triple \(\{P\} s \{Q\} \)*

can be derived using the rules.

[Cook, 1978] “Expressive enough”: representability of any recursive function

Yet, this does not provide an effective recipe to discover suitable loop invariants (see also the theory of abstract interpretation *[Cousot, 1990]*)
Outline

Introduction, Short History

Preliminary on Automated Deduction
 Classical Propositional Logic
 First-order logic
 Logic Theories
 Limitations of Automatic Provers

Introduction to Deductive Verification
 Formal contracts
 Hoare Logic
 Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
 A ML-like Programming Language
 Blocking Operational Semantics
 Weakest Preconditions Revisited
Exercise 1

Consider the following (inefficient) program for computing the sum $a + b$.

```plaintext
x <- a; y <- b;
while y > 0 do
  x <- x + 1; y <- y - 1
```

(Why3 file to fill in: `imp_sum.ml`)

- Propose a post-condition stating that the final value of x is the sum of the values of a and b
- Find an appropriate loop invariant
- Prove the program.
Exercise 2

The following program is one of the original examples of Floyd.

\[
q \leftarrow 0; \ r \leftarrow x;
\]

\[
\textbf{while } r \geq y \textbf{ do}
\]

\[
\begin{align*}
 & r \leftarrow r - y; \\
 & q \leftarrow q + 1
\end{align*}
\]

(Why3 file to fill in: \textit{imp_euclide.ml”)}

- Propose a formal precondition to express that \(x \) is assumed non-negative, \(y \) is assumed positive, and a formal post-condition expressing that \(q \) and \(r \) are respectively the quotient and the remainder of the Euclidean division of \(x \) by \(y \).

- Find appropriate loop invariant and prove the correctness of the program.
Exercise 3

Let’s assume given in the underlying logic the functions div2(x) and mod2(x) which respectively return the division of x by 2 and its remainder. The following program is supposed to compute, in variable \(r \), the power \(x^n \).

\[
\begin{align*}
r &\leq 1; \quad p \leftarrow x; \quad e \leftarrow n; \\
\text{while } e > 0 \text{ do} & \\
& \quad \text{if } \text{mod2}(e) \neq 0 \text{ then } r \leftarrow r \times p; \\
& \quad \quad p \leftarrow p \times p; \\
& \quad \quad e \leftarrow \text{div2}(e);
\end{align*}
\]

(Why3 file to fill in: power_int.mlw)

- Assuming that the power function exists in the logic, specify appropriate pre- and post-conditions for this program.
- Find an appropriate loop invariant, and prove the program.
Exercise 4

The Fibonacci sequence is defined recursively by \(\text{fib}(0) = 0 \), \(\text{fib}(1) = 1 \) and \(\text{fib}(n + 2) = \text{fib}(n + 1) + \text{fib}(n) \). The following program is supposed to compute \(\text{fib} \) in linear time, the result being stored in \(y \).

\[
\text{y <- 0; x <- 1; i <- 0;}
\]

\[
\text{while i < n do}
\]

\[
\text{aux <- y; y <- x; x <- x + aux; i <- i + 1}
\]

- Assuming \(\text{fib} \) exists in the logic, specify appropriate pre- and post-conditions.
- Prove the program.
Exercise (Exam 2011-2012)

In this exercise, we consider the simple language of the first lecture of this course, where expressions do not have any side effect.

1. *Prove that the triple*

\[\{ P \} x \leftarrow e \{ \exists v, \; e[x \leftarrow v] = x \land P[x \leftarrow v] \} \]

is valid with respect to the operational semantics.

