Aliasing Issues:
Call by reference, Pointer programs

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

14 janvier 2020
Prove Fermat’s little theorem for case $p = 3$:

$$\forall x, \exists y. x^3 - x = 3y$$

using a lemma function

See little_fermat_3.mlw
Home Work: “for” loops

Syntax: \(\text{for } i = e_1 \text{ to } e_2 \text{ do } e \)

Typing:
- \(i \) visible only in \(e \), and is immutable
- \(e_1 \) and \(e_2 \) must be of type \(\text{int} \), \(e \) must be of type \(\text{unit} \)

Operational semantics:
(assuming \(e_1 \) and \(e_2 \) are values \(v_1 \) and \(v_2 \))

\[
\frac{v_1 > v_2}{\Sigma, \Pi, \text{for } i = v_1 \text{ to } v_2 \text{ do } e \leadsto \Sigma, \Pi, ()}
\]

\[
\frac{v_1 \leq v_2}{\Sigma, \Pi, \text{for } i = v_1 \text{ to } v_2 \text{ do } e \leadsto \Sigma, \Pi, \left(\text{let } i = v_1 \text{ in } e \right); \left(\text{for } i = v_1 + 1 \text{ to } v_2 \text{ do } e \right)}
\]
Home Work: “for” loops

Propose a Hoare logic rule for the for loop:

\[
\frac{\{?\} \text{e}\{?\}}{\{?\} \text{for } i = v_1 \text{ to } v_2 \text{ do } \text{e}\{?\}}
\]

Propose a rule for computing the WP:

\[
\text{WP}(\text{for } i = v_1 \text{ to } v_2 \text{ invariant } I \text{ do } \text{e}, Q) = ?
\]

Additional exercise: use a for loop in the linear search example

lin_search_for.mlw
Home Work: “for” loops

Propose a Hoare logic rule for the for loop:

\[
\{ I \land v_1 \leq i \leq v_2 \} \Rightarrow \{ [i \leftarrow i + 1] \}
\]

\[
\{ [i \leftarrow v_1] \land v_1 \leq v_2 \} \text{ for } i = v_1 \text{ to } v_2 \text{ do } \{ [i \leftarrow v_2 + 1] \}
\]

Propose a rule for computing the WP:

\[
\text{WP}(\text{for } i = v_1 \text{ to } v_2 \text{ invariant } I \text{ do } e, Q) = ?
\]

Additional exercise: use a for loop in the linear search example lin_search_for.mlw
Home Work: Binary Search

\[low = 0; high = a.length - 1; \]
while \(low \leq high \):
 let \(m \) be the middle of \(low \) and \(high \)
 if \(a[m] = v \) then return \(m \)
 if \(a[m] < v \) then continue search between \(m \) and \(high \)
 if \(a[m] > v \) then continue search between \(low \) and \(m \)

See file \texttt{bin_search.mlw}
Home Work

- Implement and prove binary search using also a immediate exit:

 \[
 \text{low} = 0; \quad \text{high} = a.length - 1; \\
 \text{while } \text{low} \leq \text{high}: \\
 \quad \text{let } m \text{ be the middle of } \text{low} \text{ and } \text{high} \\
 \quad \text{if } a[m] = v \text{ then return } m \\
 \quad \text{if } a[m] < v \text{ then continue search between } m \text{ and } \text{high} \\
 \quad \text{if } a[m] > v \text{ then continue search between } \text{low} \text{ and } m
 \]

 (see bin_search_exc.mlw)
Binary Search with overflow checking

See bin_search_int32.mlw
Reminder of the last lecture

- Additional features of the specification language
 - Sum Types, e.g. *lists*

- Programs on *lists*

- Additional feature of the programming language
 - *Exceptions*
 - Function contracts extended with *exceptional post-conditions*

- Computer Arithmetic: *bounded integers, floating-point numbers*
Introducing Aliasing Issues

Compound data structures can be *modeled* using expressive specification languages

