Basics of Deductive Program Verification

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

3 décembre 2017

Preliminaries

Very first question
Lectures in English or in French?

Schedule on the Web page
http://www.lri.fr/~marche/MPRI-2-36-1/

Lectures 1,2,3,4: Claude Marché
Lectures 5,6,7,8: Jean-Marie Madiot
January 28th: lecture replaced by practical lab, support for project. Project due on February 7th.

Evaluation:
project P using the Why3 tool (http://why3.lri.fr)
final exam E: Monday, March 11th, 2018, 16:15, same room as the lecture.
final mark = $\frac{2E + P + \max(E, P)}{4}$
internships (stages)

Outline

Introduction, Short History
Preliminary on Automated Deduction
Classical Propositional Logic
First-order logic
Logic Theories
Limitations of Automatic Provers
Introduction to Deductive Verification
Formal contracts
Hoare Logic
Dijkstra’s Weakest Preconditions
Exercises
“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

General Objectives

Ultimate Goal
Verify that software is free of bugs

Famous software failures:
http://www.cs.tau.ac.il/~nachumd/horror.html

This lecture
Computer-assisted approaches for verifying that a software conforms to a specification
Some general approaches to Verification

Static analysis, Algorithmic Verification
- model checking (automata-based models)
- abstract interpretation (domain-specific model, e.g. numerical)

Deductive verification
- formal models using expressive logics
- verification = computer-assisted mathematical proof

Refinement
- Formal models
- Code derived from model, correct by construction

A long time before success

Computer-assisted verification is an old idea
- Turing, 1948
- Floyd-Hoare logic, 1969

Success in practice: only from the mid-1990s
- Importance of the increase of performance of computers

A first success story:
- Paris metro line 14, using Atelier B (1998, refinement approach)

Other Famous Success Stories
 http://www.astree.ens.fr/
- Microsoft's hypervisor: using Microsoft's VCC and the Z3 automated prover (2008, deductive verification)
 More recently: verification of PikeOS
- Certified C compiler, developed using the Coq proof assistant (2009, correct-by-construction code generated by a proof assistant)
 http://compcert.inria.fr/
- L4.verified micro-kernel, using tools on top of Isabelle/HOL proof assistant (2010, Haskell prototype, C code, proof assistant)
Other Success Stories at Industry

- Frama-C
 - EDF: abstract interpretation
 - Airbus: deductive verification
- Spark/Ada: Verification of Ada programs

https://www.adacore.com/industries

Remark

The two above use Why3 internally

Outline

Introduction, Short History

Preliminary on Automated Deduction
 - Classical Propositional Logic
 - First-order logic
 - Logic Theories
 - Limitations of Automatic Provers

Introduction to Deductive Verification
 - Formal contracts
 - Hoare Logic
 - Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
 - A ML-like Programming Language
 - Blocking Operational Semantics
 - Weakest Preconditions Revisited

Proposition logic in a nutshell

Syntax:

\[\varphi ::= \bot \mid \top \mid A, B \quad \text{(atoms)} \]
\[\varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \]
\[\varphi \rightarrow \varphi \mid \varphi \leftrightarrow \varphi \]

Semantics, models: truth tables

- \(\varphi \) is satisfiable if it has a model
- \(\varphi \) is valid if true in all models
 (equivalently \(\neg \varphi \) is not satisfiable)

SAT is **decidable** \(\iff \) SAT solvers

Demo with Why3

propositional.mlw

Notice that Why3 indeed queries solvers for satisfiability of \(\neg \varphi \)

First-order logic in a nutshell

Syntax:

\[\varphi ::= \ldots \]
\[P(t, \ldots, t) \quad \text{(predicates)} \]
\[\forall x. \varphi \mid \exists x. \varphi \]
\[t ::= x \mid f(t, \ldots, t) \quad \text{variables} \]

Semantics: models must interpret variables. C

Satisfiability **undecidable**, but still **semi-decidable**: there exists complete systems of deduction rules (sequent calculus, natural deduction, superposition calculus)

Examples of solvers: E, Spass, Vampire

Implement **refutationally complete** procedure:

if they answer ‘unsat’ then formula is unsatisfiable

Demo with Why3

first-order.mlw

Notice that Why3 logic is **typed**, and application is curried
Logic Theories

- **Theory** = set of formulas (called *theorems*) closed by logical consequence
- **Axiomatic Theory** = set of formulas generated by axioms (or axiom schemas)
- **Consistent Theory**
 for no \(P, \overline{P} \) are both theorems
 equivalently: 'false' is not a theorem
 equivalently: the theory has models
- **Consistent Axiomatization**
 'false' is not derivable