2. *Show that the triple above can be proved using the rules of Hoare logic.*

Let us assume that we replace the standard Hoare rule for assignment by the rule

\[\{ P \} x \leftarrow e \{ \exists v, \; e[x \leftarrow v] = x \land P[x \leftarrow v] \} \]

3. *Show that the triple* \(\{ P[x \leftarrow e] \} x \leftarrow e \{ P \} \)* *can be proved with the new set of rules.*
Outline

Introduction, Short History

Preliminary on Automated Deduction
 Classical Propositional Logic
 First-order logic
 Logic Theories
 Limitations of Automatic Provers

Introduction to Deductive Verification
 Formal contracts
 Hoare Logic
 Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
 A ML-like Programming Language
 Blocking Operational Semantics
 Weakest Preconditions Revisited
Beyond IMP and classical Hoare Logic

Extended language

- more data types
- *logic variables*: local and **immutable**
- *labels* in specifications

Handle termination issues:

- prove properties on non-terminating programs
- prove termination when wanted

Prepare for adding later:

- run-time errors (how to prove their absence)
- local **mutable** variables, functions
- complex data types
Extended Syntax: Generalities

- We want a few basic data types: `int`, `bool`, `real`, `unit`
- No difference between expressions and statements anymore

Basically we consider
- A purely functional language (ML-like)
- with *global mutable variables*

very restricted notion of modification of program states
Base Data Types, Operators, Terms

- unit type: type `unit`, only one constant `()`
- Booleans: type `bool`, constants `True, False`, operators `and, or, not`
- integers: type `int`, operators `+, −, ×` (no division)
- reals: type `real`, operators `+, −, ×` (no division)
- Comparisons of integers or reals, returning a boolean
- “if-expression”: written `if b then t₁ else t₂`

\[
t ::= val \quad \text{(values, i.e. constants)}
\]
\[
| v \quad \text{(logic variables)}
\]
\[
| x \quad \text{(program variables)}
\]
\[
| t \text{ op } t \quad \text{(binary operations)}
\]
\[
| \text{if } t \text{ then } t \text{ else } t \quad \text{(if-expression)}
\]
Local logic variables

We extend the syntax of terms by

\[t ::= \text{let } v = t \text{ in } t \]

Example: approximated cosine

```plaintext
let cos_x =
  let y = x*x in
  1.0 - 0.5 * y + 0.04166666 * y * y
in
...
```
Practical Notes

- Theorem provers (Alt-Ergo, CVC4, Z3) typically support these types
- may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas when needed (e.g. transformation of if-expressions and/or let-expressions into equivalent formulas)
Syntax: Formulas

Unchanged w.r.t to previous syntax, but also addition of local binding:

\[p ::= t \] \hspace{2cm} \text{(boolean term)}
\[p \land p | p \lor p | \neg p | p \to p \] \hspace{2cm} \text{(connectives)}
\[\forall v : \tau, p | \exists v : \tau, p \] \hspace{2cm} \text{(quantification)}
\[\text{let } v = t \text{ in } p \] \hspace{2cm} \text{(local binding)}
Typing

- Types:
 \[\tau ::= \text{int} \mid \text{real} \mid \text{bool} \mid \text{unit} \]

- Typing judgment:
 \[\Gamma \vdash t : \tau \]
 where \(\Gamma \) maps identifiers to types:
 - either \(v : \tau \) (logic variable, immutable)
 - either \(x : \text{ref } \tau \) (program variable, mutable)

Important
- a reference is not a value
- there is no “reference on a reference”
- no aliasing
Typing rules

Constants:

\[\Gamma \vdash n : \text{int} \quad \Gamma \vdash r : \text{real} \]

\[\Gamma \vdash \text{True} : \text{bool} \quad \Gamma \vdash \text{False} : \text{bool} \]

Variables:

\[\Gamma \vdash v : \tau \in \Gamma \quad \Gamma \vdash x : \text{ref } \tau \in \Gamma \]

\[\Gamma \vdash v : \tau \quad \Gamma \vdash x : \tau \]

Let binding:

\[\Gamma \vdash t_1 : \tau_1 \quad \{ v : \tau_1 \} \cdot \Gamma \vdash t_2 : \tau_2 \]

\[\Gamma \vdash \text{let } v = t_1 \text{ in } t_2 : \tau_2 \]