- Defined functions and predicates
- Product types (records)
- Sum types (lists, trees)
- Axiomatizations (arrays, machine integers)
- Ghost code, lemma functions

Important points:

- *pure* types, no internal “in-place” assignment
- Mutable variables = *references to pure types*

No Aliasing
Aliasing

Aliasing = two different “names” for the same mutable data

Two sub-topics of today’s lecture:

- Call by reference
- Pointer programs
Outline

Call by Reference

Pointer Programs
Need for call by reference

Example: stacks of integers

```ocaml
type stack = list int

val ref s: stack
define push(x:int):unit
  writes s
  ensures s = Cons(x,s@Old)
  body ...

let pop(): int
  requires s ≠ Nil
  writes s
  ensures result = head(s@Old) ∧ s = tail(s@Old)
```
Need for call by reference

If we need two stacks in the same program:
 ▶ We don’t want to write the functions twice!

We want to write

```ocaml
type stack = list int

let push(ref s: stack, x:int): unit
  writes s
  ensures s = Cons(x,s@Old)
  ...

let pop(ref s: stack):int
  ...
```
Call by Reference: example

```ocaml
val ref s1, s2: stack

let test():
    writes s1, s2
    ensures result = 13 ∧ head(s2) = 42
    body push(s1, 13); push(s2, 42); pop(s1)
```

See file `stack1.mlw`
Aliasing is a major issue

Deductive Verification Methods like Hoare logic, Weakest Precondition Calculus implicitly require absence of aliasing
Syntax

- Declaration of functions: (references first for simplicity)

 \[
 \text{let } f(\text{ref } y_1 : \tau_1, \ldots, \text{ref } y_k : \tau_k, x_1 : \tau'_1, \ldots, x_n : \tau'_n) : \\
 \quad \ldots
 \]

- Call:

 \[
 f(z_1, \ldots, z_k, e_1, \ldots, e_n)
 \]

 where each \(z_i \) must be a (mutable) variable
Intuitive semantics, by substitution:

\[
\Pi' = \{ x_i \leftarrow [t_i]_{\Sigma, \Pi} \} \quad \Sigma, \Pi' \models Pre \quad Body' = Body[y_j \leftarrow z_j]
\]

\[
\Sigma, \Pi, f(z_1, \ldots, z_k, t_1, \ldots, t_n) \leadsto \Sigma, \Pi, (Old : frame(\Pi', Body', Post))
\]

- The body is executed, where each occurrence of reference parameters are replaced by the corresponding reference argument.
- Not a “practical” semantics, but that’s not important...
Operational Semantics

Variant: Semantics by copy/restore:

\[
\Sigma' = \Sigma[y_j \leftarrow \Sigma(z_j)] \\
\Pi' = \{x_i \leftarrow [t_i]_{\Sigma,\Pi}\} \\
\Sigma, \Pi' \models Pre
\]

\[
\Sigma, \Pi, f(z_1, \ldots, z_k, t_1, \ldots, t_n) \leadsto \Sigma', \Pi, (Old: frame(\Pi', \text{Body, Post}))
\]

\[
\Sigma, \Pi' \models P[result \leftarrow v] \\
\Sigma' = \Sigma[z_j \leftarrow \Sigma(y_j)]
\]

\[
\Sigma, \Pi, (frame(\Pi', v, P)) \leadsto \Sigma', \Pi, v
\]
Operational Semantics

Variant: Semantics by copy/restore:

\[
\Sigma' = \Sigma[y_j \leftarrow \Sigma(z_j)] \quad \Pi' = \{x_i \leftarrow [t_i]_{\Sigma, n}\} \quad \Sigma, \Pi' \models Pre
\]

\[
\Sigma, \Pi, f(z_1, \ldots, z_k, t_1, \ldots, t_n) \leadsto \Sigma', \Pi, (Old: frame(\Pi', Body, Post))
\]

\[
\Sigma, \Pi' \models P[result \leftarrow v] \quad \Sigma' = \Sigma[z_j \leftarrow \Sigma(y_j)]
\]

\[
\Sigma, \Pi, (frame(\Pi', v, P)) \leadsto \Sigma', \Pi, v
\]