Example: theory of equality

\[
\forall x. x = x \\
\forall x, y. x = y \rightarrow y = x \\
\forall x, y, z. x = y \land y = z \rightarrow x = z
\]
(congruence) for all function symbols \(f \) of arity \(k \):
\[
\forall x_1, y_1, \ldots, x_k, y_k. x_1 = y_1 \land \cdots \land x_k = y_k \rightarrow f(x_1, \ldots, x_k) = f(y_1, \ldots, y_k)
\]
and for all predicates \(p \) of arity \(k \):
\[
\forall x_1, y_1, \ldots, x_k, y_k. x_1 = y_1 \land \cdots \land x_k = y_k \rightarrow p(x_1, \ldots, x_k) \rightarrow p(y_1, \ldots, y_k)
\]

- General first-order deduction bad in such a case \(\rightarrow \) dedicated methods
 - paramodulation
 - congruence closure (for quantifier-free fragment)
- SMT solvers (Alt-Ergo, CVC4, Z3) implement dedicated (semi-)decision procedures

Logic Theories

- **Theory of a given model**
 = formulas true in this model

 - Central example: theory of linear integer arithmetic, i.e. formulas using \(+, \times, \leq\)
 - First-order theory is known to be decidable (Presburger)
 - SMT solvers typically implement a procedure for the existential fragment
 - Also: theory of (non-linear) real arithmetic is decidable (Tarski)

Non-linear Integer Arithmetic

(a.k.a. Peano Arithmetic)

- **First-Order Integer Arithmetic**
 All valid first-order formulas on integers with \(+, \times\) and \(\leq\)
 - This theory is not even semi-decidable
 - SMT solvers implement incomplete satisfiability checks:
 if solver answers 'unsat' then it is unsatisfiable

 Demo with Why3
 arith.mlw
Digression about Non-linear Integer Arithmetic

Representation Theorem (Gödel)
Every recursive function \(f \) is representable by a predicate \(\phi_f \) such that
\[
\phi_f(x_1, \ldots, x_k, y)
\]
is true if and only if
\[
y = f(x_1, \ldots, x_k)
\]

First incompleteness Theorem (Gödel)
That theory is not recursively axiomatizable

Summary of prover limitations

- Superposition solvers (E, Spass,)
 - do not support well theories except equality
 - do quite well with quantifiers
- SMT solvers (Alt-Ergo, CVC4, Z3)
 - several theories are built-in
 - weaker with quantifiers
- None support reasoning by induction

Outline

- Introduction, Short History
- Preliminary on Automated Deduction
 - Classical Propositional Logic
 - First-order logic
 - Logic Theories
 - Limitations of Automatic Provers
- Introduction to Deductive Verification
 - Formal contracts
 - Hoare Logic
 - Dijkstra’s Weakest Preconditions
- Exercises
 - “Modern” Approach, Blocking Semantics
 - A ML-like Programming Language
 - Blocking Operational Semantics
 - Weakest Preconditions Revisited

IMP language

A very basic imperative programming language
- only global variables
- only integer values for expressions
- basic statements:
 - assignment \(x \leftarrow e \)
 - sequence \(S_1; S_2 \)
 - conditionals \(\text{if } e \text{ then } S_1 \text{ else } S_2 \)
 - loops \(\text{while } e \text{ do } S \)
 - no-op \(\text{skip} \)
Formal Contracts

General form of a program:

Contract

- **precondition**: expresses what is assumed before running the program
- **post-condition**: expresses what is supposed to hold when program exits

Demo with Why3

contracts.mlw

Hoare triples

- **Hoare triple**: notation $\{P\} s \{Q\}$
- **P**: formula called the **precondition**
- **Q**: formula called the **postcondition**

Intended meaning

$\{P\} s \{Q\}$ is true if and only if:

- when the program s is executed in any state satisfying P, then (if execution terminates) its resulting state satisfies Q

This is a **Partial Correctness**: we say nothing if s does not terminate

Examples

Examples of valid triples for partial correctness:

- $\{x = 1\} x \leftarrow x + 2 \{x = 3\}$
- $\{x = y\} x \leftarrow x + y \{x = 2 \ast y\}$
- $\{\exists v. x = 4 \ast v\} x \leftarrow x + 42 \{\exists w. x = 2 \ast w\}$
- $\{true\} \text{while 1 do skip}\{false\}$

Running Example

Three global variables n, count, and sum

```
count <- 0; sum <- 1;
while sum <= n do
  count <- count + 1; sum <- sum + 2 \ast count + 1
```

What does this program compute?

(assuming input is n and output is count)

Informal specification:

- at the end of execution of this program, count contains the square root of n, rounded downward
- e.g. for $n=42$, the final value of count is 6.