- All terms have a base type (not a reference)
- In practice: Why3, unlike OCaml, does not require to write !x for references
Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local (immutable) variables

- ▶ Σ: maps program variables to values (a map)
- ▶ Π: maps logic variables to values (a stack)

\[
\begin{align*}
 \llbracket \text{val} \rrbracket_{\Sigma, \Pi} &= \text{val} & \text{(values)} \\
 \llbracket x \rrbracket_{\Sigma, \Pi} &= \Sigma(x) & \text{if } x : \text{ref } \tau \\
 \llbracket v \rrbracket_{\Sigma, \Pi} &= \Pi(v) & \text{if } v : \tau \\
 \llbracket t_1 \text{ op } t_2 \rrbracket_{\Sigma, \Pi} &= \llbracket t_1 \rrbracket_{\Sigma, \Pi} \llbracket \text{ op } \rrbracket \llbracket t_2 \rrbracket_{\Sigma, \Pi} \\
 \llbracket \text{let } v = t_1 \text{ in } t_2 \rrbracket_{\Sigma, \Pi} &= \llbracket t_2 \rrbracket_{\Sigma, \{v=\llbracket t_1 \rrbracket_{\Sigma, \Pi}\}} \cdot \Pi
\end{align*}
\]

Warning

Semantics is a partial function, it is not defined on ill-typed formulas
Our logic language satisfies the following standard property of purely functional language

Theorem (Type soundness)

Every well-typed terms and well-typed formulas have a semantics

Proof: induction on the derivation tree of well-typing
Expressions: generalities

- Former statements of IMP are now expressions of type `unit`
- Expressions may have Side Effects
- Statement `skip` is identified with `()`
- The sequence is replaced by a local binding
- From now on, the condition of the `if` `then` `else` and the `while` `do` in programs is a Boolean expression
Syntax

\[e ::= t \quad \text{(pure term)} \]
\[e \ op \ e \quad \text{(binary operation)} \]
\[x \ <- \ e \quad \text{(assignment)} \]
\[\text{let } v = e \text{ in } e \quad \text{(local binding)} \]
\[\text{if } e \text{ then } e \text{ else } e \quad \text{(conditional)} \]
\[\text{while } e \text{ do } e \quad \text{(loop)} \]

- sequence \(e_1; e_2 \): syntactic sugar for
 \[\text{let } v = e_1 \text{ in } e_2 \]

 when \(e_1 \) has type \text{unit} and \(v \) not used in \(e_2 \).
Toy Examples

\[
\begin{align*}
z &\leftarrow \text{if } x \geq y \text{ then } x \text{ else } y \\
\text{let } v &= r \text{ in } (r \leftarrow v + 42; v) \\
\text{while } (x \leftarrow x - 1; x > 0) \text{ do } () \\
\text{while } (\text{let } v = x \text{ in } x \leftarrow x - 1; v > 0) \text{ do } ()
\end{align*}
\]
Typing Rules for Expressions

Assignment:

\[
\frac{\text{x : ref } \tau \in \Gamma \quad \Gamma \vdash e : \tau}{\Gamma \vdash x \leftarrow e : \text{unit}}
\]

Let binding:

\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \{ v : \tau_1 \} \cdot \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{let } v = e_1 \text{ in } e_2 : \tau_2}
\]

Conditional:

\[
\frac{\Gamma \vdash c : \text{bool} \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } c \text{ then } e_1 \text{ else } e_2 : \tau}
\]

Loop:

\[
\frac{\Gamma \vdash c : \text{bool} \quad \Gamma \vdash e : \text{unit}}{\Gamma \vdash \text{while } c \text{ do } e : \text{unit}}
\]
Operational Semantics

Novelty w.r.t. IMP

Need to precise the order of evaluation: left to right

- one-step execution has the form

\[\Sigma, \Pi, e \leadsto \Sigma', \Pi', e' \]