Warning: not the same semantics!
Val ref g : int

let f(ref x: int):unit
 body x <- 1; x <- g+1

let test():unit
 body g <- 0; f(g)

After executing test:
 ▶ Semantics by substitution: g = 2
 ▶ Semantics by copy/restore: g = 1
let f(ref x: int, ref y: int):
 writes x, y
 ensures x = 1 ∧ y = 2
 body x <- 1; y <- 2

val ref g : int

let test():
 body
 f(g,g);
 assert g = 1 ∧ g = 2 (* ???? *)

Aliasing of reference parameters
```ml
val ref g1 : int
val ref g2 : int

let p(ref x: int):
  writes g1, x
  ensures g1 = 1 ∧ x = 2
  body g1 <- 1; x <- 2

let test():
  body
    p(g2); assert g1 = 1 ∧ g2 = 2; (* OK *)
    p(g1); assert g1 = 1 ∧ g1 = 2; (* ??? *)
```

- Aliasing of a global variable and reference parameter
Aliasing Issues (3)

```ocaml
val ref g : int

val fun f(ref x : int):unit
  writes x
  ensures x = g + 1
  (* body x <- 1; x <- g+1 *)

let test():unit
  ensures { g = 1 or 2 ? }
  body g <- 0; f(g)
```

- Aliasing of a read reference and a written reference
Aliasing Issues (3)

New need in specifications

Need to *specify read references in contracts*

```ml
val ref g : int

val f(ref x: int):unit
  reads g       (* new clause in contract *)
  writes x
  ensures x = g + 1
  (* body x <- 1; x <- g+1 *)

let test():unit
  ensures { g = ? }
  body g <- 0; f(g)
```

▶ See file stack2.mlw
Typing: Alias-Freedom Conditions

For a function of the form

\[f(\text{ref } y_1 : \tau_1, \ldots, \text{ref } y_k : \tau_k, \ldots) : \tau : \]

writes \(\vec{w} \)
reads \(\vec{r} \)

Typing rule for a call to \(f \):

\[\ldots \quad \forall ij, i \neq j \rightarrow z_i \neq z_j \quad \forall i, j, z_i \neq w_j \quad \forall i, j, z_i \neq r_j \]
\[\ldots |- f(z_1, \ldots, z_k, \ldots) : \tau \]

- effective arguments \(z_j \) must be distinct
- effective arguments \(z_j \) must not be read nor written by \(f \)
Proof Rules

Thanks to restricted typing:

- Semantics by substitution and by copy/restore coincide
- Hoare rules remain correct
- WP rules remain correct
New references

- Need to return newly created references
- Example: stack continued

```coffeescript
let create():ref stack
    ensures result = Nil
    body (ref Nil)
```

- Typing should require that a returned reference is always fresh

More on aliasing control using static typing: [Filliâtre, 2016]
Outline

Call by Reference

Pointer Programs
Pointer programs

- We drop the hypothesis “no reference to reference”
- Allows to program on *linked data structures*. Example (in the C language):

```c
struct List { int data; linked_list next; }
*linked_list;
while (p <> NULL) { p->data++; p = p->next }
```

- “In-place” assignment
- References are now *values* of the language: “pointers” or “memory addresses”

We need to handle aliasing problems differently
For simplicity, we assume a language with pointers to records
Access to record field: \(e.f \)
Update of a record field: \(e.f <- e' \)
Operational Semantics

- New kind of values: \(\textit{loc} \) = the type of pointers
- A special value \(\textit{null} \) of type \(\textit{loc} \) is given
- A program state is now a pair of
 - a \(\textit{store} \) which maps variables identifiers to values
 - a \(\textit{heap} \) which maps pairs (\(\textit{loc} \), field name) to values
- Memory access and updates should be proved safe (no “null pointer dereferencing”)
- For the moment we forbid allocation/deallocation