See file imp_isqrt.mlw
Hoare logic as an Axiomatic Semantics

Original Hoare logic [\sim 1970]

Axiomatic Semantics of programs

Set of *inference rules* producing triples

\[
\begin{align*}
\{P\}\text{skip}\{P\} \\
\{P[x \leftarrow e]\} x \leftarrow e\{P\} \\
\{P\}s_1\{Q\} \quad \{Q\}s_2\{R\} \\
\{P\}s_1; s_2\{R\}
\end{align*}
\]

- Notation \(P[x \leftarrow e]\) : replace all occurrences of program variable \(x\) by \(e\) in \(P\).

Hoare Logic, continued

Frame rule:

\[
\frac{\{P\}s\{Q\}}{\{P \land R\}s\{Q \land R\}}
\]

with \(R\) a formula where no variables assigned in \(s\) occur

Consequence rule:

\[
\frac{\{P'\}s\{Q'\} \models P \rightarrow P' \models Q' \rightarrow Q}{\{P\}s\{Q\}}
\]

- Example: proof of

\[
\{x = 1\} x \leftarrow x + 2\{x = 3\}
\]

Hoare Logic, continued

Rules for if and while:

\[
\frac{\{P \land e\}s_1\{Q\} \quad \{P \land \neg e\}s_2\{Q\}}{\{P\}\text{if }e \text{ then } s_1 \text{ else } s_2\{Q\}}
\]

\[
\frac{\{I \land e\}s\{I\}}{\{I\}\text{while }e \text{ do } s\{I \land \neg e\}}
\]

- \(I\) is called a *loop invariant.*

Example: isqrt(42)

Exercise: prove of the triple

\[
\{n \geq 0\} \text{ISQRT } \{\text{count}^2 \leq n \land n < (\text{count} + 1)^2\}
\]

Could we do that by hand?

Back to demo: file *imp_isqrt.mlw*

Warning

Finding an adequate loop invariant is a major difficulty
Beyond Axiomatic Semantics

- Operational Semantics
- Semantic Validity of Hoare Triples
- Hoare logic as correct deduction rules

Operational semantics

[Plotkin 1981, structural operational semantics (SOS)]

- we use a standard small-step semantics
- program state: describes content of global variables at a given time. It is a finite map Σ associating to each variable x its current value denoted $\Sigma(x)$.
- Value of an expression e in some state Σ:
 - denoted $[e]_{\Sigma}$
 - always defined, by the following recursive equations:
 - $[n]_{\Sigma} = n$
 - $[x]_{\Sigma} = \Sigma(x)$
 - $[e_1 \text{ op } e_2]_{\Sigma} = [e_1]_{\Sigma} \text{ op } [e_2]_{\Sigma}$
- $[\text{op}]$ natural semantic of operator op on integers (with relational operators returning 0 for false and -1 for true).

Semantics of statements

Semantics of statements: defined by judgment

$$\Sigma, s \leadsto \Sigma', s'$$

meaning: in state Σ, executing one step of statement s leads to the state Σ' and the remaining statement to execute is s'.

The semantics is defined by the following rules.

$$\Sigma, x \leftarrow e \leadsto \Sigma\{x \leftarrow [e]_{\Sigma}\}, \text{skip}$$

$$\Sigma, s_1 \leadsto \Sigma', s'_1$$

$$\Sigma, (s_1; s_2) \leadsto \Sigma', (s'_1; s_2)$$

$$\Sigma, (\text{skip}; s) \leadsto \Sigma, s$$

Semantics of statements, continued

$$[[e]]_{\Sigma} \neq 0$$

$$\Sigma, \text{if } e \text{ then } s_1 \text{ else } s_2 \leadsto \Sigma, s_1$$

$$[[e]]_{\Sigma} = 0$$

$$\Sigma, \text{if } e \text{ then } s_1 \text{ else } s_2 \leadsto \Sigma, s_2$$

$$[[e]]_{\Sigma} \neq 0$$

$$\Sigma, \text{while } e \text{ do } s \leadsto \Sigma, (s; \text{while } e \text{ do } s)$$

$$[[e]]_{\Sigma} = 0$$

$$\Sigma, \text{while } e \text{ do } s \leadsto \Sigma, \text{skip}$$
Execution of programs

- \rightsquigarrow : a binary relation over pairs (state, statement)
- transitive closure: \rightsquigarrow^+
- reflexive-transitive closure: \rightsquigarrow^*

In other words:

$$\Sigma, s \rightsquigarrow^* \Sigma', s'$$

means that statement s, in state Σ, reaches state Σ' with remaining statement s' after executing some finite number of steps.

Running example:

$$\{n = 42, count = ?, sum = ?\}, ISRT \rightsquigarrow^* \{n = 42, count = 6, sum = 49\}, skip$$

Execution and termination

- any statement except skip can execute in any state
- the statement skip alone represents the final step of execution of a program
- there is no possible runtime error.