- values do not reduce
Operational Semantics

▷ Assignment

\[\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e' \]

\[\Sigma, \Pi, x \leftarrow e \rightsquigarrow \Sigma', \Pi', x \leftarrow e' \]

\[\Sigma, \Pi, x \leftarrow \text{val} \rightsquigarrow \Sigma[x \leftarrow \text{val}], \Pi, () \]

▷ Let binding

\[\Sigma, \Pi, e_1 \rightsquigarrow \Sigma', \Pi', e'_1 \]

\[\Sigma, \Pi, \text{let } v = e_1 \text{ in } e_2 \rightsquigarrow \Sigma', \Pi', \text{let } v = e'_1 \text{ in } e_2 \]

\[\Sigma, \Pi, \text{let } v = \text{val} \text{ in } e \rightsquigarrow \Sigma, \{ v = \text{val} \} \cdot \Pi, e \]
Operational Semantics, Continued

- Binary operations

\[
\begin{align*}
\Sigma, \Pi, e_1 & \rightsquigarrow \Sigma', \Pi', e'_1 \\
\Sigma, \Pi, e_1 + e_2 & \rightsquigarrow \Sigma', \Pi', e'_1 + e_2 \\
\Sigma, \Pi, e_2 & \rightsquigarrow \Sigma', \Pi', e'_2 \\
\Sigma, \Pi, val_1 + e_2 & \rightsquigarrow \Sigma', \Pi', val_1 + e'_2 \\
val & = val_1 + val_2
\end{align*}
\]
Operational Semantics, Continued

- Conditional

\[
\Sigma, \Pi, c \leadsto \Sigma', \Pi', c' \\
\Sigma, \Pi, \text{if } c \text{ then } e_1 \text{ else } e_2 \leadsto \Sigma', \Pi', \text{if } c' \text{ then } e_1 \text{ else } e_2
\]

- Loop

\[
\Sigma, \Pi, \text{while } c \text{ do } e \leadsto \\
\Sigma, \Pi, \text{if } c \text{ then } (e; \text{while } c \text{ do } e) \text{ else } ()
\]
Context Rules versus Let Binding

Remark: most of the context rules can be avoided

▶ An equivalent operational semantics can be defined using `let v = ... in ...` instead, e.g.:

\[\Sigma, \Pi, e_1 + e_2 \rightsquigarrow \Sigma, \Pi, let v_1 = e_1 in let v_2 = e_2 in v_1 + v_2 \]

▶ Thus, only the context rule for `let` is needed
Type Soundness

Theorem

Every well-typed expression evaluate to a value or execute infinitely

Classical proof:

- type is preserved by reduction
- execution of well-typed expressions that are not values can progress
Blocking Semantics: General Ideas

- add *assertions* in expressions
- failed assertions = “run-time errors”

First step: modify expression syntax with
- new expression: assertion
- adding loop invariant in loops

\[
e ::= \text{assert } p \quad \text{(assertion)} \\
| \quad \text{while } e \text{ invariant } \text{/do } e \quad \text{(annotated loop)}
\]
Toy Examples

\[z <- \text{if } x \geq y \text{ then } x \text{ else } y ; \]
\[\text{assert } z \geq x \land z \geq y \]

\[\text{while } (x <- x - 1; x > 0) \]
\[\quad \text{invariant } x \geq 0 \text{ do } (); \]
\[\text{assert } (x = 0) \]

\[\text{while } (\text{let } v = x \text{ in } x <- x - 1; v > 0) \]
\[\quad \text{invariant } x \geq -1 \text{ do } (); \]
\[\text{assert } (x < 0) \]
Result value in post-conditions

New addition in the specification language:

- keyword `result` in post-conditions
- denotes the value of the expression executed