[See lecture next week]
Component-as-array trick

[Bornat, 2000]

If
- a program is well-typed
- The set of all field names are known
then the heap can be also seen as a finite collection of maps, one for each field name:
- map for a field of type τ maps loc to values of type τ

This “trick” allows to encode pointer programs into our previous programming language:
- Use maps indexed by locs (instead of integers for arrays)
Component-as-array model

```haskell
type loc
constant null : loc

val acc(ref field: loc → α, l:loc) : α
  requires l ≠ null
  reads field
  ensures result = select(field,l)

val upd(ref field: loc → α, l:loc, v:α):unit
  requires l ≠ null
  writes field
  ensures field = store(field@Old,l,v)
```

Encoding:

- Access to record field: `e.f` becomes `acc(f,e)`
- Update of a record field: `e.f <- e'` becomes `upd(f,e,e')`
Example

- In C

```c
struct List { int data; linked_list next; }
*linked_list;

while (p <> NULL) { p->data++; p = p->next }
```

- Encoded as

```plaintext
val ref data: loc → int
val ref next: loc → loc
val ref p : loc

while p ≠ null do
    upd(data,p,acc(data,p)+1);
    p <- acc(next,p)
```
A la C/Java:

```c
linked_list reverse(linked_list l) {
    linked_list p = l;
    linked_list r = null;
    while (p != null) {
        linked_list n = p->next;
        p->next = r;
        r = p;
        p = n
    }
    return r;
}
```
In-place Reversal in our Model

```
let reverse (l:loc) : loc =
  let ref p = l in
  let ref r = null in
  while p ≠ null do
    let n = acc(next,p) in
    upd(next,p,r);
    r <- p;
    p <- n
  done;
  r
```

Goals:

- Specify the expected behavior of `reverse`
- Prove the implementation
Specifying the function

Predicate \(\text{list}_\text{seg}(p, \text{next}, p_M, q) : \)

\(p \) points to a list of nodes \(p_M \) that ends at \(q \)

\[
p = p_0 \xrightarrow{\text{next}} p_1 \xrightarrow{\text{next}} \cdots \xrightarrow{\text{next}} p_k \xrightarrow{\text{next}} q
\]

\(p_M = \text{Cons}(p_0, \text{Cons}(p_1, \cdots \text{Cons}(p_k, \text{Nil}) \cdots)) \)

\(p_M \) is the model list of \(p \)

predicate list_seg (p:loc, next: loc → loc, pM:list loc, q:loc) =

match pM with
| Nil → p = q
| Cons h t →
 p ≠ null ∧ h=p ∧ list_seg((next p),next,t,q)
Specification

- pre: input l well-formed:
 \[\exists l_M. \text{list_seg}(l, \text{next}, l_M, \text{null}) \]

- post: output well-formed:
 \[\exists r_M. \text{list_seg}(\text{result}, \text{next}, r_M, \text{null}) \]
 and
 \[r_M = \text{rev}(l_M) \]

Issue: quantification on l_M is global to the function
- Use *ghost* variables
Annotated In-place Reversal

let reverse (l:loc) (ghost lM:list loc) : loc =
 requires list_seg(l,next,lM,null)
 writes next
 ensures list_seg(result,next,rev(lM),null)

body
 let ref p = l in
 let ref r = null in
 while p ≠ null do
 let n = acc(next,p) in
 upd(next,p,r);
 r <- p;
 p <- n
 done;
 r

See file linked_list_rev.mlw
In-place Reversal: loop invariant

```
while (p ≠ null) do
    let n = acc(next,p) in
    upd(next,p,r);
    r <- p;
    p <- n
```
In-place Reversal: loop invariant

```
while (p \neq \text{null}) do
    let n = \text{acc}(next,p) in
    \text{upd}(next,p,r);
    r <- p;
    p <- n
```