Definition

Execution of statement s in state Σ terminates if there is a state Σ' such that $\Sigma, s \rightsquigarrow^* \Sigma', \text{skip}$

- since there are no possible runtime errors, s does not terminate means that s diverges (i.e. executes infinitely).

Semantics of formulas

- $[p]_\Sigma$:
 - semantics of formula p in program state Σ
 - is a logic formula where no program variables appear anymore
 - defined recursively as follows.

$$[\mathbf{true}]_\Sigma = \top$$
$$[\mathbf{false}]_\Sigma = \bot$$
$$[p_1 \land p_2]_\Sigma = [p_1]_\Sigma \land [p_2]_\Sigma$$

where semantics of expressions is augmented with

$$[\exists \mathbf{v}. e]_\Sigma, \nu = \top$$
$$[\forall \mathbf{x}. e]_\Sigma = \top$$

Notations:

- $\Sigma \vdash p$: the formula $[p]_\Sigma$ is valid
- $\vdash p$: formula $[p]_\Sigma$ holds in all states Σ.

Semantics of formulas

Other presentation of the semantics: $[p]_\Sigma$

- inline semantic of first-order formula
- $[e]_{\Sigma, \nu}$ with ν mapping of logic variables to integers.
- defined recursively as follows.

$$[\mathbf{true}]_{\Sigma, \nu} = \top$$
$$[\mathbf{false}]_{\Sigma, \nu} = \bot$$
$$[p_1 \land p_2]_{\Sigma, \nu} = [p_1]_{\Sigma, \nu} \land [p_2]_{\Sigma, \nu}$$

where semantics of expressions is augmented with

$$[\exists \mathbf{v}. e]_{\Sigma, \nu} = \nu(\mathbf{v})$$
$$[\forall \mathbf{x}. e]_{\Sigma, \nu} = \Sigma(\mathbf{x})$$
Soundness

Definition (Partial correctness)

Hoare triple \{P\}s\{Q\} is said valid if:
for any states \(\Sigma, \Sigma'\), if
- \(\Sigma, s \leadsto *\Sigma', \text{skip and}\)
- \(\Sigma \models P\)

then \(\Sigma' \models Q\)

Theorem (Soundness of Hoare logic)

The set of rules is correct: any derivable triple is valid.

This is proved by induction on the derivation tree of the considered triple.
For each rule: assuming that the triples in premises are valid, we show that the triple in conclusion is valid too.

Annotated Programs

Goal

Add automation to the Hoare logic approach

We augment IMP with *explicit loop invariants*

```plaintext
while e invariant l do s
```

Weakest liberal precondition

[Dijkstra 1975]

Function \(\text{WLP}(s, Q)\):
- \(s\) is a statement
- \(Q\) is a formula
- returns a formula

It should return the *minimal precondition* \(P\) that validates the triple \{P\}s\{Q\}

Definition of \(\text{WLP}(s, Q)\)

Recursive definition:

\[
\begin{align*}
\text{WLP(skip, } Q) &= Q \\
\text{WLP}(x < e, Q) &= Q[x \leftarrow e] \\
\text{WLP}(s_1; s_2, Q) &= \text{WLP}(s_1, \text{WLP}(s_2, Q)) \\
\text{WLP}(\text{if } e \text{ then } s_1 \text{ else } s_2, Q) &= (e \rightarrow \text{WLP}(s_1, Q)) \land (\neg e \rightarrow \text{WLP}(s_2, Q))
\end{align*}
\]
Definition of $WLP(s, Q)$, continued

\[WLP(\text{while } \varnothing \text{ invariant } l \text{ do } s, Q) = \]
\[l \land (\text{invariant true initially}) \]
\[\forall v_1, \ldots, v_k. \]
\[(((e \land l) \rightarrow WLP(s, I)) \land ((\neg e \land l) \rightarrow Q))[w_i \leftarrow v] \land (\text{invariant preserved}) \]
\[(\text{invariant implies post}) \]

where \(w_1, \ldots, w_k \) is the set of assigned variables in statement \(s \) and \(v_1, \ldots, v_k \) are fresh logic variables

Examples

\[WLP(x \leftarrow x + y, x = 2y) \equiv x + y = 2y \]

\[WLP(\text{while } y > 0 \text{ invariant } even(y) \text{ do } y \leftarrow y - 2, \text{even}(y)) \equiv \]
\[even(y) \land \forall v, ((v > 0 \land even(v)) \rightarrow even(v - 2)) \land ((v \leq 0 \land even(v)) \rightarrow even(v)) \]

Soundness

Theorem (Soundness)

For all statement \(s \) and formula \(Q \), \(\{WLP(s, Q)\}s\{Q\} \) is valid.