Example:

```plaintext
{ true }
if x ≥ y then x else y
{ result ≥ x ∧ result ≥ y }
```
Blocking Semantics: Modified Rules

\[
\begin{align*}
\text{[}\mathcal{P}\text{]}_{\Sigma, \Pi, \text{holds}}& \\
\Sigma, \Pi, \text{assert } \mathcal{P} & \leadsto \Sigma, \Pi, ()
\end{align*}
\]

\[
\begin{align*}
\text{[}\mathcal{I}\text{]}_{\Sigma, \Pi, \text{holds}}& \\
\Sigma, \Pi, \text{while } c \text{ invariant } \mathcal{I} \text{ do } e & \leadsto \\
\Sigma, \Pi, \text{if } c \text{ then } (e; \text{while } c \text{ invariant } \mathcal{I} \text{ do } e) \text{ else } ()
\end{align*}
\]

Important

Execution blocks as soon as an invalid annotation is met
Soundness of a program

Definition

Execution of an expression in a given state is *safe* if it does not block: either terminates on a value or runs infinitely.

Definition

A triple \(\{P\} e \{Q\} \) is valid if for any state \(\Sigma, \Pi \) satisfying \(P \), \(e \) *executes safely* in \(\Sigma, \Pi \), and if it terminates, the final state satisfies \(Q \).
Goal:
- construct a new calculus \(WP(e, Q) \)

Expected property: in any state satisfying \(WP(e, Q) \),
- \(e \) is guaranteed to execute safely
- if it terminates, \(Q \) holds in the final state
New Weakest Precondition Calculus

- Pure terms:
 \[WP(t, Q) = Q[result \leftarrow t] \]

- Let binding:
 \[
 WP(\text{let } x = e_1 \text{ in } e_2, Q) = \\
 WP(e_1, WP(e_2, Q)[x \leftarrow result])
 \]
Weakest Preconditions, continued

▶ Assignment:

$$WP(x \leftarrow e, Q) = WP(e, Q[result \leftarrow (); x \leftarrow result])$$

▶ Alternative:

$$WP(x \leftarrow e, Q) = WP(let \; v = e \; in \; x \leftarrow v, Q)$$
$$WP(x \leftarrow t, Q) = Q[result \leftarrow (); x \leftarrow t])$$
WP: Exercise

\[WP(\text{let } v = x \text{ in } (x \leftarrow x + 1; v), x \geq \text{result}) = ? \]
Weakest Preconditions, continued

- **Conditional**

\[
WP(\text{if } e_1 \text{ then } e_2 \text{ else } e_3, Q) = \\
WP(e_1, \text{if } result \text{ then } WP(e_2, Q) \text{ else } WP(e_3, Q))
\]

- **Alternative with let:** (exercise!)
Weakest Preconditions, continued

- **Assertion**

 \[
 \text{WP}(\text{assert } P, Q) = P \land Q = P \land (P \rightarrow Q)
 \]

 (second version useful in practice)

- **While loop**

 \[
 \text{WP}(\text{while } c \text{ invariant } l \text{ do } e, Q) = \\
 l \land \\
 \forall \vec{v}, (l \rightarrow \text{WP}(c, \text{if result then WP}(e, l) \text{ else } Q))[w_i \leftarrow v_i]
 \]

 where \(w_1, \ldots, w_k\) is the set of assigned variables in expressions \(c\) and \(e\) and \(v_1, \ldots, v_k\) are fresh logic variables
Soundness of **WP**

Lemma (Preservation by Reduction)

If \(\Sigma, \Pi \models WP(e, Q) \) *and* \(\Sigma, \Pi, e \leadsto \Sigma', \Pi', e' \) *then* \(\Sigma', \Pi' \models WP(e', Q) \)

Proof: predicate induction of \(\leadsto \) .

Lemma (Progress)

If \(\Sigma, \Pi \models WP(e, Q) \) *and* \(e \) *is not a value then there exists* \(\Sigma', \Pi, e' \) *such that* \(\Sigma, \Pi, e \leadsto \Sigma', \Pi', e' \)

Proof: structural induction of \(e \).

Corollary (Soundness)

If \(\Sigma, \Pi \models WP(e, Q) \) *then*

- \(e \) *executes safely in* \(\Sigma, \Pi \).
- *if execution terminates,* \(Q \) *holds in the final state*
Bibliography

Bibliography