Local ghost variables p_M, r_M

\[
\text{list}_\text{seg}(p, next, p_M, \text{null})
\]

\[
\text{list}_\text{seg}(r, next, r_M, \text{null})
\]
In-place Reversal: loop invariant

```plaintext
while (p ≠ null) do
    let n = acc(next,p) in
    upd(next,p,r);
    r ← p;
    p ← n
```

Local ghost variables \(p_M, r_M \)

\[
\text{list_seg}(p, next, p_M, null) \]

\[
\text{list_seg}(r, next, r_M, null) \]

\[
\text{append}(\text{rev}(p_M), r_M) = \text{rev}(l_M) \]
To prove invariant \(\text{list_seg}(p, next, p_M, null) \), we need to show that \(\text{list_seg} \) remains true when \(next \) is updated:

\[
\text{lemma list_seg_frame: } \forall next1 \ next2:\text{map loc loc},
\ p \ q \ r \ v: \text{loc}, \ pM:\text{list loc}.
\ \text{list_seg}(p, next1, pM, q) \land
\ next2 = \text{store}(next1, r, v) \land
\ \text{not mem}(r, pM) \rightarrow \text{list_seg}(p, next2, pM, q)
\]

This is an instance of a general \textit{frame property}
Frame property

For a predicate P, the **frame** of P is the set of memory locations $fr(P)$ that P depends on.

Frame property

P is invariant under mutations outside $fr(P)$

$$
H \vdash P \quad H \cap fr(P) = H' \cap fr(P) \\
\therefore H' \vdash P
$$

See also [Kassios, 2006]
Needed lemmas

- To prove invariant $\text{list_seg}(p, next, p_M, null)$, we need to show that list_seg remains true when $next$ is updated:

- But to apply the frame lemma, we need to show that a path going to $null$ cannot contain repeated elements

```latex
lemma list\_seg\_no\_repet:
  forall next:map loc loc, p: loc, pM:list loc.
  list\_seg(p,next,pM,null) → no\_repet(pM)
```
Needed lemmas

To prove invariant \texttt{list_seg}(r, next, r_M, null), we need the frame property.
Needed lemmas

- To prove invariant \(\text{list_seg}(r, \text{next}, r_M, \text{null}) \), we need the frame property.
- Again, to apply the frame lemma, we need to show that \(p_M, r_M \) remain disjoint: it is an additional invariant.
Exercise

The algorithm that appends two lists \textit{in place} follows this pseudo-code:

append(l1,l2 : loc) : loc
 \textbf{if} l1 is empty \textbf{then} return l2;
 let \textbf{ref} p = l1 \textbf{in}
 \textbf{while} p.next is not null \textbf{do} p <- p.next;
 p.next <- l2;
 return l1

1. Specify a post-condition giving the list models of both \texttt{result} and \texttt{l2} (add any ghost variable needed)
2. Which pre-conditions and loop invariants are needed to prove this function?

See \texttt{linked_list_app.mlw}
Bibliography

Aliasing control using static typing

Component-as-array modeling

Reasoning on pointer programs using the component-as-array trick is complex
 ▶ need to state and prove frame lemmas
 ▶ need to specify many disjointness properties
 ▶ even harder is the handling of memory allocation

Separation Logic is another approach to reason on heap memory
 ▶ memory resources explicit in formulas
 ▶ frame lemmas and disjointness properties are internalized
Schedule

- January 21th: lecture 5 by Jean-Marie Madiot
- January 28th: lecture 6 by Jean-Marie Madiot
- February 4th: lab session, help for solving the project, also this room
- February 11th: lecture 7 by Jean-Marie Madiot
- February 14th: deadline for sending your project solution
- February 18th: lecture 8 by Jean-Marie Madiot
- Written exam: March 3rd, 08:45, also this room