Proof by induction on the structure of statement \(s \).

Consequence

For proving that a triple \(\{P\}s\{Q\} \) is valid, it suffices to prove the formula \(P \rightarrow WLP(s, Q) \).

This is basically the goal that Why3 produces

Digression: Completeness of Hoare Logic

Two major difficulties for proving a program

- guess the appropriate intermediate formulas (for sequence, for the loop invariant)
- prove the logical premises of consequence rule

Theoretical question: completeness. Are all valid triples derivable from the rules?

Theorem (Relative Completeness of Hoare logic)

The set of rules of Hoare logic is relatively complete: if the logic language is expressive enough, then any valid triple \(\{P\}s\{Q\} \) can be derived using the rules.

Yet, this does not provide an effective recipe to discover suitable loop invariants (see also the theory of abstract interpretation [Cousot, 1990])
Outline

Introduction, Short History
Preliminary on Automated Deduction
 Classical Propositional Logic
 First-order logic
 Logic Theories
 Limitations of Automatic Provers
Introduction to Deductive Verification
 Formal contracts
 Hoare Logic
 Dijkstra’s Weakest Preconditions
Exercises

“Modern” Approach, Blocking Semantics
 A ML-like Programming Language
 Blocking Operational Semantics
 Weakest Preconditions Revisited

Exercises

Exercise 1

Consider the following (inefficient) program for computing the sum $a + b$.

```plaintext
x <- a; y <- b;
while y > 0 do
  x <- x + 1; y <- y - 1
```

(Why3 file to fill in: `imp_sum.mlw`)

▶ Propose a post-condition stating that the final value of x is the sum of the values of a and b
▶ Find an appropriate loop invariant
▶ Prove the program.

Exercise 2

The following program is one of the original examples of Floyd.

```plaintext
q <- 0; r <- x;
while r >= y do
  r <- r - y; q <- q + 1
```

(Why3 file to fill in: `imp_euclide.mlw`)

▶ Propose a formal precondition to express that x is assumed non-negative, y is assumed positive, and a formal post-condition expressing that q and r are respectively the quotient and the remainder of the Euclidean division of x by y.
▶ Find appropriate loop invariant and prove the correctness of the program.

Exercise 3

Let’s assume given in the underlying logic the functions $\text{div2}(x)$ and $\text{mod2}(x)$ which respectively return the division of x by 2 and its remainder. The following program is supposed to compute, in variable r, the power x^n.

```plaintext
r <= 1; p <- x; e <- n;
while e > 0 do
  if mod2(e) != 0 then r <- r * p;
  p <- p * p;
  e <- div2(e);
```

(Why3 file to fill in: `power_int.mlw`)

▶ Assuming that the power function exists in the logic, specify appropriate pre- and post-conditions for this program.
▶ Find an appropriate loop invariant, and prove the program.
Exercise 4

The Fibonacci sequence is defined recursively by \(\text{fib}(0) = 0 \), \(\text{fib}(1) = 1 \) and \(\text{fib}(n + 2) = \text{fib}(n + 1) + \text{fib}(n) \). The following program is supposed to compute \(\text{fib} \) in linear time, the result being stored in \(y \).

\[
y \leftarrow 0; \quad x \leftarrow 1; \quad i \leftarrow 0;
\]
\[
\text{while } i < n \text{ do}
\]
\[
\quad \text{aux} \leftarrow y; \quad y \leftarrow x; \quad x \leftarrow x + \text{aux}; \quad i \leftarrow i + 1
\]

▶ Assuming \(\text{fib} \) exists in the logic, specify appropriate pre- and post-conditions.

▶ Prove the program.

Outline

Introduction, Short History

Preliminary on Automated Deduction
 Classical Propositional Logic
 First-order logic
 Logic Theories
 Limitations of Automatic Provers

Introduction to Deductive Verification
 Formal contracts
 Hoare Logic
 Dijkstra’s Weakest Preconditions

Exercises

“Modern” Approach, Blocking Semantics
 A ML-like Programming Language
 Blocking Operational Semantics
 Weakest Preconditions Revisited

Beyond IMP and classical Hoare Logic

Extended language
 ▶ more data types
 ▶ \textit{logic variables}: local and immutable
 ▶ \textit{labels} in specifications

Handle termination issues:
 ▶ prove properties on non-terminating programs
 ▶ prove termination when wanted

Prepare for adding later:
 ▶ run-time errors (how to prove their absence)
 ▶ local \textit{mutable} variables, functions
 ▶ complex data types

Exercise (Exam 2011-2012)

In this exercise, we consider the simple language of the first lecture of this course, where expressions do not have any side effect.

1. \textit{Prove that the triple}

\[
\{ P \} x \leftarrow e \{ \exists v, \ e[x \leftarrow v] = x \land P[x \leftarrow v] \}
\]

\textit{is valid with respect to the operational semantics.}

2. \textit{Show that the triple above can be proved using the rules of Hoare logic.}

Let us assume that we replace the standard Hoare rule for assignment by the rule

\[
\{ P \} x \leftarrow e \{ \exists v, \ e[x \leftarrow v] = x \land P[x \leftarrow v] \}
\]

3. \textit{Show that the triple} \(\{ P[x \leftarrow e] \} x \leftarrow e \{ P \} \) \textit{can be proved with the new set of rules.}
Extended Syntax: Generalities

- We want a few basic data types: int, bool, real, unit
- No difference between expressions and statements anymore

Basically we consider
- A purely functional language (ML-like)
- with global mutable variables
 very restricted notion of modification of program states

Base Data Types, Operators, Terms

- unit type: type unit, only one constant ()
- Booleans: type bool, constants True, False, operators and, or, not
- integers: type int, operators +, −, × (no division)
- reals: type real, operators +, −, × (no division)
- Comparisons of integers or reals, returning a boolean
- "if-expression": written if b then t₁ else t₂

\[
\begin{align*}
t &::= &\text{val} &\quad &\text{(values, i.e. constants)} \\
& &\text{v} &\quad &\text{(logic variables)} \\
& &\text{x} &\quad &\text{(program variables)} \\
& &t \ op \ t &\quad &\text{(binary operations)} \\
& &\text{if} \ t \ \text{then} \ t_1 \ \text{else} \ t_2 &\quad &\text{(if-expression)} \\
\end{align*}
\]

Local logic variables

We extend the syntax of terms by

\[
t ::= \text{let } v = t \ \text{in } t
\]

Example: approximated cosine

```plaintext
let cos_x = 
  let y = x*x in 
  1.0 - 0.5 * y + 0.04166666 * y * y 
  in
...
```

Practical Notes

- Theorem provers (Alt-Ergo, CVC4, Z3) typically support these types
- may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas when needed (e.g. transformation of if-expressions and/or let-expressions into equivalent formulas)
Syntax: Formulas

Unchanged w.r.t to previous syntax, but also addition of local binding:

\[p ::= t \mid p \land p \mid p \lor p \mid \neg p \mid p \Rightarrow p \] (connectives)
\[\forall v : \tau, p \mid \exists v : \tau, p \] (quantification)
\[\text{let } v = t \text{ in } p \] (local binding)

Typing

Types:
\[\tau ::= \text{int} \mid \text{real} \mid \text{bool} \mid \text{unit} \]

Typing judgment:
\[\Gamma \vdash t : \tau \]

where \(\Gamma \) maps identifiers to types:

- either \(v : \tau \) (logic variable, immutable)
- either \(x : \text{ref } \tau \) (program variable, mutable)

Important

- a reference is not a value
- there is no “reference on a reference”
- no aliasing

Typing rules

Constants:
\[\Gamma \vdash n : \text{int} \quad \Gamma \vdash r : \text{real} \]
\[\Gamma \vdash \text{True} : \text{bool} \quad \Gamma \vdash \text{False} : \text{bool} \]

Variables:
\[v : \tau \in \Gamma \quad x : \text{ref } \tau \in \Gamma \]
\[\Gamma \vdash v : \tau \quad \Gamma \vdash x : \tau \]

Let binding:
\[\Gamma \vdash t_1 : \tau_1 \quad \{ v : \tau_1 \} \cdot \Gamma \vdash t_2 : \tau_2 \]
\[\Gamma \vdash \text{let } v = t_1 \text{ in } t_2 : \tau_2 \]

- All terms have a base type (not a reference)
- In practice: Why3, unlike OCaml, does not require to write \(\text{let } \) \(\text{x} \) for references

Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local (immutable) variables

- \(\Sigma \): maps program variables to values (a map)
- \(\Pi \): maps logic variables to values (a stack)

\[\begin{align*}
\llbracket \text{val} \rrbracket_{\Sigma, n} &= \text{val} \\
\llbracket x \rrbracket_{\Sigma, n} &= \Sigma(x) \\
\llbracket v \rrbracket_{\Sigma, n} &= \Pi(v) \\
\llbracket \text{op } t_1 \text{ op } t_2 \rrbracket_{\Sigma, n} &= \llbracket t_1 \rrbracket_{\Sigma, n} \text{ op } \llbracket t_2 \rrbracket_{\Sigma, n} \\
\llbracket \text{let } v = t_1 \text{ in } t_2 \rrbracket_{\Sigma, n} &= \llbracket t_2 \rrbracket_{\Sigma, \{ v = \llbracket t_1 \rrbracket_{\Sigma, n} \}}
\end{align*}\]

Warning

Semantics is a partial function, it is not defined on ill-typed formulas
Type Soundness Property

Our logic language satisfies the following standard property of purely functional language

Theorem (Type soundness)

Every well-typed terms and well-typed formulas have a semantics

Proof: induction on the derivation tree of well-typing

Expressions: generalities

- Former statements of IMP are now expressions of type `unit`
 Expressions may have Side Effects
- Statement `skip` is identified with `()`
- The sequence is replaced by a local binding
- From now on, the condition of the `if then else` and the `while do` in programs is a Boolean expression

Syntax

\[
e ::= t \quad \text{(pure term)}
\]
\[
| e \ operator \ e \quad \text{(binary operation)}
\]
\[
| x < e \quad \text{(assignment)}
\]
\[
| \text{let } v = e \text{ in } e \quad \text{(local binding)}
\]
\[
| \text{if } e \text{ then } e \text{ else } e \quad \text{(conditional)}
\]
\[
| \text{while } e \text{ do } e \quad \text{(loop)}
\]

- sequence `e1; e2` : syntactic sugar for

 \[
 \text{let } v = e_1 \text{ in } e_2
 \]

 when `e1` has type `unit` and `v` not used in `e2`

Toy Examples

\[
z \leftarrow \text{if } x \geq y \text{ then } x \text{ else } y
\]

\[
\text{let } v = r \text{ in } (r \leftarrow v + 42; v)
\]

\[
\text{while } (x \leftarrow x - 1; x > 0) \text{ do } ()
\]

\[
\text{while } (\text{let } v = x \text{ in } x \leftarrow x - 1; v > 0) \text{ do } ()
\]
Typing Rules for Expressions

Assignment:
\[
\frac{x : \text{ref } \tau \in \Gamma \quad \Gamma \vdash e : \tau}{\Gamma \vdash x \leftarrow e : \text{unit}}
\]

Let binding:
\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \{v : \tau_1\} : \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{let } v = e_1 \text{ in } e_2 : \tau_2}
\]

Conditional:
\[
\frac{\Gamma \vdash c : \text{bool} \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } c \text{ then } e_1 \text{ else } e_2 : \tau}
\]

Loop:
\[
\frac{\Gamma \vdash c : \text{bool} \quad \Gamma \vdash e : \text{unit}}{\Gamma \vdash \text{while } c \text{ do } e : \text{unit}}
\]

Operational Semantics

Novelty w.r.t. IMP
Need to precise the order of evaluation: left to right

- one-step execution has the form
 \[
 \Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'
 \]

- values do not reduce

Operational Semantics, continued

- Assignment
 \[
 \Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'
 \]
 \[
 \Sigma, \Pi, x \leftarrow e \rightsquigarrow \Sigma', \Pi', x \leftarrow e'
 \]
 \[
 \Sigma, \Pi, x \leftarrow \text{val} \rightsquigarrow \Sigma[x \leftarrow \text{val}], \Pi, ()
 \]

- Let binding
 \[
 \Sigma, \Pi, e_1 \rightsquigarrow \Sigma', \Pi', e'_1
 \]
 \[
 \Sigma, \Pi, \text{let } v = e_1 \text{ in } e_2 \rightsquigarrow \Sigma', \Pi', \text{let } v = e'_1 \text{ in } e_2
 \]
 \[
 \Sigma, \Pi, \text{let } v = \text{val} \text{ in } e \rightsquigarrow \Sigma, \{v = \text{val}\} \cdot \Pi, e
 \]

- Binary operations
 \[
 \Sigma, \Pi, e_1 + e_2 \rightsquigarrow \Sigma', \Pi', e'_1 + e_2
 \]
 \[
 \Sigma, \Pi, e_2 \rightsquigarrow \Sigma', \Pi', e'_2
 \]
 \[
 \Sigma, \Pi, \text{val} + e_2 \rightsquigarrow \Sigma', \Pi', \text{val} + e'_2
 \]
Operational Semantics, Continued

- **Conditional**
 \[\Sigma, \Pi, c \Rightarrow \Sigma', \Pi', c'\]
 \[
 \Sigma, \Pi, \text{if } c \text{ then } e_1 \text{ else } e_2 \Rightarrow \Sigma', \Pi', \text{if } c' \text{ then } e_1 \text{ else } e_2
 \]

- **Loop**
 \[\Sigma, \Pi, \text{while } c \text{ do } e \Rightarrow \Sigma, \Pi, \text{if } c \text{ then } (e; \text{while } c \text{ do } e) \text{ else } ()\]

Context Rules versus Let Binding

Remark: most of the context rules can be avoided

- An equivalent operational semantics can be defined using
 \[\text{let } v = ... \text{ in } ...\] instead, e.g.:
 \[v_1, v_2 \text{ fresh}\]
 \[
 \Sigma, \Pi, e_1 + e_2 \Rightarrow \Sigma, \Pi, \text{let } v_1 = e_1 \text{ in let } v_2 = e_2 \text{ in } v_1 + v_2
 \]

Thus, only the context rule for let is needed

Type Soundness

Theorem
Every well-typed expression evaluate to a value or execute infinitely

Classical proof:
- type is preserved by reduction
- execution of well-typed expressions that are not values can progress

Blocking Semantics: General Ideas

- add *assertions* in expressions
- failed assertions = “run-time errors”

First step: modify expression syntax with
- new expression: assertion
- adding loop invariant in loops

\[e ::= \text{assert } p \quad \text{(assertion)}\]
\[\mid \text{while } e \text{ invariant } I \text{ do } e \quad \text{(annotated loop)}\]
Toy Examples

z <- if x ≥ y then x else y ;
assert z ≥ x ∧ z ≥ y

while (x <- x - 1; x > 0)
 invariant x ≥ 0 do ()
assert (x = 0)

while (let v = x in x <- x - 1; v > 0)
 invariant x ≥ -1 do ()
assert (x < 0)

Result value in post-conditions

New addition in the specification language:
▸ keyword result in post-conditions
▸ denotes the value of the expression executed

Example:
{ true }
if x ≥ y then x else y
{ result ≥ x ∧ result ≥ y }

Blocking Semantics: Modified Rules

\[
\begin{align*}
\llbracket P \rrbracket_{\Sigma, \Pi} & \text{ holds} \\
\Sigma, \Pi, \text{assert } P & \hookrightarrow \Sigma, \Pi, ()
\end{align*}
\]

\[
\begin{align*}
\llbracket _ \rrbracket_{\Sigma, \Pi} & \text{ holds} \\
\Sigma, \Pi, \text{while } c \text{ invariant } l \text{ do } e & \hookrightarrow \\
\Sigma, \Pi, \text{if } c \text{ then } e \text{; while } c \text{ invariant } l \text{ do } e \text{ else } ()
\end{align*}
\]

Important
Execution blocks as soon as an invalid annotation is met

Soundness of a program

Definition
Execution of an expression in a given state is safe if it does not block: either terminates on a value or runs infinitely.

Definition
A triple \(\{ P \} e \{ Q \} \) is valid if for any state \(\Sigma, \Pi \) satisfying \(P, e \) executes safely in \(\Sigma, \Pi \), and if it terminates, the final state satisfies \(Q \)
Weakest Preconditions Revisited

Goal:
- construct a new calculus $WP(e, Q)$

Expected property: in any state satisfying $WP(e, Q)$,
- e is guaranteed to execute safely
- if it terminates, Q holds in the final state

New Weakest Precondition Calculus

- Pure terms:
 $WP(t, Q) = Q[result ← t]$

- Let binding:
 $WP(\text{let } x = e_1 \text{ in } e_2, Q) = WP(e_1, WP(e_2, Q)[x ← result])$

Weakest Preconditions, continued

- Assignment:
 $WP(x ← e, Q) = WP(e, Q[result ← ()]; x ← result)$

- Alternative:
 $WP(x ← e, Q) = WP(\text{let } v = e \text{ in } x ← v, Q)$
 $WP(x ← t, Q) = Q[result ← (); x ← t]$
Weakest Preconditions, continued

- Conditional
 \[
 \text{WP}(\text{if } e_1 \text{ then } e_2 \text{ else } e_3, Q) =
 \text{WP}(e_1, \text{if result then } \text{WP}(e_2, Q) \text{ else } \text{WP}(e_3, Q))
 \]
- Alternative with let: (exercise!)

Soundness of WP

Lemma (Preservation by Reduction)

If \(\Sigma, \Pi \models \text{WP}(e, Q) \) and \(\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e' \) then
\(\Sigma', \Pi' \models \text{WP}(e', Q) \)

Proof: predicate induction of \(\rightsquigarrow \).

Lemma (Progress)

If \(\Sigma, \Pi \models \text{WP}(e, Q) \) and \(e \) is not a value then there exists \(\Sigma', \Pi', e' \) such that \(\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e' \)

Proof: structural induction of \(e \).

Corollary (Soundness)

If \(\Sigma, \Pi \models \text{WP}(e, Q) \) then
- \(e \) executes safely in \(\Sigma, \Pi \).
- if execution terminates, \(Q \) holds in the final state

Bibliography

Bibliography

